cuda : use 512 threads for soft_max instead of 32

This commit is contained in:
Georgi Gerganov 2023-11-30 17:19:29 +02:00
parent 580fe2064c
commit ebd062bc19
No known key found for this signature in database
GPG key ID: 449E073F9DC10735

View file

@ -443,6 +443,7 @@ static_assert(sizeof(block_q6_K) == sizeof(ggml_fp16_t) + 13*QK_K/16, "wrong q6_
#define CUDA_SCALE_BLOCK_SIZE 256
#define CUDA_CLAMP_BLOCK_SIZE 256
#define CUDA_ROPE_BLOCK_SIZE 256
#define CUDA_SOFT_MAX_BLOCK_SIZE 512
#define CUDA_ALIBI_BLOCK_SIZE 32
#define CUDA_DIAG_MASK_INF_BLOCK_SIZE 32
#define CUDA_QUANTIZE_BLOCK_SIZE 256
@ -4717,26 +4718,32 @@ static __global__ void diag_mask_inf_f32(const float * x, float * dst, const int
dst[i] = x[i] - (col > n_past + row % rows_per_channel) * INT_MAX; // equivalent within rounding error but slightly faster on GPU
}
// the CUDA soft max implementation differs from the CPU implementation
// instead of doubles floats are used
// TODO: maybe can be improved with some warp-based primitives
static __global__ void soft_max_f32(const float * x, const float * y, float * dst, const int ncols, const int nrows_y, const float scale) {
const int rowx = blockDim.x*blockIdx.x + threadIdx.x;
const int tid = threadIdx.x;
const int rowx = blockIdx.x;
const int rowy = rowx % nrows_y; // broadcast the mask (y) in the row dimension
const int block_size = blockDim.y;
const int tid = threadIdx.y;
float max_val = -INFINITY;
const int block_size = blockDim.x;
__shared__ float buf[CUDA_SOFT_MAX_BLOCK_SIZE];
buf[tid] = -INFINITY;
for (int col = tid; col < ncols; col += block_size) {
const int ix = rowx*ncols + col;
const int iy = rowy*ncols + col;
max_val = max(max_val, x[ix]*scale + (y ? y[iy] : 0.0f));
buf[tid] = max(buf[tid], x[ix]*scale + (y ? y[iy] : 0.0f));
}
__syncthreads();
// find the max value in the block
#pragma unroll
for (int mask = 16; mask > 0; mask >>= 1) {
max_val = max(max_val, __shfl_xor_sync(0xffffffff, max_val, mask, 32));
for (int i = block_size/2; i > 0; i >>= 1) {
if (tid < i) {
buf[tid] = max(buf[tid], buf[tid + i]);
}
__syncthreads();
}
float tmp = 0.f;
@ -4744,18 +4751,26 @@ static __global__ void soft_max_f32(const float * x, const float * y, float * ds
for (int col = tid; col < ncols; col += block_size) {
const int ix = rowx*ncols + col;
const int iy = rowy*ncols + col;
const float val = expf((x[ix]*scale + (y ? y[iy] : 0.0f)) - max_val);
const float val = expf((x[ix]*scale + (y ? y[iy] : 0.0f)) - buf[0]);
tmp += val;
dst[ix] = val;
}
__syncthreads();
buf[tid] = tmp;
__syncthreads();
// sum up partial sums
#pragma unroll
for (int mask = 16; mask > 0; mask >>= 1) {
tmp += __shfl_xor_sync(0xffffffff, tmp, mask, 32);
for (int i = block_size/2; i > 0; i >>= 1) {
if (tid < i) {
buf[tid] += buf[tid + i];
}
__syncthreads();
}
const float inv_tmp = 1.f / tmp;
const float inv_tmp = 1.f / buf[0];
for (int col = tid; col < ncols; col += block_size) {
const int i = rowx*ncols + col;
@ -5796,7 +5811,9 @@ static void diag_mask_inf_f32_cuda(const float * x, float * dst, const int ncols
}
static void soft_max_f32_cuda(const float * x, const float * y, float * dst, const int ncols_x, const int nrows_x, const int nrows_y, const float scale, cudaStream_t stream) {
const dim3 block_dims(1, WARP_SIZE, 1);
int nth = WARP_SIZE;
while (nth < ncols_x && nth < CUDA_SOFT_MAX_BLOCK_SIZE) nth *= 2;
const dim3 block_dims(nth, 1, 1);
const dim3 block_nums(nrows_x, 1, 1);
soft_max_f32<<<block_nums, block_dims, 0, stream>>>(x, y, dst, ncols_x, nrows_y, scale);
}
@ -6853,7 +6870,7 @@ inline void ggml_cuda_op_soft_max(
const int64_t ne00 = src0->ne[0];
const int64_t nrows_x = ggml_nrows(src0);
const int64_t nrows_y = src1 ? ggml_nrows(src1) : 0;
const int64_t nrows_y = src1 ? ggml_nrows(src1) : 1;
float scale = 1.0f;
memcpy(&scale, dst->op_params, sizeof(float));