Add tokenizer test + revert to C++11 (#355)
* Add test-tokenizer-0 to do a few tokenizations - feel free to expand * Added option to convert-pth-to-ggml.py script to dump just the vocabulary * Added ./models/ggml-vocab.bin containing just LLaMA vocab data (used for tests) * Added utility to load vocabulary file from previous point (temporary implementation) * Avoid using std::string_view and drop back to C++11 (hope I didn't break something) * Rename gpt_vocab -> llama_vocab * All CMake binaries go into ./bin/ now
This commit is contained in:
parent
2e664f1ff4
commit
eb34620aec
11 changed files with 249 additions and 148 deletions
28
utils.h
28
utils.h
|
@ -60,7 +60,7 @@ std::string gpt_random_prompt(std::mt19937 & rng);
|
|||
// Vocab utils
|
||||
//
|
||||
|
||||
struct gpt_vocab {
|
||||
struct llama_vocab {
|
||||
using id = int32_t;
|
||||
using token = std::string;
|
||||
|
||||
|
@ -74,34 +74,22 @@ void replace(std::string & str, const std::string & needle, const std::string &
|
|||
// poor-man's JSON parsing
|
||||
std::map<std::string, int32_t> json_parse(const std::string & fname);
|
||||
|
||||
// split text into tokens
|
||||
//
|
||||
// ref: https://github.com/openai/gpt-2/blob/a74da5d99abaaba920de8131d64da2862a8f213b/src/encoder.py#L53
|
||||
//
|
||||
// Regex (Python):
|
||||
// r"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+"""
|
||||
//
|
||||
// Regex (C++):
|
||||
// R"('s|'t|'re|'ve|'m|'ll|'d| ?[[:alpha:]]+| ?[[:digit:]]+| ?[^\s[:alpha:][:digit:]]+|\s+(?!\S)|\s+)"
|
||||
//
|
||||
std::vector<gpt_vocab::id> gpt_tokenize(const gpt_vocab & vocab, const std::string & text);
|
||||
// TODO: temporary until #77 is merged, need this now for some tokenizer tests
|
||||
bool llama_vocab_load(const std::string & fname, llama_vocab & vocab);
|
||||
|
||||
// TODO: this is probably wrong, but I cannot figure out how this tokenizer works ..
|
||||
// ref: https://github.com/google/sentencepiece
|
||||
std::vector<gpt_vocab::id> llama_tokenize(const gpt_vocab & vocab, std::string_view text, bool bos);
|
||||
|
||||
// load the tokens from encoder.json
|
||||
bool gpt_vocab_init(const std::string & fname, gpt_vocab & vocab);
|
||||
std::vector<llama_vocab::id> llama_tokenize(const llama_vocab & vocab, const std::string & text, bool bos);
|
||||
|
||||
// sample next token given probabilities for each embedding
|
||||
//
|
||||
// - consider only the top K tokens
|
||||
// - from them, consider only the top tokens with cumulative probability > P
|
||||
//
|
||||
gpt_vocab::id llama_sample_top_p_top_k(
|
||||
const gpt_vocab & vocab,
|
||||
llama_vocab::id llama_sample_top_p_top_k(
|
||||
const llama_vocab & vocab,
|
||||
const float * logits,
|
||||
std::vector<gpt_vocab::id> & last_n_tokens,
|
||||
std::vector<llama_vocab::id> & last_n_tokens,
|
||||
double repeat_penalty,
|
||||
int top_k,
|
||||
double top_p,
|
||||
|
@ -109,7 +97,7 @@ gpt_vocab::id llama_sample_top_p_top_k(
|
|||
std::mt19937 & rng);
|
||||
|
||||
// filer to top K tokens from list of logits
|
||||
void sample_top_k(std::vector<std::pair<double, gpt_vocab::id>> & logits_id, int top_k);
|
||||
void sample_top_k(std::vector<std::pair<double, llama_vocab::id>> & logits_id, int top_k);
|
||||
|
||||
//
|
||||
// Quantization
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue