llama : custom attention mask + parallel decoding + no context swaps (#3228)
* tests : verify that RoPE is "additive" * llama : replace ggml_diag_mask_inf with ggml_add (custom -inf mask) * ggml : ggml_rope now takes a vector with positions instead of n_past * metal : add rope_f16 kernel + optimize cpy kernels * llama : unified KV cache + batch inference API * llama : add new llama_decode() API that works with llama_batch * llama : add cell_max heuristic for more efficient kv_cache * llama : extend llama_kv_cache API * llama : more robust cell_max heuristic + wip shift * metal : disable concurrency optimization * llama : add llama_kv_cache_shift_seq + no more context swaps * llama : apply K-cache roping for Falcon and Baichuan * speculative : fix KV cache management * parallel : example for serving multiple users in parallel * parallel : disable hot-plug to avoid cache fragmentation * fixes : speculative KV cache + llama worst-case graph * llama : extend batch API to select which logits to output * llama : fix worst case graph build * ggml-cuda : update rope implementation for parallel decoding (#3254) * ggml-cuda : update rope implementation for parallel decoding * better solution for p0 computation * fix rope * simpler rope implementation --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * make : add parallel to build + fix static functions in llama.cpp * simple : fix token counting * parallel : various improvements * llama : fix cell_max logic + rename functions * parallel : try smaller batches when the KV cache is fragmented * parallel : fix sequence termination criteria * llama : silence errors KV cache errors * parallel : remove new line from prompt * parallel : process system prompt once + configurable paramters + llama API * parallel : remove question with short answers * parallel : count cache misses * parallel : print misses on each request * parallel : minor * llama : fix n_kv to never become 0 * parallel : rename hot-plug to continuous-batching * llama : improve llama_batch API + simplify parallel example * simple : add parallel decoding support * simple : improve comments + free batch * ggml-cuda : add rope f16, restore performance with parallel decoding (#3272) * ggml-cuda : add rope f16, restore performance * offload KQ_mask with all models * fix rope shift --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * llama : disable MPI for now ggml-ci * train : make KQ_pos memory buffer permanent via dummy scale op * ggml : revert change to ggml_cpy, add ggml_cont_Nd instead (#3275) ggml-ci * parallel : fix bug (extra BOS) + smaller token_prev array * parallel : fix cases where the input prompts can overflow the batch * parallel : add disabled experimental batch chunking in powers of two * llama : llama.h formatting + comments * simple : add README.md * llama : fix kv cache heuristic when context is less than 32 * parallel : fix crash when `-n -1` * llama : simplify returns if/else branches * metal : use mm kernels for batch size > 2 * examples : utilize new llama_get_logits_ith() * examples : add example for batched decoding * examples : do not eval prompt 2 times (close #3348) * server : clear the KV cache beyond n_past before llama_decode * server : avoid context swaps by shifting the KV cache --------- Co-authored-by: slaren <slarengh@gmail.com>
This commit is contained in:
parent
45855b3f1c
commit
ec893798b7
35 changed files with 2700 additions and 673 deletions
|
@ -891,7 +891,7 @@ static void test_prompt(llama_context * ctx, int n_prompt, int n_past, int n_bat
|
|||
int n_processed = 0;
|
||||
while (n_processed < n_prompt) {
|
||||
int n_tokens = std::min(n_prompt - n_processed, n_batch);
|
||||
llama_eval(ctx, tokens.data(), n_tokens, n_past + n_processed, n_threads);
|
||||
llama_decode(ctx, llama_batch_get_one(tokens.data(), n_tokens, n_past + n_processed, 0), n_threads);
|
||||
n_processed += n_tokens;
|
||||
}
|
||||
}
|
||||
|
@ -899,7 +899,7 @@ static void test_prompt(llama_context * ctx, int n_prompt, int n_past, int n_bat
|
|||
static void test_gen(llama_context * ctx, int n_gen, int n_past, int n_threads) {
|
||||
llama_token token = llama_token_bos(ctx);
|
||||
for (int i = 0; i < n_gen; i++) {
|
||||
llama_eval(ctx, &token, 1, n_past + i, n_threads);
|
||||
llama_decode(ctx, llama_batch_get_one(&token, 1, n_past + i, 0), n_threads);
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -977,6 +977,8 @@ int main(int argc, char ** argv) {
|
|||
|
||||
test t(inst, lmodel, ctx);
|
||||
|
||||
llama_kv_cache_tokens_rm(ctx, -1, -1);
|
||||
|
||||
// warmup run
|
||||
if (t.n_prompt > 0) {
|
||||
test_prompt(ctx, std::min(2, t.n_batch), 0, t.n_batch, t.n_threads);
|
||||
|
@ -986,6 +988,8 @@ int main(int argc, char ** argv) {
|
|||
}
|
||||
|
||||
for (int i = 0; i < params.reps; i++) {
|
||||
llama_kv_cache_tokens_rm(ctx, -1, -1);
|
||||
|
||||
uint64_t t_start = get_time_ns();
|
||||
if (t.n_prompt > 0) {
|
||||
test_prompt(ctx, t.n_prompt, 0, t.n_batch, t.n_threads);
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue