feat(granitemoe): Implement granitemoe

GraniteMoE follows the mixtral architecture (once the input_linear layers
are split into gate_exps/up_exps). The main delta is the addition of the
same four multipliers used in Granite.

Branch: GraniteMoE

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
This commit is contained in:
Gabe Goodhart 2024-09-10 16:35:14 -06:00
parent 014e59d31d
commit eca37cd4f2

View file

@ -215,6 +215,7 @@ enum llm_arch {
LLM_ARCH_EXAONE, LLM_ARCH_EXAONE,
LLM_ARCH_RWKV6, LLM_ARCH_RWKV6,
LLM_ARCH_GRANITE, LLM_ARCH_GRANITE,
LLM_ARCH_GRANITE_MOE,
LLM_ARCH_UNKNOWN, LLM_ARCH_UNKNOWN,
}; };
@ -266,6 +267,7 @@ static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
{ LLM_ARCH_EXAONE, "exaone" }, { LLM_ARCH_EXAONE, "exaone" },
{ LLM_ARCH_RWKV6, "rwkv6" }, { LLM_ARCH_RWKV6, "rwkv6" },
{ LLM_ARCH_GRANITE, "granite" }, { LLM_ARCH_GRANITE, "granite" },
{ LLM_ARCH_GRANITE_MOE, "granitemoe" },
{ LLM_ARCH_UNKNOWN, "(unknown)" }, { LLM_ARCH_UNKNOWN, "(unknown)" },
}; };
@ -1478,6 +1480,23 @@ static const std::map<llm_arch, std::map<llm_tensor, std::string>> LLM_TENSOR_NA
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
}, },
}, },
{
LLM_ARCH_GRANITE_MOE,
{
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
{ LLM_TENSOR_OUTPUT_NORM, "output_norm" },
{ LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
{ LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
{ LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
{ LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
{ LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
{ LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
{ LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
{ LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" },
{ LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" },
{ LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
},
},
{ {
LLM_ARCH_UNKNOWN, LLM_ARCH_UNKNOWN,
{ {
@ -2396,7 +2415,7 @@ struct llama_hparams {
float f_max_alibi_bias = 0.0f; float f_max_alibi_bias = 0.0f;
float f_logit_scale = 0.0f; float f_logit_scale = 0.0f;
// Additional scale factors (Granite) // Additional scale factors (Granite/Granite MoE)
float f_residual_scale = 0.0f; float f_residual_scale = 0.0f;
float f_embedding_scale = 0.0f; float f_embedding_scale = 0.0f;
float f_attention_scale = 0.0f; float f_attention_scale = 0.0f;
@ -6048,6 +6067,7 @@ static void llm_load_hparams(
} }
} break; } break;
case LLM_ARCH_GRANITE: case LLM_ARCH_GRANITE:
case LLM_ARCH_GRANITE_MOE:
{ {
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
ml.get_key(LLM_KV_LOGIT_SCALE, hparams.f_logit_scale); ml.get_key(LLM_KV_LOGIT_SCALE, hparams.f_logit_scale);
@ -6056,6 +6076,7 @@ static void llm_load_hparams(
ml.get_key(LLM_KV_ATTENTION_SCALE, hparams.f_attention_scale); ml.get_key(LLM_KV_ATTENTION_SCALE, hparams.f_attention_scale);
switch (hparams.n_layer) { switch (hparams.n_layer) {
case 32: model.type = e_model::MODEL_3B; break;
case 40: model.type = e_model::MODEL_3B; break; case 40: model.type = e_model::MODEL_3B; break;
// Add additional layer/vocab/etc checks here for other model sizes // Add additional layer/vocab/etc checks here for other model sizes
default: model.type = e_model::MODEL_UNKNOWN; default: model.type = e_model::MODEL_UNKNOWN;
@ -6810,7 +6831,7 @@ static void llm_load_print_meta(llama_model_loader & ml, llama_model & model) {
LLAMA_LOG_INFO("%s: n_ff_shexp = %d\n", __func__, hparams.n_ff_shexp); LLAMA_LOG_INFO("%s: n_ff_shexp = %d\n", __func__, hparams.n_ff_shexp);
} }
if (model.arch == LLM_ARCH_GRANITE) { if (model.arch == LLM_ARCH_GRANITE || model.arch == LLM_ARCH_GRANITE_MOE) {
LLAMA_LOG_INFO("%s: f_embedding_scale = %f\n", __func__, hparams.f_embedding_scale); LLAMA_LOG_INFO("%s: f_embedding_scale = %f\n", __func__, hparams.f_embedding_scale);
LLAMA_LOG_INFO("%s: f_residual_scale = %f\n", __func__, hparams.f_residual_scale); LLAMA_LOG_INFO("%s: f_residual_scale = %f\n", __func__, hparams.f_residual_scale);
LLAMA_LOG_INFO("%s: f_attention_scale = %f\n", __func__, hparams.f_attention_scale); LLAMA_LOG_INFO("%s: f_attention_scale = %f\n", __func__, hparams.f_attention_scale);
@ -6984,6 +7005,7 @@ static bool llm_load_tensors(
case LLM_ARCH_REFACT: case LLM_ARCH_REFACT:
case LLM_ARCH_MINICPM: case LLM_ARCH_MINICPM:
case LLM_ARCH_GRANITE: case LLM_ARCH_GRANITE:
case LLM_ARCH_GRANITE_MOE:
{ {
model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
@ -15930,6 +15952,7 @@ static struct ggml_cgraph * llama_build_graph(
switch (model.arch) { switch (model.arch) {
case LLM_ARCH_LLAMA: case LLM_ARCH_LLAMA:
case LLM_ARCH_GRANITE: case LLM_ARCH_GRANITE:
case LLM_ARCH_GRANITE_MOE:
{ {
result = llm.build_llama(); result = llm.build_llama();
} break; } break;
@ -19231,6 +19254,7 @@ enum llama_rope_type llama_rope_type(const struct llama_model * model) {
case LLM_ARCH_DEEPSEEK2: case LLM_ARCH_DEEPSEEK2:
case LLM_ARCH_CHATGLM: case LLM_ARCH_CHATGLM:
case LLM_ARCH_GRANITE: case LLM_ARCH_GRANITE:
case LLM_ARCH_GRANITE_MOE:
return LLAMA_ROPE_TYPE_NORM; return LLAMA_ROPE_TYPE_NORM;
// the pairs of head values are offset by n_rot/2 // the pairs of head values are offset by n_rot/2