CPY: move to a separate file

This commit is contained in:
Akarshan Biswas 2025-02-01 11:21:09 +05:30
parent a16b6b7681
commit ecacff3f6e
No known key found for this signature in database
GPG key ID: 52A578A14B32134D
4 changed files with 401 additions and 460 deletions

View file

@ -32,6 +32,7 @@
#include "binbcast.hpp"
#include "argmax.hpp"
#include "argsort.hpp"
#include "cpy.hpp"
#include "gla.hpp"
#endif // GGML_SYCL_BACKEND_HPP

389
ggml/src/ggml-sycl/cpy.cpp Normal file
View file

@ -0,0 +1,389 @@
#include "cpy.hpp"
static void cpy_1_f32_f32(const char * cxi, char * cdsti) {
const float * xi = (const float *) cxi;
float * dsti = (float *) cdsti;
*dsti = *xi;
}
static void cpy_1_f32_f16(const char * cxi, char * cdsti) {
const float * xi = (const float *) cxi;
sycl::half * dsti = (sycl::half *) cdsti;
*dsti = sycl::vec<float, 1>(*xi).convert<sycl::half, sycl::rounding_mode::automatic>()[0];
}
static void cpy_1_f16_f16(const char * cxi, char * cdsti) {
const sycl::half * xi = (const sycl::half *) cxi;
sycl::half * dsti = (sycl::half *) cdsti;
*dsti = *xi;
}
static void cpy_1_f16_f32(const char * cxi, char * cdsti) {
const sycl::half * xi = (const sycl::half *) cxi;
float * dsti = (float *) cdsti;
*dsti = *xi;
}
static void cpy_1_i16_i16(const char * cxi, char * cdsti) {
const int16_t * xi = (const int16_t *) cxi;
int16_t * dsti = (int16_t *) cdsti;
*dsti = *xi;
}
static void cpy_1_i32_i32(const char * cxi, char * cdsti) {
const int32_t * xi = (const int32_t *) cxi;
int32_t * dsti = (int32_t *) cdsti;
*dsti = *xi;
}
template <cpy_kernel_t cpy_1>
static void cpy_f32_f16(const char * cx, char * cdst, const int ne, const int ne00, const int ne01, const int ne02,
const int nb00, const int nb01, const int nb02, const int nb03, const int ne10, const int ne11,
const int ne12, const int nb10, const int nb11, const int nb12, const int nb13,
const sycl::nd_item<3> & item_ct1) {
const int i = item_ct1.get_local_range(2) * item_ct1.get_group(2) + item_ct1.get_local_id(2);
if (i >= ne) {
return;
}
// determine indices i02/i12, i01/i11, i00/i10 as a function of index i of flattened tensor
// then combine those indices with the corresponding byte offsets to get the total offsets
const int i03 = i / (ne00 * ne01 * ne02);
const int i02 = (i - i03 * ne00 * ne01 * ne02) / (ne00 * ne01);
const int i01 = (i - i03 * ne00 * ne01 * ne02 - i02 * ne01 * ne00) / ne00;
const int i00 = i - i03 * ne00 * ne01 * ne02 - i02 * ne01 * ne00 - i01 * ne00;
const int x_offset = i00 * nb00 + i01 * nb01 + i02 * nb02 + i03 * nb03;
const int i13 = i / (ne10 * ne11 * ne12);
const int i12 = (i - i13 * ne10 * ne11 * ne12) / (ne10 * ne11);
const int i11 = (i - i13 * ne10 * ne11 * ne12 - i12 * ne10 * ne11) / ne10;
const int i10 = i - i13 * ne10 * ne11 * ne12 - i12 * ne10 * ne11 - i11 * ne10;
const int dst_offset = i10 * nb10 + i11 * nb11 + i12 * nb12 + i13 * nb13;
cpy_1(cx + x_offset, cdst + dst_offset);
}
static void cpy_blck_f32_q8_0(const char * cxi, char * cdsti) {
const float * xi = (const float *) cxi;
block_q8_0 * dsti = (block_q8_0 *) cdsti;
float amax = 0.0f; // absolute max
for (int j = 0; j < QK8_0; j++) {
const float v = xi[j];
amax = sycl::fmax(amax, sycl::fabs((float) v));
}
const float d = amax / ((1 << 7) - 1);
const float id = d ? 1.0f / d : 0.0f;
dsti->d = d;
for (int j = 0; j < QK8_0; ++j) {
const float x0 = xi[j] * id;
dsti->qs[j] = sycl::round((float) x0);
}
}
static void cpy_blck_f32_q4_0(const char * cxi, char * cdsti) {
const float * xi = (const float *) cxi;
block_q4_0 * dsti = (block_q4_0 *) cdsti;
float amax = 0.0f;
float vmax = 0.0f;
for (int j = 0; j < QK4_0; ++j) {
const float v = xi[j];
if (amax < sycl::fabs((float) v)) {
amax = sycl::fabs((float) v);
vmax = v;
}
}
const float d = vmax / -8;
const float id = d ? 1.0f / d : 0.0f;
dsti->d = d;
for (int j = 0; j < QK4_0 / 2; ++j) {
const float x0 = xi[0 + j] * id;
const float x1 = xi[QK4_0 / 2 + j] * id;
const uint8_t xi0 = dpct::min(15, (int8_t) (x0 + 8.5f));
const uint8_t xi1 = dpct::min(15, (int8_t) (x1 + 8.5f));
dsti->qs[j] = xi0;
dsti->qs[j] |= xi1 << 4;
}
}
static void cpy_blck_f32_q4_1(const char * cxi, char * cdsti) {
const float * xi = (const float *) cxi;
block_q4_1 * dsti = (block_q4_1 *) cdsti;
float vmin = FLT_MAX;
float vmax = -FLT_MAX;
for (int j = 0; j < QK4_1; ++j) {
const float v = xi[j];
if (v < vmin) {
vmin = v;
}
if (v > vmax) {
vmax = v;
}
}
const float d = (vmax - vmin) / ((1 << 4) - 1);
const float id = d ? 1.0f / d : 0.0f;
dsti->dm.x() = d;
dsti->dm.y() = vmin;
for (int j = 0; j < QK4_1 / 2; ++j) {
const float x0 = (xi[0 + j] - vmin) * id;
const float x1 = (xi[QK4_1 / 2 + j] - vmin) * id;
const uint8_t xi0 = dpct::min(15, (int8_t) (x0 + 0.5f));
const uint8_t xi1 = dpct::min(15, (int8_t) (x1 + 0.5f));
dsti->qs[j] = xi0;
dsti->qs[j] |= xi1 << 4;
}
}
template <cpy_kernel_t cpy_blck, int qk>
static void cpy_f32_q(const char * cx, char * cdst, const int ne, const int ne00, const int ne01, const int ne02,
const int nb00, const int nb01, const int nb02, const int nb03, const int ne10, const int ne11,
const int ne12, const int nb10, const int nb11, const int nb12, const int nb13,
const sycl::nd_item<3> & item_ct1) {
const int i = (item_ct1.get_local_range(2) * item_ct1.get_group(2) + item_ct1.get_local_id(2)) * qk;
if (i >= ne) {
return;
}
const int i03 = i / (ne00 * ne01 * ne02);
const int i02 = (i - i03 * ne00 * ne01 * ne02) / (ne00 * ne01);
const int i01 = (i - i03 * ne00 * ne01 * ne02 - i02 * ne01 * ne00) / ne00;
const int i00 = i - i03 * ne00 * ne01 * ne02 - i02 * ne01 * ne00 - i01 * ne00;
const int x_offset = i00 * nb00 + i01 * nb01 + i02 * nb02 + i03 * nb03;
const int i13 = i / (ne10 * ne11 * ne12);
const int i12 = (i - i13 * ne10 * ne11 * ne12) / (ne10 * ne11);
const int i11 = (i - i13 * ne10 * ne11 * ne12 - i12 * ne10 * ne11) / ne10;
const int i10 = i - i13 * ne10 * ne11 * ne12 - i12 * ne10 * ne11 - i11 * ne10;
const int dst_offset = (i10 / qk) * nb10 + i11 * nb11 + i12 * nb12 + i13 * nb13;
cpy_blck(cx + x_offset, cdst + dst_offset);
}
static void ggml_cpy_f16_f32_sycl(const char * cx, char * cdst, const int ne, const int ne00, const int ne01,
const int ne02, const int nb00, const int nb01, const int nb02, const int nb03,
const int ne10, const int ne11, const int ne12, const int nb10, const int nb11,
const int nb12, const int nb13, queue_ptr stream) {
const int num_blocks = (ne + SYCL_CPY_BLOCK_SIZE - 1) / SYCL_CPY_BLOCK_SIZE;
{
dpct::has_capability_or_fail(stream->get_device(), { sycl::aspect::fp16 });
stream->parallel_for(
sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) * sycl::range<3>(1, 1, SYCL_CPY_BLOCK_SIZE),
sycl::range<3>(1, 1, SYCL_CPY_BLOCK_SIZE)),
[=](sycl::nd_item<3> item_ct1) {
cpy_f32_f16<cpy_1_f16_f32>(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12,
nb10, nb11, nb12, nb13, item_ct1);
});
}
}
static void ggml_cpy_f32_f32_sycl(const char * cx, char * cdst, const int ne, const int ne00, const int ne01,
const int ne02, const int nb00, const int nb01, const int nb02, const int nb03,
const int ne10, const int ne11, const int ne12, const int nb10, const int nb11,
const int nb12, const int nb13, queue_ptr stream) {
const int num_blocks = (ne + SYCL_CPY_BLOCK_SIZE - 1) / SYCL_CPY_BLOCK_SIZE;
{
dpct::has_capability_or_fail(stream->get_device(), { sycl::aspect::fp16 });
stream->parallel_for(
sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) * sycl::range<3>(1, 1, SYCL_CPY_BLOCK_SIZE),
sycl::range<3>(1, 1, SYCL_CPY_BLOCK_SIZE)),
[=](sycl::nd_item<3> item_ct1) {
cpy_f32_f16<cpy_1_f32_f32>(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12,
nb10, nb11, nb12, nb13, item_ct1);
});
}
}
static void ggml_cpy_f32_f16_sycl(const char * cx, char * cdst, const int ne, const int ne00, const int ne01,
const int ne02, const int nb00, const int nb01, const int nb02, const int nb03,
const int ne10, const int ne11, const int ne12, const int nb10, const int nb11,
const int nb12, const int nb13, queue_ptr stream) {
const int num_blocks = (ne + SYCL_CPY_BLOCK_SIZE - 1) / SYCL_CPY_BLOCK_SIZE;
{
dpct::has_capability_or_fail(stream->get_device(), { sycl::aspect::fp16 });
stream->parallel_for(
sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) * sycl::range<3>(1, 1, SYCL_CPY_BLOCK_SIZE),
sycl::range<3>(1, 1, SYCL_CPY_BLOCK_SIZE)),
[=](sycl::nd_item<3> item_ct1) {
cpy_f32_f16<cpy_1_f32_f16>(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12,
nb10, nb11, nb12, nb13, item_ct1);
});
}
}
static void ggml_cpy_f32_q8_0_sycl(const char * cx, char * cdst, const int ne, const int ne00, const int ne01,
const int ne02, const int nb00, const int nb01, const int nb02, const int nb03,
const int ne10, const int ne11, const int ne12, const int nb10, const int nb11,
const int nb12, const int nb13, queue_ptr stream) {
GGML_ASSERT(ne % QK8_0 == 0);
const int num_blocks = ne / QK8_0;
stream->parallel_for(sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks), sycl::range<3>(1, 1, 1)),
[=](sycl::nd_item<3> item_ct1) {
cpy_f32_q<cpy_blck_f32_q8_0, QK8_0>(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03,
ne10, ne11, ne12, nb10, nb11, nb12, nb13, item_ct1);
});
}
static void ggml_cpy_f32_q4_0_sycl(const char * cx, char * cdst, const int ne, const int ne00, const int ne01,
const int ne02, const int nb00, const int nb01, const int nb02, const int nb03,
const int ne10, const int ne11, const int ne12, const int nb10, const int nb11,
const int nb12, const int nb13, queue_ptr stream) {
GGML_ASSERT(ne % QK4_0 == 0);
const int num_blocks = ne / QK4_0;
stream->parallel_for(sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks), sycl::range<3>(1, 1, 1)),
[=](sycl::nd_item<3> item_ct1) {
cpy_f32_q<cpy_blck_f32_q4_0, QK4_0>(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03,
ne10, ne11, ne12, nb10, nb11, nb12, nb13, item_ct1);
});
}
static void ggml_cpy_f32_q4_1_sycl(const char * cx, char * cdst, const int ne, const int ne00, const int ne01,
const int ne02, const int nb00, const int nb01, const int nb02, const int nb03,
const int ne10, const int ne11, const int ne12, const int nb10, const int nb11,
const int nb12, const int nb13, queue_ptr stream) {
GGML_ASSERT(ne % QK4_1 == 0);
const int num_blocks = ne / QK4_1;
stream->parallel_for(sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks), sycl::range<3>(1, 1, 1)),
[=](sycl::nd_item<3> item_ct1) {
cpy_f32_q<cpy_blck_f32_q4_1, QK4_1>(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03,
ne10, ne11, ne12, nb10, nb11, nb12, nb13, item_ct1);
});
}
static void ggml_cpy_f16_f16_sycl(const char * cx, char * cdst, const int ne, const int ne00, const int ne01,
const int ne02, const int nb00, const int nb01, const int nb02, const int nb03,
const int ne10, const int ne11, const int ne12, const int nb10, const int nb11,
const int nb12, const int nb13, queue_ptr stream) {
const int num_blocks = (ne + SYCL_CPY_BLOCK_SIZE - 1) / SYCL_CPY_BLOCK_SIZE;
{
dpct::has_capability_or_fail(stream->get_device(), { sycl::aspect::fp16 });
stream->parallel_for(
sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) * sycl::range<3>(1, 1, SYCL_CPY_BLOCK_SIZE),
sycl::range<3>(1, 1, SYCL_CPY_BLOCK_SIZE)),
[=](sycl::nd_item<3> item_ct1) {
cpy_f32_f16<cpy_1_f16_f16>(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12,
nb10, nb11, nb12, nb13, item_ct1);
});
}
}
static void ggml_cpy_i16_i16_sycl(const char * cx, char * cdst, const int ne, const int ne00, const int ne01,
const int ne02, const int nb00, const int nb01, const int nb02, const int nb03,
const int ne10, const int ne11, const int ne12, const int nb10, const int nb11,
const int nb12, const int nb13, queue_ptr stream) {
const int num_blocks = (ne + SYCL_CPY_BLOCK_SIZE - 1) / SYCL_CPY_BLOCK_SIZE;
{
// dpct::has_capability_or_fail(stream->get_device(),
// {sycl::aspect::fp16});
stream->parallel_for(
sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) * sycl::range<3>(1, 1, SYCL_CPY_BLOCK_SIZE),
sycl::range<3>(1, 1, SYCL_CPY_BLOCK_SIZE)),
[=](sycl::nd_item<3> item_ct1) {
cpy_f32_f16<cpy_1_i16_i16>(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12,
nb10, nb11, nb12, nb13, item_ct1);
});
}
}
static void ggml_cpy_i32_i32_sycl(const char * cx, char * cdst, const int ne, const int ne00, const int ne01,
const int ne02, const int nb00, const int nb01, const int nb02, const int nb03,
const int ne10, const int ne11, const int ne12, const int nb10, const int nb11,
const int nb12, const int nb13, queue_ptr stream) {
const int num_blocks = (ne + SYCL_CPY_BLOCK_SIZE - 1) / SYCL_CPY_BLOCK_SIZE;
{
// dpct::has_capability_or_fail(stream->get_device(),
// {sycl::aspect::fp16});
stream->parallel_for(
sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) * sycl::range<3>(1, 1, SYCL_CPY_BLOCK_SIZE),
sycl::range<3>(1, 1, SYCL_CPY_BLOCK_SIZE)),
[=](sycl::nd_item<3> item_ct1) {
cpy_f32_f16<cpy_1_i32_i32>(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12,
nb10, nb11, nb12, nb13, item_ct1);
});
}
}
void ggml_sycl_cpy(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1) try {
const int64_t ne = ggml_nelements(src0);
GGML_ASSERT(ne == ggml_nelements(src1));
GGML_ASSERT(ggml_nbytes(src0) <= INT_MAX);
GGML_ASSERT(ggml_nbytes(src1) <= INT_MAX);
GGML_SYCL_TENSOR_BINARY_OP_CP_LOCALS;
SYCL_CHECK(ggml_sycl_set_device(ctx.device));
queue_ptr main_stream = ctx.stream();
char * src0_ddc = (char *) src0->data;
char * src1_ddc = (char *) src1->data;
if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32) {
ggml_cpy_f32_f32_sycl(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10,
nb11, nb12, nb13, main_stream);
} else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F16) {
ggml_cpy_f32_f16_sycl(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10,
nb11, nb12, nb13, main_stream);
} else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_Q8_0) {
ggml_cpy_f32_q8_0_sycl(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10,
nb11, nb12, nb13, main_stream);
} else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_Q4_0) {
ggml_cpy_f32_q4_0_sycl(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10,
nb11, nb12, nb13, main_stream);
} else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_Q4_1) {
ggml_cpy_f32_q4_1_sycl(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10,
nb11, nb12, nb13, main_stream);
} else if (src0->type == GGML_TYPE_F16 && src1->type == GGML_TYPE_F32) {
ggml_cpy_f16_f32_sycl(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10,
nb11, nb12, nb13, main_stream);
} else if (src0->type == GGML_TYPE_F16 && src1->type == GGML_TYPE_F16) {
ggml_cpy_f16_f16_sycl(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10,
nb11, nb12, nb13, main_stream);
} else if (src0->type == GGML_TYPE_I16 && src1->type == GGML_TYPE_I16) {
ggml_cpy_i16_i16_sycl(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10,
nb11, nb12, nb13, main_stream);
} else if (src0->type == GGML_TYPE_I32 && src1->type == GGML_TYPE_I32) {
ggml_cpy_i32_i32_sycl(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10,
nb11, nb12, nb13, main_stream);
} else {
GGML_LOG_ERROR("%s: unsupported type combination (%s to %s)\n", __func__, ggml_type_name(src0->type),
ggml_type_name(src1->type));
GGML_ABORT("fatal error");
}
} catch (const sycl::exception & exc) {
std::cerr << exc.what() << "Exception caught at file:" << __FILE__ << ", line:" << __LINE__ << std::endl;
std::exit(1);
}

View file

@ -0,0 +1,11 @@
#ifndef GGML_SYCL_CPY_HPP
#define GGML_SYCL_CPY_HPP
#include "common.hpp"
#include <float.h>
typedef void (*cpy_kernel_t)(const char * cx, char * cdst);
void ggml_sycl_cpy(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1);
#endif // GGML_SYCL_CPY_HPP

View file

@ -1265,8 +1265,6 @@ std::unique_ptr<ggml_sycl_pool> ggml_backend_sycl_context::new_pool_for_device(q
// struct ggml_sycl_pool_vmm : public ggml_sycl_pool
/// kernels
typedef void (*cpy_kernel_t)(const char * cx, char * cdst);
typedef void (*ggml_sycl_op_mul_mat_t)(
ggml_backend_sycl_context & ctx,
const ggml_tensor *src0, const ggml_tensor *src1, ggml_tensor *dst,
@ -1525,193 +1523,6 @@ static void mul_mat_vec_nc_f16_f32( // nc == non-contiguous
}
}
static void cpy_1_f32_f32(const char * cxi, char * cdsti) {
const float * xi = (const float *) cxi;
float * dsti = (float *) cdsti;
*dsti = *xi;
}
static void cpy_1_f32_f16(const char * cxi, char * cdsti) {
const float * xi = (const float *) cxi;
sycl::half *dsti = (sycl::half *)cdsti;
*dsti = sycl::vec<float, 1>(*xi)
.convert<sycl::half, sycl::rounding_mode::automatic>()[0];
}
static void cpy_1_f16_f16(const char * cxi, char * cdsti) {
const sycl::half *xi = (const sycl::half *)cxi;
sycl::half *dsti = (sycl::half *)cdsti;
*dsti = *xi;
}
static void cpy_1_f16_f32(const char * cxi, char * cdsti) {
const sycl::half *xi = (const sycl::half *)cxi;
float * dsti = (float *) cdsti;
*dsti = *xi;
}
static void cpy_1_i16_i16(const char * cxi, char * cdsti) {
const int16_t *xi = (const int16_t *)cxi;
int16_t *dsti = (int16_t *)cdsti;
*dsti = *xi;
}
static void cpy_1_i32_i32(const char * cxi, char * cdsti) {
const int32_t *xi = (const int32_t *)cxi;
int32_t *dsti = (int32_t *)cdsti;
*dsti = *xi;
}
template <cpy_kernel_t cpy_1>
static void cpy_f32_f16(const char * cx, char * cdst, const int ne,
const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11,
const int nb12, const int nb13, const sycl::nd_item<3> &item_ct1) {
const int i = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
item_ct1.get_local_id(2);
if (i >= ne) {
return;
}
// determine indices i02/i12, i01/i11, i00/i10 as a function of index i of flattened tensor
// then combine those indices with the corresponding byte offsets to get the total offsets
const int i03 = i/(ne00 * ne01 * ne02);
const int i02 = (i - i03*ne00*ne01*ne02 )/ (ne00*ne01);
const int i01 = (i - i03*ne00*ne01*ne02 - i02*ne01*ne00) / ne00;
const int i00 = i - i03*ne00*ne01*ne02 - i02*ne01*ne00 - i01*ne00;
const int x_offset = i00*nb00 + i01*nb01 + i02*nb02 + i03 * nb03;
const int i13 = i/(ne10 * ne11 * ne12);
const int i12 = (i - i13*ne10*ne11*ne12) / (ne10*ne11);
const int i11 = (i - i13*ne10*ne11*ne12 - i12*ne10*ne11) / ne10;
const int i10 = i - i13*ne10*ne11*ne12 - i12*ne10*ne11 - i11*ne10;
const int dst_offset = i10*nb10 + i11*nb11 + i12*nb12 + i13 * nb13;
cpy_1(cx + x_offset, cdst + dst_offset);
}
static void cpy_blck_f32_q8_0(const char * cxi, char * cdsti) {
const float * xi = (const float *) cxi;
block_q8_0 * dsti = (block_q8_0 *) cdsti;
float amax = 0.0f; // absolute max
for (int j = 0; j < QK8_0; j++) {
const float v = xi[j];
amax = sycl::fmax(amax, sycl::fabs((float)v));
}
const float d = amax / ((1 << 7) - 1);
const float id = d ? 1.0f/d : 0.0f;
dsti->d = d;
for (int j = 0; j < QK8_0; ++j) {
const float x0 = xi[j]*id;
dsti->qs[j] = sycl::round((float)x0);
}
}
static void cpy_blck_f32_q4_0(const char * cxi, char * cdsti) {
const float * xi = (const float *) cxi;
block_q4_0 * dsti = (block_q4_0 *) cdsti;
float amax = 0.0f;
float vmax = 0.0f;
for (int j = 0; j < QK4_0; ++j) {
const float v = xi[j];
if (amax < sycl::fabs((float)v)) {
amax = sycl::fabs((float)v);
vmax = v;
}
}
const float d = vmax / -8;
const float id = d ? 1.0f/d : 0.0f;
dsti->d = d;
for (int j = 0; j < QK4_0/2; ++j) {
const float x0 = xi[0 + j]*id;
const float x1 = xi[QK4_0/2 + j]*id;
const uint8_t xi0 = dpct::min(15, (int8_t)(x0 + 8.5f));
const uint8_t xi1 = dpct::min(15, (int8_t)(x1 + 8.5f));
dsti->qs[j] = xi0;
dsti->qs[j] |= xi1 << 4;
}
}
static void cpy_blck_f32_q4_1(const char * cxi, char * cdsti) {
const float * xi = (const float *) cxi;
block_q4_1 * dsti = (block_q4_1 *) cdsti;
float vmin = FLT_MAX;
float vmax = -FLT_MAX;
for (int j = 0; j < QK4_1; ++j) {
const float v = xi[j];
if (v < vmin) vmin = v;
if (v > vmax) vmax = v;
}
const float d = (vmax - vmin) / ((1 << 4) - 1);
const float id = d ? 1.0f/d : 0.0f;
dsti->dm.x() = d;
dsti->dm.y() = vmin;
for (int j = 0; j < QK4_1/2; ++j) {
const float x0 = (xi[0 + j] - vmin)*id;
const float x1 = (xi[QK4_1/2 + j] - vmin)*id;
const uint8_t xi0 = dpct::min(15, (int8_t)(x0 + 0.5f));
const uint8_t xi1 = dpct::min(15, (int8_t)(x1 + 0.5f));
dsti->qs[j] = xi0;
dsti->qs[j] |= xi1 << 4;
}
}
template <cpy_kernel_t cpy_blck, int qk>
static void cpy_f32_q(const char * cx, char * cdst, const int ne,
const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11,
const int nb12, const int nb13, const sycl::nd_item<3> &item_ct1) {
const int i = (item_ct1.get_local_range(2) * item_ct1.get_group(2) +
item_ct1.get_local_id(2)) *
qk;
if (i >= ne) {
return;
}
const int i03 = i/(ne00 * ne01 * ne02);
const int i02 = (i - i03*ne00*ne01*ne02 )/ (ne00*ne01);
const int i01 = (i - i03*ne00*ne01*ne02 - i02*ne01*ne00) / ne00;
const int i00 = i - i03*ne00*ne01*ne02 - i02*ne01*ne00 - i01*ne00;
const int x_offset = i00*nb00 + i01*nb01 + i02*nb02 + i03 * nb03;
const int i13 = i/(ne10 * ne11 * ne12);
const int i12 = (i - i13*ne10*ne11*ne12) / (ne10*ne11);
const int i11 = (i - i13*ne10*ne11*ne12 - i12*ne10*ne11) / ne10;
const int i10 = i - i13*ne10*ne11*ne12 - i12*ne10*ne11 - i11*ne10;
const int dst_offset = (i10/qk)*nb10 + i11*nb11 + i12*nb12 + i13*nb13;
cpy_blck(cx + x_offset, cdst + dst_offset);
}
static void k_sum_rows_f32(const float * x, float * dst, const int ncols,
const sycl::nd_item<3> &item_ct1) {
const int row = item_ct1.get_group(1);
@ -1970,232 +1781,6 @@ static void ggml_mul_mat_vec_nc_f16_f32_sycl(
}
}
static void
ggml_cpy_f16_f32_sycl(const char *cx, char *cdst, const int ne, const int ne00,
const int ne01, const int ne02, const int nb00,
const int nb01, const int nb02, const int nb03,
const int ne10, const int ne11, const int ne12,
const int nb10, const int nb11, const int nb12,
const int nb13, queue_ptr stream) {
const int num_blocks = (ne + SYCL_CPY_BLOCK_SIZE - 1) / SYCL_CPY_BLOCK_SIZE;
{
dpct::has_capability_or_fail(stream->get_device(),
{sycl::aspect::fp16});
stream->parallel_for(
sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) *
sycl::range<3>(1, 1, SYCL_CPY_BLOCK_SIZE),
sycl::range<3>(1, 1, SYCL_CPY_BLOCK_SIZE)),
[=](sycl::nd_item<3> item_ct1) {
cpy_f32_f16<cpy_1_f16_f32>(cx, cdst, ne, ne00, ne01, ne02, nb00,
nb01, nb02, nb03, ne10, ne11, ne12,
nb10, nb11, nb12, nb13, item_ct1);
});
}
}
static void ggml_cpy_f32_f32_sycl(const char *cx, char *cdst, const int ne,
const int ne00, const int ne01,
const int ne02, const int nb00,
const int nb01, const int nb02,
const int nb03, const int ne10,
const int ne11, const int ne12,
const int nb10, const int nb11,
const int nb12, const int nb13,
queue_ptr stream) {
const int num_blocks = (ne + SYCL_CPY_BLOCK_SIZE - 1) / SYCL_CPY_BLOCK_SIZE;
{
dpct::has_capability_or_fail(stream->get_device(),
{sycl::aspect::fp16});
stream->parallel_for(
sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) *
sycl::range<3>(1, 1, SYCL_CPY_BLOCK_SIZE),
sycl::range<3>(1, 1, SYCL_CPY_BLOCK_SIZE)),
[=](sycl::nd_item<3> item_ct1) {
cpy_f32_f16<cpy_1_f32_f32>(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02,
nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13,
item_ct1);
});
}
}
static void ggml_cpy_f32_f16_sycl(const char *cx, char *cdst, const int ne,
const int ne00, const int ne01,
const int ne02, const int nb00,
const int nb01, const int nb02,
const int nb03, const int ne10,
const int ne11, const int ne12,
const int nb10, const int nb11,
const int nb12, const int nb13,
queue_ptr stream) {
const int num_blocks = (ne + SYCL_CPY_BLOCK_SIZE - 1) / SYCL_CPY_BLOCK_SIZE;
{
dpct::has_capability_or_fail(stream->get_device(),
{sycl::aspect::fp16});
stream->parallel_for(
sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) *
sycl::range<3>(1, 1, SYCL_CPY_BLOCK_SIZE),
sycl::range<3>(1, 1, SYCL_CPY_BLOCK_SIZE)),
[=](sycl::nd_item<3> item_ct1) {
cpy_f32_f16<cpy_1_f32_f16>(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02,
nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13,
item_ct1);
});
}
}
static void ggml_cpy_f32_q8_0_sycl(const char *cx, char *cdst, const int ne,
const int ne00, const int ne01,
const int ne02, const int nb00,
const int nb01, const int nb02,
const int nb03, const int ne10,
const int ne11, const int ne12,
const int nb10, const int nb11,
const int nb12, const int nb13,
queue_ptr stream) {
GGML_ASSERT(ne % QK8_0 == 0);
const int num_blocks = ne / QK8_0;
stream->parallel_for(sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks),
sycl::range<3>(1, 1, 1)),
[=](sycl::nd_item<3> item_ct1) {
cpy_f32_q<cpy_blck_f32_q8_0, QK8_0>(
cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02,
nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13,
item_ct1);
});
}
static void ggml_cpy_f32_q4_0_sycl(const char *cx, char *cdst, const int ne,
const int ne00, const int ne01,
const int ne02, const int nb00,
const int nb01, const int nb02,
const int nb03, const int ne10,
const int ne11, const int ne12,
const int nb10, const int nb11,
const int nb12, const int nb13,
queue_ptr stream) {
GGML_ASSERT(ne % QK4_0 == 0);
const int num_blocks = ne / QK4_0;
stream->parallel_for(sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks),
sycl::range<3>(1, 1, 1)),
[=](sycl::nd_item<3> item_ct1) {
cpy_f32_q<cpy_blck_f32_q4_0, QK4_0>(
cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02,
nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13,
item_ct1);
});
}
static void ggml_cpy_f32_q4_1_sycl(const char *cx, char *cdst, const int ne,
const int ne00, const int ne01,
const int ne02, const int nb00,
const int nb01, const int nb02,
const int nb03, const int ne10,
const int ne11, const int ne12,
const int nb10, const int nb11,
const int nb12, const int nb13,
queue_ptr stream) {
GGML_ASSERT(ne % QK4_1 == 0);
const int num_blocks = ne / QK4_1;
stream->parallel_for(sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks),
sycl::range<3>(1, 1, 1)),
[=](sycl::nd_item<3> item_ct1) {
cpy_f32_q<cpy_blck_f32_q4_1, QK4_1>(
cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02,
nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13,
item_ct1);
});
}
static void ggml_cpy_f16_f16_sycl(const char *cx, char *cdst, const int ne,
const int ne00, const int ne01,
const int ne02, const int nb00,
const int nb01, const int nb02,
const int nb03, const int ne10,
const int ne11, const int ne12,
const int nb10, const int nb11,
const int nb12, const int nb13,
queue_ptr stream) {
const int num_blocks = (ne + SYCL_CPY_BLOCK_SIZE - 1) / SYCL_CPY_BLOCK_SIZE;
{
dpct::has_capability_or_fail(stream->get_device(),
{sycl::aspect::fp16});
stream->parallel_for(
sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) *
sycl::range<3>(1, 1, SYCL_CPY_BLOCK_SIZE),
sycl::range<3>(1, 1, SYCL_CPY_BLOCK_SIZE)),
[=](sycl::nd_item<3> item_ct1) {
cpy_f32_f16<cpy_1_f16_f16>(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02,
nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13,
item_ct1);
});
}
}
static void ggml_cpy_i16_i16_sycl(const char *cx, char *cdst, const int ne,
const int ne00, const int ne01,
const int ne02, const int nb00,
const int nb01, const int nb02,
const int nb03, const int ne10,
const int ne11, const int ne12,
const int nb10, const int nb11,
const int nb12, const int nb13,
queue_ptr stream) {
const int num_blocks = (ne + SYCL_CPY_BLOCK_SIZE - 1) / SYCL_CPY_BLOCK_SIZE;
{
// dpct::has_capability_or_fail(stream->get_device(),
// {sycl::aspect::fp16});
stream->parallel_for(
sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) *
sycl::range<3>(1, 1, SYCL_CPY_BLOCK_SIZE),
sycl::range<3>(1, 1, SYCL_CPY_BLOCK_SIZE)),
[=](sycl::nd_item<3> item_ct1) {
cpy_f32_f16<cpy_1_i16_i16>(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02,
nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13,
item_ct1);
});
}
}
static void ggml_cpy_i32_i32_sycl(const char *cx, char *cdst, const int ne,
const int ne00, const int ne01,
const int ne02, const int nb00,
const int nb01, const int nb02,
const int nb03, const int ne10,
const int ne11, const int ne12,
const int nb10, const int nb11,
const int nb12, const int nb13,
queue_ptr stream) {
const int num_blocks = (ne + SYCL_CPY_BLOCK_SIZE - 1) / SYCL_CPY_BLOCK_SIZE;
{
// dpct::has_capability_or_fail(stream->get_device(),
// {sycl::aspect::fp16});
stream->parallel_for(
sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) *
sycl::range<3>(1, 1, SYCL_CPY_BLOCK_SIZE),
sycl::range<3>(1, 1, SYCL_CPY_BLOCK_SIZE)),
[=](sycl::nd_item<3> item_ct1) {
cpy_f32_f16<cpy_1_i32_i32>(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02,
nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13,
item_ct1);
});
}
}
static void scale_f32_sycl(const float *x, float *dst, const float scale,
const int k, queue_ptr stream) {
const int num_blocks = (k + SYCL_SCALE_BLOCK_SIZE - 1) / SYCL_SCALE_BLOCK_SIZE;
@ -3550,51 +3135,6 @@ static void ggml_sycl_clamp(ggml_backend_sycl_context & ctx, ggml_tensor * dst)
ggml_sycl_op_clamp(ctx, dst);
}
static void ggml_sycl_cpy(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1) try {
const int64_t ne = ggml_nelements(src0);
GGML_ASSERT(ne == ggml_nelements(src1));
GGML_ASSERT(ggml_nbytes(src0) <= INT_MAX);
GGML_ASSERT(ggml_nbytes(src1) <= INT_MAX);
GGML_SYCL_TENSOR_BINARY_OP_CP_LOCALS;
SYCL_CHECK(ggml_sycl_set_device(ctx.device));
queue_ptr main_stream = ctx.stream();
char * src0_ddc = (char *) src0->data;
char * src1_ddc = (char *) src1->data;
if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32) {
ggml_cpy_f32_f32_sycl (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
} else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F16) {
ggml_cpy_f32_f16_sycl (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
} else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_Q8_0) {
ggml_cpy_f32_q8_0_sycl(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
} else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_Q4_0) {
ggml_cpy_f32_q4_0_sycl(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
} else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_Q4_1) {
ggml_cpy_f32_q4_1_sycl(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
} else if (src0->type == GGML_TYPE_F16 && src1->type == GGML_TYPE_F32) {
ggml_cpy_f16_f32_sycl (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
} else if (src0->type == GGML_TYPE_F16 && src1->type == GGML_TYPE_F16) {
ggml_cpy_f16_f16_sycl (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
} else if (src0->type == GGML_TYPE_I16 && src1->type == GGML_TYPE_I16) {
ggml_cpy_i16_i16_sycl (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
} else if (src0->type == GGML_TYPE_I32 && src1->type == GGML_TYPE_I32) {
ggml_cpy_i32_i32_sycl (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
} else {
GGML_LOG_ERROR("%s: unsupported type combination (%s to %s)\n", __func__,
ggml_type_name(src0->type), ggml_type_name(src1->type));
GGML_ABORT("fatal error");
}
}
catch (sycl::exception const &exc) {
std::cerr << exc.what() << "Exception caught at file:" << __FILE__
<< ", line:" << __LINE__ << std::endl;
std::exit(1);
}
static void ggml_sycl_dup(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
// TODO: why do we pass dst as src1 here?
ggml_sycl_cpy(ctx, dst->src[0], dst);