merge master
This commit is contained in:
commit
ec89d06f67
35 changed files with 361 additions and 68 deletions
2
.github/ISSUE_TEMPLATE/config.yml
vendored
2
.github/ISSUE_TEMPLATE/config.yml
vendored
|
@ -9,5 +9,3 @@ contact_links:
|
|||
- name: Want to contribute?
|
||||
url: https://github.com/ggerganov/llama.cpp/wiki/contribute
|
||||
about: Head to the contribution guide page of the wiki for areas you can help with
|
||||
|
||||
|
||||
|
|
6
Makefile
6
Makefile
|
@ -62,6 +62,11 @@ TEST_TARGETS = \
|
|||
tests/test-tokenizer-1-bpe \
|
||||
tests/test-tokenizer-1-spm
|
||||
|
||||
# Legacy build targets that were renamed in #7809, but should still be removed when the project is cleaned
|
||||
LEGACY_TARGETS = main quantize quantize-stats perplexity imatrix embedding vdot q8dot train-text-from-scratch convert-llama2c-to-ggml \
|
||||
simple batched batched-bench save-load-state server gguf gguf-split eval-callback llama-bench libllava.a llava-cli baby-llama \
|
||||
retrieval speculative infill tokenize benchmark-matmult parallel finetune export-lora lookahead lookup passkey gritlm
|
||||
|
||||
# Deprecation aliases
|
||||
ifdef LLAMA_CUBLAS
|
||||
$(error LLAMA_CUBLAS is removed. Use GGML_CUDA instead.)
|
||||
|
@ -1086,6 +1091,7 @@ clean:
|
|||
rm -vrf ggml/src/ggml-cuda/template-instances/*.o
|
||||
rm -rvf $(BUILD_TARGETS)
|
||||
rm -rvf $(TEST_TARGETS)
|
||||
rm -rvf $(LEGACY_TARGETS)
|
||||
find examples pocs -type f -name "*.o" -delete
|
||||
|
||||
#
|
||||
|
|
|
@ -757,7 +757,7 @@ bool gpt_params_find_arg(int argc, char ** argv, const std::string & arg, gpt_pa
|
|||
params.cache_type_v = argv[++i];
|
||||
return true;
|
||||
}
|
||||
if (arg == "--multiline-input") {
|
||||
if (arg == "-mli" || arg == "--multiline-input") {
|
||||
params.multiline_input = true;
|
||||
return true;
|
||||
}
|
||||
|
|
|
@ -459,4 +459,3 @@ void yaml_dump_string_multiline(FILE * stream, const char * prop_name, const cha
|
|||
void yaml_dump_non_result_info(
|
||||
FILE * stream, const gpt_params & params, const llama_context * lctx,
|
||||
const std::string & timestamp, const std::vector<int> & prompt_tokens, const char * model_desc);
|
||||
|
||||
|
|
|
@ -86,6 +86,7 @@ models = [
|
|||
{"name": "poro-chat", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/LumiOpen/Poro-34B-chat", },
|
||||
{"name": "jina-v2-code", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/jinaai/jina-embeddings-v2-base-code", },
|
||||
{"name": "viking", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/LumiOpen/Viking-7B", }, # Also used for Viking 13B and 33B
|
||||
{"name": "jais", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/core42/jais-13b", },
|
||||
]
|
||||
|
||||
|
||||
|
|
|
@ -493,6 +493,9 @@ class Model:
|
|||
if chkhsh == "7fc505bd3104ca1083b150b17d088b59534ede9bde81f0dd2090967d7fe52cee":
|
||||
# ref: https://huggingface.co/LumiOpen/Viking-7B
|
||||
res = "viking"
|
||||
if chkhsh == "b53802fb28e26d645c3a310b34bfe07da813026ec7c7716883404d5e0f8b1901":
|
||||
# ref: https://huggingface.co/core42/jais-13b
|
||||
res = "jais"
|
||||
|
||||
if res is None:
|
||||
logger.warning("\n")
|
||||
|
@ -2968,6 +2971,95 @@ class T5Model(Model):
|
|||
return [(self.map_tensor_name(name), data_torch)]
|
||||
|
||||
|
||||
@Model.register("JAISLMHeadModel")
|
||||
class JaisModel(Model):
|
||||
model_arch = gguf.MODEL_ARCH.JAIS
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
super().__init__(*args, **kwargs)
|
||||
|
||||
# SwigLU activation
|
||||
assert self.hparams["activation_function"] == "swiglu"
|
||||
# ALiBi position embedding
|
||||
assert self.hparams["position_embedding_type"] == "alibi"
|
||||
|
||||
# Embeddings scale
|
||||
self.embeddings_scale = 1.0
|
||||
# note: For some JAIS flavors, output is tied to (same as) wte in original model
|
||||
self.output_is_wte = False
|
||||
if 'mup_embeddings_scale' in self.hparams:
|
||||
self.output_is_wte = True # Hack (?)
|
||||
self.embeddings_scale = self.hparams['mup_embeddings_scale']
|
||||
elif 'embeddings_scale' in self.hparams:
|
||||
self.embeddings_scale = self.hparams['embeddings_scale']
|
||||
else:
|
||||
assert False
|
||||
|
||||
self.width_scale = 1.0
|
||||
if 'mup_output_alpha' in self.hparams:
|
||||
assert 'mup_width_scale' in self.hparams
|
||||
self.width_scale = self.hparams['mup_output_alpha'] * self.hparams['mup_width_scale']
|
||||
elif 'width_scale' in self.hparams:
|
||||
self.width_scale = self.hparams['width_scale']
|
||||
else:
|
||||
assert False
|
||||
|
||||
self.max_alibi_bias = 8.0
|
||||
|
||||
def set_vocab(self):
|
||||
self._set_vocab_gpt2()
|
||||
|
||||
def set_gguf_parameters(self):
|
||||
self.gguf_writer.add_name(self.dir_model.name)
|
||||
self.gguf_writer.add_block_count(self.hparams["n_layer"])
|
||||
self.gguf_writer.add_context_length(self.hparams["n_positions"])
|
||||
self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
|
||||
self.gguf_writer.add_feed_forward_length(self.hparams["n_inner"])
|
||||
self.gguf_writer.add_head_count(self.hparams["n_head"])
|
||||
self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
|
||||
self.gguf_writer.add_file_type(self.ftype)
|
||||
|
||||
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
|
||||
del bid # unused
|
||||
|
||||
tensors: list[tuple[str, Tensor]] = []
|
||||
|
||||
# we don't need these
|
||||
if name.endswith((".attn.bias")):
|
||||
return tensors
|
||||
|
||||
if name.endswith(("relative_pe.slopes")):
|
||||
# Calculate max ALiBi bias (this is the inverse of the ALiBi calculation)
|
||||
# Some other models has max_alibi_bias spelled out explicitly in the hyperparams,
|
||||
# but Jais's PyTorch model simply precalculates the slope values and places them
|
||||
# in relative_pes.slopes
|
||||
n_head_closest_log2 = 2 ** math.floor(math.log2(self.hparams["n_head"]))
|
||||
first_val = float(data_torch._data[0])
|
||||
self.max_alibi_bias = -round(math.log2(first_val) * n_head_closest_log2)
|
||||
|
||||
return tensors
|
||||
|
||||
if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_fc2.weight")):
|
||||
data_torch = data_torch.transpose(1, 0)
|
||||
|
||||
new_name = self.map_tensor_name(name)
|
||||
|
||||
if new_name == self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD):
|
||||
tensors.append((new_name, data_torch * self.embeddings_scale))
|
||||
if self.output_is_wte:
|
||||
tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT), data_torch * self.width_scale))
|
||||
elif new_name == self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT):
|
||||
assert not self.output_is_wte
|
||||
tensors.append((new_name, data_torch * self.width_scale))
|
||||
else:
|
||||
tensors.append((new_name, data_torch))
|
||||
|
||||
return tensors
|
||||
|
||||
def write_tensors(self):
|
||||
super().write_tensors()
|
||||
self.gguf_writer.add_max_alibi_bias(self.max_alibi_bias)
|
||||
|
||||
@Model.register("ChatGLMModel", "ChatGLMForConditionalGeneration")
|
||||
class ChatGLMModel(Model):
|
||||
model_arch = gguf.MODEL_ARCH.CHATGLM
|
||||
|
@ -3153,7 +3245,6 @@ class ChatGLMModel(Model):
|
|||
name = name.removeprefix("transformer.")
|
||||
return [(self.map_tensor_name(name), data_torch)]
|
||||
|
||||
|
||||
###### CONVERSION LOGIC ######
|
||||
|
||||
|
||||
|
@ -3309,7 +3400,8 @@ def main() -> None:
|
|||
"auto": gguf.LlamaFileType.GUESSED,
|
||||
}
|
||||
|
||||
if args.use_temp_file and (args.split_max_tensors > 0 or args.split_max_size != "0"):
|
||||
is_split = args.split_max_tensors > 0 or args.split_max_size != "0"
|
||||
if args.use_temp_file and is_split:
|
||||
logger.error("Error: Cannot use temp file when splitting")
|
||||
sys.exit(1)
|
||||
|
||||
|
@ -3346,11 +3438,12 @@ def main() -> None:
|
|||
if args.vocab_only:
|
||||
logger.info("Exporting model vocab...")
|
||||
model_instance.write_vocab()
|
||||
logger.info("Model vocab successfully exported.")
|
||||
logger.info(f"Model vocab successfully exported to {model_instance.fname_out}")
|
||||
else:
|
||||
logger.info("Exporting model...")
|
||||
model_instance.write()
|
||||
logger.info("Model successfully exported.")
|
||||
out_path = f"{model_instance.fname_out.parent}{os.sep}" if is_split else model_instance.fname_out
|
||||
logger.info(f"Model successfully exported to {out_path}")
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
|
|
@ -58,4 +58,3 @@ The above command will output space-separated float values.
|
|||
```powershell
|
||||
embedding.exe -p 'Castle<#sep#>Stronghold<#sep#>Dog<#sep#>Cat' --embd-separator '<#sep#>' --embd-normalize 2 --embd-output-format '' -m './path/to/model.gguf' --n-gpu-layers 99 --log-disable 2>/dev/null
|
||||
```
|
||||
|
||||
|
|
|
@ -659,4 +659,3 @@ int main(int argc, char ** argv) {
|
|||
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
|
|
@ -10,4 +10,3 @@ More info:
|
|||
|
||||
https://github.com/ggerganov/llama.cpp/pull/4484
|
||||
https://github.com/ggerganov/llama.cpp/issues/4226
|
||||
|
||||
|
|
1
examples/main-cmake-pkg/.gitignore
vendored
1
examples/main-cmake-pkg/.gitignore
vendored
|
@ -48,4 +48,3 @@
|
|||
build*/
|
||||
out/
|
||||
tmp/
|
||||
|
||||
|
|
|
@ -30,4 +30,3 @@ target_include_directories(${TARGET} PRIVATE ${_common_path})
|
|||
install(TARGETS ${TARGET} RUNTIME)
|
||||
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
|
||||
target_compile_features(${TARGET} PRIVATE cxx_std_11)
|
||||
|
||||
|
|
|
@ -31,4 +31,3 @@ for i in range(n-1):
|
|||
embedding2 = np.array(result[j])
|
||||
similarity = np.dot(embedding1, embedding2) / (np.linalg.norm(embedding1) * np.linalg.norm(embedding2))
|
||||
print(f"Similarity between {i} and {j}: {similarity:.2f}")
|
||||
|
||||
|
|
|
@ -52,4 +52,3 @@ Feature: Passkey / Self-extend with context shift
|
|||
#| TheBloke/Llama-2-7B-GGUF | llama-2-7b.Q2_K.gguf | 4096 | 3 | 16384 | 512 | 4 | 512 | 500 | 300 | 1234 | 5 | 1234 |
|
||||
#| TheBloke/Mixtral-8x7B-v0.1-GGUF | mixtral-8x7b-v0.1.Q2_K.gguf | 32768 | 2 | 16384 | 512 | 4 | 512 | 500 | 100 | 0987 | 5 | 0
|
||||
# 987 |
|
||||
|
||||
|
|
|
@ -1054,4 +1054,3 @@
|
|||
</body>
|
||||
|
||||
</html>
|
||||
|
||||
|
|
|
@ -1058,4 +1058,3 @@
|
|||
</body>
|
||||
|
||||
</html>
|
||||
|
||||
|
|
|
@ -34,4 +34,3 @@ fi
|
|||
|
||||
#use multiple GPUs with same max compute units
|
||||
#ZES_ENABLE_SYSMAN=1 ./build/bin/llama-cli -m models/llama-2-7b.Q4_0.gguf -p "${INPUT2}" -n 400 -e -ngl 33 -s 0
|
||||
|
||||
|
|
|
@ -31,4 +31,3 @@ exit /B 0
|
|||
:ERROR
|
||||
echo comomand error: %errorlevel%
|
||||
exit /B %errorlevel%
|
||||
|
||||
|
|
|
@ -7,5 +7,3 @@ set INPUT2="Building a website can be done in 10 simple steps:\nStep 1:"
|
|||
|
||||
|
||||
.\build\bin\main.exe -m models\llama-2-7b.Q4_0.gguf -p %INPUT2% -n 400 -e -ngl 33 -s 0
|
||||
|
||||
|
||||
|
|
|
@ -63,4 +63,3 @@ GGML_API void ggml_backend_metal_capture_next_compute(ggml_backend_t backend);
|
|||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
||||
|
|
|
@ -2711,27 +2711,40 @@ GGML_CALL static bool ggml_backend_cuda_supports_op(ggml_backend_t backend, cons
|
|||
case GGML_OP_MUL_MAT:
|
||||
case GGML_OP_MUL_MAT_ID:
|
||||
{
|
||||
struct ggml_tensor * a;
|
||||
struct ggml_tensor * b;
|
||||
struct ggml_tensor * a = op->src[0];
|
||||
if (op->op == GGML_OP_MUL_MAT) {
|
||||
a = op->src[0];
|
||||
b = op->src[1];
|
||||
} else {
|
||||
a = op->src[2];
|
||||
b = op->src[1];
|
||||
}
|
||||
if (a->ne[3] != b->ne[3]) {
|
||||
return false;
|
||||
}
|
||||
ggml_type a_type = a->type;
|
||||
if (a_type == GGML_TYPE_IQ2_XXS || a_type == GGML_TYPE_IQ2_XS || a_type == GGML_TYPE_IQ3_XXS ||
|
||||
a_type == GGML_TYPE_IQ1_S || a_type == GGML_TYPE_IQ4_NL || a_type == GGML_TYPE_IQ3_S ||
|
||||
a_type == GGML_TYPE_IQ1_M || a_type == GGML_TYPE_IQ2_S || a_type == GGML_TYPE_IQ4_XS) {
|
||||
if (b->ne[1] == 1 && ggml_nrows(b) > 1) {
|
||||
struct ggml_tensor * b = op->src[1];
|
||||
if (a->ne[3] != b->ne[3]) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
return true;
|
||||
switch (a->type) {
|
||||
case GGML_TYPE_F32:
|
||||
case GGML_TYPE_F16:
|
||||
case GGML_TYPE_Q4_0:
|
||||
case GGML_TYPE_Q4_1:
|
||||
case GGML_TYPE_Q5_0:
|
||||
case GGML_TYPE_Q5_1:
|
||||
case GGML_TYPE_Q8_0:
|
||||
case GGML_TYPE_Q2_K:
|
||||
case GGML_TYPE_Q3_K:
|
||||
case GGML_TYPE_Q4_K:
|
||||
case GGML_TYPE_Q5_K:
|
||||
case GGML_TYPE_Q6_K:
|
||||
case GGML_TYPE_Q8_K:
|
||||
case GGML_TYPE_IQ1_M:
|
||||
case GGML_TYPE_IQ1_S:
|
||||
case GGML_TYPE_IQ2_S:
|
||||
case GGML_TYPE_IQ2_XS:
|
||||
case GGML_TYPE_IQ2_XXS:
|
||||
case GGML_TYPE_IQ3_S:
|
||||
case GGML_TYPE_IQ3_XXS:
|
||||
case GGML_TYPE_IQ4_NL:
|
||||
case GGML_TYPE_IQ4_XS:
|
||||
return true;
|
||||
default:
|
||||
return false;
|
||||
}
|
||||
} break;
|
||||
case GGML_OP_GET_ROWS:
|
||||
{
|
||||
|
|
|
@ -487,4 +487,3 @@ void* ggml_cuda_cpy_fn(const ggml_tensor * src0, ggml_tensor * src1) {
|
|||
GGML_ASSERT(false);
|
||||
}
|
||||
}
|
||||
|
||||
|
|
|
@ -6537,4 +6537,3 @@ template [[host_name("kernel_mul_mv_id_iq3_s_f32")]] kernel kernel_mul_mv_id_t
|
|||
template [[host_name("kernel_mul_mv_id_iq2_s_f32")]] kernel kernel_mul_mv_id_t kernel_mul_mv_id<mmv_fn<kernel_mul_mv_iq2_s_f32_impl>>;
|
||||
template [[host_name("kernel_mul_mv_id_iq4_nl_f32")]] kernel kernel_mul_mv_id_t kernel_mul_mv_id<mmv_fn<kernel_mul_mv_iq4_nl_f32_impl>>;
|
||||
template [[host_name("kernel_mul_mv_id_iq4_xs_f32")]] kernel kernel_mul_mv_id_t kernel_mul_mv_id<mmv_fn<kernel_mul_mv_iq4_xs_f32_impl>>;
|
||||
|
||||
|
|
|
@ -130,4 +130,3 @@ void iq3xs_free_impl(int grid_size);
|
|||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
||||
|
|
|
@ -351,4 +351,10 @@ static __dpct_inline__ float warp_reduce_max(float x,
|
|||
return x;
|
||||
}
|
||||
|
||||
// Helper for vec loading aligned data
|
||||
template <typename Tp, int n>
|
||||
inline sycl::vec<Tp, n> vec_aligned_load(const Tp* aligned_ptr) {
|
||||
return *reinterpret_cast<const sycl::vec<Tp, n>*>(aligned_ptr);
|
||||
}
|
||||
|
||||
#endif // GGML_SYCL_COMMON_HPP
|
||||
|
|
|
@ -152,12 +152,15 @@ static void dequantize_row_q4_K_sycl(const void *vx, dst_t *y, const int k,
|
|||
dpct::has_capability_or_fail(stream->get_device(),
|
||||
{sycl::aspect::fp16});
|
||||
|
||||
stream->parallel_for(sycl::nd_range<3>(sycl::range<3>(1, 1, nb) *
|
||||
stream->submit([&](sycl::handler &cgh) {
|
||||
sycl::local_accessor<uint8_t, 1> scale_local_acc(sycl::range<1>(12), cgh);
|
||||
cgh.parallel_for(sycl::nd_range<3>(sycl::range<3>(1, 1, nb) *
|
||||
sycl::range<3>(1, 1, 32),
|
||||
sycl::range<3>(1, 1, 32)),
|
||||
[=](sycl::nd_item<3> item_ct1) {
|
||||
dequantize_block_q4_K(vx, y, item_ct1);
|
||||
dequantize_block_q4_K(vx, y, scale_local_acc.get_pointer(), item_ct1);
|
||||
});
|
||||
});
|
||||
}
|
||||
}
|
||||
|
||||
|
|
|
@ -293,7 +293,8 @@ static void dequantize_block_q3_K(const void * __restrict__ vx, dst_t * __restri
|
|||
#if QK_K == 256
|
||||
static inline void get_scale_min_k4(int j, const uint8_t * q, uint8_t & d, uint8_t & m) {
|
||||
if (j < 4) {
|
||||
d = q[j] & 63; m = q[j + 4] & 63;
|
||||
d = q[j] & 63;
|
||||
m = q[j + 4] & 63;
|
||||
} else {
|
||||
d = (q[j+4] & 0xF) | ((q[j-4] >> 6) << 4);
|
||||
m = (q[j+4] >> 4) | ((q[j-0] >> 6) << 4);
|
||||
|
@ -303,7 +304,7 @@ static inline void get_scale_min_k4(int j, const uint8_t * q, uint8_t & d, uint8
|
|||
|
||||
template<typename dst_t>
|
||||
static void dequantize_block_q4_K(const void * __restrict__ vx, dst_t * __restrict__ yy,
|
||||
const sycl::nd_item<3> &item_ct1) {
|
||||
uint8_t* scales_local, const sycl::nd_item<3> &item_ct1) {
|
||||
const block_q4_K * x = (const block_q4_K *) vx;
|
||||
|
||||
const int i = item_ct1.get_group(2);
|
||||
|
@ -318,19 +319,26 @@ static void dequantize_block_q4_K(const void * __restrict__ vx, dst_t * __restri
|
|||
|
||||
dst_t * y = yy + i*QK_K + 64*il + n*ir;
|
||||
|
||||
const float dall = x[i].dm[0];
|
||||
const float dmin = x[i].dm[1];
|
||||
const sycl::half2 dm = x[i].dm;
|
||||
const float dall = dm[0];
|
||||
const float dmin = dm[1];
|
||||
|
||||
const uint8_t * q = x[i].qs + 32*il + n*ir;
|
||||
if (tid < 12)
|
||||
scales_local[tid] = x[i].scales[tid];
|
||||
item_ct1.barrier(sycl::access::fence_space::local_space);
|
||||
|
||||
uint8_t sc, m;
|
||||
get_scale_min_k4(is + 0, x[i].scales, sc, m);
|
||||
const float d1 = dall * sc; const float m1 = dmin * m;
|
||||
get_scale_min_k4(is + 1, x[i].scales, sc, m);
|
||||
const float d2 = dall * sc; const float m2 = dmin * m;
|
||||
get_scale_min_k4(is + 0, scales_local, sc, m);
|
||||
const float d1 = dall * sc;
|
||||
const float m1 = dmin * m;
|
||||
get_scale_min_k4(is + 1, scales_local, sc, m);
|
||||
const float d2 = dall * sc;
|
||||
const float m2 = dmin * m;
|
||||
|
||||
sycl::vec<uint8_t, n> q_vec = vec_aligned_load<uint8_t, n>(x[i].qs + 32*il + n*ir);
|
||||
for (int l = 0; l < n; ++l) {
|
||||
y[l + 0] = d1 * (q[l] & 0xF) - m1;
|
||||
y[l +32] = d2 * (q[l] >> 4) - m2;
|
||||
y[l + 0] = d1 * (q_vec[l] & 0xF) - m1;
|
||||
y[l +32] = d2 * (q_vec[l] >> 4) - m2;
|
||||
}
|
||||
#else
|
||||
const int tid = item_ct1.get_local_id(2);
|
||||
|
|
|
@ -144954,4 +144954,3 @@ unsigned char sum_rows_f32_data[] = {
|
|||
|
||||
};
|
||||
const uint64_t sum_rows_f32_len = 2112;
|
||||
|
||||
|
|
|
@ -164,6 +164,7 @@ class MODEL_ARCH(IntEnum):
|
|||
CHATGLM = auto()
|
||||
BITNET = auto()
|
||||
T5 = auto()
|
||||
JAIS = auto()
|
||||
|
||||
|
||||
class MODEL_TENSOR(IntEnum):
|
||||
|
@ -289,6 +290,7 @@ MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = {
|
|||
MODEL_ARCH.CHATGLM: "chatglm",
|
||||
MODEL_ARCH.BITNET: "bitnet",
|
||||
MODEL_ARCH.T5: "t5",
|
||||
MODEL_ARCH.JAIS: "jais",
|
||||
}
|
||||
|
||||
TENSOR_NAMES: dict[MODEL_TENSOR, str] = {
|
||||
|
@ -967,6 +969,18 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
|
|||
MODEL_TENSOR.ENC_FFN_UP,
|
||||
MODEL_TENSOR.ENC_OUTPUT_NORM,
|
||||
],
|
||||
MODEL_ARCH.JAIS: [
|
||||
MODEL_TENSOR.TOKEN_EMBD,
|
||||
MODEL_TENSOR.OUTPUT_NORM,
|
||||
MODEL_TENSOR.OUTPUT,
|
||||
MODEL_TENSOR.ATTN_NORM,
|
||||
MODEL_TENSOR.ATTN_QKV,
|
||||
MODEL_TENSOR.ATTN_OUT,
|
||||
MODEL_TENSOR.FFN_NORM,
|
||||
MODEL_TENSOR.FFN_DOWN,
|
||||
MODEL_TENSOR.FFN_GATE,
|
||||
MODEL_TENSOR.FFN_UP,
|
||||
],
|
||||
# TODO
|
||||
}
|
||||
|
||||
|
|
|
@ -10,7 +10,7 @@ class TensorNameMap:
|
|||
# Token embeddings
|
||||
MODEL_TENSOR.TOKEN_EMBD: (
|
||||
"gpt_neox.embed_in", # gptneox
|
||||
"transformer.wte", # gpt2 gpt-j mpt refact qwen dbrx
|
||||
"transformer.wte", # gpt2 gpt-j mpt refact qwen dbrx jais
|
||||
"transformer.word_embeddings", # falcon
|
||||
"word_embeddings", # bloom
|
||||
"model.embed_tokens", # llama-hf
|
||||
|
@ -50,7 +50,7 @@ class TensorNameMap:
|
|||
# Output
|
||||
MODEL_TENSOR.OUTPUT: (
|
||||
"embed_out", # gptneox
|
||||
"lm_head", # gpt2 mpt falcon llama-hf baichuan qwen mamba dbrx
|
||||
"lm_head", # gpt2 mpt falcon llama-hf baichuan qwen mamba dbrx jais
|
||||
"output", # llama-pth bloom internlm2
|
||||
"word_embeddings_for_head", # persimmon
|
||||
"lm_head.linear", # phi2
|
||||
|
@ -60,7 +60,7 @@ class TensorNameMap:
|
|||
# Output norm
|
||||
MODEL_TENSOR.OUTPUT_NORM: (
|
||||
"gpt_neox.final_layer_norm", # gptneox
|
||||
"transformer.ln_f", # gpt2 gpt-j falcon
|
||||
"transformer.ln_f", # gpt2 gpt-j falcon jais
|
||||
"model.norm", # llama-hf baichuan internlm2
|
||||
"norm", # llama-pth
|
||||
"transformer.norm_f", # mpt dbrx
|
||||
|
@ -85,7 +85,7 @@ class TensorNameMap:
|
|||
# Attention norm
|
||||
MODEL_TENSOR.ATTN_NORM: (
|
||||
"gpt_neox.layers.{bid}.input_layernorm", # gptneox
|
||||
"transformer.h.{bid}.ln_1", # gpt2 gpt-j refact qwen
|
||||
"transformer.h.{bid}.ln_1", # gpt2 gpt-j refact qwen jais
|
||||
"transformer.blocks.{bid}.norm_1", # mpt
|
||||
"transformer.h.{bid}.input_layernorm", # falcon7b
|
||||
"h.{bid}.input_layernorm", # bloom
|
||||
|
@ -114,7 +114,7 @@ class TensorNameMap:
|
|||
# Attention query-key-value
|
||||
MODEL_TENSOR.ATTN_QKV: (
|
||||
"gpt_neox.layers.{bid}.attention.query_key_value", # gptneox
|
||||
"transformer.h.{bid}.attn.c_attn", # gpt2 qwen
|
||||
"transformer.h.{bid}.attn.c_attn", # gpt2 qwen jais
|
||||
"transformer.blocks.{bid}.attn.Wqkv", # mpt
|
||||
"transformer.blocks.{bid}.norm_attn_norm.attn.Wqkv", # dbrx
|
||||
"transformer.h.{bid}.self_attention.query_key_value", # falcon
|
||||
|
@ -166,7 +166,7 @@ class TensorNameMap:
|
|||
# Attention output
|
||||
MODEL_TENSOR.ATTN_OUT: (
|
||||
"gpt_neox.layers.{bid}.attention.dense", # gptneox
|
||||
"transformer.h.{bid}.attn.c_proj", # gpt2 refact qwen
|
||||
"transformer.h.{bid}.attn.c_proj", # gpt2 refact qwen jais
|
||||
"transformer.blocks.{bid}.attn.out_proj", # mpt
|
||||
"transformer.h.{bid}.self_attention.dense", # falcon
|
||||
"h.{bid}.self_attention.dense", # bloom
|
||||
|
@ -209,7 +209,7 @@ class TensorNameMap:
|
|||
# Feed-forward norm
|
||||
MODEL_TENSOR.FFN_NORM: (
|
||||
"gpt_neox.layers.{bid}.post_attention_layernorm", # gptneox
|
||||
"transformer.h.{bid}.ln_2", # gpt2 refact qwen
|
||||
"transformer.h.{bid}.ln_2", # gpt2 refact qwen jais
|
||||
"h.{bid}.post_attention_layernorm", # bloom
|
||||
"transformer.blocks.{bid}.norm_2", # mpt
|
||||
"model.layers.{bid}.post_attention_layernorm", # llama-hf
|
||||
|
@ -247,7 +247,7 @@ class TensorNameMap:
|
|||
# Feed-forward up
|
||||
MODEL_TENSOR.FFN_UP: (
|
||||
"gpt_neox.layers.{bid}.mlp.dense_h_to_4h", # gptneox
|
||||
"transformer.h.{bid}.mlp.c_fc", # gpt2
|
||||
"transformer.h.{bid}.mlp.c_fc", # gpt2 jais
|
||||
"transformer.blocks.{bid}.ffn.up_proj", # mpt
|
||||
"transformer.h.{bid}.mlp.dense_h_to_4h", # falcon
|
||||
"h.{bid}.mlp.dense_h_to_4h", # bloom
|
||||
|
@ -294,6 +294,7 @@ class TensorNameMap:
|
|||
"model.layers.{bid}.mlp.gate_proj", # llama-hf refact
|
||||
"layers.{bid}.feed_forward.w1", # llama-pth
|
||||
"transformer.h.{bid}.mlp.w2", # qwen
|
||||
"transformer.h.{bid}.mlp.c_fc2", # jais
|
||||
"model.layers.layers.{bid}.mlp.gate_proj", # plamo
|
||||
"model.layers.{bid}.feed_forward.w1", # internlm2
|
||||
"encoder.layers.{bid}.mlp.fc12", # nomic-bert
|
||||
|
@ -317,7 +318,7 @@ class TensorNameMap:
|
|||
# Feed-forward down
|
||||
MODEL_TENSOR.FFN_DOWN: (
|
||||
"gpt_neox.layers.{bid}.mlp.dense_4h_to_h", # gptneox
|
||||
"transformer.h.{bid}.mlp.c_proj", # gpt2 refact qwen
|
||||
"transformer.h.{bid}.mlp.c_proj", # gpt2 refact qwen jais
|
||||
"transformer.blocks.{bid}.ffn.down_proj", # mpt
|
||||
"transformer.h.{bid}.mlp.dense_4h_to_h", # falcon
|
||||
"h.{bid}.mlp.dense_4h_to_h", # bloom
|
||||
|
|
|
@ -91,6 +91,8 @@ extern "C" {
|
|||
LLAMA_VOCAB_PRE_TYPE_CHATGLM3 = 16,
|
||||
LLAMA_VOCAB_PRE_TYPE_CHATGLM4 = 17,
|
||||
LLAMA_VOCAB_PRE_TYPE_VIKING = 18,
|
||||
LLAMA_VOCAB_PRE_TYPE_VIKING = 19,
|
||||
LLAMA_VOCAB_PRE_TYPE_JAIS = 20,
|
||||
};
|
||||
|
||||
// note: these values should be synchronized with ggml_rope
|
||||
|
|
|
@ -210,4 +210,3 @@ fi
|
|||
# more benches
|
||||
#GGML_CUDA=1 make -j && ./llama-batched-bench ./models/codellama-7b/ggml-model-q4_k.gguf 4096 1 99 1 512,3200 128,128,800 1
|
||||
#GGML_CUDA=1 make -j && ./llama-batched-bench ./models/codellama-13b/ggml-model-q4_k.gguf 4096 1 99 1 512,3200 128,128,800 1
|
||||
|
||||
|
|
169
src/llama.cpp
169
src/llama.cpp
|
@ -229,6 +229,7 @@ enum llm_arch {
|
|||
LLM_ARCH_CHATGLM,
|
||||
LLM_ARCH_BITNET,
|
||||
LLM_ARCH_T5,
|
||||
LLM_ARCH_JAIS,
|
||||
LLM_ARCH_UNKNOWN,
|
||||
};
|
||||
|
||||
|
@ -271,6 +272,7 @@ static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
|
|||
{ LLM_ARCH_CHATGLM, "chatglm" },
|
||||
{ LLM_ARCH_BITNET, "bitnet" },
|
||||
{ LLM_ARCH_T5, "t5" },
|
||||
{ LLM_ARCH_JAIS, "jais" },
|
||||
{ LLM_ARCH_UNKNOWN, "(unknown)" },
|
||||
};
|
||||
|
||||
|
@ -1253,6 +1255,21 @@ static const std::map<llm_arch, std::map<llm_tensor, std::string>> LLM_TENSOR_NA
|
|||
{ LLM_TENSOR_ENC_FFN_UP, "enc.blk.%d.ffn_up" },
|
||||
},
|
||||
},
|
||||
{
|
||||
LLM_ARCH_JAIS,
|
||||
{
|
||||
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
|
||||
{ LLM_TENSOR_OUTPUT_NORM, "output_norm" },
|
||||
{ LLM_TENSOR_OUTPUT, "output" },
|
||||
{ LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
|
||||
{ LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
|
||||
{ LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
|
||||
{ LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
|
||||
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
|
||||
{ LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
|
||||
{ LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
|
||||
},
|
||||
},
|
||||
{
|
||||
LLM_ARCH_UNKNOWN,
|
||||
{
|
||||
|
@ -2052,6 +2069,7 @@ enum e_model {
|
|||
MODEL_410M,
|
||||
MODEL_0_5B,
|
||||
MODEL_1B,
|
||||
MODEL_1_3B,
|
||||
MODEL_1_4B,
|
||||
MODEL_2B,
|
||||
MODEL_2_8B,
|
||||
|
