Merge branch 'ggerganov:master' into betterlogs2
This commit is contained in:
commit
ec86950b09
23 changed files with 594 additions and 274 deletions
|
@ -12,7 +12,7 @@ FROM ${BASE_CUDA_DEV_CONTAINER} as build
|
||||||
ARG CUDA_DOCKER_ARCH=all
|
ARG CUDA_DOCKER_ARCH=all
|
||||||
|
|
||||||
RUN apt-get update && \
|
RUN apt-get update && \
|
||||||
apt-get install -y build-essential python3 python3-pip
|
apt-get install -y build-essential python3 python3-pip git
|
||||||
|
|
||||||
COPY requirements.txt requirements.txt
|
COPY requirements.txt requirements.txt
|
||||||
|
|
||||||
|
|
|
@ -12,7 +12,7 @@ FROM ${BASE_CUDA_DEV_CONTAINER} as build
|
||||||
ARG CUDA_DOCKER_ARCH=all
|
ARG CUDA_DOCKER_ARCH=all
|
||||||
|
|
||||||
RUN apt-get update && \
|
RUN apt-get update && \
|
||||||
apt-get install -y build-essential
|
apt-get install -y build-essential git
|
||||||
|
|
||||||
WORKDIR /app
|
WORKDIR /app
|
||||||
|
|
||||||
|
|
56
.github/workflows/build.yml
vendored
56
.github/workflows/build.yml
vendored
|
@ -197,6 +197,62 @@ jobs:
|
||||||
cd build
|
cd build
|
||||||
ctest --verbose --timeout 900
|
ctest --verbose --timeout 900
|
||||||
|
|
||||||
|
macOS-latest-cmake-ios:
|
||||||
|
runs-on: macos-latest
|
||||||
|
|
||||||
|
steps:
|
||||||
|
- name: Clone
|
||||||
|
id: checkout
|
||||||
|
uses: actions/checkout@v1
|
||||||
|
|
||||||
|
- name: Dependencies
|
||||||
|
id: depends
|
||||||
|
continue-on-error: true
|
||||||
|
run: |
|
||||||
|
brew update
|
||||||
|
|
||||||
|
- name: Build
|
||||||
|
id: cmake_build
|
||||||
|
run: |
|
||||||
|
sysctl -a
|
||||||
|
mkdir build
|
||||||
|
cd build
|
||||||
|
cmake -G Xcode .. \
|
||||||
|
-DLLAMA_BUILD_EXAMPLES=OFF \
|
||||||
|
-DLLAMA_BUILD_TESTS=OFF \
|
||||||
|
-DLLAMA_BUILD_SERVER=OFF \
|
||||||
|
-DCMAKE_SYSTEM_NAME=iOS \
|
||||||
|
-DCMAKE_OSX_DEPLOYMENT_TARGET=14.0
|
||||||
|
cmake --build . --config Release
|
||||||
|
|
||||||
|
macOS-latest-cmake-tvos:
|
||||||
|
runs-on: macos-latest
|
||||||
|
|
||||||
|
steps:
|
||||||
|
- name: Clone
|
||||||
|
id: checkout
|
||||||
|
uses: actions/checkout@v1
|
||||||
|
|
||||||
|
- name: Dependencies
|
||||||
|
id: depends
|
||||||
|
continue-on-error: true
|
||||||
|
run: |
|
||||||
|
brew update
|
||||||
|
|
||||||
|
- name: Build
|
||||||
|
id: cmake_build
|
||||||
|
run: |
|
||||||
|
sysctl -a
|
||||||
|
mkdir build
|
||||||
|
cd build
|
||||||
|
cmake -G Xcode .. \
|
||||||
|
-DLLAMA_BUILD_EXAMPLES=OFF \
|
||||||
|
-DLLAMA_BUILD_TESTS=OFF \
|
||||||
|
-DLLAMA_BUILD_SERVER=OFF \
|
||||||
|
-DCMAKE_SYSTEM_NAME=tvOS \
|
||||||
|
-DCMAKE_OSX_DEPLOYMENT_TARGET=14.0
|
||||||
|
cmake --build . --config Release
|
||||||
|
|
||||||
windows-latest-cmake:
|
windows-latest-cmake:
|
||||||
runs-on: windows-latest
|
runs-on: windows-latest
|
||||||
|
|
||||||
|
|
|
@ -476,7 +476,7 @@ if (NOT MSVC)
|
||||||
endif()
|
endif()
|
||||||
endif()
|
endif()
|
||||||
|
|
||||||
if (${CMAKE_SYSTEM_PROCESSOR} MATCHES "arm" OR ${CMAKE_SYSTEM_PROCESSOR} MATCHES "aarch64")
|
if ((${CMAKE_SYSTEM_PROCESSOR} MATCHES "arm") OR (${CMAKE_SYSTEM_PROCESSOR} MATCHES "aarch64"))
|
||||||
message(STATUS "ARM detected")
|
message(STATUS "ARM detected")
|
||||||
if (MSVC)
|
if (MSVC)
|
||||||
# TODO: arm msvc?
|
# TODO: arm msvc?
|
||||||
|
@ -551,6 +551,55 @@ else()
|
||||||
message(STATUS "Unknown architecture")
|
message(STATUS "Unknown architecture")
|
||||||
endif()
|
endif()
|
||||||
|
|
||||||
|
#
|
||||||
|
# POSIX conformance
|
||||||
|
#
|
||||||
|
|
||||||
|
# clock_gettime came in POSIX.1b (1993)
|
||||||
|
# CLOCK_MONOTONIC came in POSIX.1-2001 / SUSv3 as optional
|
||||||
|
# posix_memalign came in POSIX.1-2001 / SUSv3
|
||||||
|
# M_PI is an XSI extension since POSIX.1-2001 / SUSv3, came in XPG1 (1985)
|
||||||
|
add_compile_definitions(_XOPEN_SOURCE=600)
|
||||||
|
|
||||||
|
# Somehow in OpenBSD whenever POSIX conformance is specified
|
||||||
|
# some string functions rely on locale_t availability,
|
||||||
|
# which was introduced in POSIX.1-2008, forcing us to go higher
|
||||||
|
if (CMAKE_SYSTEM_NAME MATCHES "OpenBSD")
|
||||||
|
remove_definitions(-D_XOPEN_SOURCE=600)
|
||||||
|
add_compile_definitions(_XOPEN_SOURCE=700)
|
||||||
|
endif()
|
||||||
|
|
||||||
|
# Data types, macros and functions related to controlling CPU affinity and
|
||||||
|
# some memory allocation are available on Linux through GNU extensions in libc
|
||||||
|
if (CMAKE_SYSTEM_NAME MATCHES "Linux")
|
||||||
|
add_compile_definitions(_GNU_SOURCE)
|
||||||
|
endif()
|
||||||
|
|
||||||
|
# RLIMIT_MEMLOCK came in BSD, is not specified in POSIX.1,
|
||||||
|
# and on macOS its availability depends on enabling Darwin extensions
|
||||||
|
# similarly on DragonFly, enabling BSD extensions is necessary
|
||||||
|
if (
|
||||||
|
CMAKE_SYSTEM_NAME MATCHES "Darwin" OR
|
||||||
|
CMAKE_SYSTEM_NAME MATCHES "iOS" OR
|
||||||
|
CMAKE_SYSTEM_NAME MATCHES "tvOS" OR
|
||||||
|
CMAKE_SYSTEM_NAME MATCHES "DragonFly"
|
||||||
|
)
|
||||||
|
add_compile_definitions(_DARWIN_C_SOURCE)
|
||||||
|
endif()
|
||||||
|
|
||||||
|
# alloca is a non-standard interface that is not visible on BSDs when
|
||||||
|
# POSIX conformance is specified, but not all of them provide a clean way
|
||||||
|
# to enable it in such cases
|
||||||
|
if (CMAKE_SYSTEM_NAME MATCHES "FreeBSD")
|
||||||
|
add_compile_definitions(__BSD_VISIBLE)
|
||||||
|
endif()
|
||||||
|
if (CMAKE_SYSTEM_NAME MATCHES "NetBSD")
|
||||||
|
add_compile_definitions(_NETBSD_SOURCE)
|
||||||
|
endif()
|
||||||
|
if (CMAKE_SYSTEM_NAME MATCHES "OpenBSD")
|
||||||
|
add_compile_definitions(_BSD_SOURCE)
|
||||||
|
endif()
|
||||||
|
|
||||||
#
|
#
|
||||||
# libraries
|
# libraries
|
||||||
#
|
#
|
||||||
|
|
50
Makefile
50
Makefile
|
@ -106,6 +106,56 @@ MK_CFLAGS = $(OPT) -std=c11 -fPIC
|
||||||
MK_CXXFLAGS = $(OPT) -std=c++11 -fPIC
|
MK_CXXFLAGS = $(OPT) -std=c++11 -fPIC
|
||||||
MK_LDFLAGS =
|
MK_LDFLAGS =
|
||||||
|
|
||||||
|
# clock_gettime came in POSIX.1b (1993)
|
||||||
|
# CLOCK_MONOTONIC came in POSIX.1-2001 / SUSv3 as optional
|
||||||
|
# posix_memalign came in POSIX.1-2001 / SUSv3
|
||||||
|
# M_PI is an XSI extension since POSIX.1-2001 / SUSv3, came in XPG1 (1985)
|
||||||
|
MK_CFLAGS += -D_XOPEN_SOURCE=600
|
||||||
|
MK_CXXFLAGS += -D_XOPEN_SOURCE=600
|
||||||
|
|
||||||
|
# Somehow in OpenBSD whenever POSIX conformance is specified
|
||||||
|
# some string functions rely on locale_t availability,
|
||||||
|
# which was introduced in POSIX.1-2008, forcing us to go higher
|
||||||
|
ifeq ($(UNAME_S),OpenBSD)
|
||||||
|
MK_CFLAGS += -U_XOPEN_SOURCE -D_XOPEN_SOURCE=700
|
||||||
|
MK_CXXFLAGS += -U_XOPEN_SOURCE -D_XOPEN_SOURCE=700
|
||||||
|
endif
|
||||||
|
|
||||||
|
# Data types, macros and functions related to controlling CPU affinity and
|
||||||
|
# some memory allocation are available on Linux through GNU extensions in libc
|
||||||
|
ifeq ($(UNAME_S),Linux)
|
||||||
|
MK_CFLAGS += -D_GNU_SOURCE
|
||||||
|
MK_CXXFLAGS += -D_GNU_SOURCE
|
||||||
|
endif
|
||||||
|
|
||||||
|
# RLIMIT_MEMLOCK came in BSD, is not specified in POSIX.1,
|
||||||
|
# and on macOS its availability depends on enabling Darwin extensions
|
||||||
|
# similarly on DragonFly, enabling BSD extensions is necessary
|
||||||
|
ifeq ($(UNAME_S),Darwin)
|
||||||
|
MK_CFLAGS += -D_DARWIN_C_SOURCE
|
||||||
|
MK_CXXFLAGS += -D_DARWIN_C_SOURCE
|
||||||
|
endif
|
||||||
|
ifeq ($(UNAME_S),DragonFly)
|
||||||
|
MK_CFLAGS += -D__BSD_VISIBLE
|
||||||
|
MK_CXXFLAGS += -D__BSD_VISIBLE
|
||||||
|
endif
|
||||||
|
|
||||||
|
# alloca is a non-standard interface that is not visible on BSDs when
|
||||||
|
# POSIX conformance is specified, but not all of them provide a clean way
|
||||||
|
# to enable it in such cases
|
||||||
|
ifeq ($(UNAME_S),FreeBSD)
|
||||||
|
MK_CFLAGS += -D__BSD_VISIBLE
|
||||||
|
MK_CXXFLAGS += -D__BSD_VISIBLE
|
||||||
|
endif
|
||||||
|
ifeq ($(UNAME_S),NetBSD)
|
||||||
|
MK_CFLAGS += -D_NETBSD_SOURCE
|
||||||
|
MK_CXXFLAGS += -D_NETBSD_SOURCE
|
||||||
|
endif
|
||||||
|
ifeq ($(UNAME_S),OpenBSD)
|
||||||
|
MK_CFLAGS += -D_BSD_SOURCE
|
||||||
|
MK_CXXFLAGS += -D_BSD_SOURCE
|
||||||
|
endif
|
||||||
|
|
||||||
ifdef LLAMA_DEBUG
|
ifdef LLAMA_DEBUG
|
||||||
MK_CFLAGS += -O0 -g
|
MK_CFLAGS += -O0 -g
|
||||||
MK_CXXFLAGS += -O0 -g
|
MK_CXXFLAGS += -O0 -g
|
||||||
|
|
|
@ -2,8 +2,30 @@
|
||||||
|
|
||||||
import PackageDescription
|
import PackageDescription
|
||||||
|
|
||||||
|
#if arch(arm) || arch(arm64)
|
||||||
|
let platforms: [SupportedPlatform]? = [
|
||||||
|
.macOS(.v11),
|
||||||
|
.iOS(.v14),
|
||||||
|
.watchOS(.v4),
|
||||||
|
.tvOS(.v14)
|
||||||
|
]
|
||||||
|
let exclude: [String] = []
|
||||||
|
let additionalSources: [String] = ["ggml-metal.m"]
|
||||||
|
let additionalSettings: [CSetting] = [
|
||||||
|
.unsafeFlags(["-fno-objc-arc"]),
|
||||||
|
.define("GGML_SWIFT"),
|
||||||
|
.define("GGML_USE_METAL")
|
||||||
|
]
|
||||||
|
#else
|
||||||
|
let platforms: [SupportedPlatform]? = nil
|
||||||
|
let exclude: [String] = ["ggml-metal.metal"]
|
||||||
|
let additionalSources: [String] = []
|
||||||
|
let additionalSettings: [CSetting] = []
|
||||||
|
#endif
|
||||||
|
|
||||||
let package = Package(
|
let package = Package(
|
||||||
name: "llama",
|
name: "llama",
|
||||||
|
platforms: platforms,
|
||||||
products: [
|
products: [
|
||||||
.library(name: "llama", targets: ["llama"]),
|
.library(name: "llama", targets: ["llama"]),
|
||||||
],
|
],
|
||||||
|
@ -11,23 +33,23 @@ let package = Package(
|
||||||
.target(
|
.target(
|
||||||
name: "llama",
|
name: "llama",
|
||||||
path: ".",
|
path: ".",
|
||||||
exclude: ["ggml-metal.metal"],
|
exclude: exclude,
|
||||||
sources: [
|
sources: [
|
||||||
"ggml.c",
|
"ggml.c",
|
||||||
"llama.cpp",
|
"llama.cpp",
|
||||||
"ggml-alloc.c",
|
"ggml-alloc.c",
|
||||||
"k_quants.c"
|
"k_quants.c",
|
||||||
],
|
] + additionalSources,
|
||||||
publicHeadersPath: "spm-headers",
|
publicHeadersPath: "spm-headers",
|
||||||
cSettings: [
|
cSettings: [
|
||||||
.unsafeFlags(["-Wno-shorten-64-to-32"]),
|
.unsafeFlags(["-Wno-shorten-64-to-32"]),
|
||||||
.define("GGML_USE_K_QUANTS"),
|
.define("GGML_USE_K_QUANTS"),
|
||||||
.define("GGML_USE_ACCELERATE")
|
.define("GGML_USE_ACCELERATE")
|
||||||
],
|
] + additionalSettings,
|
||||||
linkerSettings: [
|
linkerSettings: [
|
||||||
.linkedFramework("Accelerate")
|
.linkedFramework("Accelerate")
|
||||||
]
|
]
|
||||||
),
|
)
|
||||||
],
|
],
|
||||||
cxxLanguageStandard: .cxx11
|
cxxLanguageStandard: .cxx11
|
||||||
)
|
)
|
||||||
|
|
30
README.md
30
README.md
|
@ -11,21 +11,9 @@ Inference of [LLaMA](https://arxiv.org/abs/2302.13971) model in pure C/C++
|
||||||
|
|
||||||
### Hot topics
|
### Hot topics
|
||||||
|
|
||||||
- #### IMPORTANT: Tokenizer fixes and API change (developers and projects using `llama.cpp` built-in tokenization must read): https://github.com/ggerganov/llama.cpp/pull/2810
|
- Local Falcon 180B inference on Mac Studio
|
||||||
|
|
||||||
- GGUFv2 adds support for 64-bit sizes + backwards compatible: https://github.com/ggerganov/llama.cpp/pull/2821
|
https://github.com/ggerganov/llama.cpp/assets/1991296/98abd4e8-7077-464c-ae89-aebabca7757e
|
||||||
|
|
||||||
- Added support for Falcon models: https://github.com/ggerganov/llama.cpp/pull/2717
|
|
||||||
|
|
||||||
- A new file format has been introduced: [GGUF](https://github.com/ggerganov/llama.cpp/pull/2398)
|
|
||||||
|
|
||||||
Last revision compatible with the old format: [dadbed9](https://github.com/ggerganov/llama.cpp/commit/dadbed99e65252d79f81101a392d0d6497b86caa)
|
|
||||||
|
|
||||||
### Current `master` should be considered in Beta - expect some issues for a few days!
|
|
||||||
|
|
||||||
### Be prepared to re-convert and / or re-quantize your GGUF models while this notice is up!
|
|
||||||
|
|
||||||
### Issues with non-GGUF models will be considered with low priority!
|
|
||||||
|
|
||||||
----
|
----
|
||||||
|
|
||||||
|
@ -413,7 +401,7 @@ Building the program with BLAS support may lead to some performance improvements
|
||||||
|
|
||||||
- #### hipBLAS
|
- #### hipBLAS
|
||||||
|
|
||||||
This provide BLAS acceleation on HIP supported GPU like AMD GPU.
|
This provides BLAS acceleration on HIP-supported AMD GPUs.
|
||||||
Make sure to have ROCm installed.
|
Make sure to have ROCm installed.
|
||||||
You can download it from your Linux distro's package manager or from here: [ROCm Quick Start (Linux)](https://rocm.docs.amd.com/en/latest/deploy/linux/quick_start.html).
|
You can download it from your Linux distro's package manager or from here: [ROCm Quick Start (Linux)](https://rocm.docs.amd.com/en/latest/deploy/linux/quick_start.html).
|
||||||
Windows support is coming soon...
|
Windows support is coming soon...
|
||||||
|
@ -737,12 +725,12 @@ python3 convert.py pygmalion-7b/ --outtype q4_1
|
||||||
|
|
||||||
- Refer to [Facebook's LLaMA download page](https://ai.meta.com/resources/models-and-libraries/llama-downloads/) if you want to access the model data.
|
- Refer to [Facebook's LLaMA download page](https://ai.meta.com/resources/models-and-libraries/llama-downloads/) if you want to access the model data.
|
||||||
- Alternatively, if you want to save time and space, you can download already converted and quantized models from [TheBloke](https://huggingface.co/TheBloke), including:
|
- Alternatively, if you want to save time and space, you can download already converted and quantized models from [TheBloke](https://huggingface.co/TheBloke), including:
|
||||||
- [LLaMA 2 7B base](https://huggingface.co/TheBloke/Llama-2-7B-GGML)
|
- [LLaMA 2 7B base](https://huggingface.co/TheBloke/Llama-2-7B-GGUF)
|
||||||
- [LLaMA 2 13B base](https://huggingface.co/TheBloke/Llama-2-13B-GGML)
|
- [LLaMA 2 13B base](https://huggingface.co/TheBloke/Llama-2-13B-GGUF)
|
||||||
- [LLaMA 2 70B base](https://huggingface.co/TheBloke/Llama-2-70B-GGML)
|
- [LLaMA 2 70B base](https://huggingface.co/TheBloke/Llama-2-70B-GGUF)
|
||||||
- [LLaMA 2 7B chat](https://huggingface.co/TheBloke/Llama-2-7B-chat-GGML)
|
- [LLaMA 2 7B chat](https://huggingface.co/TheBloke/Llama-2-7B-chat-GGUF)
|
||||||
- [LLaMA 2 13B chat](https://huggingface.co/TheBloke/Llama-2-13B-chat-GGML)
|
- [LLaMA 2 13B chat](https://huggingface.co/TheBloke/Llama-2-13B-chat-GGUF)
|
||||||
- [LLaMA 2 70B chat](https://huggingface.co/TheBloke/Llama-2-70B-chat-GGML)
|
- [LLaMA 2 70B chat](https://huggingface.co/TheBloke/Llama-2-70B-chat-GGUF)
|
||||||
|
|
||||||
### Verifying the model files
|
### Verifying the model files
|
||||||
|
|
||||||
|
|
18
convert.py
18
convert.py
|
@ -145,7 +145,6 @@ GGML_FILE_TYPE_TO_DATA_TYPE: dict[GGMLFileType, DataType] = {
|
||||||
class Params:
|
class Params:
|
||||||
n_vocab: int
|
n_vocab: int
|
||||||
n_embd: int
|
n_embd: int
|
||||||
n_mult: int
|
|
||||||
n_layer: int
|
n_layer: int
|
||||||
n_ctx: int
|
n_ctx: int
|
||||||
n_ff: int
|
n_ff: int
|
||||||
|
@ -161,15 +160,6 @@ class Params:
|
||||||
# path to the directory containing the model files
|
# path to the directory containing the model files
|
||||||
path_model: Path | None = None
|
path_model: Path | None = None
|
||||||
|
|
||||||
@staticmethod
|
|
||||||
def find_n_mult(n_ff: int, n_embd: int) -> int:
|
|
||||||
# hardcoded magic range
|
|
||||||
for n_mult in range(8192, 1, -1):
|
|
||||||
calc_ff = (((8*n_embd) // 3 + n_mult - 1) // n_mult)*n_mult
|
|
||||||
if calc_ff == n_ff:
|
|
||||||
return n_mult
|
|
||||||
raise Exception(f"failed to find n_mult for (n_ff={n_ff}, n_embd={n_embd}).")
|
|
||||||
|
|
||||||
@staticmethod
|
@staticmethod
|
||||||
def guessed(model: LazyModel) -> Params:
|
def guessed(model: LazyModel) -> Params:
|
||||||
# try transformer naming first
|
# try transformer naming first
|
||||||
|
@ -197,7 +187,6 @@ class Params:
|
||||||
return Params(
|
return Params(
|
||||||
n_vocab = n_vocab,
|
n_vocab = n_vocab,
|
||||||
n_embd = n_embd,
|
n_embd = n_embd,
|
||||||
n_mult = n_mult,
|
|
||||||
n_layer = n_layer,
|
n_layer = n_layer,
|
||||||
n_ctx = -1,
|
n_ctx = -1,
|
||||||
n_ff = n_ff,
|
n_ff = n_ff,
|
||||||
|
@ -225,8 +214,6 @@ class Params:
|
||||||
else:
|
else:
|
||||||
f_rope_scale = None
|
f_rope_scale = None
|
||||||
|
|
||||||
n_mult = Params.find_n_mult(n_ff, n_embd)
|
|
||||||
|
|
||||||
if "max_sequence_length" in config:
|
if "max_sequence_length" in config:
|
||||||
n_ctx = config["max_sequence_length"]
|
n_ctx = config["max_sequence_length"]
|
||||||
elif "max_position_embeddings" in config:
|
elif "max_position_embeddings" in config:
|
||||||
|
@ -238,7 +225,6 @@ class Params:
|
||||||
return Params(
|
return Params(
|
||||||
n_vocab = n_vocab,
|
n_vocab = n_vocab,
|
||||||
n_embd = n_embd,
|
n_embd = n_embd,
|
||||||
n_mult = n_mult,
|
|
||||||
n_layer = n_layer,
|
n_layer = n_layer,
|
||||||
n_ctx = n_ctx,
|
n_ctx = n_ctx,
|
||||||
n_ff = n_ff,
|
n_ff = n_ff,
|
||||||
|
@ -250,7 +236,7 @@ class Params:
|
||||||
)
|
)
|
||||||
|
|
||||||
# LLaMA v2 70B params.json
|
# LLaMA v2 70B params.json
|
||||||
# {"dim": 8192, "multiple_of": 4096, "ffn_dim_multiplier": 1.3, "n_heads": 64, "n_kv_heads": 8, "n_layers": 80, "norm_eps": 1e-05, "vocab_size": -1
|
# {"dim": 8192, "multiple_of": 4096, "ffn_dim_multiplier": 1.3, "n_heads": 64, "n_kv_heads": 8, "n_layers": 80, "norm_eps": 1e-05, "vocab_size": -1}
|
||||||
@staticmethod
|
@staticmethod
|
||||||
def loadOriginalParamsJson(model: LazyModel, config_path: Path) -> Params:
|
def loadOriginalParamsJson(model: LazyModel, config_path: Path) -> Params:
|
||||||
config = json.load(open(config_path))
|
config = json.load(open(config_path))
|
||||||
|
@ -258,7 +244,6 @@ class Params:
|
||||||
n_vocab = config["vocab_size"] if "vocab_size" in config else -1
|
n_vocab = config["vocab_size"] if "vocab_size" in config else -1
|
||||||
n_embd = config["dim"]
|
n_embd = config["dim"]
|
||||||
n_layer = config["n_layers"]
|
n_layer = config["n_layers"]
|
||||||
n_mult = config["multiple_of"]
|
|
||||||
n_ff = -1
|
n_ff = -1
|
||||||
n_head = config["n_heads"]
|
n_head = config["n_heads"]
|
||||||
n_head_kv = config["n_kv_heads"] if "n_kv_heads" in config else n_head
|
n_head_kv = config["n_kv_heads"] if "n_kv_heads" in config else n_head
|
||||||
|
@ -285,7 +270,6 @@ class Params:
|
||||||
return Params(
|
return Params(
|
||||||
n_vocab = n_vocab,
|
n_vocab = n_vocab,
|
||||||
n_embd = n_embd,
|
n_embd = n_embd,
|
||||||
n_mult = n_mult,
|
|
||||||
n_layer = n_layer,
|
n_layer = n_layer,
|
||||||
n_ctx = n_ctx,
|
n_ctx = n_ctx,
|
||||||
n_ff = n_ff,
|
n_ff = n_ff,
|
||||||
|
|
|
@ -1,7 +1,3 @@
|
||||||
#ifndef _GNU_SOURCE
|
|
||||||
#define _GNU_SOURCE
|
|
||||||
#endif
|
|
||||||
|
|
||||||
#include "common.h"
|
#include "common.h"
|
||||||
#include "llama.h"
|
#include "llama.h"
|
||||||
#include "build-info.h"
|
#include "build-info.h"
|
||||||
|
|
|
@ -1,8 +1,3 @@
|
||||||
// Defines sigaction on msys:
|
|
||||||
#ifndef _GNU_SOURCE
|
|
||||||
#define _GNU_SOURCE
|
|
||||||
#endif
|
|
||||||
|
|
||||||
#include "embd-input.h"
|
#include "embd-input.h"
|
||||||
|
|
||||||
#include <cassert>
|
#include <cassert>
|
||||||
|
|
|
@ -17,11 +17,6 @@ int main(int argc, char ** argv) {
|
||||||
|
|
||||||
params.embedding = true;
|
params.embedding = true;
|
||||||
|
|
||||||
if (params.n_ctx > 2048) {
|
|
||||||
fprintf(stderr, "%s: warning: model might not support context sizes greater than 2048 tokens (%d specified);"
|
|
||||||
"expect poor results\n", __func__, params.n_ctx);
|
|
||||||
}
|
|
||||||
|
|
||||||
fprintf(stderr, "%s: build = %d (%s)\n", __func__, BUILD_NUMBER, BUILD_COMMIT);
|
fprintf(stderr, "%s: build = %d (%s)\n", __func__, BUILD_NUMBER, BUILD_COMMIT);
|
||||||
|
|
||||||
if (params.seed == LLAMA_DEFAULT_SEED) {
|
if (params.seed == LLAMA_DEFAULT_SEED) {
|
||||||
|
@ -47,6 +42,12 @@ int main(int argc, char ** argv) {
|
||||||
return 1;
|
return 1;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
const int n_ctx_train = llama_n_ctx_train(ctx);
|
||||||
|
if (params.n_ctx > n_ctx_train) {
|
||||||
|
fprintf(stderr, "%s: warning: model was trained on only %d context tokens (%d specified)\n",
|
||||||
|
__func__, n_ctx_train, params.n_ctx);
|
||||||
|
}
|
||||||
|
|
||||||
// print system information
|
// print system information
|
||||||
{
|
{
|
||||||
fprintf(stderr, "\n");
|
fprintf(stderr, "\n");
|
||||||
|
|
|
@ -1,8 +1,3 @@
|
||||||
// Defines sigaction on msys:
|
|
||||||
#ifndef _GNU_SOURCE
|
|
||||||
#define _GNU_SOURCE
|
|
||||||
#endif
|
|
||||||
|
|
||||||
#include "common.h"
|
#include "common.h"
|
||||||
|
|
||||||
#include "console.h"
|
#include "console.h"
|
||||||
|
@ -187,8 +182,10 @@ int main(int argc, char ** argv) {
|
||||||
return 1;
|
return 1;
|
||||||
}
|
}
|
||||||
|
|
||||||
if (params.n_ctx > llama_n_ctx(ctx)) {
|
const int n_ctx_train = llama_n_ctx_train(ctx);
|
||||||
LOG_TEE("%s: warning: base model only supports context sizes no greater than %d tokens (%d specified)\n", __func__, llama_n_ctx(ctx), params.n_ctx);
|
if (params.n_ctx > n_ctx_train) {
|
||||||
|
LOG_TEE("%s: warning: model was trained on only %d context tokens (%d specified)\n",
|
||||||
|
__func__, n_ctx_train, params.n_ctx);
|
||||||
} else if (params.n_ctx < 8) {
|
} else if (params.n_ctx < 8) {
|
||||||
LOG_TEE("%s: warning: minimum context size is 8, using minimum size.\n", __func__);
|
LOG_TEE("%s: warning: minimum context size is 8, using minimum size.\n", __func__);
|
||||||
params.n_ctx = 8;
|
params.n_ctx = 8;
|
||||||
|
|
|
@ -693,9 +693,10 @@ int main(int argc, char ** argv) {
|
||||||
return 1;
|
return 1;
|
||||||
}
|
}
|
||||||
|
|
||||||
if (params.n_ctx > llama_n_ctx(ctx)) {
|
const int n_ctx_train = llama_n_ctx_train(ctx);
|
||||||
fprintf(stderr, "%s: warning: model might not support context sizes greater than %d tokens (%d specified);"
|
if (params.n_ctx > n_ctx_train) {
|
||||||
"expect poor results\n", __func__, llama_n_ctx(ctx), params.n_ctx);
|
fprintf(stderr, "%s: warning: model was trained on only %d context tokens (%d specified)\n",
|
||||||
|
__func__, n_ctx_train, params.n_ctx);
|
||||||
}
|
}
|
||||||
|
|
||||||
// print system information
|
// print system information
|
||||||
|
|
|
@ -1,7 +1,3 @@
|
||||||
#ifndef _GNU_SOURCE
|
|
||||||
#define _GNU_SOURCE
|
|
||||||
#endif
|
|
||||||
|
|
||||||
#include "build-info.h"
|
#include "build-info.h"
|
||||||
|
|
||||||
#include "common.h"
|
#include "common.h"
|
||||||
|
|
|
@ -1,7 +1,3 @@
|
||||||
#ifndef _GNU_SOURCE
|
|
||||||
#define _GNU_SOURCE
|
|
||||||
#endif
|
|
||||||
|
|
||||||
#include "build-info.h"
|
#include "build-info.h"
|
||||||
|
|
||||||
#include "common.h"
|
#include "common.h"
|
||||||
|
|
|
@ -93,6 +93,10 @@
|
||||||
type = "app";
|
type = "app";
|
||||||
program = "${self.packages.${system}.default}/bin/quantize";
|
program = "${self.packages.${system}.default}/bin/quantize";
|
||||||
};
|
};
|
||||||
|
apps.train-text-from-scratch = {
|
||||||
|
type = "app";
|
||||||
|
program = "${self.packages.${system}.default}/bin/train-text-from-scratch";
|
||||||
|
};
|
||||||
apps.default = self.apps.${system}.llama;
|
apps.default = self.apps.${system}.llama;
|
||||||
devShells.default = pkgs.mkShell {
|
devShells.default = pkgs.mkShell {
|
||||||
buildInputs = [ llama-python ];
|
buildInputs = [ llama-python ];
|
||||||
|
|
|
@ -1,8 +1,3 @@
|
||||||
// defines MAP_ANONYMOUS
|
|
||||||
#ifndef _GNU_SOURCE
|
|
||||||
#define _GNU_SOURCE
|
|
||||||
#endif
|
|
||||||
|
|
||||||
#include "ggml-alloc.h"
|
#include "ggml-alloc.h"
|
||||||
#include "ggml.h"
|
#include "ggml.h"
|
||||||
#include <assert.h>
|
#include <assert.h>
|
||||||
|
|
43
ggml-cuda.cu
43
ggml-cuda.cu
|
@ -144,8 +144,11 @@ static_assert(sizeof(half) == sizeof(ggml_fp16_t), "wrong fp16 size");
|
||||||
do { \
|
do { \
|
||||||
cudaError_t err_ = (err); \
|
cudaError_t err_ = (err); \
|
||||||
if (err_ != cudaSuccess) { \
|
if (err_ != cudaSuccess) { \
|
||||||
fprintf(stderr, "CUDA error %d at %s:%d: %s\n", err_, __FILE__, __LINE__, \
|
int id; \
|
||||||
|
cudaGetDevice(&id); \
|
||||||
|
fprintf(stderr, "\nCUDA error %d at %s:%d: %s\n", err_, __FILE__, __LINE__, \
|
||||||
cudaGetErrorString(err_)); \
|
cudaGetErrorString(err_)); \
|
||||||
|
fprintf(stderr, "current device: %d\n", id); \
|
||||||
exit(1); \
|
exit(1); \
|
||||||
} \
|
} \
|
||||||
} while (0)
|
} while (0)
|
||||||
|
@ -155,8 +158,11 @@ static_assert(sizeof(half) == sizeof(ggml_fp16_t), "wrong fp16 size");
|
||||||
do { \
|
do { \
|
||||||
cublasStatus_t err_ = (err); \
|
cublasStatus_t err_ = (err); \
|
||||||
if (err_ != CUBLAS_STATUS_SUCCESS) { \
|
if (err_ != CUBLAS_STATUS_SUCCESS) { \
|
||||||
|
int id; \
|
||||||
|
cudaGetDevice(&id); \
|
||||||
fprintf(stderr, "\ncuBLAS error %d at %s:%d: %s\n", \
|
fprintf(stderr, "\ncuBLAS error %d at %s:%d: %s\n", \
|
||||||
err_, __FILE__, __LINE__, cublasGetStatusString(err_)); \
|
err_, __FILE__, __LINE__, cublasGetStatusString(err_)); \
|
||||||
|
fprintf(stderr, "current device: %d\n", id); \
|
||||||
exit(1); \
|
exit(1); \
|
||||||
} \
|
} \
|
||||||
} while (0)
|
} while (0)
|
||||||
|
@ -165,7 +171,10 @@ static_assert(sizeof(half) == sizeof(ggml_fp16_t), "wrong fp16 size");
|
||||||
do { \
|
do { \
|
||||||
cublasStatus_t err_ = (err); \
|
cublasStatus_t err_ = (err); \
|
||||||
if (err_ != CUBLAS_STATUS_SUCCESS) { \
|
if (err_ != CUBLAS_STATUS_SUCCESS) { \
|
||||||
|
int id; \
|
||||||
|
cudaGetDevice(&id); \
|
||||||
fprintf(stderr, "\ncuBLAS error %d at %s:%d\n", err_, __FILE__, __LINE__); \
|
fprintf(stderr, "\ncuBLAS error %d at %s:%d\n", err_, __FILE__, __LINE__); \
|
||||||
|
fprintf(stderr, "current device: %d\n", id); \
|
||||||
exit(1); \
|
exit(1); \
|
||||||
} \
|
} \
|
||||||
} while (0)
|
} while (0)
|
||||||
|
@ -4086,7 +4095,8 @@ static __global__ void rope_neox_f32(const float * x, float * dst, const int nco
|
||||||
dst[i + ncols/2] = x0*sin_theta + x1*cos_theta;
|
dst[i + ncols/2] = x0*sin_theta + x1*cos_theta;
|
||||||
}
|
}
|
||||||
|
|
||||||
static __global__ void rope_glm_f32(const float * x, float * dst, const int ncols, const float p, const float block_p, const float theta_scale) {
|
static __global__ void rope_glm_f32(const float * x, float * dst, const int ncols, const float p0,
|
||||||
|
const float p_delta, const int p_delta_rows, const float theta_scale, const int n_ctx) {
|
||||||
const int col = blockDim.x*blockIdx.x + threadIdx.x;
|
const int col = blockDim.x*blockIdx.x + threadIdx.x;
|
||||||
const int half_n_dims = ncols/4;
|
const int half_n_dims = ncols/4;
|
||||||
|
|
||||||
|
@ -4098,8 +4108,9 @@ static __global__ void rope_glm_f32(const float * x, float * dst, const int ncol
|
||||||
const int i = row*ncols + col;
|
const int i = row*ncols + col;
|
||||||
|
|
||||||
const float col_theta_scale = powf(theta_scale, col);
|
const float col_theta_scale = powf(theta_scale, col);
|
||||||
|
const float p = p0 + p_delta*(row/p_delta_rows);
|
||||||
|
|
||||||
const float theta = p*col_theta_scale;
|
const float theta = min(p, p_delta*(n_ctx - 2))*col_theta_scale;
|
||||||
const float sin_theta = sinf(theta);
|
const float sin_theta = sinf(theta);
|
||||||
const float cos_theta = cosf(theta);
|
const float cos_theta = cosf(theta);
|
||||||
|
|
||||||
|
@ -4109,7 +4120,7 @@ static __global__ void rope_glm_f32(const float * x, float * dst, const int ncol
|
||||||
dst[i + 0] = x0*cos_theta - x1*sin_theta;
|
dst[i + 0] = x0*cos_theta - x1*sin_theta;
|
||||||
dst[i + half_n_dims] = x0*sin_theta + x1*cos_theta;
|
dst[i + half_n_dims] = x0*sin_theta + x1*cos_theta;
|
||||||
|
|
||||||
const float block_theta = block_p*col_theta_scale;
|
const float block_theta = max(p - p_delta*(n_ctx - 2), 0.f)*col_theta_scale;
|
||||||
const float sin_block_theta = sinf(block_theta);
|
const float sin_block_theta = sinf(block_theta);
|
||||||
const float cos_block_theta = cosf(block_theta);
|
const float cos_block_theta = cosf(block_theta);
|
||||||
|
|
||||||
|
@ -4984,12 +4995,13 @@ static void rope_neox_f32_cuda(const float * x, float * dst, const int ncols, co
|
||||||
rope_neox_f32<<<block_nums, block_dims, 0, stream>>>(x, dst, ncols, p0, p_delta, p_delta_rows, theta_scale);
|
rope_neox_f32<<<block_nums, block_dims, 0, stream>>>(x, dst, ncols, p0, p_delta, p_delta_rows, theta_scale);
|
||||||
}
|
}
|
||||||
|
|
||||||
static void rope_glm_f32_cuda(const float * x, float * dst, const int ncols, const int nrows, const float p, const float block_p, const float theta_scale, cudaStream_t stream) {
|
static void rope_glm_f32_cuda(const float * x, float * dst, const int ncols, const int nrows, const float p0,
|
||||||
GGML_ASSERT(nrows % 4 == 0);
|
const float p_delta, const int p_delta_rows, const float theta_scale, const int n_ctx, cudaStream_t stream) {
|
||||||
const dim3 block_dims(4*CUDA_ROPE_BLOCK_SIZE, 1, 1);
|
GGML_ASSERT(ncols % 4 == 0);
|
||||||
const int num_blocks_x = (ncols + 4*CUDA_ROPE_BLOCK_SIZE - 1) / (4*CUDA_ROPE_BLOCK_SIZE);
|
const dim3 block_dims(CUDA_ROPE_BLOCK_SIZE/4, 1, 1);
|
||||||
|
const int num_blocks_x = (ncols + CUDA_ROPE_BLOCK_SIZE - 1) / CUDA_ROPE_BLOCK_SIZE;
|
||||||
const dim3 block_nums(num_blocks_x, nrows, 1);
|
const dim3 block_nums(num_blocks_x, nrows, 1);
|
||||||
rope_glm_f32<<<block_nums, block_dims, 0, stream>>>(x, dst, ncols, p, block_p, theta_scale);
|
rope_glm_f32<<<block_nums, block_dims, 0, stream>>>(x, dst, ncols, p0, p_delta, p_delta_rows, theta_scale, n_ctx);
|
||||||
}
|
}
|
||||||
|
|
||||||
static void alibi_f32_cuda(const float * x, float * dst, const int ncols, const int nrows,
|
static void alibi_f32_cuda(const float * x, float * dst, const int ncols, const int nrows,
|
||||||
|
@ -5723,22 +5735,18 @@ inline void ggml_cuda_op_rope(
|
||||||
memcpy(&freq_scale, (int32_t *) dst->op_params + 5, sizeof(float));
|
memcpy(&freq_scale, (int32_t *) dst->op_params + 5, sizeof(float));
|
||||||
|
|
||||||
const float theta_scale = powf(freq_base, -2.0f/n_dims);
|
const float theta_scale = powf(freq_base, -2.0f/n_dims);
|
||||||
|
const float p0 = (((mode & 1) == 0 ? n_past : 0)) * freq_scale;
|
||||||
|
|
||||||
const bool is_neox = mode & 2;
|
const bool is_neox = mode & 2;
|
||||||
const bool is_glm = mode & 4;
|
const bool is_glm = mode & 4;
|
||||||
|
|
||||||
// compute
|
// compute
|
||||||
if (is_glm) {
|
if (is_glm) {
|
||||||
const float p = (((mode & 1) == 0 ? n_past + i02 : i02)) * freq_scale;
|
rope_glm_f32_cuda(src0_ddf_i, dst_ddf_i, ne00, i01_diff, p0, freq_scale, ne01, theta_scale, n_ctx, cudaStream_main);
|
||||||
const float id_p = min(p, n_ctx - 2.f);
|
|
||||||
const float block_p = max(p - (n_ctx - 2.f), 0.f);
|
|
||||||
rope_glm_f32_cuda(src0_ddf_i, dst_ddf_i, ne00, i01_diff, id_p, block_p, theta_scale, cudaStream_main);
|
|
||||||
} else if (is_neox) {
|
} else if (is_neox) {
|
||||||
GGML_ASSERT(ne00 == n_dims && "ne00 != n_dims is not implemented for CUDA yet");
|
GGML_ASSERT(ne00 == n_dims && "ne00 != n_dims is not implemented for CUDA yet");
|
||||||
const float p0 = (((mode & 1) == 0 ? n_past : 0)) * freq_scale;
|
|
||||||
rope_neox_f32_cuda(src0_ddf_i, dst_ddf_i, ne00, i01_diff, p0, freq_scale, ne01, theta_scale, cudaStream_main);
|
rope_neox_f32_cuda(src0_ddf_i, dst_ddf_i, ne00, i01_diff, p0, freq_scale, ne01, theta_scale, cudaStream_main);
|
||||||
} else {
|
} else {
|
||||||
const float p0 = (((mode & 1) == 0 ? n_past : 0)) * freq_scale;
|
|
||||||
rope_f32_cuda(src0_ddf_i, dst_ddf_i, ne00, i01_diff, p0, freq_scale, ne01, theta_scale, cudaStream_main);
|
rope_f32_cuda(src0_ddf_i, dst_ddf_i, ne00, i01_diff, p0, freq_scale, ne01, theta_scale, cudaStream_main);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -6400,10 +6408,7 @@ void ggml_cuda_rope(const ggml_tensor * src0, const ggml_tensor * src1, ggml_ten
|
||||||
GGML_ASSERT(src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32);
|
GGML_ASSERT(src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32);
|
||||||
GGML_ASSERT(ggml_is_contiguous(src0)); // TODO: this restriction is temporary until non-cont support is implemented
|
GGML_ASSERT(ggml_is_contiguous(src0)); // TODO: this restriction is temporary until non-cont support is implemented
|
||||||
|
|
||||||
const int mode = ((int32_t *) dst->op_params)[2];
|
ggml_cuda_op(src0, src1, dst, ggml_cuda_op_rope, true, true);
|
||||||
const bool is_glm = mode & 4;
|
|
||||||
|
|
||||||
ggml_cuda_op(src0, src1, dst, ggml_cuda_op_rope, true, !is_glm); // flatten support not implemented for glm
|
|
||||||
}
|
}
|
||||||
|
|
||||||
void ggml_cuda_alibi(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
void ggml_cuda_alibi(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
||||||
|
|
72
ggml-metal.m
72
ggml-metal.m
|
@ -63,7 +63,9 @@ struct ggml_metal_context {
|
||||||
GGML_METAL_DECL_KERNEL(relu);
|
GGML_METAL_DECL_KERNEL(relu);
|
||||||
GGML_METAL_DECL_KERNEL(gelu);
|
GGML_METAL_DECL_KERNEL(gelu);
|
||||||
GGML_METAL_DECL_KERNEL(soft_max);
|
GGML_METAL_DECL_KERNEL(soft_max);
|
||||||
|
GGML_METAL_DECL_KERNEL(soft_max_4);
|
||||||
GGML_METAL_DECL_KERNEL(diag_mask_inf);
|
GGML_METAL_DECL_KERNEL(diag_mask_inf);
|
||||||
|
GGML_METAL_DECL_KERNEL(diag_mask_inf_8);
|
||||||
GGML_METAL_DECL_KERNEL(get_rows_f16);
|
GGML_METAL_DECL_KERNEL(get_rows_f16);
|
||||||
GGML_METAL_DECL_KERNEL(get_rows_q4_0);
|
GGML_METAL_DECL_KERNEL(get_rows_q4_0);
|
||||||
GGML_METAL_DECL_KERNEL(get_rows_q4_1);
|
GGML_METAL_DECL_KERNEL(get_rows_q4_1);
|
||||||
|
@ -77,6 +79,7 @@ struct ggml_metal_context {
|
||||||
GGML_METAL_DECL_KERNEL(norm);
|
GGML_METAL_DECL_KERNEL(norm);
|
||||||
GGML_METAL_DECL_KERNEL(mul_mat_f16_f32);
|
GGML_METAL_DECL_KERNEL(mul_mat_f16_f32);
|
||||||
GGML_METAL_DECL_KERNEL(mul_mat_f16_f32_1row);
|
GGML_METAL_DECL_KERNEL(mul_mat_f16_f32_1row);
|
||||||
|
GGML_METAL_DECL_KERNEL(mul_mat_f16_f32_l4);
|
||||||
GGML_METAL_DECL_KERNEL(mul_mat_q4_0_f32);
|
GGML_METAL_DECL_KERNEL(mul_mat_q4_0_f32);
|
||||||
GGML_METAL_DECL_KERNEL(mul_mat_q4_1_f32);
|
GGML_METAL_DECL_KERNEL(mul_mat_q4_1_f32);
|
||||||
GGML_METAL_DECL_KERNEL(mul_mat_q8_0_f32);
|
GGML_METAL_DECL_KERNEL(mul_mat_q8_0_f32);
|
||||||
|
@ -117,14 +120,17 @@ static NSString * const msl_library_source = @"see metal.metal";
|
||||||
struct ggml_metal_context * ggml_metal_init(int n_cb) {
|
struct ggml_metal_context * ggml_metal_init(int n_cb) {
|
||||||
metal_printf("%s: allocating\n", __func__);
|
metal_printf("%s: allocating\n", __func__);
|
||||||
|
|
||||||
// Show all the Metal device instances in the system
|
|
||||||
NSArray * devices = MTLCopyAllDevices();
|
|
||||||
id <MTLDevice> device;
|
id <MTLDevice> device;
|
||||||
NSString * s;
|
NSString * s;
|
||||||
|
|
||||||
|
#if TARGET_OS_OSX
|
||||||
|
// Show all the Metal device instances in the system
|
||||||
|
NSArray * devices = MTLCopyAllDevices();
|
||||||
for (device in devices) {
|
for (device in devices) {
|
||||||
s = [device name];
|
s = [device name];
|
||||||
metal_printf("%s: found device: %s\n", __func__, [s UTF8String]);
|
metal_printf("%s: found device: %s\n", __func__, [s UTF8String]);
|
||||||
}
|
}
|
||||||
|
#endif
|
||||||
|
|
||||||
// Pick and show default Metal device
|
// Pick and show default Metal device
|
||||||
device = MTLCreateSystemDefaultDevice();
|
device = MTLCreateSystemDefaultDevice();
|
||||||
|
@ -141,12 +147,20 @@ struct ggml_metal_context * ggml_metal_init(int n_cb) {
|
||||||
|
|
||||||
ctx->d_queue = dispatch_queue_create("llama.cpp", DISPATCH_QUEUE_CONCURRENT);
|
ctx->d_queue = dispatch_queue_create("llama.cpp", DISPATCH_QUEUE_CONCURRENT);
|
||||||
|
|
||||||
#if 0
|
#ifdef GGML_SWIFT
|
||||||
// compile from source string and show compile log
|
// load the default.metallib file
|
||||||
{
|
{
|
||||||
NSError * error = nil;
|
NSError * error = nil;
|
||||||
|
|
||||||
ctx->library = [ctx->device newLibraryWithSource:msl_library_source options:nil error:&error];
|
NSBundle * bundle = [NSBundle bundleForClass:[GGMLMetalClass class]];
|
||||||
|
NSString * llamaBundlePath = [bundle pathForResource:@"llama_llama" ofType:@"bundle"];
|
||||||
|
NSBundle * llamaBundle = [NSBundle bundleWithPath:llamaBundlePath];
|
||||||
|
NSString * libPath = [llamaBundle pathForResource:@"default" ofType:@"metallib"];
|
||||||
|
NSURL * libURL = [NSURL fileURLWithPath:libPath];
|
||||||
|
|
||||||
|
// Load the metallib file into a Metal library
|
||||||
|
ctx->library = [ctx->device newLibraryWithURL:libURL error:&error];
|
||||||
|
|
||||||
if (error) {
|
if (error) {
|
||||||
metal_printf("%s: error: %s\n", __func__, [[error description] UTF8String]);
|
metal_printf("%s: error: %s\n", __func__, [[error description] UTF8String]);
|
||||||
return NULL;
|
return NULL;
|
||||||
|
@ -207,7 +221,9 @@ struct ggml_metal_context * ggml_metal_init(int n_cb) {
|
||||||
GGML_METAL_ADD_KERNEL(relu);
|
GGML_METAL_ADD_KERNEL(relu);
|
||||||
GGML_METAL_ADD_KERNEL(gelu);
|
GGML_METAL_ADD_KERNEL(gelu);
|
||||||
GGML_METAL_ADD_KERNEL(soft_max);
|
GGML_METAL_ADD_KERNEL(soft_max);
|
||||||
|
GGML_METAL_ADD_KERNEL(soft_max_4);
|
||||||
GGML_METAL_ADD_KERNEL(diag_mask_inf);
|
GGML_METAL_ADD_KERNEL(diag_mask_inf);
|
||||||
|
GGML_METAL_ADD_KERNEL(diag_mask_inf_8);
|
||||||
GGML_METAL_ADD_KERNEL(get_rows_f16);
|
GGML_METAL_ADD_KERNEL(get_rows_f16);
|
||||||
GGML_METAL_ADD_KERNEL(get_rows_q4_0);
|
GGML_METAL_ADD_KERNEL(get_rows_q4_0);
|
||||||
GGML_METAL_ADD_KERNEL(get_rows_q4_1);
|
GGML_METAL_ADD_KERNEL(get_rows_q4_1);
|
||||||
|
@ -221,6 +237,7 @@ struct ggml_metal_context * ggml_metal_init(int n_cb) {
|
||||||
GGML_METAL_ADD_KERNEL(norm);
|
GGML_METAL_ADD_KERNEL(norm);
|
||||||
GGML_METAL_ADD_KERNEL(mul_mat_f16_f32);
|
GGML_METAL_ADD_KERNEL(mul_mat_f16_f32);
|
||||||
GGML_METAL_ADD_KERNEL(mul_mat_f16_f32_1row);
|
GGML_METAL_ADD_KERNEL(mul_mat_f16_f32_1row);
|
||||||
|
GGML_METAL_ADD_KERNEL(mul_mat_f16_f32_l4);
|
||||||
GGML_METAL_ADD_KERNEL(mul_mat_q4_0_f32);
|
GGML_METAL_ADD_KERNEL(mul_mat_q4_0_f32);
|
||||||
GGML_METAL_ADD_KERNEL(mul_mat_q4_1_f32);
|
GGML_METAL_ADD_KERNEL(mul_mat_q4_1_f32);
|
||||||
GGML_METAL_ADD_KERNEL(mul_mat_q8_0_f32);
|
GGML_METAL_ADD_KERNEL(mul_mat_q8_0_f32);
|
||||||
|
@ -247,13 +264,15 @@ struct ggml_metal_context * ggml_metal_init(int n_cb) {
|
||||||
#undef GGML_METAL_ADD_KERNEL
|
#undef GGML_METAL_ADD_KERNEL
|
||||||
}
|
}
|
||||||
|
|
||||||
metal_printf("%s: recommendedMaxWorkingSetSize = %8.2f MB\n", __func__, ctx->device.recommendedMaxWorkingSetSize / 1024.0 / 1024.0);
|
|
||||||
metal_printf("%s: hasUnifiedMemory = %s\n", __func__, ctx->device.hasUnifiedMemory ? "true" : "false");
|
metal_printf("%s: hasUnifiedMemory = %s\n", __func__, ctx->device.hasUnifiedMemory ? "true" : "false");
|
||||||
|
#if TARGET_OS_OSX
|
||||||
|
metal_printf("%s: recommendedMaxWorkingSetSize = %8.2f MB\n", __func__, ctx->device.recommendedMaxWorkingSetSize / 1024.0 / 1024.0);
|
||||||
if (ctx->device.maxTransferRate != 0) {
|
if (ctx->device.maxTransferRate != 0) {
|
||||||
metal_printf("%s: maxTransferRate = %8.2f MB/s\n", __func__, ctx->device.maxTransferRate / 1024.0 / 1024.0);
|
metal_printf("%s: maxTransferRate = %8.2f MB/s\n", __func__, ctx->device.maxTransferRate / 1024.0 / 1024.0);
|
||||||
} else {
|
} else {
|
||||||
metal_printf("%s: maxTransferRate = built-in GPU\n", __func__);
|
metal_printf("%s: maxTransferRate = built-in GPU\n", __func__);
|
||||||
}
|
}
|
||||||
|
#endif
|
||||||
|
|
||||||
return ctx;
|
return ctx;
|
||||||
}
|
}
|
||||||
|
@ -273,7 +292,8 @@ void ggml_metal_free(struct ggml_metal_context * ctx) {
|
||||||
GGML_METAL_DEL_KERNEL(relu);
|
GGML_METAL_DEL_KERNEL(relu);
|
||||||
GGML_METAL_DEL_KERNEL(gelu);
|
GGML_METAL_DEL_KERNEL(gelu);
|
||||||
GGML_METAL_DEL_KERNEL(soft_max);
|
GGML_METAL_DEL_KERNEL(soft_max);
|
||||||
GGML_METAL_DEL_KERNEL(diag_mask_inf);
|
GGML_METAL_DEL_KERNEL(soft_max_4);
|
||||||
|
GGML_METAL_DEL_KERNEL(diag_mask_inf_8);
|
||||||
GGML_METAL_DEL_KERNEL(get_rows_f16);
|
GGML_METAL_DEL_KERNEL(get_rows_f16);
|
||||||
GGML_METAL_DEL_KERNEL(get_rows_q4_0);
|
GGML_METAL_DEL_KERNEL(get_rows_q4_0);
|
||||||
GGML_METAL_DEL_KERNEL(get_rows_q4_1);
|
GGML_METAL_DEL_KERNEL(get_rows_q4_1);
|
||||||
|
@ -287,6 +307,7 @@ void ggml_metal_free(struct ggml_metal_context * ctx) {
|
||||||
GGML_METAL_DEL_KERNEL(norm);
|
GGML_METAL_DEL_KERNEL(norm);
|
||||||
GGML_METAL_DEL_KERNEL(mul_mat_f16_f32);
|
GGML_METAL_DEL_KERNEL(mul_mat_f16_f32);
|
||||||
GGML_METAL_DEL_KERNEL(mul_mat_f16_f32_1row);
|
GGML_METAL_DEL_KERNEL(mul_mat_f16_f32_1row);
|
||||||
|
GGML_METAL_DEL_KERNEL(mul_mat_f16_f32_l4);
|
||||||
GGML_METAL_DEL_KERNEL(mul_mat_q4_0_f32);
|
GGML_METAL_DEL_KERNEL(mul_mat_q4_0_f32);
|
||||||
GGML_METAL_DEL_KERNEL(mul_mat_q4_1_f32);
|
GGML_METAL_DEL_KERNEL(mul_mat_q4_1_f32);
|
||||||
GGML_METAL_DEL_KERNEL(mul_mat_q8_0_f32);
|
GGML_METAL_DEL_KERNEL(mul_mat_q8_0_f32);
|
||||||
|
@ -454,6 +475,7 @@ bool ggml_metal_add_buffer(
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
#if TARGET_OS_OSX
|
||||||
metal_printf(", (%8.2f / %8.2f)",
|
metal_printf(", (%8.2f / %8.2f)",
|
||||||
ctx->device.currentAllocatedSize / 1024.0 / 1024.0,
|
ctx->device.currentAllocatedSize / 1024.0 / 1024.0,
|
||||||
ctx->device.recommendedMaxWorkingSetSize / 1024.0 / 1024.0);
|
ctx->device.recommendedMaxWorkingSetSize / 1024.0 / 1024.0);
|
||||||
|
@ -463,6 +485,9 @@ bool ggml_metal_add_buffer(
|
||||||
} else {
|
} else {
|
||||||
metal_printf("\n");
|
metal_printf("\n");
|
||||||
}
|
}
|
||||||
|
#else
|
||||||
|
metal_printf(", (%8.2f)\n", ctx->device.currentAllocatedSize / 1024.0 / 1024.0);
|
||||||
|
#endif
|
||||||
}
|
}
|
||||||
|
|
||||||
return true;
|
return true;
|
||||||
|
@ -750,7 +775,7 @@ void ggml_metal_graph_compute(
|
||||||
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
|
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
|
||||||
[encoder setBytes:&scale length:sizeof(scale) atIndex:2];
|
[encoder setBytes:&scale length:sizeof(scale) atIndex:2];
|
||||||
|
|
||||||
const int64_t n = ggml_nelements(dst);
|
const int64_t n = ggml_nelements(dst)/4;
|
||||||
|
|
||||||
[encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
|
[encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
|
||||||
} break;
|
} break;
|
||||||
|
@ -762,7 +787,7 @@ void ggml_metal_graph_compute(
|
||||||
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
|
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
|
||||||
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
|
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
|
||||||
|
|
||||||
const int64_t n = ggml_nelements(dst);
|
const int64_t n = ggml_nelements(dst)/4;
|
||||||
|
|
||||||
[encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
|
[encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
|
||||||
} break;
|
} break;
|
||||||
|
@ -782,7 +807,7 @@ void ggml_metal_graph_compute(
|
||||||
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
|
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
|
||||||
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
|
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
|
||||||
|
|
||||||
const int64_t n = ggml_nelements(dst);
|
const int64_t n = ggml_nelements(dst)/4;
|
||||||
|
|
||||||
[encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
|
[encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
|
||||||
} break;
|
} break;
|
||||||
|
@ -796,13 +821,16 @@ void ggml_metal_graph_compute(
|
||||||
{
|
{
|
||||||
const int nth = 32;
|
const int nth = 32;
|
||||||
|
|
||||||
[encoder setComputePipelineState:ctx->pipeline_soft_max];
|
if (ne00%4 == 0) {
|
||||||
|
[encoder setComputePipelineState:ctx->pipeline_soft_max_4];
|
||||||
|
} else {
|
||||||
|
[encoder setComputePipelineState:ctx->pipeline_soft_max];
|
||||||
|
}
|
||||||
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
|
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
|
||||||
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
|
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
|
||||||
[encoder setBytes:&ne00 length:sizeof(ne00) atIndex:2];
|
[encoder setBytes:&ne00 length:sizeof(ne00) atIndex:2];
|
||||||
[encoder setBytes:&ne01 length:sizeof(ne01) atIndex:3];
|
[encoder setBytes:&ne01 length:sizeof(ne01) atIndex:3];
|
||||||
[encoder setBytes:&ne02 length:sizeof(ne02) atIndex:4];
|
[encoder setBytes:&ne02 length:sizeof(ne02) atIndex:4];
|
||||||
[encoder setThreadgroupMemoryLength:nth*sizeof(float) atIndex:0];
|
|
||||||
|
|
||||||
[encoder dispatchThreadgroups:MTLSizeMake(ne01, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
|
[encoder dispatchThreadgroups:MTLSizeMake(ne01, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
|
||||||
} break;
|
} break;
|
||||||
|
@ -810,14 +838,23 @@ void ggml_metal_graph_compute(
|
||||||
{
|
{
|
||||||
const int n_past = ((int32_t *)(dst->op_params))[0];
|
const int n_past = ((int32_t *)(dst->op_params))[0];
|
||||||
|
|
||||||
[encoder setComputePipelineState:ctx->pipeline_diag_mask_inf];
|
if (ne00%8 == 0) {
|
||||||
|
[encoder setComputePipelineState:ctx->pipeline_diag_mask_inf_8];
|
||||||
|
} else {
|
||||||
|
[encoder setComputePipelineState:ctx->pipeline_diag_mask_inf];
|
||||||
|
}
|
||||||
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
|
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
|
||||||
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
|
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
|
||||||
[encoder setBytes:&ne00 length:sizeof(ne00) atIndex:2];
|
[encoder setBytes:&ne00 length:sizeof(ne00) atIndex:2];
|
||||||
[encoder setBytes:&ne01 length:sizeof(ne01) atIndex:3];
|
[encoder setBytes:&ne01 length:sizeof(ne01) atIndex:3];
|
||||||
[encoder setBytes:&n_past length:sizeof(int) atIndex:4];
|
[encoder setBytes:&n_past length:sizeof(int) atIndex:4];
|
||||||
|
|
||||||
[encoder dispatchThreadgroups:MTLSizeMake(ne00, ne01, ne02) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
|
if (ne00%8 == 0) {
|
||||||
|
[encoder dispatchThreadgroups:MTLSizeMake(ne00*ne01*ne02/8, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
|
||||||
|
}
|
||||||
|
else {
|
||||||
|
[encoder dispatchThreadgroups:MTLSizeMake(ne00, ne01, ne02) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
|
||||||
|
}
|
||||||
} break;
|
} break;
|
||||||
case GGML_OP_MUL_MAT:
|
case GGML_OP_MUL_MAT:
|
||||||
{
|
{
|
||||||
|
@ -864,6 +901,7 @@ void ggml_metal_graph_compute(
|
||||||
} else {
|
} else {
|
||||||
int nth0 = 32;
|
int nth0 = 32;
|
||||||
int nth1 = 1;
|
int nth1 = 1;
|
||||||
|
int nrows = 1;
|
||||||
|
|
||||||
// use custom matrix x vector kernel
|
// use custom matrix x vector kernel
|
||||||
switch (src0t) {
|
switch (src0t) {
|
||||||
|
@ -873,8 +911,12 @@ void ggml_metal_graph_compute(
|
||||||
nth1 = 1;
|
nth1 = 1;
|
||||||
if (ne11 * ne12 < 4) {
|
if (ne11 * ne12 < 4) {
|
||||||
[encoder setComputePipelineState:ctx->pipeline_mul_mat_f16_f32_1row];
|
[encoder setComputePipelineState:ctx->pipeline_mul_mat_f16_f32_1row];
|
||||||
|
} else if (ne00 >= 128 && ne01 >= 8 && ne00%4 == 0) {
|
||||||
|
[encoder setComputePipelineState:ctx->pipeline_mul_mat_f16_f32_l4];
|
||||||
|
nrows = ne11;
|
||||||
} else {
|
} else {
|
||||||
[encoder setComputePipelineState:ctx->pipeline_mul_mat_f16_f32];
|
[encoder setComputePipelineState:ctx->pipeline_mul_mat_f16_f32];
|
||||||
|
nrows = 4;
|
||||||
}
|
}
|
||||||
} break;
|
} break;
|
||||||
case GGML_TYPE_Q4_0:
|
case GGML_TYPE_Q4_0:
|
||||||
|
@ -995,7 +1037,7 @@ void ggml_metal_graph_compute(
|
||||||
else if (src0t == GGML_TYPE_Q6_K) {
|
else if (src0t == GGML_TYPE_Q6_K) {
|
||||||
[encoder dispatchThreadgroups:MTLSizeMake((ne01 + 1)/2, ne11, ne12) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
[encoder dispatchThreadgroups:MTLSizeMake((ne01 + 1)/2, ne11, ne12) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
||||||
} else {
|
} else {
|
||||||
int64_t ny = (ne11 + 3)/4;
|
int64_t ny = (ne11 + nrows - 1)/nrows;
|
||||||
[encoder dispatchThreadgroups:MTLSizeMake(ne01, ny, ne12) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
[encoder dispatchThreadgroups:MTLSizeMake(ne01, ny, ne12) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
416
ggml-metal.metal
416
ggml-metal.metal
|
@ -63,18 +63,18 @@ kernel void kernel_mul_row(
|
||||||
}
|
}
|
||||||
|
|
||||||
kernel void kernel_scale(
|
kernel void kernel_scale(
|
||||||
device const float * src0,
|
device const float4 * src0,
|
||||||
device float * dst,
|
device float4 * dst,
|
||||||
constant float & scale,
|
constant float & scale,
|
||||||
uint tpig[[thread_position_in_grid]]) {
|
uint tpig[[thread_position_in_grid]]) {
|
||||||
dst[tpig] = src0[tpig] * scale;
|
dst[tpig] = src0[tpig] * scale;
|
||||||
}
|
}
|
||||||
|
|
||||||
kernel void kernel_silu(
|
kernel void kernel_silu(
|
||||||
device const float * src0,
|
device const float4 * src0,
|
||||||
device float * dst,
|
device float4 * dst,
|
||||||
uint tpig[[thread_position_in_grid]]) {
|
uint tpig[[thread_position_in_grid]]) {
|
||||||
float x = src0[tpig];
|
device const float4 & x = src0[tpig];
|
||||||
dst[tpig] = x / (1.0f + exp(-x));
|
dst[tpig] = x / (1.0f + exp(-x));
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -89,10 +89,10 @@ constant float GELU_COEF_A = 0.044715f;
|
||||||
constant float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
|
constant float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
|
||||||
|
|
||||||
kernel void kernel_gelu(
|
kernel void kernel_gelu(
|
||||||
device const float * src0,
|
device const float4 * src0,
|
||||||
device float * dst,
|
device float4 * dst,
|
||||||
uint tpig[[thread_position_in_grid]]) {
|
uint tpig[[thread_position_in_grid]]) {
|
||||||
float x = src0[tpig];
|
device const float4 & x = src0[tpig];
|
||||||
|
|
||||||
// BEWARE !!!
|
// BEWARE !!!
|
||||||
// Simply using "tanh" instead of "precise::tanh" will sometimes results in NaNs!
|
// Simply using "tanh" instead of "precise::tanh" will sometimes results in NaNs!
|
||||||
|
@ -107,7 +107,6 @@ kernel void kernel_soft_max(
|
||||||
constant int64_t & ne00,
|
constant int64_t & ne00,
|
||||||
constant int64_t & ne01,
|
constant int64_t & ne01,
|
||||||
constant int64_t & ne02,
|
constant int64_t & ne02,
|
||||||
threadgroup float * buf [[threadgroup(0)]],
|
|
||||||
uint3 tgpig[[threadgroup_position_in_grid]],
|
uint3 tgpig[[threadgroup_position_in_grid]],
|
||||||
uint3 tpitg[[thread_position_in_threadgroup]],
|
uint3 tpitg[[thread_position_in_threadgroup]],
|
||||||
uint3 ntg[[threads_per_threadgroup]]) {
|
uint3 ntg[[threads_per_threadgroup]]) {
|
||||||
|
@ -119,64 +118,70 @@ kernel void kernel_soft_max(
|
||||||
device float * pdst = dst + i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00;
|
device float * pdst = dst + i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00;
|
||||||
|
|
||||||
// parallel max
|
// parallel max
|
||||||
buf[tpitg[0]] = -INFINITY;
|
float lmax = psrc0[tpitg[0]];
|
||||||
for (int i00 = tpitg[0]; i00 < ne00; i00 += ntg[0]) {
|
for (int i00 = tpitg[0] + ntg[0]; i00 < ne00; i00 += ntg[0]) {
|
||||||
buf[tpitg[0]] = MAX(buf[tpitg[0]], psrc0[i00]);
|
lmax = MAX(lmax, psrc0[i00]);
|
||||||
}
|
}
|
||||||
|
const float max = simd_max(lmax);
|
||||||
// reduce
|
|
||||||
threadgroup_barrier(mem_flags::mem_threadgroup);
|
|
||||||
for (uint i = ntg[0]/2; i > 0; i /= 2) {
|
|
||||||
if (tpitg[0] < i) {
|
|
||||||
buf[tpitg[0]] = MAX(buf[tpitg[0]], buf[tpitg[0] + i]);
|
|
||||||
}
|
|
||||||
threadgroup_barrier(mem_flags::mem_threadgroup);
|
|
||||||
}
|
|
||||||
|
|
||||||
//// broadcast - not needed. There is a threadgroup barrier above in the last iteration of
|
|
||||||
// the loop, and when that is done, buf[0] has the correct (synchronized) value
|
|
||||||
//if (tpitg[0] == 0) {
|
|
||||||
// buf[0] = buf[0];
|
|
||||||
//}
|
|
||||||
|
|
||||||
//threadgroup_barrier(mem_flags::mem_threadgroup);
|
|
||||||
|
|
||||||
const float max = buf[0];
|
|
||||||
|
|
||||||
// parallel sum
|
// parallel sum
|
||||||
buf[tpitg[0]] = 0.0f;
|
float lsum = 0.0f;
|
||||||
for (int i00 = tpitg[0]; i00 < ne00; i00 += ntg[0]) {
|
for (int i00 = tpitg[0]; i00 < ne00; i00 += ntg[0]) {
|
||||||
const float exp_psrc0 = exp(psrc0[i00] - max);
|
const float exp_psrc0 = exp(psrc0[i00] - max);
|
||||||
buf[tpitg[0]] += exp_psrc0;
|
lsum += exp_psrc0;
|
||||||
// Remember the result of exp here. exp is expensive, so we really do not
|
// Remember the result of exp here. exp is expensive, so we really do not
|
||||||
// whish to compute it twice.
|
// whish to compute it twice.
|
||||||
pdst[i00] = exp_psrc0;
|
pdst[i00] = exp_psrc0;
|
||||||
}
|
}
|
||||||
|
|
||||||
// reduce
|
const float sum = simd_sum(lsum);
|
||||||
threadgroup_barrier(mem_flags::mem_threadgroup);
|
|
||||||
for (uint i = ntg[0]/2; i > 0; i /= 2) {
|
|
||||||
if (tpitg[0] < i) {
|
|
||||||
buf[tpitg[0]] += buf[tpitg[0] + i];
|
|
||||||
}
|
|
||||||
threadgroup_barrier(mem_flags::mem_threadgroup);
|
|
||||||
}
|
|
||||||
|
|
||||||
// broadcast - not needed, see above
|
|
||||||
//// broadcast
|
|
||||||
//if (tpitg[0] == 0) {
|
|
||||||
// buf[0] = buf[0];
|
|
||||||
//}
|
|
||||||
|
|
||||||
//threadgroup_barrier(mem_flags::mem_threadgroup);
|
|
||||||
|
|
||||||
const float sum = buf[0];
|
|
||||||
|
|
||||||
for (int i00 = tpitg[0]; i00 < ne00; i00 += ntg[0]) {
|
for (int i00 = tpitg[0]; i00 < ne00; i00 += ntg[0]) {
|
||||||
pdst[i00] /= sum;
|
pdst[i00] /= sum;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
kernel void kernel_soft_max_4(
|
||||||
|
device const float * src0,
|
||||||
|
device float * dst,
|
||||||
|
constant int64_t & ne00,
|
||||||
|
constant int64_t & ne01,
|
||||||
|
constant int64_t & ne02,
|
||||||
|
uint3 tgpig[[threadgroup_position_in_grid]],
|
||||||
|
uint3 tpitg[[thread_position_in_threadgroup]],
|
||||||
|
uint3 ntg[[threads_per_threadgroup]]) {
|
||||||
|
const int64_t i03 = tgpig[2];
|
||||||
|
const int64_t i02 = tgpig[1];
|
||||||
|
const int64_t i01 = tgpig[0];
|
||||||
|
|
||||||
|
device const float4 * psrc4 = (device const float4 *)(src0 + i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00);
|
||||||
|
device float4 * pdst4 = (device float4 *)(dst + i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00);
|
||||||
|
|
||||||
|
// parallel max
|
||||||
|
float4 lmax4 = psrc4[tpitg[0]];
|
||||||
|
for (int i00 = tpitg[0] + ntg[0]; i00 < ne00/4; i00 += ntg[0]) {
|
||||||
|
lmax4 = fmax(lmax4, psrc4[i00]);
|
||||||
|
}
|
||||||
|
float lmax = MAX(MAX(lmax4[0], lmax4[1]), MAX(lmax4[2], lmax4[3]));
|
||||||
|
|
||||||
|
const float max = simd_max(lmax);
|
||||||
|
|
||||||
|
// parallel sum
|
||||||
|
float4 lsum4 = 0.0f;
|
||||||
|
for (int i00 = tpitg[0]; i00 < ne00/4; i00 += ntg[0]) {
|
||||||
|
const float4 exp_psrc4 = exp(psrc4[i00] - max);
|
||||||
|
lsum4 += exp_psrc4;
|
||||||
|
pdst4[i00] = exp_psrc4;
|
||||||
|
}
|
||||||
|
float lsum = lsum4[0] + lsum4[1] + lsum4[2] + lsum4[3];
|
||||||
|
|
||||||
|
const float sum = simd_sum(lsum);
|
||||||
|
|
||||||
|
for (int i00 = tpitg[0]; i00 < ne00/4; i00 += ntg[0]) {
|
||||||
|
pdst4[i00] /= sum;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
kernel void kernel_diag_mask_inf(
|
kernel void kernel_diag_mask_inf(
|
||||||
device const float * src0,
|
device const float * src0,
|
||||||
device float * dst,
|
device float * dst,
|
||||||
|
@ -192,6 +197,33 @@ kernel void kernel_diag_mask_inf(
|
||||||
dst[i02*ne01*ne00 + i01*ne00 + i00] = -INFINITY;
|
dst[i02*ne01*ne00 + i01*ne00 + i00] = -INFINITY;
|
||||||
} else {
|
} else {
|
||||||
dst[i02*ne01*ne00 + i01*ne00 + i00] = src0[i02*ne01*ne00 + i01*ne00 + i00];
|
dst[i02*ne01*ne00 + i01*ne00 + i00] = src0[i02*ne01*ne00 + i01*ne00 + i00];
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
kernel void kernel_diag_mask_inf_8(
|
||||||
|
device const float4 * src0,
|
||||||
|
device float4 * dst,
|
||||||
|
constant int64_t & ne00,
|
||||||
|
constant int64_t & ne01,
|
||||||
|
constant int & n_past,
|
||||||
|
uint3 tpig[[thread_position_in_grid]]) {
|
||||||
|
|
||||||
|
const int64_t i = 2*tpig[0];
|
||||||
|
|
||||||
|
dst[i+0] = src0[i+0];
|
||||||
|
dst[i+1] = src0[i+1];
|
||||||
|
int64_t i4 = 4*i;
|
||||||
|
const int64_t i02 = i4/(ne00*ne01); i4 -= i02*ne00*ne01;
|
||||||
|
const int64_t i01 = i4/(ne00); i4 -= i01*ne00;
|
||||||
|
const int64_t i00 = i4;
|
||||||
|
for (int k = 3; k >= 0; --k) {
|
||||||
|
if (i00 + 4 + k <= n_past + i01) {
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
dst[i+1][k] = -INFINITY;
|
||||||
|
if (i00 + k > n_past + i01) {
|
||||||
|
dst[i][k] = -INFINITY;
|
||||||
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -616,6 +648,49 @@ kernel void kernel_mul_mat_f16_f32(
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
// Assumes row size (ne00) is a multiple of 4
|
||||||
|
kernel void kernel_mul_mat_f16_f32_l4(
|
||||||
|
device const char * src0,
|
||||||
|
device const char * src1,
|
||||||
|
device float * dst,
|
||||||
|
constant int64_t & ne00,
|
||||||
|
constant int64_t & ne01,
|
||||||
|
constant int64_t & ne02,
|
||||||
|
constant uint64_t & nb00,
|
||||||
|
constant uint64_t & nb01,
|
||||||
|
constant uint64_t & nb02,
|
||||||
|
constant int64_t & ne10,
|
||||||
|
constant int64_t & ne11,
|
||||||
|
constant int64_t & ne12,
|
||||||
|
constant uint64_t & nb10,
|
||||||
|
constant uint64_t & nb11,
|
||||||
|
constant uint64_t & nb12,
|
||||||
|
constant int64_t & ne0,
|
||||||
|
constant int64_t & ne1,
|
||||||
|
uint3 tgpig[[threadgroup_position_in_grid]],
|
||||||
|
uint tiisg[[thread_index_in_simdgroup]]) {
|
||||||
|
|
||||||
|
const int nrows = ne11;
|
||||||
|
const int64_t r0 = tgpig.x;
|
||||||
|
const int64_t im = tgpig.z;
|
||||||
|
|
||||||
|
device const half4 * x4 = (device const half4 *) (src0 + r0*nb01 + im/(ne12/ne02)*nb02);
|
||||||
|
|
||||||
|
for (int r1 = 0; r1 < nrows; ++r1) {
|
||||||
|
device const float4 * y4 = (device const float4 *) (src1 + r1*nb11 + im*nb12);
|
||||||
|
|
||||||
|
float sumf = 0;
|
||||||
|
for (int i = tiisg; i < ne00/4; i += 32) {
|
||||||
|
for (int k = 0; k < 4; ++k) sumf += (float) x4[i][k] * y4[i][k];
|
||||||
|
}
|
||||||
|
|
||||||
|
float all_sum = simd_sum(sumf);
|
||||||
|
if (tiisg == 0) {
|
||||||
|
dst[im*ne1*ne0 + r1*ne0 + r0] = all_sum;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
kernel void kernel_alibi_f32(
|
kernel void kernel_alibi_f32(
|
||||||
device const float * src0,
|
device const float * src0,
|
||||||
device float * dst,
|
device float * dst,
|
||||||
|
@ -1123,31 +1198,40 @@ kernel void kernel_mul_mat_q3_K_f32(
|
||||||
device const block_q3_K * x = (device const block_q3_K *) src0 + first_row*nb + offset0;
|
device const block_q3_K * x = (device const block_q3_K *) src0 + first_row*nb + offset0;
|
||||||
device const float * yy = (device const float *) src1 + r1*ne10 + r2*ne00*ne1;
|
device const float * yy = (device const float *) src1 + r1*ne10 + r2*ne00*ne1;
|
||||||
|
|
||||||
float yl[16];
|
float yl[32];
|
||||||
|
|
||||||
const uint16_t kmask1 = 0x0303;
|
const uint16_t kmask1 = 0x3030;
|
||||||
const uint16_t kmask2 = 0x0f0f;
|
const uint16_t kmask2 = 0x0f0f;
|
||||||
|
|
||||||
const int tid = tiisg/2;
|
const int tid = tiisg/4;
|
||||||
const int ix = tiisg%2;
|
const int ix = tiisg%4;
|
||||||
const int ip = tid/8; // 0 or 1
|
const int ip = tid/4; // 0 or 1
|
||||||
const int il = tid/2 - 4*ip; // 0...3
|
const int il = 2*((tid%4)/2); // 0 or 2
|
||||||
const int ir = tid%2;
|
const int ir = tid%2;
|
||||||
const int n = 8;
|
const int n = 8;
|
||||||
const int l0 = n*ir;
|
const int l0 = n*ir;
|
||||||
|
|
||||||
const uint16_t m1 = 1 << (4*ip + il);
|
// One would think that the Metal compiler would figure out that ip and il can only have
|
||||||
const uint16_t m2 = m1 << 8;
|
// 4 possible states, and optimize accordingly. Well, no. It needs help, and we do it
|
||||||
|
// with these two tales.
|
||||||
|
//
|
||||||
|
// Possible masks for the high bit
|
||||||
|
const ushort4 mm[4] = {{0x0001, 0x0100, 0x0002, 0x0200}, // ip = 0, il = 0
|
||||||
|
{0x0004, 0x0400, 0x0008, 0x0800}, // ip = 0, il = 2
|
||||||
|
{0x0010, 0x1000, 0x0020, 0x2000}, // ip = 1, il = 0
|
||||||
|
{0x0040, 0x4000, 0x0080, 0x8000}}; // ip = 1, il = 2
|
||||||
|
|
||||||
|
// Possible masks for the low 2 bits
|
||||||
|
const int4 qm[2] = {{0x0003, 0x0300, 0x000c, 0x0c00}, {0x0030, 0x3000, 0x00c0, 0xc000}};
|
||||||
|
|
||||||
|
const ushort4 hm = mm[2*ip + il/2];
|
||||||
|
|
||||||
const int shift = 2*il;
|
const int shift = 2*il;
|
||||||
const uint16_t qm1 = 0x0003 << shift;
|
const float v1 = il == 0 ? 4.f : 64.f;
|
||||||
const uint16_t qm2 = 0x0300 << shift;
|
const float v2 = 4.f * v1;
|
||||||
const int32_t v1 = 4 << shift;
|
|
||||||
const int32_t v2 = 1024 << shift;
|
|
||||||
|
|
||||||
const uint16_t s_shift1 = 4*ip;
|
const uint16_t s_shift1 = 4*ip;
|
||||||
const uint16_t s_shift2 = s_shift1 + 2*(il/2);
|
const uint16_t s_shift2 = s_shift1 + il;
|
||||||
const int ik = 4 + (il%2);
|
|
||||||
|
|
||||||
const int q_offset = 32*ip + l0;
|
const int q_offset = 32*ip + l0;
|
||||||
const int y_offset = 128*ip + 32*il + l0;
|
const int y_offset = 128*ip + 32*il + l0;
|
||||||
|
@ -1156,12 +1240,19 @@ kernel void kernel_mul_mat_q3_K_f32(
|
||||||
|
|
||||||
device const float * y1 = yy + ix*QK_K + y_offset;
|
device const float * y1 = yy + ix*QK_K + y_offset;
|
||||||
|
|
||||||
float sumf1[2] = {0.f}, sumf2[2] = {0.f};
|
uint32_t scales32, aux32;
|
||||||
for (int i = ix; i < nb; i += 2) {
|
thread uint16_t * scales16 = (thread uint16_t *)&scales32;
|
||||||
|
thread const int8_t * scales = (thread const int8_t *)&scales32;
|
||||||
|
|
||||||
|
float sumf1[2] = {0.f};
|
||||||
|
float sumf2[2] = {0.f};
|
||||||
|
for (int i = ix; i < nb; i += 4) {
|
||||||
|
|
||||||
for (int l = 0; l < 8; ++l) {
|
for (int l = 0; l < 8; ++l) {
|
||||||
yl[l+0] = y1[l+ 0];
|
yl[l+ 0] = y1[l+ 0];
|
||||||
yl[l+8] = y1[l+16];
|
yl[l+ 8] = y1[l+16];
|
||||||
|
yl[l+16] = y1[l+32];
|
||||||
|
yl[l+24] = y1[l+48];
|
||||||
}
|
}
|
||||||
|
|
||||||
device const uint16_t * q = (device const uint16_t *)(x[i].qs + q_offset);
|
device const uint16_t * q = (device const uint16_t *)(x[i].qs + q_offset);
|
||||||
|
@ -1172,27 +1263,43 @@ kernel void kernel_mul_mat_q3_K_f32(
|
||||||
for (int row = 0; row < 2; ++row) {
|
for (int row = 0; row < 2; ++row) {
|
||||||
|
|
||||||
const float d_all = (float)dh[0];
|
const float d_all = (float)dh[0];
|
||||||
const char2 scales = as_type<char2>((uint16_t)(((a[il] >> s_shift1) & kmask2) | (((a[ik] >> s_shift2) & kmask1) << 4)));
|
|
||||||
|
|
||||||
float s1 = 0, s2 = 0;
|
scales16[0] = a[4];
|
||||||
for (int l = 0; l < n; l += 2) {
|
scales16[1] = a[5];
|
||||||
const uint16_t qs = q[l/2];
|
aux32 = ((scales32 >> s_shift2) << 4) & 0x30303030;
|
||||||
s1 += yl[l+0] * ((int32_t)(qs & qm1) - ((h[l/2] & m1) ? 0 : v1));
|
scales16[0] = a[il+0];
|
||||||
s2 += yl[l+1] * ((int32_t)(qs & qm2) - ((h[l/2] & m2) ? 0 : v2));
|
scales16[1] = a[il+1];
|
||||||
}
|
scales32 = ((scales32 >> s_shift1) & 0x0f0f0f0f) | aux32;
|
||||||
float d = d_all * (s1 + 1.f/256.f * s2);
|
|
||||||
sumf1[row] += d * scales[0];
|
|
||||||
sumf2[row] += d;
|
|
||||||
|
|
||||||
s1 = s2 = 0;
|
float s1 = 0, s2 = 0, s3 = 0, s4 = 0, s5 = 0, s6 = 0;
|
||||||
for (int l = 0; l < n; l += 2) {
|
for (int l = 0; l < n; l += 2) {
|
||||||
const uint16_t qs = q[l/2+8];
|
const int32_t qs = q[l/2];
|
||||||
s1 += yl[l+8] * ((int32_t)(qs & qm1) - ((h[l/2+8] & m1) ? 0 : v1));
|
s1 += yl[l+0] * (qs & qm[il/2][0]);
|
||||||
s2 += yl[l+9] * ((int32_t)(qs & qm2) - ((h[l/2+8] & m2) ? 0 : v2));
|
s2 += yl[l+1] * (qs & qm[il/2][1]);
|
||||||
|
s3 += ((h[l/2] & hm[0]) ? 0.f : yl[l+0]) + ((h[l/2] & hm[1]) ? 0.f : yl[l+1]);
|
||||||
|
s4 += yl[l+16] * (qs & qm[il/2][2]);
|
||||||
|
s5 += yl[l+17] * (qs & qm[il/2][3]);
|
||||||
|
s6 += ((h[l/2] & hm[2]) ? 0.f : yl[l+16]) + ((h[l/2] & hm[3]) ? 0.f : yl[l+17]);
|
||||||
}
|
}
|
||||||
d = d_all * (s1 + 1.f/256.f * s2);
|
float d1 = d_all * (s1 + 1.f/256.f * s2 - s3*v1);
|
||||||
sumf1[row] += d * scales[1];
|
float d2 = d_all * (s4 + 1.f/256.f * s5 - s6*v2);
|
||||||
sumf2[row] += d;
|
sumf1[row] += d1 * (scales[0] - 32);
|
||||||
|
sumf2[row] += d2 * (scales[2] - 32);
|
||||||
|
|
||||||
|
s1 = s2 = s3 = s4 = s5 = s6 = 0;
|
||||||
|
for (int l = 0; l < n; l += 2) {
|
||||||
|
const int32_t qs = q[l/2+8];
|
||||||
|
s1 += yl[l+8] * (qs & qm[il/2][0]);
|
||||||
|
s2 += yl[l+9] * (qs & qm[il/2][1]);
|
||||||
|
s3 += ((h[l/2+8] & hm[0]) ? 0.f : yl[l+8]) + ((h[l/2+8] & hm[1]) ? 0.f : yl[l+9]);
|
||||||
|
s4 += yl[l+24] * (qs & qm[il/2][2]);
|
||||||
|
s5 += yl[l+25] * (qs & qm[il/2][3]);
|
||||||
|
s6 += ((h[l/2+8] & hm[2]) ? 0.f : yl[l+24]) + ((h[l/2+8] & hm[3]) ? 0.f : yl[l+25]);
|
||||||
|
}
|
||||||
|
d1 = d_all * (s1 + 1.f/256.f * s2 - s3*v1);
|
||||||
|
d2 = d_all * (s4 + 1.f/256.f * s5 - s6*v2);
|
||||||
|
sumf1[row] += d1 * (scales[1] - 32);
|
||||||
|
sumf2[row] += d2 * (scales[3] - 32);
|
||||||
|
|
||||||
q += step;
|
q += step;
|
||||||
h += step;
|
h += step;
|
||||||
|
@ -1201,17 +1308,20 @@ kernel void kernel_mul_mat_q3_K_f32(
|
||||||
|
|
||||||
}
|
}
|
||||||
|
|
||||||
y1 += 2 * QK_K;
|
y1 += 4 * QK_K;
|
||||||
|
|
||||||
}
|
}
|
||||||
|
|
||||||
for (int row = 0; row < 2; ++row) {
|
for (int row = 0; row < 2; ++row) {
|
||||||
const float sumf = (sumf1[row] - 32.f*sumf2[row]) / (1 << shift);
|
const float sumf = (sumf1[row] + 0.25f * sumf2[row]) / (1 << shift);
|
||||||
const float tot = simd_sum(sumf);
|
sumf1[row] = simd_sum(sumf);
|
||||||
if (tiisg == 0) {
|
}
|
||||||
dst[r1*ne0 + r2*ne0*ne1 + first_row + row] = tot;
|
if (tiisg == 0) {
|
||||||
|
for (int row = 0; row < 2; ++row) {
|
||||||
|
dst[r1*ne0 + r2*ne0*ne1 + first_row + row] = sumf1[row];
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
}
|
}
|
||||||
#else
|
#else
|
||||||
kernel void kernel_mul_mat_q3_K_f32(
|
kernel void kernel_mul_mat_q3_K_f32(
|
||||||
|
@ -1564,17 +1674,25 @@ kernel void kernel_mul_mat_q5_K_f32(
|
||||||
sc16[2] = ((a[4] >> 0) & kmask2) | ((a[0] & kmask3) >> 2);
|
sc16[2] = ((a[4] >> 0) & kmask2) | ((a[0] & kmask3) >> 2);
|
||||||
sc16[3] = ((a[4] >> 4) & kmask2) | ((a[2] & kmask3) >> 2);
|
sc16[3] = ((a[4] >> 4) & kmask2) | ((a[2] & kmask3) >> 2);
|
||||||
|
|
||||||
float4 acc = {0.f, 0.f, 0.f, 0.f};
|
float4 acc1 = {0.f};
|
||||||
|
float4 acc2 = {0.f};
|
||||||
for (int l = 0; l < n; ++l) {
|
for (int l = 0; l < n; ++l) {
|
||||||
uint8_t h = qh[l];
|
uint8_t h = qh[l];
|
||||||
acc[0] += yl[l+0] * ((uint16_t)(q1[l] & 0x0F) + (h & hm1 ? 16 : 0));
|
acc1[0] += yl[l+0] * (q1[l] & 0x0F);
|
||||||
acc[1] += yl[l+8] * ((uint16_t)(q1[l] & 0xF0) + (h & hm2 ? 256 : 0));
|
acc1[1] += yl[l+8] * (q1[l] & 0xF0);
|
||||||
acc[2] += yh[l+0] * ((uint16_t)(q2[l] & 0x0F) + (h & hm3 ? 16 : 0));
|
acc1[2] += yh[l+0] * (q2[l] & 0x0F);
|
||||||
acc[3] += yh[l+8] * ((uint16_t)(q2[l] & 0xF0) + (h & hm4 ? 256 : 0));
|
acc1[3] += yh[l+8] * (q2[l] & 0xF0);
|
||||||
|
acc2[0] += h & hm1 ? yl[l+0] : 0.f;
|
||||||
|
acc2[1] += h & hm2 ? yl[l+8] : 0.f;
|
||||||
|
acc2[2] += h & hm3 ? yh[l+0] : 0.f;
|
||||||
|
acc2[3] += h & hm4 ? yh[l+8] : 0.f;
|
||||||
}
|
}
|
||||||
const float dall = dh[0];
|
const float dall = dh[0];
|
||||||
const float dmin = dh[1];
|
const float dmin = dh[1];
|
||||||
sumf[row] += dall * (acc[0] * sc8[0] + acc[1] * sc8[1] * 1.f/16.f + acc[2] * sc8[4] + acc[3] * sc8[5] * 1.f/16.f) -
|
sumf[row] += dall * (sc8[0] * (acc1[0] + 16.f*acc2[0]) +
|
||||||
|
sc8[1] * (acc1[1]/16.f + 16.f*acc2[1]) +
|
||||||
|
sc8[4] * (acc1[2] + 16.f*acc2[2]) +
|
||||||
|
sc8[5] * (acc1[3]/16.f + 16.f*acc2[3])) -
|
||||||
dmin * (sumy[0] * sc8[2] + sumy[1] * sc8[3] + sumy[2] * sc8[6] + sumy[3] * sc8[7]);
|
dmin * (sumy[0] * sc8[2] + sumy[1] * sc8[3] + sumy[2] * sc8[6] + sumy[3] * sc8[7]);
|
||||||
|
|
||||||
q1 += step;
|
q1 += step;
|
||||||
|
@ -1757,29 +1875,34 @@ void dequantize_f16(device const half4x4 * src, short il, thread type4x4 & reg)
|
||||||
|
|
||||||
template <typename type4x4>
|
template <typename type4x4>
|
||||||
void dequantize_q4_0(device const block_q4_0 *xb, short il, thread type4x4 & reg) {
|
void dequantize_q4_0(device const block_q4_0 *xb, short il, thread type4x4 & reg) {
|
||||||
|
|
||||||
device const uint16_t * qs = ((device const uint16_t *)xb + 1);
|
device const uint16_t * qs = ((device const uint16_t *)xb + 1);
|
||||||
const half d = il ? (xb->d / 16.h) : xb->d;
|
const float d1 = il ? (xb->d / 16.h) : xb->d;
|
||||||
const half m = il ? ( -8.h * 16.h) : -8.h;
|
const float d2 = d1 / 256.f;
|
||||||
|
const float md = -8.h * xb->d;
|
||||||
const ushort mask0 = il ? 0x00F0 : 0x000F;
|
const ushort mask0 = il ? 0x00F0 : 0x000F;
|
||||||
const ushort mask1 = il ? 0xF000 : 0x0F00;
|
const ushort mask1 = mask0 << 8;
|
||||||
|
|
||||||
for (int i=0;i<8;i++) {
|
for (int i=0;i<8;i++) {
|
||||||
reg[i/2][2*(i%2)] = (((qs[i] & mask0) ) + m) * d;
|
reg[i/2][2*(i%2)+0] = d1 * (qs[i] & mask0) + md;
|
||||||
reg[i/2][2*(i%2)+1] = (((qs[i] & mask1) >> 8) + m) * d;
|
reg[i/2][2*(i%2)+1] = d2 * (qs[i] & mask1) + md;
|
||||||
}
|
}
|
||||||
|
|
||||||
}
|
}
|
||||||
|
|
||||||
template <typename type4x4>
|
template <typename type4x4>
|
||||||
void dequantize_q4_1(device const block_q4_1 *xb, short il, thread type4x4 & reg) {
|
void dequantize_q4_1(device const block_q4_1 *xb, short il, thread type4x4 & reg) {
|
||||||
|
|
||||||
device const uint16_t * qs = ((device const uint16_t *)xb + 2);
|
device const uint16_t * qs = ((device const uint16_t *)xb + 2);
|
||||||
const half d = il ? (xb->d / 16.h) : xb->d;
|
const float d1 = il ? (xb->d / 16.h) : xb->d;
|
||||||
const half m = xb->m;
|
const float d2 = d1 / 256.f;
|
||||||
|
const float m = xb->m;
|
||||||
const ushort mask0 = il ? 0x00F0 : 0x000F;
|
const ushort mask0 = il ? 0x00F0 : 0x000F;
|
||||||
const ushort mask1 = il ? 0xF000 : 0x0F00;
|
const ushort mask1 = mask0 << 8;
|
||||||
|
|
||||||
for (int i=0;i<8;i++) {
|
for (int i=0;i<8;i++) {
|
||||||
reg[i/2][2*(i%2)] = (((qs[i] & mask0) ) * d) + m;
|
reg[i/2][2*(i%2)+0] = ((qs[i] & mask0) * d1) + m;
|
||||||
reg[i/2][2*(i%2)+1] = (((qs[i] & mask1) >> 8) * d) + m;
|
reg[i/2][2*(i%2)+1] = ((qs[i] & mask1) * d2) + m;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -1815,7 +1938,7 @@ void dequantize_q2_K(device const block_q2_K *xb, short il, thread type4x4 & reg
|
||||||
|
|
||||||
template <typename type4x4>
|
template <typename type4x4>
|
||||||
void dequantize_q3_K(device const block_q3_K *xb, short il, thread type4x4 & reg) {
|
void dequantize_q3_K(device const block_q3_K *xb, short il, thread type4x4 & reg) {
|
||||||
const float d_all = (float)(xb->d);
|
const half d_all = xb->d;
|
||||||
device const uint8_t * q = (device const uint8_t *)xb->qs;
|
device const uint8_t * q = (device const uint8_t *)xb->qs;
|
||||||
device const uint8_t * h = (device const uint8_t *)xb->hmask;
|
device const uint8_t * h = (device const uint8_t *)xb->hmask;
|
||||||
device const int8_t * scales = (device const int8_t *)xb->scales;
|
device const int8_t * scales = (device const int8_t *)xb->scales;
|
||||||
|
@ -1828,17 +1951,20 @@ void dequantize_q3_K(device const block_q3_K *xb, short il, thread type4x4 & reg
|
||||||
((il/4)>0 ? 12 : 3);
|
((il/4)>0 ? 12 : 3);
|
||||||
uint16_t kmask2 = il/8 ? 0xF0 : 0x0F;
|
uint16_t kmask2 = il/8 ? 0xF0 : 0x0F;
|
||||||
uint16_t scale_2 = scales[il%8], scale_1 = scales[8 + il%4];
|
uint16_t scale_2 = scales[il%8], scale_1 = scales[8 + il%4];
|
||||||
int16_t dl_int = (il/4)&1 ? (scale_2&kmask2) | ((scale_1&kmask1) << 2) : \
|
int16_t dl_int = (il/4)&1 ? (scale_2&kmask2) | ((scale_1&kmask1) << 2)
|
||||||
(scale_2&kmask2) | ((scale_1&kmask1) << 4);
|
: (scale_2&kmask2) | ((scale_1&kmask1) << 4);
|
||||||
float dl = il<8 ? d_all * (dl_int - 32.f) : d_all * (dl_int / 16.f - 32.f);
|
half dl = il<8 ? d_all * (dl_int - 32.h) : d_all * (dl_int / 16.h - 32.h);
|
||||||
|
const half ml = 4.h * dl;
|
||||||
|
|
||||||
il = (il/2)%4;
|
il = (il/2) & 3;
|
||||||
float coef = il>1 ? (il>2 ? 1/64.h : 1/16.h) : (il>0 ? 1/4.h : 1.h);
|
const half coef = il>1 ? (il>2 ? 1/64.h : 1/16.h) : (il>0 ? 1/4.h : 1.h);
|
||||||
uint8_t mask = il>1 ? (il>2 ? 192 : 48) : (il>0 ? 12 : 3);
|
const uint8_t mask = il>1 ? (il>2 ? 192 : 48) : (il>0 ? 12 : 3);
|
||||||
|
dl *= coef;
|
||||||
|
|
||||||
for (int i = 0; i < 16; ++i) {
|
for (int i = 0; i < 16; ++i) {
|
||||||
reg[i/4][i%4] = coef * dl * ((q[i] & mask) - ((h[i] & m) ? 0 : 4.f/coef));
|
reg[i/4][i%4] = dl * (q[i] & mask) - (h[i] & m ? 0 : ml);
|
||||||
}
|
}
|
||||||
|
|
||||||
#else
|
#else
|
||||||
float kcoef = il&1 ? 1.f/16.f : 1.f;
|
float kcoef = il&1 ? 1.f/16.f : 1.f;
|
||||||
uint16_t kmask = il&1 ? 0xF0 : 0x0F;
|
uint16_t kmask = il&1 ? 0xF0 : 0x0F;
|
||||||
|
@ -1852,31 +1978,37 @@ void dequantize_q3_K(device const block_q3_K *xb, short il, thread type4x4 & reg
|
||||||
#endif
|
#endif
|
||||||
}
|
}
|
||||||
|
|
||||||
|
static inline uchar2 get_scale_min_k4_just2(int j, int k, device const uchar * q) {
|
||||||
|
return j < 4 ? uchar2{uchar(q[j+0+k] & 63), uchar(q[j+4+k] & 63)}
|
||||||
|
: uchar2{uchar((q[j+4+k] & 0xF) | ((q[j-4+k] & 0xc0) >> 2)), uchar((q[j+4+k] >> 4) | ((q[j-0+k] & 0xc0) >> 2))};
|
||||||
|
}
|
||||||
|
|
||||||
template <typename type4x4>
|
template <typename type4x4>
|
||||||
void dequantize_q4_K(device const block_q4_K *xb, short il, thread type4x4 & reg) {
|
void dequantize_q4_K(device const block_q4_K *xb, short il, thread type4x4 & reg) {
|
||||||
device const uint8_t * q = xb->qs;
|
device const uchar * q = xb->qs;
|
||||||
|
|
||||||
#if QK_K == 256
|
#if QK_K == 256
|
||||||
const float d = (float)(xb->d);
|
|
||||||
const float min = (float)(xb->dmin);
|
|
||||||
short is = (il/4) * 2;
|
short is = (il/4) * 2;
|
||||||
q = q + (il/4) * 32 + 16 * (il&1);
|
q = q + (il/4) * 32 + 16 * (il&1);
|
||||||
il = il%4;
|
il = il & 3;
|
||||||
const uchar4 sc = get_scale_min_k4(is, xb->scales);
|
const uchar2 sc = get_scale_min_k4_just2(is, il/2, xb->scales);
|
||||||
const float dl = il<2 ? d * sc[0] : d * sc[2]/16.h;
|
const half d = il < 2 ? xb->d : xb->d / 16.h;
|
||||||
const float ml = il<2 ? min * sc[1] : min * sc[3];
|
const half min = xb->dmin;
|
||||||
|
const half dl = d * sc[0];
|
||||||
|
const half ml = min * sc[1];
|
||||||
#else
|
#else
|
||||||
q = q + 16 * (il&1);
|
q = q + 16 * (il&1);
|
||||||
device const uint8_t * s = xb->scales;
|
device const uint8_t * s = xb->scales;
|
||||||
device const half2 * dh = (device const half2 *)xb->d;
|
device const half2 * dh = (device const half2 *)xb->d;
|
||||||
const float2 d = (float2)dh[0];
|
const float2 d = (float2)dh[0];
|
||||||
const float dl = il<2 ? d[0] * (s[0]&0xF) : d[0] * (s[1]&0xF)/16.h;
|
const float dl = il<2 ? d[0] * (s[0]&0xF) : d[0] * (s[1]&0xF)/16.h;
|
||||||
const float ml = il<2 ? d[1] * (s[0]>>4) : d[1 ]* (s[1]>>4);
|
const float ml = il<2 ? d[1] * (s[0]>>4) : d[1] * (s[1]>>4);
|
||||||
#endif
|
#endif
|
||||||
const ushort mask = il<2 ? 0x0F : 0xF0;
|
const ushort mask = il<2 ? 0x0F : 0xF0;
|
||||||
for (int i = 0; i < 16; ++i) {
|
for (int i = 0; i < 16; ++i) {
|
||||||
reg[i/4][i%4] = dl * (q[i] & mask) - ml;
|
reg[i/4][i%4] = dl * (q[i] & mask) - ml;
|
||||||
}
|
}
|
||||||
|
|
||||||
}
|
}
|
||||||
|
|
||||||
template <typename type4x4>
|
template <typename type4x4>
|
||||||
|
@ -1885,19 +2017,19 @@ void dequantize_q5_K(device const block_q5_K *xb, short il, thread type4x4 & reg
|
||||||
device const uint8_t * qh = xb->qh;
|
device const uint8_t * qh = xb->qh;
|
||||||
|
|
||||||
#if QK_K == 256
|
#if QK_K == 256
|
||||||
const float d = (float)(xb->d);
|
|
||||||
const float min = (float)(xb->dmin);
|
|
||||||
short is = (il/4) * 2;
|
short is = (il/4) * 2;
|
||||||
q = q + 32 * (il/4) + 16 * (il&1);
|
q = q + 32 * (il/4) + 16 * (il&1);
|
||||||
qh = qh + 16 * (il&1);
|
qh = qh + 16 * (il&1);
|
||||||
uint8_t ul = 1 << (il/2);
|
uint8_t ul = 1 << (il/2);
|
||||||
il = il%4;
|
il = il & 3;
|
||||||
const uchar4 sc = get_scale_min_k4(is, xb->scales);
|
const uchar2 sc = get_scale_min_k4_just2(is, il/2, xb->scales);
|
||||||
const float dl = il<2 ? d * sc[0] : d * sc[2]/16.h;
|
const half d = il < 2 ? xb->d : xb->d / 16.h;
|
||||||
const float ml = il<2 ? min * sc[1] : min * sc[3];
|
const half min = xb->dmin;
|
||||||
|
const half dl = d * sc[0];
|
||||||
|
const half ml = min * sc[1];
|
||||||
|
|
||||||
const ushort mask = il<2 ? 0x0F : 0xF0;
|
const ushort mask = il<2 ? 0x0F : 0xF0;
|
||||||
const float qh_val = il<2 ? 16.f : 256.f;
|
const half qh_val = il<2 ? 16.h : 256.h;
|
||||||
for (int i = 0; i < 16; ++i) {
|
for (int i = 0; i < 16; ++i) {
|
||||||
reg[i/4][i%4] = dl * ((q[i] & mask) + (qh[i] & ul ? qh_val : 0)) - ml;
|
reg[i/4][i%4] = dl * ((q[i] & mask) + (qh[i] & ul ? qh_val : 0)) - ml;
|
||||||
}
|
}
|
||||||
|
@ -1916,7 +2048,7 @@ void dequantize_q5_K(device const block_q5_K *xb, short il, thread type4x4 & reg
|
||||||
|
|
||||||
template <typename type4x4>
|
template <typename type4x4>
|
||||||
void dequantize_q6_K(device const block_q6_K *xb, short il, thread type4x4 & reg) {
|
void dequantize_q6_K(device const block_q6_K *xb, short il, thread type4x4 & reg) {
|
||||||
const float d_all = (float)(xb->d);
|
const half d_all = xb->d;
|
||||||
device const uint8_t * ql = (device const uint8_t *)xb->ql;
|
device const uint8_t * ql = (device const uint8_t *)xb->ql;
|
||||||
device const uint8_t * qh = (device const uint8_t *)xb->qh;
|
device const uint8_t * qh = (device const uint8_t *)xb->qh;
|
||||||
device const int8_t * scales = (device const int8_t *)xb->scales;
|
device const int8_t * scales = (device const int8_t *)xb->scales;
|
||||||
|
@ -1924,19 +2056,21 @@ void dequantize_q6_K(device const block_q6_K *xb, short il, thread type4x4 & reg
|
||||||
#if QK_K == 256
|
#if QK_K == 256
|
||||||
ql = ql + 64*(il/8) + 32*((il/2)&1) + 16*(il&1);
|
ql = ql + 64*(il/8) + 32*((il/2)&1) + 16*(il&1);
|
||||||
qh = qh + 32*(il/8) + 16*(il&1);
|
qh = qh + 32*(il/8) + 16*(il&1);
|
||||||
float sc = scales[(il%2) + 2 * ((il/2))];
|
half sc = scales[(il%2) + 2 * ((il/2))];
|
||||||
il = (il/2)%4;
|
il = (il/2) & 3;
|
||||||
#else
|
#else
|
||||||
ql = ql + 16 * (il&1);
|
ql = ql + 16 * (il&1);
|
||||||
float sc = scales[il];
|
half sc = scales[il];
|
||||||
#endif
|
#endif
|
||||||
|
const uint16_t kmask1 = il>1 ? (il>2 ? 192 : 48) : (il>0 ? 12 : 3);
|
||||||
|
const uint16_t kmask2 = il>1 ? 0xF0 : 0x0F;
|
||||||
|
const half coef = il>1 ? 1.f/16.h : 1.h;
|
||||||
|
const half ml = d_all * sc * 32.h;
|
||||||
|
const half dl = d_all * sc * coef;
|
||||||
for (int i = 0; i < 16; ++i) {
|
for (int i = 0; i < 16; ++i) {
|
||||||
uint16_t kmask1 = il>1 ? (il>2 ? 192 : 48) : (il>0 ? 12 : 3);
|
const half q = il&1 ? ((ql[i] & kmask2) | ((qh[i] & kmask1) << 2))
|
||||||
uint16_t kmask2 = il>1 ? 0xF0 : 0x0F;
|
: ((ql[i] & kmask2) | ((qh[i] & kmask1) << 4));
|
||||||
const float coef = il>1 ? 1.f/16.f : 1.f;
|
reg[i/4][i%4] = dl * q - ml;
|
||||||
float q = il&1 ? ((ql[i]&kmask2)|((qh[i]&kmask1)<<2)) - 32.f/coef : \
|
|
||||||
((ql[i]&kmask2)|((qh[i]&kmask1)<<4)) - 32.f/coef;
|
|
||||||
reg[i/4][i%4] = d_all * sc * q * coef;
|
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
8
ggml.c
8
ggml.c
|
@ -1,4 +1,3 @@
|
||||||
#define _GNU_SOURCE // Defines CLOCK_MONOTONIC on Linux
|
|
||||||
#define _CRT_SECURE_NO_DEPRECATE // Disables ridiculous "unsafe" warnigns on Windows
|
#define _CRT_SECURE_NO_DEPRECATE // Disables ridiculous "unsafe" warnigns on Windows
|
||||||
|
|
||||||
#include "ggml.h"
|
#include "ggml.h"
|
||||||
|
@ -47,6 +46,10 @@
|
||||||
// disable "possible loss of data" to avoid hundreds of casts
|
// disable "possible loss of data" to avoid hundreds of casts
|
||||||
// we should just be careful :)
|
// we should just be careful :)
|
||||||
#pragma warning(disable: 4244 4267)
|
#pragma warning(disable: 4244 4267)
|
||||||
|
|
||||||
|
// disable POSIX deprecation warnigns
|
||||||
|
// these functions are never going away, anyway
|
||||||
|
#pragma warning(disable: 4996)
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
#if defined(_WIN32)
|
#if defined(_WIN32)
|
||||||
|
@ -307,12 +310,14 @@ typedef double ggml_float;
|
||||||
#if defined(_MSC_VER) || defined(__MINGW32__)
|
#if defined(_MSC_VER) || defined(__MINGW32__)
|
||||||
#include <intrin.h>
|
#include <intrin.h>
|
||||||
#else
|
#else
|
||||||
|
#if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__) || defined(__SSE3__)
|
||||||
#if !defined(__riscv)
|
#if !defined(__riscv)
|
||||||
#include <immintrin.h>
|
#include <immintrin.h>
|
||||||
#endif
|
#endif
|
||||||
#endif
|
#endif
|
||||||
#endif
|
#endif
|
||||||
#endif
|
#endif
|
||||||
|
#endif
|
||||||
|
|
||||||
#ifdef __riscv_v_intrinsic
|
#ifdef __riscv_v_intrinsic
|
||||||
#include <riscv_vector.h>
|
#include <riscv_vector.h>
|
||||||
|
@ -18872,7 +18877,6 @@ static enum ggml_opt_result linesearch_backtracking(
|
||||||
// strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE)
|
// strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE)
|
||||||
return count;
|
return count;
|
||||||
}
|
}
|
||||||
return count;
|
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
19
llama.cpp
19
llama.cpp
|
@ -1,8 +1,3 @@
|
||||||
// Defines fileno on msys:
|
|
||||||
#ifndef _GNU_SOURCE
|
|
||||||
#define _GNU_SOURCE
|
|
||||||
#endif
|
|
||||||
|
|
||||||
#include "llama.h"
|
#include "llama.h"
|
||||||
|
|
||||||
#include "ggml.h"
|
#include "ggml.h"
|
||||||
|
@ -5638,15 +5633,19 @@ void llama_free(struct llama_context * ctx) {
|
||||||
}
|
}
|
||||||
|
|
||||||
int llama_n_vocab(const struct llama_context * ctx) {
|
int llama_n_vocab(const struct llama_context * ctx) {
|
||||||
return ctx->model.vocab.id_to_token.size();
|
return llama_model_n_vocab(&ctx->model);
|
||||||
}
|
}
|
||||||
|
|
||||||
int llama_n_ctx(const struct llama_context * ctx) {
|
int llama_n_ctx(const struct llama_context * ctx) {
|
||||||
return ctx->model.hparams.n_ctx;
|
return llama_model_n_ctx(&ctx->model);
|
||||||
|
}
|
||||||
|
|
||||||
|
int llama_n_ctx_train(const struct llama_context * ctx) {
|
||||||
|
return llama_model_n_ctx_train(&ctx->model);
|
||||||
}
|
}
|
||||||
|
|
||||||
int llama_n_embd(const struct llama_context * ctx) {
|
int llama_n_embd(const struct llama_context * ctx) {
|
||||||
return ctx->model.hparams.n_embd;
|
return llama_model_n_embd(&ctx->model);
|
||||||
}
|
}
|
||||||
|
|
||||||
enum llama_vocab_type llama_vocab_type(const struct llama_context * ctx) {
|
enum llama_vocab_type llama_vocab_type(const struct llama_context * ctx) {
|
||||||
|
@ -5661,6 +5660,10 @@ int llama_model_n_ctx(const struct llama_model * model) {
|
||||||
return model->hparams.n_ctx;
|
return model->hparams.n_ctx;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
int llama_model_n_ctx_train(const struct llama_model * model) {
|
||||||
|
return model->hparams.n_ctx_train;
|
||||||
|
}
|
||||||
|
|
||||||
int llama_model_n_embd(const struct llama_model * model) {
|
int llama_model_n_embd(const struct llama_model * model) {
|
||||||
return model->hparams.n_embd;
|
return model->hparams.n_embd;
|
||||||
}
|
}
|
||||||
|
|
14
llama.h
14
llama.h
|
@ -245,15 +245,17 @@ extern "C" {
|
||||||
LLAMA_API bool llama_mmap_supported (void);
|
LLAMA_API bool llama_mmap_supported (void);
|
||||||
LLAMA_API bool llama_mlock_supported(void);
|
LLAMA_API bool llama_mlock_supported(void);
|
||||||
|
|
||||||
LLAMA_API int llama_n_vocab(const struct llama_context * ctx);
|
LLAMA_API int llama_n_vocab (const struct llama_context * ctx);
|
||||||
LLAMA_API int llama_n_ctx (const struct llama_context * ctx);
|
LLAMA_API int llama_n_ctx (const struct llama_context * ctx);
|
||||||
LLAMA_API int llama_n_embd (const struct llama_context * ctx);
|
LLAMA_API int llama_n_ctx_train(const struct llama_context * ctx);
|
||||||
|
LLAMA_API int llama_n_embd (const struct llama_context * ctx);
|
||||||
|
|
||||||
LLAMA_API enum llama_vocab_type llama_vocab_type(const struct llama_context * ctx);
|
LLAMA_API enum llama_vocab_type llama_vocab_type(const struct llama_context * ctx);
|
||||||
|
|
||||||
LLAMA_API int llama_model_n_vocab(const struct llama_model * model);
|
LLAMA_API int llama_model_n_vocab (const struct llama_model * model);
|
||||||
LLAMA_API int llama_model_n_ctx (const struct llama_model * model);
|
LLAMA_API int llama_model_n_ctx (const struct llama_model * model);
|
||||||
LLAMA_API int llama_model_n_embd (const struct llama_model * model);
|
LLAMA_API int llama_model_n_ctx_train(const struct llama_model * model);
|
||||||
|
LLAMA_API int llama_model_n_embd (const struct llama_model * model);
|
||||||
|
|
||||||
// Get a string describing the model type
|
// Get a string describing the model type
|
||||||
LLAMA_API int llama_model_desc(const struct llama_model * model, char * buf, size_t buf_size);
|
LLAMA_API int llama_model_desc(const struct llama_model * model, char * buf, size_t buf_size);
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue