Merge branch 'ggerganov:master' into server_branch

This commit is contained in:
pudepiedj 2024-02-20 19:23:44 +00:00 committed by GitHub
commit ecbb531b1f
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
18 changed files with 328 additions and 346 deletions

View file

@ -255,11 +255,11 @@ effectiveStdenv.mkDerivation (
# Configurations we don't want even the CI to evaluate. Results in the
# "unsupported platform" messages. This is mostly a no-op, because
# cudaPackages would've refused to evaluate anyway.
badPlatforms = optionals (useCuda || useOpenCL || useVulkan) lib.platforms.darwin;
badPlatforms = optionals (useCuda || useOpenCL) lib.platforms.darwin;
# Configurations that are known to result in build failures. Can be
# overridden by importing Nixpkgs with `allowBroken = true`.
broken = (useMetalKit && !effectiveStdenv.isDarwin) || (useVulkan && effectiveStdenv.isDarwin);
broken = (useMetalKit && !effectiveStdenv.isDarwin);
description = "Inference of LLaMA model in pure C/C++${descriptionSuffix}";
homepage = "https://github.com/ggerganov/llama.cpp/";

View file

@ -110,6 +110,7 @@ option(LLAMA_VULKAN_RUN_TESTS "llama: run Vulkan tests"
option(LLAMA_METAL "llama: use Metal" ${LLAMA_METAL_DEFAULT})
option(LLAMA_METAL_NDEBUG "llama: disable Metal debugging" OFF)
option(LLAMA_METAL_SHADER_DEBUG "llama: compile Metal with -fno-fast-math" OFF)
option(LLAMA_METAL_EMBED_LIBRARY "llama: embed Metal library" OFF)
option(LLAMA_KOMPUTE "llama: use Kompute" OFF)
option(LLAMA_MPI "llama: use MPI" OFF)
option(LLAMA_QKK_64 "llama: use super-block size of 64 for k-quants" OFF)
@ -201,6 +202,29 @@ if (LLAMA_METAL)
# copy ggml-metal.metal to bin directory
configure_file(ggml-metal.metal ${CMAKE_RUNTIME_OUTPUT_DIRECTORY}/ggml-metal.metal COPYONLY)
if (LLAMA_METAL_EMBED_LIBRARY)
enable_language(ASM)
add_compile_definitions(GGML_METAL_EMBED_LIBRARY)
set(METALLIB_SOURCE "${CMAKE_SOURCE_DIR}/ggml-metal.metal")
file(MAKE_DIRECTORY "${CMAKE_BINARY_DIR}/autogenerated")
set(EMBED_METALLIB_ASSEMBLY "${CMAKE_BINARY_DIR}/autogenerated/ggml-embed-metallib.s")
add_custom_command(
OUTPUT ${EMBED_METALLIB_ASSEMBLY}
COMMAND echo ".section __DATA,__ggml_metallib" > ${EMBED_METALLIB_ASSEMBLY}
COMMAND echo ".globl _ggml_metallib_start" >> ${EMBED_METALLIB_ASSEMBLY}
COMMAND echo "_ggml_metallib_start:" >> ${EMBED_METALLIB_ASSEMBLY}
COMMAND echo ".incbin \\\"${METALLIB_SOURCE}\\\"" >> ${EMBED_METALLIB_ASSEMBLY}
COMMAND echo ".globl _ggml_metallib_end" >> ${EMBED_METALLIB_ASSEMBLY}
COMMAND echo "_ggml_metallib_end:" >> ${EMBED_METALLIB_ASSEMBLY}
DEPENDS ${METALLIB_SOURCE}
COMMENT "Generate assembly for embedded Metal library"
)
set(GGML_SOURCES_METAL ${GGML_SOURCES_METAL} ${EMBED_METALLIB_ASSEMBLY})
endif()
if (LLAMA_METAL_SHADER_DEBUG)
# custom command to do the following:
# xcrun -sdk macosx metal -fno-fast-math -c ggml-metal.metal -o ggml-metal.air

View file

@ -173,7 +173,7 @@ ifdef LLAMA_DEBUG
MK_LDFLAGS += -g
ifeq ($(UNAME_S),Linux)
MK_CXXFLAGS += -Wp,-D_GLIBCXX_ASSERTIONS
MK_CPPFLAGS += -D_GLIBCXX_ASSERTIONS
endif
else
MK_CPPFLAGS += -DNDEBUG
@ -533,11 +533,29 @@ ifdef LLAMA_METAL
ifdef LLAMA_METAL_NDEBUG
MK_CPPFLAGS += -DGGML_METAL_NDEBUG
endif
ifdef LLAMA_METAL_EMBED_LIBRARY
MK_CPPFLAGS += -DGGML_METAL_EMBED_LIBRARY
OBJS += ggml-metal-embed.o
endif
endif # LLAMA_METAL
ifdef LLAMA_METAL
ggml-metal.o: ggml-metal.m ggml-metal.h
$(CC) $(CFLAGS) -c $< -o $@
ifdef LLAMA_METAL_EMBED_LIBRARY
ggml-metal-embed.o: ggml-metal.metal
@echo "Embedding Metal library"
$(eval TEMP_ASSEMBLY=$(shell mktemp))
@echo ".section __DATA, __ggml_metallib" > $(TEMP_ASSEMBLY)
@echo ".globl _ggml_metallib_start" >> $(TEMP_ASSEMBLY)
@echo "_ggml_metallib_start:" >> $(TEMP_ASSEMBLY)
@echo ".incbin \"$<\"" >> $(TEMP_ASSEMBLY)
@echo ".globl _ggml_metallib_end" >> $(TEMP_ASSEMBLY)
@echo "_ggml_metallib_end:" >> $(TEMP_ASSEMBLY)
@$(AS) $(TEMP_ASSEMBLY) -o $@
@rm -f ${TEMP_ASSEMBLY}
endif
endif # LLAMA_METAL
ifdef LLAMA_MPI
@ -701,7 +719,7 @@ save-load-state: examples/save-load-state/save-load-state.cpp ggml.o llama.o $(C
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
server: examples/server/server.cpp examples/server/oai.hpp examples/server/utils.hpp examples/server/httplib.h examples/server/json.hpp examples/server/index.html.hpp examples/server/index.js.hpp examples/server/completion.js.hpp examples/llava/clip.cpp examples/llava/clip.h common/stb_image.h ggml.o llama.o $(COMMON_DEPS) grammar-parser.o $(OBJS)
server: examples/server/server.cpp examples/server/oai.hpp examples/server/utils.hpp examples/server/httplib.h examples/server/json.hpp examples/server/index.html.hpp examples/server/index.js.hpp examples/server/completion.js.hpp examples/llava/clip.cpp examples/llava/clip.h examples/llava/llava.h examples/llava/llava.cpp common/stb_image.h ggml.o llama.o $(COMMON_DEPS) grammar-parser.o $(OBJS)
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
$(CXX) $(CXXFLAGS) -c examples/llava/clip.cpp -o $(call GET_OBJ_FILE, examples/llava/clip.cpp) -Wno-cast-qual
$(CXX) $(CXXFLAGS) -Iexamples/server $(filter-out %.h %.hpp $< examples/llava/clip.cpp,$^) $(call GET_OBJ_FILE, $<) $(call GET_OBJ_FILE, examples/llava/clip.cpp) -o $@ $(LDFLAGS) $(LWINSOCK2)

View file

@ -156,6 +156,7 @@ Unless otherwise noted these projects are open-source with permissive licensing:
- [pythops/tenere](https://github.com/pythops/tenere) (AGPL)
- [semperai/amica](https://github.com/semperai/amica)
- [withcatai/catai](https://github.com/withcatai/catai)
- [Mobile-Artificial-Intelligence/maid](https://github.com/Mobile-Artificial-Intelligence/maid) (MIT)
---

View file

@ -123,6 +123,7 @@ pub fn build(b: *std.build.Builder) !void {
const grammar_parser = make.obj("grammar-parser", "common/grammar-parser.cpp");
const train = make.obj("train", "common/train.cpp");
const clip = make.obj("clip", "examples/llava/clip.cpp");
const llava = make.obj("llava", "examples/llava/llava.cpp");
_ = make.exe("main", "examples/main/main.cpp", &.{ ggml, ggml_alloc, ggml_backend, ggml_quants, llama, common, buildinfo, sampling, console, grammar_parser });
_ = make.exe("quantize", "examples/quantize/quantize.cpp", &.{ ggml, ggml_alloc, ggml_backend, ggml_quants, llama, common, buildinfo });
@ -131,7 +132,7 @@ pub fn build(b: *std.build.Builder) !void {
_ = make.exe("finetune", "examples/finetune/finetune.cpp", &.{ ggml, ggml_alloc, ggml_backend, ggml_quants, llama, common, buildinfo, train });
_ = make.exe("train-text-from-scratch", "examples/train-text-from-scratch/train-text-from-scratch.cpp", &.{ ggml, ggml_alloc, ggml_backend, ggml_quants, llama, common, buildinfo, train });
const server = make.exe("server", "examples/server/server.cpp", &.{ ggml, ggml_alloc, ggml_backend, ggml_quants, llama, common, buildinfo, sampling, grammar_parser, clip });
const server = make.exe("server", "examples/server/server.cpp", &.{ ggml, ggml_alloc, ggml_backend, ggml_quants, llama, common, buildinfo, sampling, grammar_parser, clip, llava });
if (server.target.isWindows()) {
server.linkSystemLibrary("ws2_32");
}

View file

@ -59,14 +59,40 @@ python ./convert.py ../llava-v1.5-7b --skip-unknown
Now both the LLaMA part and the image encoder is in the `llava-v1.5-7b` directory.
## LLaVA 1.6 gguf conversion
1) Backup your pth/safetensor model files as llava-surgery modifies them
2) Use `python llava-surgery-v2.py -C -m /path/to/hf-model` which also supports llava-1.5 variants pytorch as well as safetensor models:
1) First clone a LLaVA 1.6 model:
```console
git clone https://huggingface.co/liuhaotian/llava-v1.6-vicuna-7b
```
2) Backup your pth/safetensor model files as llava-surgery modifies them
3) Use `llava-surgery-v2.py` which also supports llava-1.5 variants pytorch as well as safetensor models:
```console
python examples/llava/llava-surgery-v2.py -C -m ../llava-v1.6-vicuna-7b/
```
- you will find a llava.projector and a llava.clip file in your model directory
3) Copy the llava.clip file into a subdirectory (like vit), rename it to pytorch_model.bin and add a fitting vit configuration to the directory (https://huggingface.co/cmp-nct/llava-1.6-gguf/blob/main/config_vit.json) and rename it to config.json.
4) Create the visual gguf model: `python ./examples/llava/convert-image-encoder-to-gguf.py -m ../path/to/vit --llava-projector ../path/to/llava.projector --output-dir ../path/to/output --clip-model-is-vision`
4) Copy the llava.clip file into a subdirectory (like vit), rename it to pytorch_model.bin and add a fitting vit configuration to the directory:
```console
mkdir vit
cp ../llava-v1.6-vicuna-7b/llava.clip vit/pytorch_model.bin
cp ../llava-v1.6-vicuna-7b/llava.projector vit/
curl -s -q https://huggingface.co/cmp-nct/llava-1.6-gguf/raw/main/config_vit.json -o vit/config.json
```
5) Create the visual gguf model:
```console
python ./examples/llava/convert-image-encoder-to-gguf.py -m vit --llava-projector vit/llava.projector --output-dir vit --clip-model-is-vision
```
- This is similar to llava-1.5, the difference is that we tell the encoder that we are working with the pure vision model part of CLIP
5) Everything else as usual: convert.py the hf model, quantize as needed
6) Then convert the model to gguf format:
```console
python ./convert.py ../llava-v1.6-vicuna-7b/
```
7) And finally we can run the llava-cli using the 1.6 model version:
```console
./llava-cli -m ../llava-v1.6-vicuna-7b/ggml-model-f16.gguf --mmproj vit/mmproj-model-f16.gguf --image some-image.jpg -c 4096
```
**note** llava-1.6 needs more context than llava-1.5, at least 3000 is needed (just run it at -c 4096)
**note** llava-1.6 greatly benefits from batched prompt processing (defaults work)

View file

@ -311,7 +311,7 @@ bool llava_validate_embed_size(const llama_context * ctx_llama, const clip_ctx *
return true;
}
static bool llava_image_embed_make_with_clip_img(clip_ctx * ctx_clip, int n_threads, const clip_image_u8 * img, float ** image_embd_out, int * n_img_pos_out) {
bool llava_image_embed_make_with_clip_img(clip_ctx * ctx_clip, int n_threads, const clip_image_u8 * img, float ** image_embd_out, int * n_img_pos_out) {
float * image_embd = (float *)malloc(clip_embd_nbytes(ctx_clip)*6); // TODO: base on gridsize/llava model
if (!image_embd) {
fprintf(stderr, "Unable to allocate memory for image embeddings\n");

View file

@ -31,6 +31,8 @@ struct llava_image_embed {
/** sanity check for clip <-> llava embed size match */
LLAVA_API bool llava_validate_embed_size(const llama_context * ctx_llama, const clip_ctx * ctx_clip);
LLAVA_API bool llava_image_embed_make_with_clip_img(clip_ctx * ctx_clip, int n_threads, const clip_image_u8 * img, float ** image_embd_out, int * n_img_pos_out);
/** build an image embed from image file bytes */
LLAVA_API struct llava_image_embed * llava_image_embed_make_with_bytes(struct clip_ctx * ctx_clip, int n_threads, const unsigned char * image_bytes, int image_bytes_length);
/** build an image embed from a path to an image filename */

View file

@ -134,10 +134,11 @@ node index.js
## API Endpoints
- **GET** `/health`: Returns the current state of the server:
- `{"status": "loading model"}` if the model is still being loaded.
- `{"status": "error"}` if the model failed to load.
- `{"status": "ok"}` if the model is successfully loaded and the server is ready for further requests mentioned below.
- `{"status": "no slot available", "slots_idle": 0, "slots_processing": 32}` if no slot are currently available
- 503 -> `{"status": "loading model"}` if the model is still being loaded.
- 500 -> `{"status": "error"}` if the model failed to load.
- 200 -> `{"status": "ok", "slots_idle": 1, "slots_processing": 2 }` if the model is successfully loaded and the server is ready for further requests mentioned below.
- 200 -> `{"status": "no slot available", "slots_idle": 0, "slots_processing": 32}` if no slot are currently available.
- 503 -> `{"status": "no slot available", "slots_idle": 0, "slots_processing": 32}` if the query parameter `fail_on_no_slot` is provided and no slot are currently available.
- **POST** `/completion`: Given a `prompt`, it returns the predicted completion.

View file

@ -15,13 +15,11 @@
using json = nlohmann::json;
inline static json oaicompat_completion_params_parse(
const struct llama_model * model,
const json &body, /* openai api json semantics */
const std::string &chat_template)
{
json llama_params;
std::string formatted_prompt = chat_template == "chatml"
? format_chatml(body["messages"]) // OpenAI 'messages' to chatml (with <|im_start|>,...)
: format_llama2(body["messages"]); // OpenAI 'messages' to llama2 (with [INST],...)
llama_params["__oaicompat"] = true;
@ -34,7 +32,7 @@ inline static json oaicompat_completion_params_parse(
// https://platform.openai.com/docs/api-reference/chat/create
llama_sampling_params default_sparams;
llama_params["model"] = json_value(body, "model", std::string("unknown"));
llama_params["prompt"] = formatted_prompt;
llama_params["prompt"] = format_chat(model, chat_template, body["messages"]);
llama_params["cache_prompt"] = json_value(body, "cache_prompt", false);
llama_params["temperature"] = json_value(body, "temperature", 0.0);
llama_params["top_k"] = json_value(body, "top_k", default_sparams.top_k);

View file

@ -5,6 +5,7 @@
#include "oai.hpp"
#include "../llava/clip.h"
#include "../llava/llava.h"
#include "stb_image.h"
@ -39,7 +40,7 @@ struct server_params
std::string hostname = "127.0.0.1";
std::vector<std::string> api_keys;
std::string public_path = "examples/server/public";
std::string chat_template = "chatml";
std::string chat_template = "";
int32_t port = 8080;
int32_t read_timeout = 600;
int32_t write_timeout = 600;
@ -1073,43 +1074,12 @@ struct llama_server_context
{
continue;
}
clip_image_f32_batch img_res_v;
img_res_v.size = 0;
img_res_v.data = nullptr;
if (!clip_image_preprocess(clp_ctx, img.img_data, img_res_v))
{
LOG_TEE("Error processing the given image");
clip_free(clp_ctx);
clip_image_f32_batch_free(img_res_v);
return false;
}
if (img_res_v.size == 0)
{
if (!llava_image_embed_make_with_clip_img(clp_ctx, params.n_threads, img.img_data, &img.image_embedding, &img.image_tokens)) {
LOG_TEE("Error processing the given image");
return false;
}
// note: assumes only one image was returned by clip_image_preprocess
clip_image_f32 * img_res = img_res_v.data;
img.image_tokens = clip_n_patches(clp_ctx);
img.image_embedding = (float *)malloc(clip_embd_nbytes(clp_ctx));
if (!img.image_embedding)
{
LOG_TEE("Unable to allocate memory for image embeddings\n");
clip_image_f32_batch_free(img_res_v);
clip_free(clp_ctx);
return false;
}
LOG_TEE("slot %i - encoding image [id: %i]\n", slot.id, img.id);
if (!clip_image_encode(clp_ctx, params.n_threads, img_res, img.image_embedding))
{
LOG_TEE("Unable to encode image\n");
clip_image_f32_batch_free(img_res_v);
return false;
}
clip_image_f32_batch_free(img_res_v);
img.request_encode_image = false;
}
@ -2021,8 +1991,9 @@ static void server_print_usage(const char *argv0, const gpt_params &params,
printf(" types: int, float, bool. example: --override-kv tokenizer.ggml.add_bos_token=bool:false\n");
printf(" -gan N, --grp-attn-n N set the group attention factor to extend context size through self-extend(default: 1=disabled), used together with group attention width `--grp-attn-w`");
printf(" -gaw N, --grp-attn-w N set the group attention width to extend context size through self-extend(default: 512), used together with group attention factor `--grp-attn-n`");
printf(" --chat-template FORMAT_NAME");
printf(" set chat template, possible value is: llama2, chatml (default %s)", sparams.chat_template.c_str());
printf(" --chat-template JINJA_TEMPLATE\n");
printf(" set custom jinja chat template (default: template taken from model's metadata)\n");
printf(" Note: only commonly used templates are accepted, since we don't have jinja parser\n");
printf("\n");
}
@ -2482,13 +2453,13 @@ static void server_params_parse(int argc, char **argv, server_params &sparams,
invalid_param = true;
break;
}
std::string value(argv[i]);
if (value != "chatml" && value != "llama2") {
fprintf(stderr, "error: chat template can be \"llama2\" or \"chatml\", but got: %s\n", value.c_str());
if (!verify_custom_template(argv[i])) {
fprintf(stderr, "error: the supplied chat template is not supported: %s\n", argv[i]);
fprintf(stderr, "note: llama.cpp does not use jinja parser, we only support commonly used templates\n");
invalid_param = true;
break;
}
sparams.chat_template = value;
sparams.chat_template = argv[i];
}
else if (arg == "--override-kv")
{
@ -2675,40 +2646,40 @@ int main(int argc, char **argv)
res.set_header("Access-Control-Allow-Headers", "*");
});
svr.Get("/health", [&](const httplib::Request&, httplib::Response& res) {
svr.Get("/health", [&](const httplib::Request& req, httplib::Response& res) {
server_state current_state = state.load();
switch(current_state) {
case SERVER_STATE_READY:
if (llama.all_slots_are_idle) {
res.set_content(R"({"status": "ok"})", "application/json");
case SERVER_STATE_READY: {
int available_slots = 0;
int processing_slots = 0;
for (llama_client_slot &slot: llama.slots) {
if (slot.available()) {
available_slots++;
} else {
processing_slots++;
}
}
if (available_slots > 0) {
json health = {
{"status", "ok"},
{"slots_idle", available_slots},
{"slots_processing", processing_slots}};
res.set_content(health.dump(), "application/json");
res.status = 200; // HTTP OK
} else {
int available_slots = 0;
int processing_slots = 0;
for (llama_client_slot & slot : llama.slots) {
if (slot.available()) {
available_slots++;
} else {
processing_slots++;
}
}
if (available_slots > 0) {
json health = {
{"status", "ok"},
{"slots_idle", available_slots},
{"slots_processing", processing_slots}};
res.set_content(health.dump(), "application/json");
res.status = 200; // HTTP OK
} else {
json health = {
{"status", "no slot available"},
{"slots_idle", available_slots},
{"slots_processing", processing_slots}};
res.set_content(health.dump(), "application/json");
json health = {
{"status", "no slot available"},
{"slots_idle", available_slots},
{"slots_processing", processing_slots}};
res.set_content(health.dump(), "application/json");
if (req.has_param("fail_on_no_slot")) {
res.status = 503; // HTTP Service Unavailable
} else {
res.status = 200; // HTTP OK
}
}
break;
}
case SERVER_STATE_LOADING_MODEL:
res.set_content(R"({"status": "loading model"})", "application/json");
res.status = 503; // HTTP Service Unavailable
@ -3007,7 +2978,7 @@ int main(int argc, char **argv)
if (!validate_api_key(req, res)) {
return;
}
json data = oaicompat_completion_params_parse(json::parse(req.body), sparams.chat_template);
json data = oaicompat_completion_params_parse(llama.model, json::parse(req.body), sparams.chat_template);
const int task_id = llama.queue_tasks.get_new_id();
llama.queue_results.add_waiting_task_id(task_id);

View file

@ -170,50 +170,47 @@ static T json_value(const json &body, const std::string &key, const T &default_v
: default_value;
}
inline std::string format_llama2(std::vector<json> messages)
{
std::ostringstream output;
bool is_inside_turn = false;
for (auto it = messages.begin(); it != messages.end(); ++it) {
if (!is_inside_turn) {
output << "[INST] ";
}
std::string role = json_value(*it, "role", std::string("user"));
std::string content = json_value(*it, "content", std::string(""));
if (role == "system") {
output << "<<SYS>>\n" << content << "\n<<SYS>>\n\n";
is_inside_turn = true;
} else if (role == "user") {
output << content << " [/INST]";
is_inside_turn = true;
} else {
output << " " << content << " </s>";
is_inside_turn = false;
}
}
LOG_VERBOSE("format_llama2", {{"text", output.str()}});
return output.str();
// Check if the template supplied via "--chat-template" is supported or not. Returns true if it's valid
inline bool verify_custom_template(const std::string & tmpl) {
llama_chat_message chat[] = {{"user", "test"}};
std::vector<char> buf(1);
int res = llama_chat_apply_template(nullptr, tmpl.c_str(), chat, 1, true, buf.data(), buf.size());
return res >= 0;
}
inline std::string format_chatml(std::vector<json> messages)
// Format given chat. If tmpl is empty, we take the template from model metadata
inline std::string format_chat(const struct llama_model * model, const std::string & tmpl, const std::vector<json> & messages)
{
std::ostringstream chatml_msgs;
size_t alloc_size = 0;
// vector holding all allocated string to be passed to llama_chat_apply_template
std::vector<std::string> str(messages.size() * 2);
std::vector<llama_chat_message> chat(messages.size());
for (auto it = messages.begin(); it != messages.end(); ++it) {
chatml_msgs << "<|im_start|>"
<< json_value(*it, "role", std::string("user")) << '\n';
chatml_msgs << json_value(*it, "content", std::string(""))
<< "<|im_end|>\n";
for (size_t i = 0; i < messages.size(); ++i) {
auto &curr_msg = messages[i];
str[i*2 + 0] = json_value(curr_msg, "role", std::string(""));
str[i*2 + 1] = json_value(curr_msg, "content", std::string(""));
alloc_size += str[i*2 + 1].length();
chat[i].role = str[i*2 + 0].c_str();
chat[i].content = str[i*2 + 1].c_str();
}
chatml_msgs << "<|im_start|>assistant" << '\n';
const char * ptr_tmpl = tmpl.empty() ? nullptr : tmpl.c_str();
std::vector<char> buf(alloc_size * 2);
LOG_VERBOSE("format_chatml", {{"text", chatml_msgs.str()}});
// run the first time to get the total output length
int32_t res = llama_chat_apply_template(model, ptr_tmpl, chat.data(), chat.size(), true, buf.data(), buf.size());
return chatml_msgs.str();
// if it turns out that our buffer is too small, we resize it
if ((size_t) res > buf.size()) {
buf.resize(res);
res = llama_chat_apply_template(model, ptr_tmpl, chat.data(), chat.size(), true, buf.data(), buf.size());
}
std::string formatted_chat(buf.data(), res);
LOG_VERBOSE("formatted_chat", {{"text", formatted_chat.c_str()}});
return formatted_chat;
}
//

View file

@ -150,6 +150,7 @@
packages =
{
default = config.legacyPackages.llamaPackages.llama-cpp;
vulkan = config.packages.default.override { useVulkan = true; };
}
// lib.optionalAttrs pkgs.stdenv.isLinux {
opencl = config.packages.default.override { useOpenCL = true; };
@ -157,7 +158,6 @@
mpi-cpu = config.packages.default.override { useMpi = true; };
mpi-cuda = config.packages.default.override { useMpi = true; };
vulkan = config.packages.default.override { useVulkan = true; };
}
// lib.optionalAttrs (system == "x86_64-linux") {
rocm = config.legacyPackages.llamaPackagesRocm.llama-cpp;

View file

@ -54,6 +54,8 @@
#define cudaDeviceProp hipDeviceProp_t
#define cudaDeviceSynchronize hipDeviceSynchronize
#define cudaError_t hipError_t
#define cudaErrorPeerAccessAlreadyEnabled hipErrorPeerAccessAlreadyEnabled
#define cudaErrorPeerAccessNotEnabled hipErrorPeerAccessNotEnabled
#define cudaEventCreateWithFlags hipEventCreateWithFlags
#define cudaEventDisableTiming hipEventDisableTiming
#define cudaEventRecord hipEventRecord
@ -9325,9 +9327,15 @@ static void ggml_cuda_set_peer_access(const int n_tokens) {
CUDA_CHECK(cudaDeviceCanAccessPeer(&can_access_peer, id, id_other));
if (can_access_peer) {
if (enable_peer_access) {
CUDA_CHECK(cudaDeviceEnablePeerAccess(id_other, 0));
cudaError_t err = cudaDeviceEnablePeerAccess(id_other, 0);
if (err != cudaErrorPeerAccessAlreadyEnabled) {
CUDA_CHECK(err);
}
} else {
CUDA_CHECK(cudaDeviceDisablePeerAccess(id_other));
cudaError_t err = cudaDeviceDisablePeerAccess(id_other);
if (err != cudaErrorPeerAccessNotEnabled) {
CUDA_CHECK(err);
}
}
}
}
@ -10999,10 +11007,10 @@ GGML_CALL static const char * ggml_backend_cuda_split_buffer_get_name(ggml_backe
UNUSED(buffer);
}
// unused at the moment
//static bool ggml_backend_buffer_is_cuda_split(ggml_backend_buffer_t buffer) {
// return buffer->iface.get_name == ggml_backend_cuda_split_buffer_get_name;
//}
static bool ggml_backend_buffer_is_cuda_split(ggml_backend_buffer_t buffer) {
return buffer->iface.get_name == ggml_backend_cuda_split_buffer_get_name;
UNUSED(ggml_backend_buffer_is_cuda_split); // only used in debug builds currently, avoid unused function warning in release builds
}
GGML_CALL static void ggml_backend_cuda_split_buffer_free_buffer(ggml_backend_buffer_t buffer) {
ggml_backend_cuda_split_buffer_context * ctx = (ggml_backend_cuda_split_buffer_context *)buffer->context;
@ -11390,7 +11398,7 @@ GGML_CALL static bool ggml_backend_cuda_graph_compute(ggml_backend_t backend, gg
for (int j = 0; j < GGML_MAX_SRC; j++) {
if (node->src[j] != nullptr) {
assert(node->src[j]->backend == GGML_BACKEND_GPU || node->src[j]->backend == GGML_BACKEND_GPU_SPLIT);
assert(node->src[j]->buffer->buft == ggml_backend_cuda_buffer_type(cuda_ctx->device));
assert(node->src[j]->buffer->buft == ggml_backend_cuda_buffer_type(cuda_ctx->device) || ggml_backend_buffer_is_cuda_split(node->src[j]->buffer));
assert(node->src[j]->extra != nullptr);
}
}

View file

@ -9188,174 +9188,22 @@ static void convert_mul_mat_vec_f16_sycl(const void *vx, const dfloat *y,
}
}
static void mul_mat_vec_q4_0_q8_1_sycl(const void *vx, const void *vy,
float *dst, const int ncols,
const int nrows,
dpct::queue_ptr stream) {
GGML_ASSERT(ncols % QK4_0 == 0);
const int block_num_y = (nrows + GGML_SYCL_MMV_Y - 1) / GGML_SYCL_MMV_Y;
const sycl::range<3> block_nums(1, 1, block_num_y);
const sycl::range<3> block_dims(1, GGML_SYCL_MMV_Y, WARP_SIZE);
stream->parallel_for(
sycl::nd_range<3>(block_nums * block_dims, block_dims),
[=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(32)]] {
mul_mat_vec_q<QK4_0, QI4_0, block_q4_0, VDR_Q4_0_Q8_1_MMVQ,
vec_dot_q4_0_q8_1>(vx, vy, dst, ncols, nrows,
item_ct1);
});
}
static void mul_mat_vec_q4_1_q8_1_sycl(const void *vx, const void *vy,
float *dst, const int ncols,
const int nrows,
dpct::queue_ptr stream) {
GGML_ASSERT(ncols % QK4_1 == 0);
const int block_num_y = (nrows + GGML_SYCL_MMV_Y - 1) / GGML_SYCL_MMV_Y;
const sycl::range<3> block_nums(1, 1, block_num_y);
const sycl::range<3> block_dims(1, GGML_SYCL_MMV_Y, WARP_SIZE);
stream->parallel_for(
sycl::nd_range<3>(block_nums * block_dims, block_dims),
[=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(32)]] {
mul_mat_vec_q<QK4_0, QI4_1, block_q4_1, VDR_Q4_1_Q8_1_MMVQ,
vec_dot_q4_1_q8_1>(vx, vy, dst, ncols, nrows,
item_ct1);
});
}
static void mul_mat_vec_q5_0_q8_1_sycl(const void *vx, const void *vy,
float *dst, const int ncols,
const int nrows,
dpct::queue_ptr stream) {
GGML_ASSERT(ncols % QK5_0 == 0);
const int block_num_y = (nrows + GGML_SYCL_MMV_Y - 1) / GGML_SYCL_MMV_Y;
const sycl::range<3> block_nums(1, 1, block_num_y);
const sycl::range<3> block_dims(1, GGML_SYCL_MMV_Y, WARP_SIZE);
stream->parallel_for(
sycl::nd_range<3>(block_nums * block_dims, block_dims),
[=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(32)]] {
mul_mat_vec_q<QK5_0, QI5_0, block_q5_0, VDR_Q5_0_Q8_1_MMVQ,
vec_dot_q5_0_q8_1>(vx, vy, dst, ncols, nrows,
item_ct1);
});
}
static void mul_mat_vec_q5_1_q8_1_sycl(const void *vx, const void *vy,
float *dst, const int ncols,
const int nrows,
dpct::queue_ptr stream) {
GGML_ASSERT(ncols % QK5_1 == 0);
const int block_num_y = (nrows + GGML_SYCL_MMV_Y - 1) / GGML_SYCL_MMV_Y;
const sycl::range<3> block_nums(1, 1, block_num_y);
const sycl::range<3> block_dims(1, GGML_SYCL_MMV_Y, WARP_SIZE);
stream->parallel_for(
sycl::nd_range<3>(block_nums * block_dims, block_dims),
[=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(32)]] {
mul_mat_vec_q<QK5_1, QI5_1, block_q5_1, VDR_Q5_1_Q8_1_MMVQ,
vec_dot_q5_1_q8_1>(vx, vy, dst, ncols, nrows,
item_ct1);
});
}
static void mul_mat_vec_q8_0_q8_1_sycl(const void *vx, const void *vy,
float *dst, const int ncols,
const int nrows,
dpct::queue_ptr stream) {
GGML_ASSERT(ncols % QK8_0 == 0);
const int block_num_y = (nrows + GGML_SYCL_MMV_Y - 1) / GGML_SYCL_MMV_Y;
const sycl::range<3> block_nums(1, 1, block_num_y);
const sycl::range<3> block_dims(1, GGML_SYCL_MMV_Y, WARP_SIZE);
stream->parallel_for(
sycl::nd_range<3>(block_nums * block_dims, block_dims),
[=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(32)]] {
mul_mat_vec_q<QK8_0, QI8_0, block_q8_0, VDR_Q8_0_Q8_1_MMVQ,
vec_dot_q8_0_q8_1>(vx, vy, dst, ncols, nrows,
item_ct1);
});
}
static void mul_mat_vec_q2_K_q8_1_sycl(const void *vx, const void *vy,
float *dst, const int ncols,
const int nrows,
dpct::queue_ptr stream) {
GGML_ASSERT(ncols % QK_K == 0);
const int block_num_y = (nrows + GGML_SYCL_MMV_Y - 1) / GGML_SYCL_MMV_Y;
const sycl::range<3> block_nums(1, 1, block_num_y);
const sycl::range<3> block_dims(1, GGML_SYCL_MMV_Y, WARP_SIZE);
stream->parallel_for(
sycl::nd_range<3>(block_nums * block_dims, block_dims),
[=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(32)]] {
mul_mat_vec_q<QK_K, QI2_K, block_q2_K, VDR_Q2_K_Q8_1_MMVQ,
vec_dot_q2_K_q8_1>(vx, vy, dst, ncols, nrows,
item_ct1);
});
}
static void mul_mat_vec_q3_K_q8_1_sycl(const void *vx, const void *vy,
float *dst, const int ncols,
const int nrows,
dpct::queue_ptr stream) {
GGML_ASSERT(ncols % QK_K == 0);
const int block_num_y = (nrows + GGML_SYCL_MMV_Y - 1) / GGML_SYCL_MMV_Y;
const sycl::range<3> block_nums(1, 1, block_num_y);
const sycl::range<3> block_dims(1, GGML_SYCL_MMV_Y, WARP_SIZE);
stream->parallel_for(
sycl::nd_range<3>(block_nums * block_dims, block_dims),
[=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(32)]] {
mul_mat_vec_q<QK_K, QI3_K, block_q3_K, VDR_Q3_K_Q8_1_MMVQ,
vec_dot_q3_K_q8_1>(vx, vy, dst, ncols, nrows,
item_ct1);
});
}
static void mul_mat_vec_q4_K_q8_1_sycl(const void *vx, const void *vy,
float *dst, const int ncols,
const int nrows,
dpct::queue_ptr stream) {
GGML_ASSERT(ncols % QK_K == 0);
const int block_num_y = (nrows + GGML_SYCL_MMV_Y - 1) / GGML_SYCL_MMV_Y;
const sycl::range<3> block_nums(1, 1, block_num_y);
const sycl::range<3> block_dims(1, GGML_SYCL_MMV_Y, WARP_SIZE);
stream->parallel_for(
sycl::nd_range<3>(block_nums * block_dims, block_dims),
[=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(32)]] {
mul_mat_vec_q<QK_K, QI4_K, block_q4_K, VDR_Q4_K_Q8_1_MMVQ,
vec_dot_q4_K_q8_1>(vx, vy, dst, ncols, nrows,
item_ct1);
});
}
static void mul_mat_vec_q5_K_q8_1_sycl(const void *vx, const void *vy,
float *dst, const int ncols,
const int nrows,
dpct::queue_ptr stream) {
GGML_ASSERT(ncols % QK_K == 0);
const int block_num_y = (nrows + GGML_SYCL_MMV_Y - 1) / GGML_SYCL_MMV_Y;
const sycl::range<3> block_nums(1, 1, block_num_y);
const sycl::range<3> block_dims(1, GGML_SYCL_MMV_Y, WARP_SIZE);
stream->parallel_for(
sycl::nd_range<3>(block_nums * block_dims, block_dims),
[=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(32)]] {
mul_mat_vec_q<QK_K, QI5_K, block_q5_K, VDR_Q5_K_Q8_1_MMVQ,
vec_dot_q5_K_q8_1>(vx, vy, dst, ncols, nrows,
item_ct1);
});
}
static void mul_mat_vec_q6_K_q8_1_sycl(const void *vx, const void *vy,
float *dst, const int ncols,
const int nrows,
dpct::queue_ptr stream) {
GGML_ASSERT(ncols % QK_K == 0);
const int block_num_y = (nrows + GGML_SYCL_MMV_Y - 1) / GGML_SYCL_MMV_Y;
const sycl::range<3> block_nums(1, 1, block_num_y);
const sycl::range<3> block_dims(1, GGML_SYCL_MMV_Y, WARP_SIZE);
stream->parallel_for(
sycl::nd_range<3>(block_nums * block_dims, block_dims),
[=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(32)]] {
mul_mat_vec_q<QK_K, QI6_K, block_q6_K, VDR_Q6_K_Q8_1_MMVQ,
vec_dot_q6_K_q8_1>(vx, vy, dst, ncols, nrows,
item_ct1);
});
template <int qk, int qi, typename block_q_t, int vdr,
vec_dot_q_sycl_t vec_dot_q_sycl>
static void mul_mat_vec_q_sycl_submitter(const void *vx, const void *vy,
float *dst, const int ncols,
const int nrows,
dpct::queue_ptr stream) {
GGML_ASSERT(ncols % QK4_0 == 0);
const int block_num_y = (nrows + GGML_SYCL_MMV_Y - 1) / GGML_SYCL_MMV_Y;
const sycl::range<3> block_nums(1, 1, block_num_y);
const sycl::range<3> block_dims(1, GGML_SYCL_MMV_Y, WARP_SIZE);
stream->parallel_for(
sycl::nd_range<3>(block_nums * block_dims, block_dims), [=
](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(32)]] {
mul_mat_vec_q<qk, qi, block_q_t, vdr, vec_dot_q_sycl>(
vx, vy, dst, ncols, nrows, item_ct1);
});
}
int get_device_index_by_id(int id){
@ -12095,37 +11943,63 @@ inline void ggml_sycl_op_mul_mat_vec_q(
const int64_t ne00 = src0->ne[0];
const int64_t row_diff = row_high - row_low;
// TODO: support these quantization types
GGML_ASSERT(!(src0->type == GGML_TYPE_IQ2_XXS ||
src0->type == GGML_TYPE_IQ2_XS ||
src0->type == GGML_TYPE_IQ3_XXS ||
src0->type == GGML_TYPE_IQ1_S));
switch (src0->type) {
case GGML_TYPE_Q4_0:
mul_mat_vec_q4_0_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream);
break;
mul_mat_vec_q_sycl_submitter<QK4_0, QI4_0, block_q4_0,
VDR_Q4_0_Q8_1_MMVQ, vec_dot_q4_0_q8_1>(
src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream);
break;
case GGML_TYPE_Q4_1:
mul_mat_vec_q4_1_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream);
break;
mul_mat_vec_q_sycl_submitter<QK4_1, QI4_1, block_q4_1,
VDR_Q4_1_Q8_1_MMVQ, vec_dot_q4_1_q8_1>(
src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream);
break;
case GGML_TYPE_Q5_0:
mul_mat_vec_q5_0_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream);
break;
mul_mat_vec_q_sycl_submitter<QK5_0, QI5_0, block_q5_0,
VDR_Q5_0_Q8_1_MMVQ, vec_dot_q5_0_q8_1>(
src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream);
break;
case GGML_TYPE_Q5_1:
mul_mat_vec_q5_1_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream);
break;
mul_mat_vec_q_sycl_submitter<QK5_1, QI5_1, block_q5_1,
VDR_Q5_1_Q8_1_MMVQ, vec_dot_q5_1_q8_1>(
src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream);
break;
case GGML_TYPE_Q8_0:
mul_mat_vec_q8_0_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream);
break;
mul_mat_vec_q_sycl_submitter<QK8_0, QI8_0, block_q8_0,
VDR_Q8_0_Q8_1_MMVQ, vec_dot_q8_0_q8_1>(
src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream);
break;
case GGML_TYPE_Q2_K:
mul_mat_vec_q2_K_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream);
break;
mul_mat_vec_q_sycl_submitter<QK_K, QI2_K, block_q2_K,
VDR_Q2_K_Q8_1_MMVQ, vec_dot_q2_K_q8_1>(
src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream);
break;
case GGML_TYPE_Q3_K:
mul_mat_vec_q3_K_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream);
break;
mul_mat_vec_q_sycl_submitter<QK_K, QI3_K, block_q3_K,
VDR_Q3_K_Q8_1_MMVQ, vec_dot_q3_K_q8_1>(
src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream);
break;
case GGML_TYPE_Q4_K:
mul_mat_vec_q4_K_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream);
break;
mul_mat_vec_q_sycl_submitter<QK_K, QI4_K, block_q4_K,
VDR_Q4_K_Q8_1_MMVQ, vec_dot_q4_K_q8_1>(
src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream);
break;
case GGML_TYPE_Q5_K:
mul_mat_vec_q5_K_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream);
break;
mul_mat_vec_q_sycl_submitter<QK_K, QI5_K, block_q5_K,
VDR_Q5_K_Q8_1_MMVQ, vec_dot_q5_K_q8_1>(
src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream);
break;
case GGML_TYPE_Q6_K:
mul_mat_vec_q6_K_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream);
break;
mul_mat_vec_q_sycl_submitter<QK_K, QI6_K, block_q6_K,
VDR_Q6_K_Q8_1_MMVQ, vec_dot_q6_K_q8_1>(
src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream);
break;
default:
GGML_ASSERT(false);
break;
@ -12145,7 +12019,7 @@ inline void ggml_sycl_op_dequantize_mul_mat_vec(
const int64_t src1_ncols, const int64_t src1_padded_row_size,
const dpct::queue_ptr &stream) {
GGML_TENSOR_BINARY_OP_LOCALS
GGML_TENSOR_BINARY_OP_LOCALS;
const int64_t row_diff = row_high - row_low;
@ -15093,6 +14967,12 @@ static bool ggml_backend_sycl_supports_op(ggml_backend_t backend, const ggml_ten
return false;
}
if (a->type == GGML_TYPE_IQ1_S) {
return false;
}
if (a->type == GGML_TYPE_IQ3_XXS) {
return false;
}
if (a->type == GGML_TYPE_IQ2_XXS) {
return false;
}

View file

@ -1091,7 +1091,10 @@ static void ggml_vk_print_gpu_info(size_t idx) {
}
}
static void ggml_vk_instance_init() {
static bool ggml_vk_instance_validation_ext_available(const std::vector<vk::ExtensionProperties>& instance_extensions);
static bool ggml_vk_instance_portability_enumeration_ext_available(const std::vector<vk::ExtensionProperties>& instance_extensions);
void ggml_vk_instance_init() {
if (vk_instance_initialized) {
return;
}
@ -1100,28 +1103,42 @@ static void ggml_vk_instance_init() {
#endif
vk::ApplicationInfo app_info{ "ggml-vulkan", 1, nullptr, 0, VK_API_VERSION };
const std::vector<const char*> layers = {
#ifdef GGML_VULKAN_VALIDATE
"VK_LAYER_KHRONOS_validation",
#endif
};
const std::vector<const char*> extensions = {
#ifdef GGML_VULKAN_VALIDATE
"VK_EXT_validation_features",
#endif
};
vk::InstanceCreateInfo instance_create_info(vk::InstanceCreateFlags(), &app_info, layers, extensions);
#ifdef GGML_VULKAN_VALIDATE
const std::vector<vk::ValidationFeatureEnableEXT> features_enable = { vk::ValidationFeatureEnableEXT::eBestPractices };
vk::ValidationFeaturesEXT validation_features = {
features_enable,
{},
};
validation_features.setPNext(nullptr);
instance_create_info.setPNext(&validation_features);
std::cerr << "ggml_vulkan: Validation layers enabled" << std::endl;
#endif
const std::vector<vk::ExtensionProperties> instance_extensions = vk::enumerateInstanceExtensionProperties();
const bool validation_ext = ggml_vk_instance_validation_ext_available(instance_extensions);
const bool portability_enumeration_ext = ggml_vk_instance_portability_enumeration_ext_available(instance_extensions);
std::vector<const char*> layers;
if (validation_ext) {
layers.push_back("VK_LAYER_KHRONOS_validation");
}
std::vector<const char*> extensions;
if (validation_ext) {
extensions.push_back("VK_EXT_validation_features");
}
if (portability_enumeration_ext) {
extensions.push_back("VK_KHR_portability_enumeration");
}
vk::InstanceCreateInfo instance_create_info(vk::InstanceCreateFlags{}, &app_info, layers, extensions);
if (portability_enumeration_ext) {
instance_create_info.flags |= vk::InstanceCreateFlagBits::eEnumeratePortabilityKHR;
}
std::vector<vk::ValidationFeatureEnableEXT> features_enable;
vk::ValidationFeaturesEXT validation_features;
if (validation_ext) {
features_enable = { vk::ValidationFeatureEnableEXT::eBestPractices };
validation_features = {
features_enable,
{},
};
validation_features.setPNext(nullptr);
instance_create_info.setPNext(&validation_features);
std::cerr << "ggml_vulkan: Validation layers enabled" << std::endl;
}
vk_instance.instance = vk::createInstance(instance_create_info);
memset(vk_instance.initialized, 0, sizeof(bool) * GGML_VK_MAX_DEVICES);
@ -1168,12 +1185,12 @@ static void ggml_vk_init(ggml_backend_vk_context * ctx, size_t idx) {
vk_instance.devices[idx] = std::make_shared<vk_device>();
ctx->device = vk_instance.devices[idx];
ctx->device.lock()->physical_device = devices[dev_num];
std::vector<vk::ExtensionProperties> ext_props = ctx->device.lock()->physical_device.enumerateDeviceExtensionProperties();
const std::vector<vk::ExtensionProperties> ext_props = ctx->device.lock()->physical_device.enumerateDeviceExtensionProperties();
bool maintenance4_support = false;
// Check if maintenance4 is supported
for (auto properties : ext_props) {
for (const auto& properties : ext_props) {
if (strcmp("VK_KHR_maintenance4", properties.extensionName) == 0) {
maintenance4_support = true;
}
@ -1204,7 +1221,7 @@ static void ggml_vk_init(ggml_backend_vk_context * ctx, size_t idx) {
bool fp16_storage = false;
bool fp16_compute = false;
for (auto properties : ext_props) {
for (const auto& properties : ext_props) {
if (strcmp("VK_KHR_16bit_storage", properties.extensionName) == 0) {
fp16_storage = true;
} else if (strcmp("VK_KHR_shader_float16_int8", properties.extensionName) == 0) {
@ -5301,6 +5318,42 @@ GGML_CALL int ggml_backend_vk_reg_devices() {
return vk_instance.device_indices.size();
}
// Extension availability
static bool ggml_vk_instance_validation_ext_available(const std::vector<vk::ExtensionProperties>& instance_extensions) {
#ifdef GGML_VULKAN_VALIDATE
bool portability_enumeration_ext = false;
// Check for portability enumeration extension for MoltenVK support
for (const auto& properties : instance_extensions) {
if (strcmp("VK_KHR_portability_enumeration", properties.extensionName) == 0) {
return true;
}
}
if (!portability_enumeration_ext) {
std::cerr << "ggml_vulkan: WARNING: Instance extension VK_KHR_portability_enumeration not found." << std::endl;
}
#endif
return false;
UNUSED(instance_extensions);
}
static bool ggml_vk_instance_portability_enumeration_ext_available(const std::vector<vk::ExtensionProperties>& instance_extensions) {
#ifdef __APPLE__
bool portability_enumeration_ext = false;
// Check for portability enumeration extension for MoltenVK support
for (const auto& properties : instance_extensions) {
if (strcmp("VK_KHR_portability_enumeration", properties.extensionName) == 0) {
return true;
}
}
if (!portability_enumeration_ext) {
std::cerr << "ggml_vulkan: WARNING: Instance extension VK_KHR_portability_enumeration not found." << std::endl;
}
#endif
return false;
UNUSED(instance_extensions);
}
// checks
#ifdef GGML_VULKAN_CHECK_RESULTS

2
ggml.c
View file

@ -273,6 +273,8 @@ inline static void * ggml_calloc(size_t num, size_t size) {
#include <Accelerate/Accelerate.h>
#if defined(GGML_USE_CLBLAST) // allow usage of CLBlast alongside Accelerate functions
#include "ggml-opencl.h"
#elif defined(GGML_USE_VULKAN)
#include "ggml-vulkan.h"
#endif
#elif defined(GGML_USE_OPENBLAS)
#if defined(GGML_BLAS_USE_MKL)

View file

@ -12602,7 +12602,7 @@ LLAMA_API int32_t llama_chat_apply_template(
// load template from model
std::vector<char> model_template(2048, 0); // longest known template is about 1200 bytes
std::string template_key = "tokenizer.chat_template";
int32_t res = llama_model_meta_val_str(model, template_key.c_str(), model_template.data(), curr_tmpl.size());
int32_t res = llama_model_meta_val_str(model, template_key.c_str(), model_template.data(), model_template.size());
if (res < 0) {
// worst case: there is no information about template, we will use chatml by default
curr_tmpl = "<|im_start|>"; // see llama_chat_apply_template_internal