diff --git a/.gitignore b/.gitignore index fbeb9223c..04957b5e4 100644 --- a/.gitignore +++ b/.gitignore @@ -72,6 +72,7 @@ models-mnt /batched-bench /export-lora /finetune +/retrieval /speculative /parallel /train-text-from-scratch diff --git a/Makefile b/Makefile index 1daad45ed..2854afe75 100644 --- a/Makefile +++ b/Makefile @@ -2,7 +2,7 @@ BUILD_TARGETS = \ main quantize quantize-stats perplexity imatrix embedding vdot q8dot train-text-from-scratch convert-llama2c-to-ggml \ simple batched batched-bench save-load-state server gguf llama-bench libllava.a llava-cli baby-llama beam-search \ - speculative infill tokenize benchmark-matmult parallel finetune export-lora lookahead lookup passkey gritlm tests/test-c.o + retrieval speculative infill tokenize benchmark-matmult parallel finetune export-lora lookahead lookup passkey gritlm tests/test-c.o # Binaries only useful for tests TEST_TARGETS = \ @@ -794,6 +794,10 @@ export-lora: examples/export-lora/export-lora.cpp ggml.o common/common.h $(OBJS) $(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<) $(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS) +retrieval: examples/retrieval/retrieval.cpp ggml.o llama.o $(COMMON_DEPS) $(OBJS) + $(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<) + $(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS) + speculative: examples/speculative/speculative.cpp ggml.o llama.o $(COMMON_DEPS) grammar-parser.o $(OBJS) $(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<) $(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS) diff --git a/common/common.cpp b/common/common.cpp index 5f10718ec..97ce522cb 100644 --- a/common/common.cpp +++ b/common/common.cpp @@ -276,6 +276,43 @@ static bool gpt_params_find_arg(int argc, char ** argv, gpt_params & params, int } return true; } + if (arg == "--context-files") { + if (++i >= argc) { + invalid_param = true; + return true; + } + while(true) { + std::ifstream file(argv[i]); + if (!file) { + fprintf(stderr, "error: failed to open file '%s'\n", argv[i]); + invalid_param = true; + break; + } + // store the external file name in params + params.context_files.push_back(argv[i]); + if (i + 1 >= argc || argv[i + 1][0] == '-') { + break; + } + i++; + } + return true; + } + if (arg == "--chunk-size") { + if (++i >= argc) { + invalid_param = true; + return true; + } + params.chunk_size = std::stoi(argv[i]); + return true; + } + if (arg == "--chunk-separator") { + if (++i >= argc) { + invalid_param = true; + return true; + } + params.chunk_separator = argv[i]; + return true; + } if (arg == "-n" || arg == "--n-predict") { if (++i >= argc) { invalid_param = true; @@ -1282,6 +1319,11 @@ void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) { printf(" prompt file to start generation.\n"); printf(" -bf FNAME, --binary-file FNAME\n"); printf(" binary file containing multiple choice tasks.\n"); + printf(" --context-files FNAME1 FNAME2...\n"); + printf(" files containing context to embed.\n"); + printf(" --chunk-size N minimum length of embedded text chunk (default:%d)\n", params.chunk_size); + printf(" --chunk-separator STRING\n"); + printf(" string to separate chunks (default: newline)\n"); printf(" -n N, --n-predict N number of tokens to predict (default: %d, -1 = infinity, -2 = until context filled)\n", params.n_predict); printf(" -c N, --ctx-size N size of the prompt context (default: %d, 0 = loaded from model)\n", params.n_ctx); printf(" -b N, --batch-size N logical maximum batch size (default: %d)\n", params.n_batch); diff --git a/common/common.h b/common/common.h index 8dd8a3edc..530a82133 100644 --- a/common/common.h +++ b/common/common.h @@ -79,6 +79,9 @@ struct gpt_params { float yarn_beta_slow = 1.0f; // YaRN high correction dim int32_t yarn_orig_ctx = 0; // YaRN original context length float defrag_thold = -1.0f; // KV cache defragmentation threshold + std::vector context_files = {}; // context files to embed + int32_t chunk_size = 64; // chunk size for context embedding + std::string chunk_separator = "\n"; // chunk separator for context embedding ggml_numa_strategy numa = GGML_NUMA_STRATEGY_DISABLED; diff --git a/examples/CMakeLists.txt b/examples/CMakeLists.txt index b59cc65bf..76496bf06 100644 --- a/examples/CMakeLists.txt +++ b/examples/CMakeLists.txt @@ -34,6 +34,7 @@ else() add_subdirectory(perplexity) add_subdirectory(quantize) add_subdirectory(quantize-stats) + add_subdirectory(retrieval) add_subdirectory(save-load-state) add_subdirectory(simple) add_subdirectory(passkey) diff --git a/examples/retrieval/CMakeLists.txt b/examples/retrieval/CMakeLists.txt new file mode 100644 index 000000000..eaabae08d --- /dev/null +++ b/examples/retrieval/CMakeLists.txt @@ -0,0 +1,5 @@ +set(TARGET retrieval) +add_executable(${TARGET} retrieval.cpp) +install(TARGETS ${TARGET} RUNTIME) +target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT}) +target_compile_features(${TARGET} PRIVATE cxx_std_11) diff --git a/examples/retrieval/retrieval.cpp b/examples/retrieval/retrieval.cpp new file mode 100644 index 000000000..9718cc9d1 --- /dev/null +++ b/examples/retrieval/retrieval.cpp @@ -0,0 +1,278 @@ +#include "common.h" +#include "llama.h" + +#include +#include + +struct chunk { + // filename + std::string filename; + // original file position + int64_t filepos; + // original text data + std::string textdata = ""; + // tokenized text data + std::vector tokens; + // embedding + std::vector embedding; + // cosin similarity + float similarity; +}; + +// chunk file data to chunks of size >= chunk_size +// chunk_separator is the separator between chunks +static std::vector chunk_file(const std::string filename, int chunk_size, std::string chunk_separator) { + std::vector chunks; + std::ifstream f(filename.c_str()); + + if (!f.is_open()) { + fprintf(stderr, "Error: could not open file %s\n", filename.c_str()); + return chunks; + } + + chunk current_chunk; + char buffer[chunk_size]; + int64_t filepos = 0; + std::string current = ""; + while (f.read(buffer, chunk_size)) { + current += std::string(buffer, f.gcount()); + size_t pos; + while ((pos = current.find(chunk_separator)) != std::string::npos) { + current_chunk.textdata += current.substr(0, pos + chunk_separator.size()); + if ((int) current_chunk.textdata.size() > chunk_size) { + // save chunk + current_chunk.filepos = filepos; + current_chunk.filename = filename; + chunks.push_back(current_chunk); + // update filepos + filepos += (int) current_chunk.textdata.size(); + // reset current_chunk + current_chunk = chunk(); + } + current = current.substr(pos + chunk_separator.size()); + } + + } + // add leftover data to last chunk + if (current_chunk.textdata.size() > 0) { + if (chunks.empty()) { + current_chunk.filepos = filepos; + current_chunk.filename = filename; + chunks.push_back(current_chunk); + } else { + chunks.back().textdata += current_chunk.textdata; + } + } + f.close(); + return chunks; +} + +static void batch_add_seq(llama_batch & batch, const std::vector & tokens, int seq_id) { + for (size_t i = 0; i < tokens.size(); i++) { + llama_batch_add(batch, tokens[i], i, { seq_id }, i == tokens.size() - 1); + } +} + +static void batch_decode(llama_context * ctx, llama_batch & batch, float * output, int n_seq, int n_embd) { + // clear previous kv_cache values (irrelevant for embeddings) + llama_kv_cache_clear(ctx); + + // run model + fprintf(stderr, "%s: n_tokens = %d, n_seq = %d\n", __func__, batch.n_tokens, n_seq); + if (llama_decode(ctx, batch) < 0) { + fprintf(stderr, "%s : failed to decode\n", __func__); + } + + for (int i = 0; i < batch.n_tokens; i++) { + if (!batch.logits[i]) { + continue; + } + + // try to get sequence embeddings - supported only when pooling_type is not NONE + const float * embd = llama_get_embeddings_seq(ctx, batch.seq_id[i][0]); + if (embd == NULL) { + embd = llama_get_embeddings_ith(ctx, i); + if (embd == NULL) { + fprintf(stderr, "%s: failed to get embeddings for token %d\n", __func__, i); + continue; + } + } + + float * out = output + batch.seq_id[i][0] * n_embd; + llama_embd_normalize(embd, out, n_embd); + } +} + +int main(int argc, char ** argv) { + gpt_params params; + + if (!gpt_params_parse(argc, argv, params)) { + return 1; + } + + if (params.chunk_size <= 0) { + fprintf(stderr, "chunk_size must be positive\n"); + return 1; + } + if (params.context_files.empty()) { + fprintf(stderr, "context_files must be specified\n"); + return 1; + } + params.embedding = true; + + print_build_info(); + + if (params.seed == LLAMA_DEFAULT_SEED) { + params.seed = time(NULL); + } + + printf("processing files:\n"); + for (auto & context_file : params.context_files) { + printf("%s\n", context_file.c_str()); + } + + std::vector chunks; + for (auto & context_file : params.context_files) { + std::vector file_chunk = chunk_file(context_file, params.chunk_size, params.chunk_separator); + chunks.insert(chunks.end(), file_chunk.begin(), file_chunk.end()); + } + printf("Number of chunks: %ld\n", chunks.size()); + + llama_backend_init(); + llama_numa_init(params.numa); + + llama_model * model; + llama_context * ctx; + + // load the model + std::tie(model, ctx) = llama_init_from_gpt_params(params); + if (model == NULL) { + fprintf(stderr, "%s: error: unable to load model\n", __func__); + return 1; + } + + const int n_ctx_train = llama_n_ctx_train(model); + const int n_ctx = llama_n_ctx(ctx); + + if (n_ctx > n_ctx_train) { + fprintf(stderr, "%s: warning: model was trained on only %d context tokens (%d specified)\n", + __func__, n_ctx_train, n_ctx); + } + + // print system information + { + fprintf(stderr, "\n"); + fprintf(stderr, "%s\n", get_system_info(params).c_str()); + } + + // max batch size + const uint64_t n_batch = params.n_batch; + GGML_ASSERT(params.n_batch >= params.n_ctx); + + // tokenize the prompts and trim + for (auto & chunk : chunks) { + auto inp = ::llama_tokenize(ctx, chunk.textdata, true, false); + if (inp.size() > n_batch) { + inp.resize(n_batch); + } + // add eos if not present + if (inp.empty() || inp.back() != llama_token_eos(model)) { + inp.push_back(llama_token_eos(model)); + } + chunk.tokens = inp; + } + + // tokenization stats + if (params.verbose_prompt) { + for (int i = 0; i < (int) chunks.size(); i++) { + fprintf(stderr, "%s: prompt %d: '%s'\n", __func__, i, chunks[i].textdata.c_str()); + fprintf(stderr, "%s: number of tokens in prompt = %zu\n", __func__, chunks[i].tokens.size()); + for (int j = 0; j < (int) chunks[i].tokens.size(); j++) { + fprintf(stderr, "%6d -> '%s'\n", chunks[i].tokens[j], llama_token_to_piece(ctx, chunks[i].tokens[j]).c_str()); + } + fprintf(stderr, "\n\n"); + } + } + + // initialize batch + const int n_chunks = chunks.size(); + struct llama_batch batch = llama_batch_init(n_batch, 0, 1); + + // allocate output + const int n_embd = llama_n_embd(model); + std::vector embeddings(n_chunks * n_embd, 0); + float * emb = embeddings.data(); + + // break into batches + int p = 0; // number of prompts processed already + int s = 0; // number of prompts in current batch + for (int k = 0; k < n_chunks; k++) { + // clamp to n_batch tokens + auto & inp = chunks[k].tokens; + + const uint64_t n_toks = inp.size(); + + // encode if at capacity + if (batch.n_tokens + n_toks > n_batch) { + float * out = emb + p * n_embd; + batch_decode(ctx, batch, out, s, n_embd); + llama_batch_clear(batch); + p += s; + s = 0; + } + + // add to batch + batch_add_seq(batch, inp, s); + s += 1; + } + + // final batch + float * out = emb + p * n_embd; + batch_decode(ctx, batch, out, s, n_embd); + + // save embeddings to chunks + for (int i = 0; i < n_chunks; i++) { + chunks[i].embedding = std::vector(emb + i * n_embd, emb + (i + 1) * n_embd); + } + + // start loop, receive query and return top k similar chunks based on cosine similarity + std::string query; + while (true) { + printf("Enter query: "); + std::getline(std::cin, query); + if (query == "exit" || query == "quit" || query == "q") { + break; + } + std::vector query_tokens = llama_tokenize(ctx, query, true); + + struct llama_batch query_batch = llama_batch_init(n_batch, 0, 1); + batch_add_seq(query_batch, query_tokens, 0); + float * query_emb = new float[n_embd]; + batch_decode(ctx, query_batch, query_emb, 1, n_embd); + std::vector query_embedding(query_emb, query_emb + n_embd); + delete[] query_emb; + llama_batch_clear(query_batch); + + for (int i = 0; i < n_chunks; i++) { + float similarity = llama_embd_similarity_cos(chunks[i].embedding.data(), query_embedding.data(), n_embd); + chunks[i].similarity = similarity; + } + std::sort(chunks.begin(), chunks.end(), [](chunk & a, chunk & b) { + return a.similarity > b.similarity; + }); + printf("Top %d similar chunks:\n", params.sparams.top_k); + for (int i = 0; i < std::min(params.sparams.top_k, (int) chunks.size()); i++) { + printf("filename: %s\n", chunks[i].filename.c_str()); + printf("filepos: %lld\n", chunks[i].filepos); + printf("similarity: %f\n", chunks[i].similarity); + printf("textdata:\n%s\n", chunks[i].textdata.c_str()); + printf("--------------------\n"); + } + } + + // clean up + llama_print_timings(ctx); + llama_free(ctx); + llama_free_model(model); + llama_backend_free(); +}