@ -4294,6 +4312,7 @@ static const char * llama_model_type_name(e_model type) {
|
|||
case MODEL_410M: return "410M";
|
||||
case MODEL_0_5B: return "0.5B";
|
||||
case MODEL_1B: return "1B";
|
||||
case MODEL_1_3B: return "1.3B";
|
||||
case MODEL_1_4B: return "1.4B";
|
||||
case MODEL_2B: return "2B";
|
||||
case MODEL_2_8B: return "2.8B";
|
||||
|
@ -4926,6 +4945,18 @@ static void llm_load_hparams(
|
|||
default: model.type = e_model::MODEL_UNKNOWN;
|
||||
}
|
||||
} break;
|
||||
case LLM_ARCH_JAIS:
|
||||
{
|
||||
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
|
||||
ml.get_key(LLM_KV_ATTENTION_MAX_ALIBI_BIAS, hparams.f_max_alibi_bias);
|
||||
|
||||
switch (hparams.n_layer) {
|
||||
case 24: model.type = e_model::MODEL_1_3B; break;
|
||||
case 40: model.type = e_model::MODEL_13B; break;
|
||||
/* TODO: add variants */
|
||||
default: model.type = e_model::MODEL_UNKNOWN;
|
||||
}
|
||||
} break;
|
||||
default: (void)0;
|
||||
}
|
||||
|
||||
|
@ -5159,6 +5190,9 @@ static void llm_load_vocab(
|
|||
} else if (
|
||||
tokenizer_pre == "viking") {
|
||||
vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_VIKING;
|
||||
} else if (
|
||||
tokenizer_pre == "jais") {
|
||||
vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_JAIS;
|
||||
} else {
|
||||
throw std::runtime_error(format("unknown pre-tokenizer type: '%s'", tokenizer_pre.c_str()));
|
||||
}
|
||||
|
@ -6998,6 +7032,44 @@ static bool llm_load_tensors(
|
|||
layer.ffn_up_scale = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "scale", i), {1});
|
||||
}
|
||||
} break;
|
||||
case LLM_ARCH_JAIS:
|
||||
{
|
||||
model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
|
||||
|
||||
// Output
|
||||
{
|
||||
model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
|
||||
model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
|
||||
model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
|
||||
}
|
||||
for (int i = 0; i < n_layer; ++i) {
|
||||
ggml_context * ctx_layer = ctx_for_layer(i);
|
||||
ggml_context * ctx_split = ctx_for_layer_split(i);
|
||||
|
||||
auto & layer = model.layers[i];
|
||||
|
||||
layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
|
||||
layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
|
||||
|
||||
layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
|
||||
layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa});
|
||||
|
||||
layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
|
||||
layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
|
||||
|
||||
layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
|
||||
layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
|
||||
|
||||
layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
|
||||
layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
|
||||
|
||||
layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
|
||||
layer.ffn_gate_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE, "bias", i), {n_ff});
|
||||
|
||||
layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
|
||||
layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
|
||||
}
|
||||
} break;
|
||||
case LLM_ARCH_CHATGLM:
|
||||
{
|
||||
model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
|
||||
|
@ -12434,6 +12506,97 @@ struct llm_build_context {
|
|||
return gf;
|
||||
}
|
||||
|
||||
struct ggml_cgraph * build_jais() {
|
||||
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
|
||||
|
||||
const int64_t n_embd_head = hparams.n_embd_head_v;
|
||||
const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
|
||||
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
|
||||
|
||||
struct ggml_tensor * cur;
|
||||
struct ggml_tensor * inpL;
|
||||
|
||||
inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
|
||||
|
||||
// KQ_mask (mask for 1 head, it will be broadcasted to all heads)
|
||||
struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
|
||||
|
||||
for (int il = 0; il < n_layer; ++il) {
|
||||
cur = llm_build_norm(ctx0, inpL, hparams,
|
||||
model.layers[il].attn_norm,
|
||||
model.layers[il].attn_norm_b,
|
||||
LLM_NORM, cb, il);
|
||||
cb(cur, "attn_norm", il);
|
||||
|
||||
// self-attention
|
||||
{
|
||||
cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
|
||||
cb(cur, "wqkv", il);
|
||||
|
||||
cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
|
||||
cb(cur, "bqkv", il);
|
||||
|
||||
struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*cur->nb[0]*(n_embd)));
|
||||
struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*cur->nb[0]*(n_embd)));
|
||||
struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*cur->nb[0]*(n_embd + n_embd_gqa)));
|
||||
|
||||
cb(Qcur, "Qcur", il);
|
||||
cb(Kcur, "Kcur", il);
|
||||
cb(Vcur, "Vcur", il);
|
||||
|
||||
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
|
||||
|
||||
cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
|
||||
model.layers[il].wo, model.layers[il].bo,
|
||||
Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/float(n_embd_head), cb, il);
|
||||
}
|
||||
|
||||
if (il == n_layer - 1) {
|
||||
// skip computing output for unused tokens
|
||||
struct ggml_tensor * inp_out_ids = build_inp_out_ids();
|
||||
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
|
||||
inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
|
||||
}
|
||||
|
||||
// add the input
|
||||
struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
|
||||
cb(ffn_inp, "ffn_inp", il);
|
||||
|
||||
// FF
|
||||
{
|
||||
cur = llm_build_norm(ctx0, ffn_inp, hparams,
|
||||
model.layers[il].ffn_norm,
|
||||
model.layers[il].ffn_norm_b,
|
||||
cb(cur, "ffn_norm", il);
|
||||
|
||||
cur = llm_build_ffn(ctx0, cur,
|
||||
model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
|
||||
model.layers[il].ffn_gate, model.layers[il].ffn_gate_b, NULL,
|
||||
model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
|
||||
NULL,
|
||||
LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
|
||||
cb(cur, "ffn_out", il);
|
||||
}
|
||||
|
||||
inpL = ggml_add(ctx0, cur, ffn_inp);
|
||||
cb(inpL, "l_out", il);
|
||||
}
|
||||
|
||||
cur = llm_build_norm(ctx0, inpL, hparams,
|
||||
model.output_norm,
|
||||
model.output_norm_b,
|
||||
LLM_NORM, cb, -1);
|
||||
cb(cur, "result_norm", -1);
|
||||
|
||||
cur = ggml_mul_mat(ctx0, model.output, cur);
|
||||
|
||||
cb(cur, "result_output", -1);
|
||||
|
||||
ggml_build_forward_expand(gf, cur);
|
||||
|
||||
return gf;
|
||||
}
|
||||
|
||||
struct ggml_cgraph * build_chatglm() {
|
||||
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
|
||||
|
||||
|
@ -12782,6 +12945,10 @@ static struct ggml_cgraph * llama_build_graph(
|
|||
{
|
||||
result = llm.build_bitnet();
|
||||
} break;
|
||||
case LLM_ARCH_JAIS:
|
||||
{
|
||||
result = llm.build_jais();
|
||||
} break;
|
||||
default:
|
||||
GGML_ASSERT(false);
|
||||
}
|
||||
|
@ -14144,6 +14311,7 @@ struct llm_tokenizer_bpe {
|
|||
break;
|
||||
case LLAMA_VOCAB_PRE_TYPE_GPT2:
|
||||
case LLAMA_VOCAB_PRE_TYPE_OLMO:
|
||||
case LLAMA_VOCAB_PRE_TYPE_JAIS:
|
||||
regex_exprs = {
|
||||
"'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)",
|
||||
};
|
||||
|
@ -18049,6 +18217,7 @@ enum llama_rope_type llama_rope_type(const struct llama_model * model) {
|
|||
case LLM_ARCH_MAMBA:
|
||||
case LLM_ARCH_JINA_BERT_V2:
|
||||
case LLM_ARCH_T5:
|
||||
case LLM_ARCH_JAIS:
|
||||
return LLAMA_ROPE_TYPE_NONE;
|
||||
|
||||
// use what we call a normal RoPE, operating on pairs of consecutive head values
|
||||
|
|
|
@ -7030,4 +7030,3 @@ const std::vector<range_nfd> unicode_ranges_nfd = { // start, last, nfd
|
|||
{0x02FA1C, 0x02FA1C, 0x009F3B},
|
||||
{0x02FA1D, 0x02FA1D, 0x02A600},
|
||||
};
|
||||
|
||||
|
|
|
@ -2052,6 +2052,7 @@ static bool test_backend(ggml_backend_t backend, test_mode mode, const char * op
|
|||
GGML_TYPE_IQ2_XS, GGML_TYPE_IQ2_S,
|
||||
GGML_TYPE_IQ3_XXS, GGML_TYPE_IQ1_S, GGML_TYPE_IQ1_M,
|
||||
GGML_TYPE_IQ4_NL, GGML_TYPE_IQ3_S, GGML_TYPE_IQ4_XS,
|
||||
GGML_TYPE_BF16,
|
||||
};
|
||||
|
||||
// unary ops
|
||||
|
|
|
@ -218,4 +218,3 @@ int main(int /*argc*/, const char ** /*argv*/) {
|
|||
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue