cuda : use 512 threads for soft_max instead of 32
This commit is contained in:
parent
580fe2064c
commit
ebd062bc19
1 changed files with 34 additions and 17 deletions
51
ggml-cuda.cu
51
ggml-cuda.cu
|
@ -443,6 +443,7 @@ static_assert(sizeof(block_q6_K) == sizeof(ggml_fp16_t) + 13*QK_K/16, "wrong q6_
|
|||
#define CUDA_SCALE_BLOCK_SIZE 256
|
||||
#define CUDA_CLAMP_BLOCK_SIZE 256
|
||||
#define CUDA_ROPE_BLOCK_SIZE 256
|
||||
#define CUDA_SOFT_MAX_BLOCK_SIZE 512
|
||||
#define CUDA_ALIBI_BLOCK_SIZE 32
|
||||
#define CUDA_DIAG_MASK_INF_BLOCK_SIZE 32
|
||||
#define CUDA_QUANTIZE_BLOCK_SIZE 256
|
||||
|
@ -4717,26 +4718,32 @@ static __global__ void diag_mask_inf_f32(const float * x, float * dst, const int
|
|||
dst[i] = x[i] - (col > n_past + row % rows_per_channel) * INT_MAX; // equivalent within rounding error but slightly faster on GPU
|
||||
}
|
||||
|
||||
// the CUDA soft max implementation differs from the CPU implementation
|
||||
// instead of doubles floats are used
|
||||
// TODO: maybe can be improved with some warp-based primitives
|
||||
static __global__ void soft_max_f32(const float * x, const float * y, float * dst, const int ncols, const int nrows_y, const float scale) {
|
||||
const int rowx = blockDim.x*blockIdx.x + threadIdx.x;
|
||||
const int tid = threadIdx.x;
|
||||
const int rowx = blockIdx.x;
|
||||
const int rowy = rowx % nrows_y; // broadcast the mask (y) in the row dimension
|
||||
const int block_size = blockDim.y;
|
||||
const int tid = threadIdx.y;
|
||||
|
||||
float max_val = -INFINITY;
|
||||
const int block_size = blockDim.x;
|
||||
|
||||
__shared__ float buf[CUDA_SOFT_MAX_BLOCK_SIZE];
|
||||
|
||||
buf[tid] = -INFINITY;
|
||||
|
||||
for (int col = tid; col < ncols; col += block_size) {
|
||||
const int ix = rowx*ncols + col;
|
||||
const int iy = rowy*ncols + col;
|
||||
max_val = max(max_val, x[ix]*scale + (y ? y[iy] : 0.0f));
|
||||
buf[tid] = max(buf[tid], x[ix]*scale + (y ? y[iy] : 0.0f));
|
||||
}
|
||||
|
||||
__syncthreads();
|
||||
|
||||
// find the max value in the block
|
||||
#pragma unroll
|
||||
for (int mask = 16; mask > 0; mask >>= 1) {
|
||||
max_val = max(max_val, __shfl_xor_sync(0xffffffff, max_val, mask, 32));
|
||||
for (int i = block_size/2; i > 0; i >>= 1) {
|
||||
if (tid < i) {
|
||||
buf[tid] = max(buf[tid], buf[tid + i]);
|
||||
}
|
||||
__syncthreads();
|
||||
}
|
||||
|
||||
float tmp = 0.f;
|
||||
|
@ -4744,18 +4751,26 @@ static __global__ void soft_max_f32(const float * x, const float * y, float * ds
|
|||
for (int col = tid; col < ncols; col += block_size) {
|
||||
const int ix = rowx*ncols + col;
|
||||
const int iy = rowy*ncols + col;
|
||||
const float val = expf((x[ix]*scale + (y ? y[iy] : 0.0f)) - max_val);
|
||||
const float val = expf((x[ix]*scale + (y ? y[iy] : 0.0f)) - buf[0]);
|
||||
tmp += val;
|
||||
dst[ix] = val;
|
||||
}
|
||||
|
||||
__syncthreads();
|
||||
|
||||
buf[tid] = tmp;
|
||||
|
||||
__syncthreads();
|
||||
|
||||
// sum up partial sums
|
||||
#pragma unroll
|
||||
for (int mask = 16; mask > 0; mask >>= 1) {
|
||||
tmp += __shfl_xor_sync(0xffffffff, tmp, mask, 32);
|
||||
for (int i = block_size/2; i > 0; i >>= 1) {
|
||||
if (tid < i) {
|
||||
buf[tid] += buf[tid + i];
|
||||
}
|
||||
__syncthreads();
|
||||
}
|
||||
|
||||
const float inv_tmp = 1.f / tmp;
|
||||
const float inv_tmp = 1.f / buf[0];
|
||||
|
||||
for (int col = tid; col < ncols; col += block_size) {
|
||||
const int i = rowx*ncols + col;
|
||||
|
@ -5796,7 +5811,9 @@ static void diag_mask_inf_f32_cuda(const float * x, float * dst, const int ncols
|
|||
}
|
||||
|
||||
static void soft_max_f32_cuda(const float * x, const float * y, float * dst, const int ncols_x, const int nrows_x, const int nrows_y, const float scale, cudaStream_t stream) {
|
||||
const dim3 block_dims(1, WARP_SIZE, 1);
|
||||
int nth = WARP_SIZE;
|
||||
while (nth < ncols_x && nth < CUDA_SOFT_MAX_BLOCK_SIZE) nth *= 2;
|
||||
const dim3 block_dims(nth, 1, 1);
|
||||
const dim3 block_nums(nrows_x, 1, 1);
|
||||
soft_max_f32<<<block_nums, block_dims, 0, stream>>>(x, y, dst, ncols_x, nrows_y, scale);
|
||||
}
|
||||
|
@ -6853,7 +6870,7 @@ inline void ggml_cuda_op_soft_max(
|
|||
|
||||
const int64_t ne00 = src0->ne[0];
|
||||
const int64_t nrows_x = ggml_nrows(src0);
|
||||
const int64_t nrows_y = src1 ? ggml_nrows(src1) : 0;
|
||||
const int64_t nrows_y = src1 ? ggml_nrows(src1) : 1;
|
||||
|
||||
float scale = 1.0f;
|
||||
memcpy(&scale, dst->op_params, sizeof(float));
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue