From 95b6e5212f5e4e1419de1d833d7f8d788f9f2227 Mon Sep 17 00:00:00 2001 From: Marcus Dunn <51931484+MarcusDunn@users.noreply.github.com> Date: Mon, 28 Aug 2023 23:33:27 -0700 Subject: [PATCH 01/21] added `struct` to llama_dump_timing_info_yaml's `llama_context` (#2857) fixes C compat. --- llama.h | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/llama.h b/llama.h index b38d3be20..6e5e1df63 100644 --- a/llama.h +++ b/llama.h @@ -521,7 +521,7 @@ extern "C" { // If this is not called, or NULL is supplied, everything is output on stderr. LLAMA_API void llama_log_set(llama_log_callback log_callback, void * user_data); - LLAMA_API void llama_dump_timing_info_yaml(FILE * stream, const llama_context * ctx); + LLAMA_API void llama_dump_timing_info_yaml(FILE * stream, const struct llama_context * ctx); #ifdef __cplusplus } From 611363ac791435497e66278dfe31ac8a4e11fa4f Mon Sep 17 00:00:00 2001 From: Georgi Gerganov Date: Tue, 29 Aug 2023 10:50:30 +0300 Subject: [PATCH 02/21] scripts : add pipefail --- scripts/qnt-all.sh | 1 + scripts/run-all-perf.sh | 1 + scripts/run-all-ppl.sh | 1 + 3 files changed, 3 insertions(+) diff --git a/scripts/qnt-all.sh b/scripts/qnt-all.sh index 1376e4194..b4c2a159e 100755 --- a/scripts/qnt-all.sh +++ b/scripts/qnt-all.sh @@ -20,6 +20,7 @@ fi model="$1" out="../tmp/results-${model}" +set -o pipefail set -e mkdir -p ${out} diff --git a/scripts/run-all-perf.sh b/scripts/run-all-perf.sh index 7391e3dd5..6384e364d 100755 --- a/scripts/run-all-perf.sh +++ b/scripts/run-all-perf.sh @@ -20,6 +20,7 @@ fi model="$1" out="../tmp/results-${model}" +set -o pipefail set -e mkdir -p ${out} diff --git a/scripts/run-all-ppl.sh b/scripts/run-all-ppl.sh index f643ca3ae..e04d61d7f 100755 --- a/scripts/run-all-ppl.sh +++ b/scripts/run-all-ppl.sh @@ -17,6 +17,7 @@ if [ ! -z "$3" ]; then args="$3" fi +set -o pipefail set -e model="$1" From 3a007648f230ea37d6cca5e63850f04ebb12d2cf Mon Sep 17 00:00:00 2001 From: Georgi Gerganov Date: Tue, 29 Aug 2023 11:33:46 +0300 Subject: [PATCH 03/21] metal : add option to disable debug logs (close #2764) --- CMakeLists.txt | 2 +- Makefile | 2 +- ggml-metal.m | 71 +++++++++++++++++++++++--------------------------- 3 files changed, 35 insertions(+), 40 deletions(-) diff --git a/CMakeLists.txt b/CMakeLists.txt index ba008bcc6..1eae2d670 100644 --- a/CMakeLists.txt +++ b/CMakeLists.txt @@ -301,7 +301,7 @@ if (LLAMA_METAL) set(GGML_SOURCES_METAL ggml-metal.m ggml-metal.h) add_compile_definitions(GGML_USE_METAL) - add_compile_definitions(GGML_METAL_NDEBUG) + #add_compile_definitions(GGML_METAL_NDEBUG) # get full path to the file #add_compile_definitions(GGML_METAL_DIR_KERNELS="${CMAKE_CURRENT_SOURCE_DIR}/") diff --git a/Makefile b/Makefile index e60821dd5..a64374e7d 100644 --- a/Makefile +++ b/Makefile @@ -305,7 +305,7 @@ ggml-cuda.o: ggml-cuda.cu ggml-cuda.h endif # LLAMA_HIPBLAS ifdef LLAMA_METAL - CFLAGS += -DGGML_USE_METAL -DGGML_METAL_NDEBUG + CFLAGS += -DGGML_USE_METAL #-DGGML_METAL_NDEBUG CXXFLAGS += -DGGML_USE_METAL LDFLAGS += -framework Foundation -framework Metal -framework MetalKit OBJS += ggml-metal.o diff --git a/ggml-metal.m b/ggml-metal.m index ad2ee8cf5..e929c4b07 100644 --- a/ggml-metal.m +++ b/ggml-metal.m @@ -11,6 +11,7 @@ #define MIN(a, b) ((a) < (b) ? (a) : (b)) #define MAX(a, b) ((a) > (b) ? (a) : (b)) +// TODO: temporary - reuse llama.cpp logging #ifdef GGML_METAL_NDEBUG #define metal_printf(...) #else @@ -113,7 +114,7 @@ static NSString * const msl_library_source = @"see metal.metal"; @end struct ggml_metal_context * ggml_metal_init(int n_cb) { - fprintf(stderr, "%s: allocating\n", __func__); + metal_printf("%s: allocating\n", __func__); struct ggml_metal_context * ctx = malloc(sizeof(struct ggml_metal_context)); @@ -132,7 +133,7 @@ struct ggml_metal_context * ggml_metal_init(int n_cb) { ctx->library = [ctx->device newLibraryWithSource:msl_library_source options:nil error:&error]; if (error) { - fprintf(stderr, "%s: error: %s\n", __func__, [[error description] UTF8String]); + metal_printf("%s: error: %s\n", __func__, [[error description] UTF8String]); return NULL; } } @@ -146,11 +147,11 @@ struct ggml_metal_context * ggml_metal_init(int n_cb) { //NSString * path = [[NSBundle mainBundle] pathForResource:@"../../examples/metal/metal" ofType:@"metal"]; NSBundle * bundle = [NSBundle bundleForClass:[GGMLMetalClass class]]; NSString * path = [bundle pathForResource:@"ggml-metal" ofType:@"metal"]; - fprintf(stderr, "%s: loading '%s'\n", __func__, [path UTF8String]); + metal_printf("%s: loading '%s'\n", __func__, [path UTF8String]); NSString * src = [NSString stringWithContentsOfFile:path encoding:NSUTF8StringEncoding error:&error]; if (error) { - fprintf(stderr, "%s: error: %s\n", __func__, [[error description] UTF8String]); + metal_printf("%s: error: %s\n", __func__, [[error description] UTF8String]); return NULL; } @@ -162,7 +163,7 @@ struct ggml_metal_context * ggml_metal_init(int n_cb) { ctx->library = [ctx->device newLibraryWithSource:src options:nil error:&error]; #endif if (error) { - fprintf(stderr, "%s: error: %s\n", __func__, [[error description] UTF8String]); + metal_printf("%s: error: %s\n", __func__, [[error description] UTF8String]); return NULL; } } @@ -174,11 +175,11 @@ struct ggml_metal_context * ggml_metal_init(int n_cb) { #define GGML_METAL_ADD_KERNEL(name) \ ctx->function_##name = [ctx->library newFunctionWithName:@"kernel_"#name]; \ ctx->pipeline_##name = [ctx->device newComputePipelineStateWithFunction:ctx->function_##name error:&error]; \ - fprintf(stderr, "%s: loaded %-32s %16p | th_max = %4d | th_width = %4d\n", __func__, "kernel_"#name, (void *) ctx->pipeline_##name, \ + metal_printf("%s: loaded %-32s %16p | th_max = %4d | th_width = %4d\n", __func__, "kernel_"#name, (void *) ctx->pipeline_##name, \ (int) ctx->pipeline_##name.maxTotalThreadsPerThreadgroup, \ (int) ctx->pipeline_##name.threadExecutionWidth); \ if (error) { \ - fprintf(stderr, "%s: load pipeline error: %s\n", __func__, [[error description] UTF8String]); \ + metal_printf("%s: load pipeline error: %s\n", __func__, [[error description] UTF8String]); \ return NULL; \ } @@ -230,19 +231,19 @@ struct ggml_metal_context * ggml_metal_init(int n_cb) { #undef GGML_METAL_ADD_KERNEL } - fprintf(stderr, "%s: recommendedMaxWorkingSetSize = %8.2f MB\n", __func__, ctx->device.recommendedMaxWorkingSetSize / 1024.0 / 1024.0); - fprintf(stderr, "%s: hasUnifiedMemory = %s\n", __func__, ctx->device.hasUnifiedMemory ? "true" : "false"); + metal_printf("%s: recommendedMaxWorkingSetSize = %8.2f MB\n", __func__, ctx->device.recommendedMaxWorkingSetSize / 1024.0 / 1024.0); + metal_printf("%s: hasUnifiedMemory = %s\n", __func__, ctx->device.hasUnifiedMemory ? "true" : "false"); if (ctx->device.maxTransferRate != 0) { - fprintf(stderr, "%s: maxTransferRate = %8.2f MB/s\n", __func__, ctx->device.maxTransferRate / 1024.0 / 1024.0); + metal_printf("%s: maxTransferRate = %8.2f MB/s\n", __func__, ctx->device.maxTransferRate / 1024.0 / 1024.0); } else { - fprintf(stderr, "%s: maxTransferRate = built-in GPU\n", __func__); + metal_printf("%s: maxTransferRate = built-in GPU\n", __func__); } return ctx; } void ggml_metal_free(struct ggml_metal_context * ctx) { - fprintf(stderr, "%s: deallocating\n", __func__); + metal_printf("%s: deallocating\n", __func__); #define GGML_METAL_DEL_KERNEL(name) \ [ctx->function_##name release]; \ [ctx->pipeline_##name release]; @@ -311,7 +312,7 @@ void * ggml_metal_host_malloc(size_t n) { void * data = NULL; const int result = posix_memalign((void **) &data, getpagesize(), n); if (result != 0) { - fprintf(stderr, "%s: error: posix_memalign failed\n", __func__); + metal_printf("%s: error: posix_memalign failed\n", __func__); return NULL; } @@ -339,7 +340,7 @@ int * ggml_metal_get_concur_list(struct ggml_metal_context * ctx) { // Metal buffer based on the host memory pointer // static id ggml_metal_get_buffer(struct ggml_metal_context * ctx, struct ggml_tensor * t, size_t * offs) { - //fprintf(stderr, "%s: data tensor '%16s', offs_data = %8ld, offs_eval = %8ld, offs_cach = %8ld\n", __func__, t->name, offs_data, offs_eval, offs_cach); + //metal_printf("%s: data tensor '%16s', offs_data = %8ld, offs_eval = %8ld, offs_cach = %8ld\n", __func__, t->name, offs_data, offs_eval, offs_cach); const int64_t tsize = ggml_nbytes(t); @@ -350,13 +351,13 @@ static id ggml_metal_get_buffer(struct ggml_metal_context * ctx, stru if (ioffs >= 0 && ioffs + tsize <= (int64_t) ctx->buffers[i].size) { *offs = (size_t) ioffs; - //fprintf(stderr, "%s: '%s' tensor '%16s', offs = %8ld\n", __func__, ctx->buffers[i].name, t->name, *offs); + //metal_printf("%s: '%s' tensor '%16s', offs = %8ld\n", __func__, ctx->buffers[i].name, t->name, *offs); return ctx->buffers[i].metal; } } - fprintf(stderr, "%s: error: buffer is nil\n", __func__); + metal_printf("%s: error: buffer is nil\n", __func__); return nil; } @@ -368,7 +369,7 @@ bool ggml_metal_add_buffer( size_t size, size_t max_size) { if (ctx->n_buffers >= GGML_METAL_MAX_BUFFERS) { - fprintf(stderr, "%s: too many buffers\n", __func__); + metal_printf("%s: too many buffers\n", __func__); return false; } @@ -378,7 +379,7 @@ bool ggml_metal_add_buffer( const int64_t ioffs = (int64_t) data - (int64_t) ctx->buffers[i].data; if (ioffs >= 0 && ioffs < (int64_t) ctx->buffers[i].size) { - fprintf(stderr, "%s: error: buffer '%s' overlaps with '%s'\n", __func__, name, ctx->buffers[i].name); + metal_printf("%s: error: buffer '%s' overlaps with '%s'\n", __func__, name, ctx->buffers[i].name); return false; } } @@ -399,11 +400,11 @@ bool ggml_metal_add_buffer( ctx->buffers[ctx->n_buffers].metal = [ctx->device newBufferWithBytesNoCopy:data length:size_aligned options:MTLResourceStorageModeShared deallocator:nil]; if (ctx->buffers[ctx->n_buffers].metal == nil) { - fprintf(stderr, "%s: failed to allocate '%-16s' buffer, size = %8.2f MB\n", __func__, name, size_aligned / 1024.0 / 1024.0); + metal_printf("%s: failed to allocate '%-16s' buffer, size = %8.2f MB\n", __func__, name, size_aligned / 1024.0 / 1024.0); return false; } - fprintf(stderr, "%s: allocated '%-16s' buffer, size = %8.2f MB", __func__, name, size_aligned / 1024.0 / 1024.0); + metal_printf("%s: allocated '%-16s' buffer, size = %8.2f MB", __func__, name, size_aligned / 1024.0 / 1024.0); ++ctx->n_buffers; } else { @@ -423,27 +424,27 @@ bool ggml_metal_add_buffer( ctx->buffers[ctx->n_buffers].metal = [ctx->device newBufferWithBytesNoCopy:(void *) ((uint8_t *) data + i) length:size_step_aligned options:MTLResourceStorageModeShared deallocator:nil]; if (ctx->buffers[ctx->n_buffers].metal == nil) { - fprintf(stderr, "%s: failed to allocate '%-16s' buffer, size = %8.2f MB\n", __func__, name, size_step_aligned / 1024.0 / 1024.0); + metal_printf("%s: failed to allocate '%-16s' buffer, size = %8.2f MB\n", __func__, name, size_step_aligned / 1024.0 / 1024.0); return false; } - fprintf(stderr, "%s: allocated '%-16s' buffer, size = %8.2f MB, offs = %12ld", __func__, name, size_step_aligned / 1024.0 / 1024.0, i); + metal_printf("%s: allocated '%-16s' buffer, size = %8.2f MB, offs = %12ld", __func__, name, size_step_aligned / 1024.0 / 1024.0, i); if (i + size_step < size) { - fprintf(stderr, "\n"); + metal_printf("\n"); } ++ctx->n_buffers; } } - fprintf(stderr, ", (%8.2f / %8.2f)", + metal_printf(", (%8.2f / %8.2f)", ctx->device.currentAllocatedSize / 1024.0 / 1024.0, ctx->device.recommendedMaxWorkingSetSize / 1024.0 / 1024.0); if (ctx->device.currentAllocatedSize > ctx->device.recommendedMaxWorkingSetSize) { - fprintf(stderr, ", warning: current allocated size is greater than the recommended max working set size\n"); + metal_printf(", warning: current allocated size is greater than the recommended max working set size\n"); } else { - fprintf(stderr, "\n"); + metal_printf("\n"); } } @@ -453,8 +454,6 @@ bool ggml_metal_add_buffer( void ggml_metal_set_tensor( struct ggml_metal_context * ctx, struct ggml_tensor * t) { - metal_printf("%s: set input for tensor '%s'\n", __func__, t->name); - size_t offs; id id_dst = ggml_metal_get_buffer(ctx, t, &offs); @@ -464,8 +463,6 @@ void ggml_metal_set_tensor( void ggml_metal_get_tensor( struct ggml_metal_context * ctx, struct ggml_tensor * t) { - metal_printf("%s: extract results for tensor '%s'\n", __func__, t->name); - size_t offs; id id_src = ggml_metal_get_buffer(ctx, t, &offs); @@ -560,15 +557,13 @@ void ggml_metal_graph_find_concurrency( } if (ctx->concur_list_len > GGML_MAX_CONCUR) { - fprintf(stderr, "%s: too many elements for metal ctx->concur_list!\n", __func__); + metal_printf("%s: too many elements for metal ctx->concur_list!\n", __func__); } } void ggml_metal_graph_compute( struct ggml_metal_context * ctx, struct ggml_cgraph * gf) { - metal_printf("%s: evaluating graph\n", __func__); - @autoreleasepool { // if there is ctx->concur_list, dispatch concurrently @@ -616,7 +611,7 @@ void ggml_metal_graph_compute( continue; } - metal_printf("%s: encoding node %3d, op = %8s\n", __func__, i, ggml_op_name(gf->nodes[i]->op)); + //metal_printf("%s: encoding node %3d, op = %8s\n", __func__, i, ggml_op_name(gf->nodes[i]->op)); struct ggml_tensor * src0 = gf->nodes[i]->src[0]; struct ggml_tensor * src1 = gf->nodes[i]->src[1]; @@ -764,7 +759,7 @@ void ggml_metal_graph_compute( } break; default: { - fprintf(stderr, "%s: node %3d, op = %8s not implemented\n", __func__, i, ggml_op_name(dst->op)); + metal_printf("%s: node %3d, op = %8s not implemented\n", __func__, i, ggml_op_name(dst->op)); GGML_ASSERT(false); } } break; @@ -923,7 +918,7 @@ void ggml_metal_graph_compute( } break; default: { - fprintf(stderr, "Asserting on type %d\n",(int)src0t); + metal_printf("Asserting on type %d\n",(int)src0t); GGML_ASSERT(false && "not implemented"); } }; @@ -1161,7 +1156,7 @@ void ggml_metal_graph_compute( } break; default: { - fprintf(stderr, "%s: node %3d, op = %8s not implemented\n", __func__, i, ggml_op_name(dst->op)); + metal_printf("%s: node %3d, op = %8s not implemented\n", __func__, i, ggml_op_name(dst->op)); GGML_ASSERT(false); } } @@ -1186,7 +1181,7 @@ void ggml_metal_graph_compute( MTLCommandBufferStatus status = (MTLCommandBufferStatus) [ctx->command_buffers[i] status]; if (status != MTLCommandBufferStatusCompleted) { - fprintf(stderr, "%s: command buffer %d failed with status %lu\n", __func__, i, status); + metal_printf("%s: command buffer %d failed with status %lu\n", __func__, i, status); GGML_ASSERT(false); } } From d4b5e16c32ba9c5fa6bbd035e80a99c113050cde Mon Sep 17 00:00:00 2001 From: Cebtenzzre Date: Tue, 29 Aug 2023 04:42:41 -0400 Subject: [PATCH 04/21] make : fix clang tests build, add missing examples (#2859) * make : do not pass headers to the compiler This fixes building tests with clang. * make : add missing examples * make : fix build-info.h dependencies --- Makefile | 49 ++++++++++++++++++++++++++++++++----------------- 1 file changed, 32 insertions(+), 17 deletions(-) diff --git a/Makefile b/Makefile index a64374e7d..02ba3e36d 100644 --- a/Makefile +++ b/Makefile @@ -1,5 +1,5 @@ # Define the default target now so that it is always the first target -BUILD_TARGETS = main quantize quantize-stats perplexity embedding vdot train-text-from-scratch convert-llama2c-to-ggml simple server embd-input-test gguf llama-bench +BUILD_TARGETS = main quantize quantize-stats perplexity embedding vdot train-text-from-scratch convert-llama2c-to-ggml simple save-load-state server embd-input-test gguf llama-bench baby-llama beam_search # Binaries only useful for tests TEST_TARGETS = tests/test-llama-grammar tests/test-grammar-parser tests/test-double-float tests/test-grad0 tests/test-opt tests/test-quantize-fns tests/test-quantize-perf tests/test-sampling tests/test-tokenizer-0-llama tests/test-tokenizer-0-falcon tests/test-tokenizer-1 @@ -356,7 +356,7 @@ OBJS += ggml-alloc.o llama.o: llama.cpp ggml.h ggml-alloc.h ggml-cuda.h ggml-metal.h llama.h $(CXX) $(CXXFLAGS) -c $< -o $@ -common.o: common/common.cpp common/common.h +common.o: common/common.cpp common/common.h build-info.h $(CXX) $(CXXFLAGS) -c $< -o $@ console.o: common/console.cpp common/console.h @@ -369,7 +369,7 @@ libllama.so: llama.o ggml.o $(OBJS) $(CXX) $(CXXFLAGS) -shared -fPIC -o $@ $^ $(LDFLAGS) clean: - rm -vf *.o *.so *.dll main quantize quantize-stats perplexity embedding benchmark-matmult save-load-state server simple vdot train-text-from-scratch convert-llama2c-to-ggml embd-input-test gguf llama-bench build-info.h $(TEST_TARGETS) + rm -vf *.o *.so *.dll benchmark-matmult build-info.h $(BUILD_TARGETS) $(TEST_TARGETS) # # Examples @@ -409,18 +409,33 @@ $(LIB_PRE)embdinput$(DSO_EXT): examples/embd-input/embd-input.h examples/embd-in embd-input-test: $(LIB_PRE)embdinput$(DSO_EXT) examples/embd-input/embd-input-test.cpp build-info.h ggml.o llama.o common.o $(OBJS) $(CXX) $(CXXFLAGS) $(filter-out %$(DSO_EXT),$(filter-out %.h,$(filter-out %.hpp,$^))) -o $@ $(LDFLAGS) -L. -lembdinput -gguf: examples/gguf/gguf.cpp build-info.h ggml.o llama.o $(OBJS) +gguf: examples/gguf/gguf.cpp ggml.o llama.o $(OBJS) $(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS) -train-text-from-scratch: examples/train-text-from-scratch/train-text-from-scratch.cpp build-info.h ggml.o llama.o common.o $(OBJS) +train-text-from-scratch: examples/train-text-from-scratch/train-text-from-scratch.cpp ggml.o llama.o common.o $(OBJS) $(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS) -convert-llama2c-to-ggml: examples/convert-llama2c-to-ggml/convert-llama2c-to-ggml.cpp build-info.h ggml.o llama.o $(OBJS) +convert-llama2c-to-ggml: examples/convert-llama2c-to-ggml/convert-llama2c-to-ggml.cpp ggml.o llama.o $(OBJS) $(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS) llama-bench: examples/llama-bench/llama-bench.cpp build-info.h ggml.o llama.o common.o $(OBJS) $(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS) +baby-llama: examples/baby-llama/baby-llama.cpp ggml.o llama.o common.o $(OBJS) + $(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS) + +beam_search: examples/beam_search/beam_search.cpp build-info.h ggml.o llama.o common.o $(OBJS) + $(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS) + +ifneq '' '$(or $(filter clean,$(MAKECMDGOALS)),$(LLAMA_METAL))' +BUILD_TARGETS += metal +endif + +ifdef LLAMA_METAL +metal: examples/metal/metal.cpp ggml.o $(OBJS) + $(CXX) $(CXXFLAGS) $^ -o $@ $(LDFLAGS) +endif + build-info.h: $(wildcard .git/index) scripts/build-info.sh @sh scripts/build-info.sh > $@.tmp @if ! cmp -s $@.tmp $@; then \ @@ -443,34 +458,34 @@ vdot: pocs/vdot/vdot.cpp ggml.o $(OBJS) $(CXX) $(CXXFLAGS) $^ -o $@ $(LDFLAGS) tests/test-llama-grammar: tests/test-llama-grammar.cpp build-info.h ggml.o common.o grammar-parser.o $(OBJS) - $(CXX) $(CXXFLAGS) $(filter-out %.txt,$^) -o $@ $(LDFLAGS) + $(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS) tests/test-grammar-parser: tests/test-grammar-parser.cpp build-info.h ggml.o llama.o common.o grammar-parser.o $(OBJS) - $(CXX) $(CXXFLAGS) $(filter-out %.txt,$^) -o $@ $(LDFLAGS) + $(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS) tests/test-double-float: tests/test-double-float.cpp build-info.h ggml.o llama.o common.o $(OBJS) - $(CXX) $(CXXFLAGS) $(filter-out %.txt,$^) -o $@ $(LDFLAGS) + $(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS) tests/test-grad0: tests/test-grad0.cpp build-info.h ggml.o llama.o common.o $(OBJS) - $(CXX) $(CXXFLAGS) $(filter-out %.txt,$^) -o $@ $(LDFLAGS) + $(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS) tests/test-opt: tests/test-opt.cpp build-info.h ggml.o llama.o common.o $(OBJS) - $(CXX) $(CXXFLAGS) $(filter-out %.txt,$^) -o $@ $(LDFLAGS) + $(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS) tests/test-quantize-fns: tests/test-quantize-fns.cpp build-info.h ggml.o llama.o common.o $(OBJS) - $(CXX) $(CXXFLAGS) $(filter-out %.txt,$^) -o $@ $(LDFLAGS) + $(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS) tests/test-quantize-perf: tests/test-quantize-perf.cpp build-info.h ggml.o llama.o common.o $(OBJS) - $(CXX) $(CXXFLAGS) $(filter-out %.txt,$^) -o $@ $(LDFLAGS) + $(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS) tests/test-sampling: tests/test-sampling.cpp build-info.h ggml.o llama.o common.o $(OBJS) - $(CXX) $(CXXFLAGS) $(filter-out %.txt,$^) -o $@ $(LDFLAGS) + $(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS) tests/test-tokenizer-0-falcon: tests/test-tokenizer-0-falcon.cpp build-info.h ggml.o llama.o common.o $(OBJS) - $(CXX) $(CXXFLAGS) $(filter-out %.txt,$^) -o $@ $(LDFLAGS) + $(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS) tests/test-tokenizer-0-llama: tests/test-tokenizer-0-llama.cpp build-info.h ggml.o llama.o common.o $(OBJS) - $(CXX) $(CXXFLAGS) $(filter-out %.txt,$^) -o $@ $(LDFLAGS) + $(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS) tests/test-tokenizer-1: tests/test-tokenizer-1.cpp build-info.h ggml.o llama.o common.o $(OBJS) - $(CXX) $(CXXFLAGS) $(filter-out %.txt,$^) -o $@ $(LDFLAGS) + $(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS) From 74e0caeb82fc9db77fa2cc93070bb919a9a935dd Mon Sep 17 00:00:00 2001 From: Jhen-Jie Hong Date: Tue, 29 Aug 2023 17:30:10 +0800 Subject: [PATCH 05/21] readme : add react-native binding (#2869) --- README.md | 1 + 1 file changed, 1 insertion(+) diff --git a/README.md b/README.md index bf3eb0b76..8d54a558d 100644 --- a/README.md +++ b/README.md @@ -113,6 +113,7 @@ as the main playground for developing new features for the [ggml](https://github - C#/.NET: [SciSharp/LLamaSharp](https://github.com/SciSharp/LLamaSharp) - Scala 3: [donderom/llm4s](https://github.com/donderom/llm4s) - Clojure: [phronmophobic/llama.clj](https://github.com/phronmophobic/llama.clj) +- React Native: [mybigday/llama.rn](https://github.com/mybigday/llama.rn) **UI:** From bcce96ba4dd95482824700c4ce2455fe8c49055a Mon Sep 17 00:00:00 2001 From: jameswu2014 <545426914@qq.com> Date: Tue, 29 Aug 2023 17:48:41 +0800 Subject: [PATCH 06/21] convert.py : fix baichuan7B support (#2870) * [Fix]: convert.py support baichuan7B * convert.py : fix trailing whitespaces --------- Co-authored-by: Georgi Gerganov --- convert.py | 7 ++++--- 1 file changed, 4 insertions(+), 3 deletions(-) diff --git a/convert.py b/convert.py index a15e6ccd2..3f0a1c932 100755 --- a/convert.py +++ b/convert.py @@ -469,7 +469,7 @@ class UnquantizedTensor(Tensor): def permute_part(self, n_part: int, n_head: int) -> 'UnquantizedTensor': r = self.ndarray.shape[0] // 3 - return UnquantizedTensor(permute(self.ndarray[r * n_part : r * n_part + r, ...], n_head)) + return UnquantizedTensor(permute(self.ndarray[r * n_part : r * n_part + r, ...], n_head, n_head)) def part(self, n_part: int) -> 'UnquantizedTensor': r = self.ndarray.shape[0] // 3 @@ -952,9 +952,10 @@ def convert_model_names(model: LazyModel, params: Params) -> LazyModel: #tmp[f"model.layers.{i}.self_attn.v_proj.weight"] = model[f"model.layers.{i}.self_attn.v_proj.weight"] elif f"model.layers.{i}.self_attn.W_pack.weight" in model: print(f"Unpacking and permuting layer {i}") - tmp[f"model.layers.{i}.self_attn.q_proj.weight"] = permute_part_lazy(model[f"model.layers.{i}.self_attn.W_pack.weight"], 0, params.n_head, params.n_head) - tmp[f"model.layers.{i}.self_attn.k_proj.weight"] = permute_part_lazy(model[f"model.layers.{i}.self_attn.W_pack.weight"], 1, params.n_head, params.n_head_kv) + tmp[f"model.layers.{i}.self_attn.q_proj.weight"] = permute_part_lazy(model[f"model.layers.{i}.self_attn.W_pack.weight"], 0, params.n_head) + tmp[f"model.layers.{i}.self_attn.k_proj.weight"] = permute_part_lazy(model[f"model.layers.{i}.self_attn.W_pack.weight"], 1, params.n_head) tmp[f"model.layers.{i}.self_attn.v_proj.weight"] = part_lazy (model[f"model.layers.{i}.self_attn.W_pack.weight"], 2) + del tmp[f"model.layers.{i}.self_attn.W_pack.weight"] else: break From 53885d7256909ec3e2176cdc2477f3986c15ec69 Mon Sep 17 00:00:00 2001 From: maddes8cht <55592906+maddes8cht@users.noreply.github.com> Date: Tue, 29 Aug 2023 15:51:02 +0200 Subject: [PATCH 07/21] py : fix "usage" messages (#2873) convert-to-gguf python scripts --- convert-falcon-hf-to-gguf.py | 2 +- convert-gptneox-hf-to-gguf.py | 2 +- convert-llama-7b-pth-to-gguf.py | 2 +- convert-llama-hf-to-gguf.py | 2 +- 4 files changed, 4 insertions(+), 4 deletions(-) diff --git a/convert-falcon-hf-to-gguf.py b/convert-falcon-hf-to-gguf.py index 411cbf682..168bcf17f 100755 --- a/convert-falcon-hf-to-gguf.py +++ b/convert-falcon-hf-to-gguf.py @@ -48,7 +48,7 @@ def count_model_parts(dir_model: str) -> int: if len(sys.argv) < 3: - print("Usage: convert-h5-to-ggml.py dir-model ftype\n") + print(f"Usage: python {sys.argv[0]} dir-model ftype\n") print(" ftype == 0 -> float32") print(" ftype == 1 -> float16") sys.exit(1) diff --git a/convert-gptneox-hf-to-gguf.py b/convert-gptneox-hf-to-gguf.py index 6eeff5bb1..d9c42d76b 100755 --- a/convert-gptneox-hf-to-gguf.py +++ b/convert-gptneox-hf-to-gguf.py @@ -50,7 +50,7 @@ def count_model_parts(dir_model: str) -> int: if len(sys.argv) < 3: - print("Usage: convert-h5-to-ggml.py dir-model ftype\n") + print(f"Usage: python {sys.argv[0]} dir-model ftype\n") print(" ftype == 0 -> float32") print(" ftype == 1 -> float16") sys.exit(1) diff --git a/convert-llama-7b-pth-to-gguf.py b/convert-llama-7b-pth-to-gguf.py index f103f5f61..2ab082383 100755 --- a/convert-llama-7b-pth-to-gguf.py +++ b/convert-llama-7b-pth-to-gguf.py @@ -32,7 +32,7 @@ def count_model_parts(dir_model: str) -> int: if len(sys.argv) < 3: - print("Usage: convert-h5-to-ggml.py dir-model ftype\n") + print(f"Usage: python {sys.argv[0]} dir-model ftype\n") print(" ftype == 0 -> float32") print(" ftype == 1 -> float16") diff --git a/convert-llama-hf-to-gguf.py b/convert-llama-hf-to-gguf.py index 08fde238b..b00810dbb 100755 --- a/convert-llama-hf-to-gguf.py +++ b/convert-llama-hf-to-gguf.py @@ -44,7 +44,7 @@ def count_model_parts(dir_model: str) -> int: if len(sys.argv) < 3: - print("Usage: convert-h5-to-ggml.py dir-model ftype\n") + print(f"Usage: python {sys.argv[0]} dir-model ftype\n") print(" ftype == 0 -> float32") print(" ftype == 1 -> float16") From e37e69dcc3d52f21222a63cafed2a71b3f6b53c6 Mon Sep 17 00:00:00 2001 From: Kawrakow <48489457+ikawrakow@users.noreply.github.com> Date: Tue, 29 Aug 2023 23:55:03 +0300 Subject: [PATCH 08/21] 10X faster BPE tokenizer (#2876) * 10X faster BPE tokenizer * Remove comment that no longer applies --------- Co-authored-by: Iwan Kawrakow --- llama.cpp | 19 +++++++++---------- 1 file changed, 9 insertions(+), 10 deletions(-) diff --git a/llama.cpp b/llama.cpp index 7cb468538..fcd6f276a 100644 --- a/llama.cpp +++ b/llama.cpp @@ -3211,7 +3211,7 @@ private: struct llm_bigram_bpe { struct comparator { - bool operator()(llm_bigram_bpe & l, llm_bigram_bpe & r) { + bool operator()(const llm_bigram_bpe & l, const llm_bigram_bpe & r) const { return l.rank > r.rank || (l.rank == r.rank && l.left > r.left); } }; @@ -3359,23 +3359,22 @@ private: } // probably not 100% correct - // TODO: this is quite slow - how to make it more efficient? - static std::vector bpe_gpt2_preprocess(std::string text) { + static std::vector bpe_gpt2_preprocess(const std::string & text) { std::vector words; // ref: https://github.com/openai/gpt-2/blob/a74da5d99abaaba920de8131d64da2862a8f213b/src/encoder.py#L53 const std::string pattern = R"('s|'t|'re|'ve|'m|'ll|'d| ?[[:alpha:]]+| ?[[:digit:]]+| ?[^\s[:alpha:][:digit:]]+|\s+(?!\S)|\s+)"; const std::regex re(pattern); - std::smatch m; - while (std::regex_search(text, m, re)) { - for (auto x : m) { - words.push_back(x); - } - text = m.suffix(); + auto words_begin = std::sregex_iterator(text.begin(), text.end(), re); + auto words_end = std::sregex_iterator(); + auto n_words = std::distance(words_begin, words_end); + words.reserve(n_words); + for (auto it = words_begin; it != words_end; ++it) { + words.push_back(it->str()); } - return words; + } const llama_vocab & vocab; From fa3582f509a2715e80a473e79f88dcd1ebff44c2 Mon Sep 17 00:00:00 2001 From: Kawrakow <48489457+ikawrakow@users.noreply.github.com> Date: Tue, 29 Aug 2023 23:55:45 +0300 Subject: [PATCH 09/21] Tell users attmepting to run perplexity with too few tokens to use more (#2882) Closes #2858 Co-authored-by: Iwan Kawrakow --- examples/perplexity/perplexity.cpp | 15 +++++++++++++++ 1 file changed, 15 insertions(+) diff --git a/examples/perplexity/perplexity.cpp b/examples/perplexity/perplexity.cpp index aeb774c5f..7c02b6d40 100644 --- a/examples/perplexity/perplexity.cpp +++ b/examples/perplexity/perplexity.cpp @@ -142,6 +142,14 @@ results_perplexity perplexity_v2(llama_context * ctx, const gpt_params & params) fprintf(stderr, "%s: tokenizing the input ..\n", __func__); std::vector tokens = ::llama_tokenize(ctx, params.prompt, add_bos); + + if (int(tokens.size()) < 2*params.n_ctx) { + fprintf(stderr, "%s: you need at least %d tokens to evaluate perplexity with a context of %d\n",__func__,2*params.n_ctx, + params.n_ctx); + fprintf(stderr, "%s: the data file you provided tokenizes to only %zu tokens\n",__func__,tokens.size()); + return {std::move(tokens), 0., {}, {}}; + } + std::vector logit_history; std::vector prob_history; @@ -274,6 +282,13 @@ results_perplexity perplexity(llama_context * ctx, const gpt_params & params) { auto tim2 = std::chrono::high_resolution_clock::now(); fprintf(stderr, "%s: tokenization took %g ms\n",__func__,1e-3*std::chrono::duration_cast(tim2-tim1).count()); + if (int(tokens.size()) < 2*params.n_ctx) { + fprintf(stderr, "%s: you need at least %d tokens to evaluate perplexity with a context of %d\n",__func__,2*params.n_ctx, + params.n_ctx); + fprintf(stderr, "%s: the data file you provided tokenizes to only %zu tokens\n",__func__,tokens.size()); + return {std::move(tokens), 0., {}, {}}; + } + std::vector logit_history; logit_history.resize(tokens.size()); From c03a243abf9f30889f31fefdfa94fe9d7034820c Mon Sep 17 00:00:00 2001 From: slaren Date: Tue, 29 Aug 2023 23:17:34 +0200 Subject: [PATCH 10/21] remove outdated references to -eps and -gqa from README (#2881) --- README.md | 2 -- 1 file changed, 2 deletions(-) diff --git a/README.md b/README.md index 8d54a558d..a880fd29f 100644 --- a/README.md +++ b/README.md @@ -729,8 +729,6 @@ python3 convert.py pygmalion-7b/ --outtype q4_1 - [LLaMA 2 7B chat](https://huggingface.co/TheBloke/Llama-2-7B-chat-GGML) - [LLaMA 2 13B chat](https://huggingface.co/TheBloke/Llama-2-13B-chat-GGML) - [LLaMA 2 70B chat](https://huggingface.co/TheBloke/Llama-2-70B-chat-GGML) -- Specify `-eps 1e-5` for best generation quality -- Specify `-gqa 8` for 70B models to work ### Verifying the model files From 06abf8eebabe086ca4003dee2754ab45032cd3fd Mon Sep 17 00:00:00 2001 From: slaren Date: Tue, 29 Aug 2023 23:24:42 +0200 Subject: [PATCH 11/21] ggml : add view_src and view_offs to ggml_tensor for views (#2874) * ggml : add view_src and view_offs * update ggml-alloc to use view_src * update ggml_diag_mask to work correctly with automatic inplace * exclude other ops that set an inplace flag from automatic inplace --- ggml-alloc.c | 53 ++---------- ggml.c | 233 +++++++++++++++++++++++---------------------------- ggml.h | 5 +- 3 files changed, 113 insertions(+), 178 deletions(-) diff --git a/ggml-alloc.c b/ggml-alloc.c index 63beb1d4e..f07a4a217 100644 --- a/ggml-alloc.c +++ b/ggml-alloc.c @@ -321,8 +321,7 @@ bool ggml_allocr_is_measure(struct ggml_allocr * alloc) { //////////// compute graph allocator static bool ggml_is_view(struct ggml_tensor * t) { - return t->op == GGML_OP_RESHAPE || t->op == GGML_OP_VIEW || t->op == GGML_OP_TRANSPOSE || - t->op == GGML_OP_PERMUTE || t->op == GGML_OP_CPY; + return t->view_src != NULL; } static bool ggml_are_same_layout(const struct ggml_tensor * a, const struct ggml_tensor * b) { @@ -340,28 +339,6 @@ static bool ggml_are_same_layout(const struct ggml_tensor * a, const struct ggml return true; } -static struct ggml_tensor * get_view_parent(struct ggml_tensor * t) { - switch (t->op) { - case GGML_OP_PERMUTE: - case GGML_OP_RESHAPE: - case GGML_OP_TRANSPOSE: - case GGML_OP_VIEW: - return t->src[0]; - case GGML_OP_CPY: - return t->src[1]; - default: - return NULL; - } -} - -static struct ggml_tensor * get_view_source(struct ggml_tensor * t) { - struct ggml_tensor * parent = t; - do { - parent = get_view_parent(parent); - } while (ggml_is_view(parent)); - return parent; -} - static bool ggml_op_can_inplace(enum ggml_op op) { switch (op) { case GGML_OP_SCALE: @@ -369,7 +346,6 @@ static bool ggml_op_can_inplace(enum ggml_op op) { case GGML_OP_DIAG_MASK_INF: case GGML_OP_ADD: case GGML_OP_ADD1: - case GGML_OP_ACC: case GGML_OP_SUB: case GGML_OP_MUL: case GGML_OP_DIV: @@ -379,7 +355,6 @@ static bool ggml_op_can_inplace(enum ggml_op op) { case GGML_OP_UNARY: case GGML_OP_ROPE: case GGML_OP_RMS_NORM: - case GGML_OP_SET: case GGML_OP_SOFT_MAX: case GGML_OP_CONT: return true; @@ -393,24 +368,8 @@ static void allocate_node(struct ggml_allocr * alloc, struct ggml_tensor * node) struct hash_node * ht = alloc->hash_table; if (node->data == NULL) { if (ggml_is_view(node)) { - size_t offset; - switch(node->op) { - case GGML_OP_VIEW: - memcpy(&offset, node->op_params, sizeof(size_t)); - node->data = (char *) node->src[0]->data + offset; - break; - case GGML_OP_PERMUTE: - case GGML_OP_RESHAPE: - case GGML_OP_TRANSPOSE: - node->data = node->src[0]->data; - break; - case GGML_OP_CPY: - node->data = node->src[1]->data; - break; - default: - GGML_ASSERT(!"unknown view op"); - break; - } + assert(node->view_src->data != NULL); + node->data = (char *)node->view_src->data + node->view_offs; } else { // see if we can reuse a parent's buffer (inplace) if (ggml_op_can_inplace(node->op)) { @@ -430,7 +389,7 @@ static void allocate_node(struct ggml_allocr * alloc, struct ggml_tensor * node) struct hash_node * p_hn = hash_get(ht, parent); if (parent->data != NULL && p_hn->n_children == 1 && p_hn->n_views == 0 && ggml_are_same_layout(node, parent)) { if (ggml_is_view(parent)) { - struct ggml_tensor * view_src = get_view_source(parent); + struct ggml_tensor * view_src = parent->view_src; struct hash_node * view_src_hn = hash_get(ht, view_src); if (view_src_hn->n_views == 1 && view_src_hn->n_children == 0 && view_src->data == parent->data) { // TODO: the offset of the view parent must be kept to ensure that the op doesn't overwrite @@ -472,7 +431,7 @@ static size_t ggml_allocator_alloc_graph_tensors_n( struct ggml_tensor * node = gf->nodes[i]; if (ggml_is_view(node)) { - struct ggml_tensor * view_src = get_view_source(node); + struct ggml_tensor * view_src = node->view_src; hash_get(ht, view_src)->n_views += 1; } @@ -557,7 +516,7 @@ static size_t ggml_allocator_alloc_graph_tensors_n( if (p_hn->n_children == 0 && p_hn->n_views == 0) { if (ggml_is_view(parent)) { - struct ggml_tensor * view_src = get_view_source(parent); + struct ggml_tensor * view_src = parent->view_src; struct hash_node * view_src_hn = hash_get(ht, view_src); view_src_hn->n_views -= 1; AT_PRINTF("view_src %s: %d children, %d views\n", view_src->name, view_src_hn->n_children, view_src_hn->n_views); diff --git a/ggml.c b/ggml.c index 9a787863d..46ce4a581 100644 --- a/ggml.c +++ b/ggml.c @@ -4104,16 +4104,11 @@ int64_t ggml_nrows(const struct ggml_tensor * tensor) { } size_t ggml_nbytes(const struct ggml_tensor * tensor) { - static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function"); - - // this should handle cases where the tensor is not contiguous in memory - // probaby just: - // - // return tensor->ne[3]*tensor->nb[3] - // - // is enough, but just in case, adding the second part - - return MAX(tensor->ne[3]*tensor->nb[3], (ggml_nelements(tensor)*ggml_type_size(tensor->type))/ggml_blck_size(tensor->type)); + size_t nbytes = tensor->ne[0]*tensor->nb[0]/ggml_blck_size(tensor->type); + for (int i = 1; i < GGML_MAX_DIMS; ++i) { + nbytes += (tensor->ne[i] - 1)*tensor->nb[i]; + } + return nbytes; } size_t ggml_nbytes_pad(const struct ggml_tensor * tensor) { @@ -4567,36 +4562,51 @@ static struct ggml_tensor * ggml_new_tensor_impl( enum ggml_type type, int n_dims, const int64_t * ne, - void * data) { + struct ggml_tensor * view_src, + size_t view_offs) { assert(n_dims >= 1 && n_dims <= GGML_MAX_DIMS); - size_t data_size = 0; + // find the base tensor and absolute offset + if (view_src != NULL && view_src->view_src != NULL) { + view_offs += view_src->view_offs; + view_src = view_src->view_src; + } - if (data == NULL && !ctx->no_alloc) { - data_size += ggml_type_size(type)*(ne[0]/ggml_blck_size(type)); - for (int i = 1; i < n_dims; i++) { - data_size *= ne[i]; + size_t data_size = ggml_type_size(type)*(ne[0]/ggml_blck_size(type)); + for (int i = 1; i < n_dims; i++) { + data_size *= ne[i]; + } + + GGML_ASSERT(view_src == NULL || data_size + view_offs <= ggml_nbytes(view_src)); + + void * data = view_src != NULL ? view_src->data : NULL; + if (data != NULL) { + data = (char *) data + view_offs; + } + + size_t obj_alloc_size = 0; + + if (view_src == NULL && ctx->no_alloc == false) { + if (ctx->scratch.data != NULL) { + // allocate tensor data in the scratch buffer + if (ctx->scratch.offs + data_size > ctx->scratch.size) { + GGML_PRINT("%s: not enough space in the scratch memory pool (needed %zu, available %zu)\n", + __func__, ctx->scratch.offs + data_size, ctx->scratch.size); + assert(false); + return NULL; + } + + data = (char * const) ctx->scratch.data + ctx->scratch.offs; + + ctx->scratch.offs += data_size; + } else { + // allocate tensor data in the context's memory pool + obj_alloc_size = data_size; } } - if (ctx->scratch.data != NULL && data == NULL) { - // allocate tensor data in the scratch buffer - if (ctx->scratch.offs + data_size > ctx->scratch.size) { - GGML_PRINT("%s: not enough space in the scratch memory pool (needed %zu, available %zu)\n", - __func__, ctx->scratch.offs + data_size, ctx->scratch.size); - assert(false); - return NULL; - } - - data = (char * const) ctx->scratch.data + ctx->scratch.offs; - - ctx->scratch.offs += data_size; - - data_size = 0; - } - - struct ggml_object * const obj_new = ggml_new_object(ctx, GGML_OBJECT_TENSOR, GGML_TENSOR_SIZE + data_size); + struct ggml_object * const obj_new = ggml_new_object(ctx, GGML_OBJECT_TENSOR, GGML_TENSOR_SIZE + obj_alloc_size); // TODO: for recoverable errors, we would need to free the data allocated from the scratch buffer here @@ -4616,7 +4626,9 @@ static struct ggml_tensor * ggml_new_tensor_impl( /*.perf_runs =*/ 0, /*.perf_cycles =*/ 0, /*.perf_time_us =*/ 0, - /*.data =*/ (data == NULL && !ctx->no_alloc) ? (void *)(result + 1) : data, + /*.view_src =*/ view_src, + /*.view_offs =*/ view_offs, + /*.data =*/ obj_alloc_size > 0 ? (void *)(result + 1) : data, /*.name =*/ { 0 }, /*.extra =*/ NULL, /*.padding =*/ { 0 }, @@ -4640,28 +4652,12 @@ static struct ggml_tensor * ggml_new_tensor_impl( return result; } -static void ggml_set_op_params(struct ggml_tensor * tensor, const void * params, size_t params_size) { - GGML_ASSERT(tensor != NULL); // silence -Warray-bounds warnings - assert(params_size <= GGML_MAX_OP_PARAMS); - memcpy(tensor->op_params, params, params_size); -} - -static int32_t ggml_get_op_params_i32(const struct ggml_tensor * tensor, uint32_t i) { - assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t)); - return ((const int32_t *)(tensor->op_params))[i]; -} - -static void ggml_set_op_params_i32(struct ggml_tensor * tensor, uint32_t i, int32_t value) { - assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t)); - ((int32_t *)(tensor->op_params))[i] = value; -} - struct ggml_tensor * ggml_new_tensor( struct ggml_context * ctx, enum ggml_type type, int n_dims, const int64_t * ne) { - return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL); + return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL, 0); } struct ggml_tensor * ggml_new_tensor_1d( @@ -4726,7 +4722,23 @@ struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) { } struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) { - return ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, NULL); + return ggml_new_tensor(ctx, src->type, src->n_dims, src->ne); +} + +static void ggml_set_op_params(struct ggml_tensor * tensor, const void * params, size_t params_size) { + GGML_ASSERT(tensor != NULL); // silence -Warray-bounds warnings + assert(params_size <= GGML_MAX_OP_PARAMS); + memcpy(tensor->op_params, params, params_size); +} + +static int32_t ggml_get_op_params_i32(const struct ggml_tensor * tensor, uint32_t i) { + assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t)); + return ((const int32_t *)(tensor->op_params))[i]; +} + +static void ggml_set_op_params_i32(struct ggml_tensor * tensor, uint32_t i, int32_t value) { + assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t)); + ((int32_t *)(tensor->op_params))[i] = value; } struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) { @@ -5012,14 +5024,13 @@ struct ggml_tensor * ggml_format_name(struct ggml_tensor * tensor, const char * struct ggml_tensor * ggml_view_tensor( struct ggml_context * ctx, - const struct ggml_tensor * src) { - struct ggml_tensor * result = ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, src->data); + struct ggml_tensor * src) { + struct ggml_tensor * result = ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, src, 0); ggml_format_name(result, "%s (view)", src->name); - result->nb[0] = src->nb[0]; - result->nb[1] = src->nb[1]; - result->nb[2] = src->nb[2]; - result->nb[3] = src->nb[3]; + for (int i = 0; i < GGML_MAX_DIMS; i++) { + result->nb[i] = src->nb[i]; + } return result; } @@ -5592,7 +5603,7 @@ struct ggml_tensor * ggml_repeat_back( // ggml_concat -struct ggml_tensor* ggml_concat( +struct ggml_tensor * ggml_concat( struct ggml_context* ctx, struct ggml_tensor* a, struct ggml_tensor* b) { @@ -6201,7 +6212,7 @@ struct ggml_tensor * ggml_reshape( //GGML_ASSERT(false); } - struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, b->n_dims, b->ne, a->data); + struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, b->n_dims, b->ne, a, 0); ggml_format_name(result, "%s (reshaped)", a->name); result->op = GGML_OP_RESHAPE; @@ -6225,7 +6236,7 @@ struct ggml_tensor * ggml_reshape_1d( } const int64_t ne[1] = { ne0 }; - struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, ne, a->data); + struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, ne, a, 0); ggml_format_name(result, "%s (reshaped)", a->name); result->op = GGML_OP_RESHAPE; @@ -6250,7 +6261,7 @@ struct ggml_tensor * ggml_reshape_2d( } const int64_t ne[2] = { ne0, ne1 }; - struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a->data); + struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a, 0); ggml_format_name(result, "%s (reshaped)", a->name); result->op = GGML_OP_RESHAPE; @@ -6276,7 +6287,7 @@ struct ggml_tensor * ggml_reshape_3d( } const int64_t ne[3] = { ne0, ne1, ne2 }; - struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a->data); + struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a, 0); ggml_format_name(result, "%s (reshaped)", a->name); result->op = GGML_OP_RESHAPE; @@ -6286,7 +6297,6 @@ struct ggml_tensor * ggml_reshape_3d( return result; } - struct ggml_tensor * ggml_reshape_4d( struct ggml_context * ctx, struct ggml_tensor * a, @@ -6304,7 +6314,7 @@ struct ggml_tensor * ggml_reshape_4d( } const int64_t ne[4] = { ne0, ne1, ne2, ne3 }; - struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 4, ne, a->data); + struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 4, ne, a, 0); ggml_format_name(result, "%s (reshaped)", a->name); result->op = GGML_OP_RESHAPE; @@ -6314,34 +6324,12 @@ struct ggml_tensor * ggml_reshape_4d( return result; } -// ggml_view_1d - -static struct ggml_tensor * ggml_view_tensor_offset( +static struct ggml_tensor * ggml_view_impl( struct ggml_context * ctx, struct ggml_tensor * a, int n_dims, const int64_t * ne, size_t offset) { - // don't calculate an offset from an unallocated tensor - void * data = NULL; - if (a->data != NULL) { - data = (char *) a->data + offset; - } - - struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, n_dims, ne, data); - - ggml_format_name(result, "%s (view)", a->name); - - ggml_set_op_params(result, &offset, sizeof(offset)); - - return result; -} - -struct ggml_tensor * ggml_view_1d( - struct ggml_context * ctx, - struct ggml_tensor * a, - int64_t ne0, - size_t offset) { bool is_node = false; @@ -6349,7 +6337,10 @@ struct ggml_tensor * ggml_view_1d( is_node = true; } - struct ggml_tensor * result = ggml_view_tensor_offset(ctx, a, 1, &ne0, offset); + struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, n_dims, ne, a, offset); + ggml_format_name(result, "%s (view)", a->name); + + ggml_set_op_params(result, &offset, sizeof(offset)); result->op = GGML_OP_VIEW; result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; @@ -6358,6 +6349,19 @@ struct ggml_tensor * ggml_view_1d( return result; } +// ggml_view_1d + +struct ggml_tensor * ggml_view_1d( + struct ggml_context * ctx, + struct ggml_tensor * a, + int64_t ne0, + size_t offset) { + + struct ggml_tensor * result = ggml_view_impl(ctx, a, 1, &ne0, offset); + + return result; +} + // ggml_view_2d struct ggml_tensor * ggml_view_2d( @@ -6368,24 +6372,14 @@ struct ggml_tensor * ggml_view_2d( size_t nb1, size_t offset) { - bool is_node = false; + const int64_t ne[2] = { ne0, ne1 }; - if (a->grad) { - is_node = true; - } - - const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, 1, 1 }; - - struct ggml_tensor * result = ggml_view_tensor_offset(ctx, a, 2, ne, offset); + struct ggml_tensor * result = ggml_view_impl(ctx, a, 2, ne, offset); result->nb[1] = nb1; result->nb[2] = result->nb[1]*ne1; result->nb[3] = result->nb[2]; - result->op = GGML_OP_VIEW; - result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; - result->src[0] = a; - return result; } @@ -6401,24 +6395,14 @@ struct ggml_tensor * ggml_view_3d( size_t nb2, size_t offset) { - bool is_node = false; + const int64_t ne[3] = { ne0, ne1, ne2 }; - if (a->grad) { - is_node = true; - } - - const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, ne2, 1 }; - - struct ggml_tensor * result = ggml_view_tensor_offset(ctx, a, 3, ne, offset); + struct ggml_tensor * result = ggml_view_impl(ctx, a, 3, ne, offset); result->nb[1] = nb1; result->nb[2] = nb2; result->nb[3] = result->nb[2]*ne2; - result->op = GGML_OP_VIEW; - result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; - result->src[0] = a; - return result; } @@ -6436,24 +6420,14 @@ struct ggml_tensor * ggml_view_4d( size_t nb3, size_t offset) { - bool is_node = false; + const int64_t ne[4] = { ne0, ne1, ne2, ne3 }; - if (a->grad) { - is_node = true; - } - - const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, ne2, ne3 }; - - struct ggml_tensor * result = ggml_view_tensor_offset(ctx, a, 4, ne, offset); + struct ggml_tensor * result = ggml_view_impl(ctx, a, 4, ne, offset); result->nb[1] = nb1; result->nb[2] = nb2; result->nb[3] = nb3; - result->op = GGML_OP_VIEW; - result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; - result->src[0] = a; - return result; } @@ -6640,7 +6614,7 @@ static struct ggml_tensor * ggml_diag_mask_inf_impl( struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a); - int32_t params[] = { n_past, inplace ? 1 : 0 }; + int32_t params[] = { n_past }; ggml_set_op_params(result, params, sizeof(params)); result->op = GGML_OP_DIAG_MASK_INF; @@ -6657,7 +6631,6 @@ struct ggml_tensor * ggml_diag_mask_inf( return ggml_diag_mask_inf_impl(ctx, a, n_past, false); } - struct ggml_tensor * ggml_diag_mask_inf_inplace( struct ggml_context * ctx, struct ggml_tensor * a, @@ -6680,7 +6653,7 @@ static struct ggml_tensor * ggml_diag_mask_zero_impl( struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a); - int32_t params[] = { n_past, inplace ? 1 : 0 }; + int32_t params[] = { n_past }; ggml_set_op_params(result, params, sizeof(params)); result->op = GGML_OP_DIAG_MASK_ZERO; @@ -11935,8 +11908,8 @@ static void ggml_compute_forward_diag_mask_f32( const int ith = params->ith; const int nth = params->nth; - const int n_past = ((int32_t *) dst->op_params)[0]; - const bool inplace = (bool)((int32_t *) dst->op_params)[1]; + const int n_past = ((int32_t *) dst->op_params)[0]; + const bool inplace = src0->data == dst->data; GGML_ASSERT(n_past >= 0); diff --git a/ggml.h b/ggml.h index 8b410cc85..c936823d6 100644 --- a/ggml.h +++ b/ggml.h @@ -479,6 +479,9 @@ extern "C" { int64_t perf_cycles; int64_t perf_time_us; + struct ggml_tensor * view_src; + size_t view_offs; + void * data; char name[GGML_MAX_NAME]; @@ -661,7 +664,7 @@ extern "C" { GGML_API struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value); GGML_API struct ggml_tensor * ggml_dup_tensor (struct ggml_context * ctx, const struct ggml_tensor * src); - GGML_API struct ggml_tensor * ggml_view_tensor(struct ggml_context * ctx, const struct ggml_tensor * src); + GGML_API struct ggml_tensor * ggml_view_tensor(struct ggml_context * ctx, struct ggml_tensor * src); GGML_API struct ggml_tensor * ggml_get_tensor(struct ggml_context * ctx, const char * name); From 849408957c687cde4ab32c147107f643fc55130b Mon Sep 17 00:00:00 2001 From: Cebtenzzre Date: Wed, 30 Aug 2023 02:20:26 -0400 Subject: [PATCH 12/21] tests : add a C compliance test (#2848) * tests : add a C compliance test * make : build C compliance test by default * make : fix clean and make sure C test fails on clang * make : move -Werror=implicit-int to CFLAGS --- CMakeLists.txt | 1 + Makefile | 9 ++++++--- tests/CMakeLists.txt | 5 +++++ tests/test-c.c | 3 +++ 4 files changed, 15 insertions(+), 3 deletions(-) create mode 100644 tests/test-c.c diff --git a/CMakeLists.txt b/CMakeLists.txt index 1eae2d670..d6c1b3b33 100644 --- a/CMakeLists.txt +++ b/CMakeLists.txt @@ -402,6 +402,7 @@ if (LLAMA_ALL_WARNINGS) -Wstrict-prototypes -Wpointer-arith -Wmissing-prototypes + -Werror=implicit-int ) set(cxx_flags -Wall diff --git a/Makefile b/Makefile index 02ba3e36d..44e68b7fc 100644 --- a/Makefile +++ b/Makefile @@ -1,5 +1,5 @@ # Define the default target now so that it is always the first target -BUILD_TARGETS = main quantize quantize-stats perplexity embedding vdot train-text-from-scratch convert-llama2c-to-ggml simple save-load-state server embd-input-test gguf llama-bench baby-llama beam_search +BUILD_TARGETS = main quantize quantize-stats perplexity embedding vdot train-text-from-scratch convert-llama2c-to-ggml simple save-load-state server embd-input-test gguf llama-bench baby-llama beam_search tests/test-c.o # Binaries only useful for tests TEST_TARGETS = tests/test-llama-grammar tests/test-grammar-parser tests/test-double-float tests/test-grad0 tests/test-opt tests/test-quantize-fns tests/test-quantize-perf tests/test-sampling tests/test-tokenizer-0-llama tests/test-tokenizer-0-falcon tests/test-tokenizer-1 @@ -64,7 +64,7 @@ endif # warnings CFLAGS += -Wall -Wextra -Wpedantic -Wcast-qual -Wdouble-promotion -Wshadow -Wstrict-prototypes -Wpointer-arith \ - -Wmissing-prototypes + -Wmissing-prototypes -Werror=implicit-int CXXFLAGS += -Wall -Wextra -Wpedantic -Wcast-qual -Wno-unused-function -Wno-multichar # OS specific @@ -369,7 +369,7 @@ libllama.so: llama.o ggml.o $(OBJS) $(CXX) $(CXXFLAGS) -shared -fPIC -o $@ $^ $(LDFLAGS) clean: - rm -vf *.o *.so *.dll benchmark-matmult build-info.h $(BUILD_TARGETS) $(TEST_TARGETS) + rm -vf *.o tests/*.o *.so *.dll benchmark-matmult build-info.h $(BUILD_TARGETS) $(TEST_TARGETS) # # Examples @@ -489,3 +489,6 @@ tests/test-tokenizer-0-llama: tests/test-tokenizer-0-llama.cpp build-info.h ggml tests/test-tokenizer-1: tests/test-tokenizer-1.cpp build-info.h ggml.o llama.o common.o $(OBJS) $(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS) + +tests/test-c.o: tests/test-c.c llama.h + $(CC) $(CFLAGS) -c $(filter-out %.h,$^) -o $@ diff --git a/tests/CMakeLists.txt b/tests/CMakeLists.txt index ca1f39d31..483210d7b 100644 --- a/tests/CMakeLists.txt +++ b/tests/CMakeLists.txt @@ -37,3 +37,8 @@ llama_build_and_test_executable(test-grammar-parser.cpp) llama_build_and_test_executable(test-llama-grammar.cpp) llama_build_and_test_executable(test-grad0.cpp) # SLOW # llama_build_and_test_executable(test-opt.cpp) # SLOW + +# dummy executable - not installed +get_filename_component(TEST_TARGET test-c.c NAME_WE) +add_executable(${TEST_TARGET} test-c.c) +target_link_libraries(${TEST_TARGET} PRIVATE llama) diff --git a/tests/test-c.c b/tests/test-c.c new file mode 100644 index 000000000..a05071080 --- /dev/null +++ b/tests/test-c.c @@ -0,0 +1,3 @@ +#include "llama.h" + +int main(void) {} From 8341a25957b319a03d4a811176cd5ad7f2b0fbd4 Mon Sep 17 00:00:00 2001 From: staviq Date: Wed, 30 Aug 2023 08:29:32 +0200 Subject: [PATCH 13/21] main : log file (#2748) * initial, base LOG macro * add *.log to .gitignore * added basic log file handler * reverted log auto endline to better mimic printf * remove atomics and add dynamic log target * log_enable/disable, LOG_TEE, basic usage doc * update .gitignore * mv include to common, params, help msg * log tostring helpers, token vectors pretty prints * main: replaced fprintf/LOG_TEE, some trace logging * LOG_DISABLE_LOGS compile flag, wrapped f in macros * fix LOG_TEELN and configchecker * stub LOG_DUMP_CMDLINE for WIN32 for now * fix msvc * cleanup main.cpp:273 * fix stray whitespace after master sync * log : fix compile warnings - do not use C++20 stuff - use PRIu64 to print uint64_t - avoid string copies by using const ref - fix ", ##__VA_ARGS__" warnings - compare strings with == and != * log : do not append to existing log + disable file line func by default * log : try to fix Windows build * main : wip logs * main : add trace log * review: macro f lowercase, str append to sstream * review: simplify ifs and str comparisons * fix MSVC, formatting, FMT/VAL placeholders * review: if/else cleanup * review: if/else cleanup (2) * replace _ prefix with _impl suffix --------- Co-authored-by: Georgi Gerganov --- .gitignore | 1 + Makefile | 7 +- common/common.cpp | 22 ++ common/common.h | 3 + common/log.h | 643 +++++++++++++++++++++++++++++++++++++++++ examples/chat.sh | 2 +- examples/main/main.cpp | 288 +++++++++++------- 7 files changed, 859 insertions(+), 107 deletions(-) create mode 100644 common/log.h diff --git a/.gitignore b/.gitignore index 7a3f3fff4..54ea2b522 100644 --- a/.gitignore +++ b/.gitignore @@ -5,6 +5,7 @@ *.bin *.exe *.dll +*.log .DS_Store .build/ .cache/ diff --git a/Makefile b/Makefile index 44e68b7fc..c8b8a92d7 100644 --- a/Makefile +++ b/Makefile @@ -326,6 +326,11 @@ k_quants.o: k_quants.c k_quants.h $(CC) $(CFLAGS) -c $< -o $@ endif # LLAMA_NO_K_QUANTS +ifdef LLAMA_DISABLE_LOGS + CFLAGS += -DLOG_DISABLE_LOGS + CXXFLAGS += -DLOG_DISABLE_LOGS +endif # LLAMA_DISABLE_LOGS + # # Print build information # @@ -356,7 +361,7 @@ OBJS += ggml-alloc.o llama.o: llama.cpp ggml.h ggml-alloc.h ggml-cuda.h ggml-metal.h llama.h $(CXX) $(CXXFLAGS) -c $< -o $@ -common.o: common/common.cpp common/common.h build-info.h +common.o: common/common.cpp common/common.h build-info.h common/log.h $(CXX) $(CXXFLAGS) -c $< -o $@ console.o: common/console.cpp common/console.h diff --git a/common/common.cpp b/common/common.cpp index 90fe2e84e..ed09fc27d 100644 --- a/common/common.cpp +++ b/common/common.cpp @@ -480,6 +480,9 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) { } } else if (arg == "-h" || arg == "--help") { gpt_print_usage(argc, argv, default_params); +#ifndef LOG_DISABLE_LOGS + log_print_usage(); +#endif // LOG_DISABLE_LOGS exit(0); } else if (arg == "--random-prompt") { params.random_prompt = true; @@ -519,6 +522,25 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) { std::istreambuf_iterator(), std::back_inserter(params.grammar) ); +#ifndef LOG_DISABLE_LOGS + // Parse args for logging parameters + } else if ( log_param_single_parse( argv[i] ) ) { + // Do nothing, log_param_single_parse automatically does it's thing + // and returns if a match was found and parsed. + } else if ( log_param_pair_parse( /*check_but_dont_parse*/ true, argv[i] ) ) { + // We have a matching known parameter requiring an argument, + // now we need to check if there is anything after this argv + // and flag invalid_param or parse it. + if (++i >= argc) { + invalid_param = true; + break; + } + if( !log_param_pair_parse( /*check_but_dont_parse*/ false, argv[i-1], argv[i]) ) { + invalid_param = true; + break; + } + // End of Parse args for logging parameters +#endif // LOG_DISABLE_LOGS } else { fprintf(stderr, "error: unknown argument: %s\n", arg.c_str()); gpt_print_usage(argc, argv, default_params); diff --git a/common/common.h b/common/common.h index c15373144..5a379688e 100644 --- a/common/common.h +++ b/common/common.h @@ -4,6 +4,9 @@ #include "llama.h" +#define LOG_NO_FILE_LINE_FUNCTION +#include "log.h" + #include #include #include diff --git a/common/log.h b/common/log.h new file mode 100644 index 000000000..c1364187d --- /dev/null +++ b/common/log.h @@ -0,0 +1,643 @@ +#pragma once + +#include +#include +#include +#include +#include +#include +#include +#include + +// -------------------------------- +// +// Basic usage: +// +// -------- +// +// The LOG() and LOG_TEE() macros are ready to go by default +// they do not require any initialization. +// +// LOGLN() and LOG_TEELN() are variants which automatically +// include \n character at the end of the log string. +// +// LOG() behaves exactly like printf, by default writing to a logfile. +// LOG_TEE() additionally, prints to the screen too ( mimics Unix tee command ). +// +// Default logfile is named +// "llama..log" +// Default LOG_TEE() secondary output target is +// stderr +// +// Logs can be dynamically disabled or enabled using functions: +// log_disable() +// and +// log_enable() +// +// A log target can be changed with: +// log_set_target( string ) +// creating and opening, or re-opening a file by string filename +// or +// log_set_target( FILE* ) +// allowing to point at stderr, stdout, or any valid FILE* file handler. +// +// -------- +// +// End of Basic usage. +// +// -------------------------------- + +// Specifies a log target. +// default uses log_handler() with "llama.log" log file +// this can be changed, by defining LOG_TARGET +// like so: +// +// #define LOG_TARGET (a valid FILE*) +// #include "log.h" +// +// or it can be simply redirected to stdout or stderr +// like so: +// +// #define LOG_TARGET stderr +// #include "log.h" +// +// The log target can also be redirected to a diffrent function +// like so: +// +// #define LOG_TARGET log_handler_diffrent() +// #include "log.h" +// +// FILE* log_handler_diffrent() +// { +// return stderr; +// } +// +// or: +// +// #define LOG_TARGET log_handler_another_one("somelog.log") +// #include "log.h" +// +// FILE* log_handler_another_one(char*filename) +// { +// static FILE* logfile = nullptr; +// (...) +// if( !logfile ) +// { +// fopen(...) +// } +// (...) +// return logfile +// } +// +#ifndef LOG_TARGET + #define LOG_TARGET log_handler() +#endif + +#ifndef LOG_TEE_TARGET + #define LOG_TEE_TARGET stderr +#endif + +// Utility to obtain "pid" like unique process id and use it when creating log files. +inline std::string log_get_pid() +{ + static std::string pid; + if (pid.empty()) + { + // std::this_thread::get_id() is the most portable way of obtaining a "process id" + // it's not the same as "pid" but is unique enough to solve multiple instances + // trying to write to the same log. + std::stringstream ss; + ss << std::this_thread::get_id(); + pid = ss.str(); + } + + return pid; +} + +// Utility function for generating log file names with unique id based on thread id. +// invocation with log_filename_generator( "llama", "log" ) creates a string "llama..log" +// where the number is a runtime id of the current thread. + +#define log_filename_generator(log_file_basename, log_file_extension) log_filename_generator_impl(log_file_basename, log_file_extension) + +// INTERNAL, DO NOT USE +inline std::string log_filename_generator_impl(const std::string & log_file_basename, const std::string & log_file_extension) +{ + std::stringstream buf; + + buf << log_file_basename; + buf << "."; + buf << log_get_pid(); + buf << "."; + buf << log_file_extension; + + return buf.str(); +} + +#ifndef LOG_DEFAULT_FILE_NAME + #define LOG_DEFAULT_FILE_NAME log_filename_generator("llama", "log") +#endif + +// Utility for turning #define values into string literals +// so we can have a define for stderr and +// we can print "stderr" instead of literal stderr, etc. +#define LOG_STRINGIZE1(s) #s +#define LOG_STRINGIZE(s) LOG_STRINGIZE1(s) + +#define LOG_TEE_TARGET_STRING LOG_STRINGIZE(LOG_TEE_TARGET) + +// Allows disabling timestamps. +// in order to disable, define LOG_NO_TIMESTAMPS +// like so: +// +// #define LOG_NO_TIMESTAMPS +// #include "log.h" +// +#ifndef LOG_NO_TIMESTAMPS + #ifndef _WIN32 + #define LOG_TIMESTAMP_FMT "[%" PRIu64 "] " + #define LOG_TIMESTAMP_VAL , (std::chrono::duration_cast>(std::chrono::system_clock::now().time_since_epoch())).count() + #else + #define LOG_TIMESTAMP_FMT "[%" PRIu64 "] " + #define LOG_TIMESTAMP_VAL , (std::chrono::duration_cast>(std::chrono::system_clock::now().time_since_epoch())).count() + #endif +#else + #define LOG_TIMESTAMP_FMT "%s" + #define LOG_TIMESTAMP_VAL ,"" +#endif + +#ifdef LOG_TEE_TIMESTAMPS + #ifndef _WIN32 + #define LOG_TEE_TIMESTAMP_FMT "[%" PRIu64 "] " + #define LOG_TEE_TIMESTAMP_VAL , (std::chrono::duration_cast>(std::chrono::system_clock::now().time_since_epoch())).count() + #else + #define LOG_TEE_TIMESTAMP_FMT "[%" PRIu64 "] " + #define LOG_TEE_TIMESTAMP_VAL , (std::chrono::duration_cast>(std::chrono::system_clock::now().time_since_epoch())).count() + #endif +#else + #define LOG_TEE_TIMESTAMP_FMT "%s" + #define LOG_TEE_TIMESTAMP_VAL ,"" +#endif + +// Allows disabling file/line/function prefix +// in order to disable, define LOG_NO_FILE_LINE_FUNCTION +// like so: +// +// #define LOG_NO_FILE_LINE_FUNCTION +// #include "log.h" +// +#ifndef LOG_NO_FILE_LINE_FUNCTION + #ifndef _WIN32 + #define LOG_FLF_FMT "[%24s:%5d][%24s] " + #define LOG_FLF_VAL , __FILE__, __LINE__, __FUNCTION__ + #else + #define LOG_FLF_FMT "[%24s:%5ld][%24s] " + #define LOG_FLF_VAL , __FILE__, __LINE__, __FUNCTION__ + #endif +#else + #define LOG_FLF_FMT "%s" + #define LOG_FLF_VAL ,"" +#endif + +#ifdef LOG_TEE_FILE_LINE_FUNCTION + #ifndef _WIN32 + #define LOG_TEE_FLF_FMT "[%24s:%5d][%24s] " + #define LOG_TEE_FLF_VAL , __FILE__, __LINE__, __FUNCTION__ + #else + #define LOG_TEE_FLF_FMT "[%24s:%5ld][%24s] " + #define LOG_TEE_FLF_VAL , __FILE__, __LINE__, __FUNCTION__ + #endif +#else + #define LOG_TEE_FLF_FMT "%s" + #define LOG_TEE_FLF_VAL ,"" +#endif + +// Utility for synchronizing log configuration state +// since std::optional was introduced only in c++17 +enum LogTriState +{ + LogTriStateSame, + LogTriStateFalse, + LogTriStateTrue +}; + +// INTERNAL, DO NOT USE +// USE LOG() INSTEAD +// +#ifndef _WIN32 + #define LOG_IMPL(str, ...) \ + { \ + if (LOG_TARGET != nullptr) \ + { \ + fprintf(LOG_TARGET, LOG_TIMESTAMP_FMT LOG_FLF_FMT str "%s" LOG_TIMESTAMP_VAL LOG_FLF_VAL, __VA_ARGS__); \ + fflush(LOG_TARGET); \ + } \ + } +#else + #define LOG_IMPL(str, ...) \ + { \ + if (LOG_TARGET != nullptr) \ + { \ + fprintf(LOG_TARGET, LOG_TIMESTAMP_FMT LOG_FLF_FMT str "%s" LOG_TIMESTAMP_VAL LOG_FLF_VAL "", ##__VA_ARGS__); \ + fflush(LOG_TARGET); \ + } \ + } +#endif + +// INTERNAL, DO NOT USE +// USE LOG_TEE() INSTEAD +// +#ifndef _WIN32 + #define LOG_TEE_IMPL(str, ...) \ + { \ + if (LOG_TARGET != nullptr) \ + { \ + fprintf(LOG_TARGET, LOG_TIMESTAMP_FMT LOG_FLF_FMT str "%s" LOG_TIMESTAMP_VAL LOG_FLF_VAL, __VA_ARGS__); \ + fflush(LOG_TARGET); \ + } \ + if (LOG_TARGET != nullptr && LOG_TARGET != stdout && LOG_TARGET != stderr && LOG_TEE_TARGET != nullptr) \ + { \ + fprintf(LOG_TEE_TARGET, LOG_TEE_TIMESTAMP_FMT LOG_TEE_FLF_FMT str "%s" LOG_TEE_TIMESTAMP_VAL LOG_TEE_FLF_VAL, __VA_ARGS__); \ + fflush(LOG_TEE_TARGET); \ + } \ + } +#else + #define LOG_TEE_IMPL(str, ...) \ + { \ + if (LOG_TARGET != nullptr) \ + { \ + fprintf(LOG_TARGET, LOG_TIMESTAMP_FMT LOG_FLF_FMT str "%s" LOG_TIMESTAMP_VAL LOG_FLF_VAL "", ##__VA_ARGS__); \ + fflush(LOG_TARGET); \ + } \ + if (LOG_TARGET != nullptr && LOG_TARGET != stdout && LOG_TARGET != stderr && LOG_TEE_TARGET != nullptr) \ + { \ + fprintf(LOG_TEE_TARGET, LOG_TEE_TIMESTAMP_FMT LOG_TEE_FLF_FMT str "%s" LOG_TEE_TIMESTAMP_VAL LOG_TEE_FLF_VAL "", ##__VA_ARGS__); \ + fflush(LOG_TEE_TARGET); \ + } \ + } +#endif + +// The '\0' as a last argument, is a trick to bypass the silly +// "warning: ISO C++11 requires at least one argument for the "..." in a variadic macro" +// so we can have a single macro which can be called just like printf. + +// Main LOG macro. +// behaves like printf, and supports arguments the exact same way. +// +#ifndef _WIN32 + #define LOG(...) LOG_IMPL(__VA_ARGS__, "") +#else + #define LOG(str, ...) LOG_IMPL("%s" str, "", __VA_ARGS__, "") +#endif + +// Main TEE macro. +// does the same as LOG +// and +// simultaneously writes stderr. +// +// Secondary target can be changed just like LOG_TARGET +// by defining LOG_TEE_TARGET +// +#ifndef _WIN32 + #define LOG_TEE(...) LOG_TEE_IMPL(__VA_ARGS__, "") +#else + #define LOG_TEE(str, ...) LOG_TEE_IMPL("%s" str, "", __VA_ARGS__, "") +#endif + +// LOG macro variants with auto endline. +#ifndef _WIN32 + #define LOGLN(...) LOG_IMPL(__VA_ARGS__, "\n") + #define LOG_TEELN(...) LOG_TEE_IMPL(__VA_ARGS__, "\n") +#else + #define LOGLN(str, ...) LOG_IMPL("%s" str, "", __VA_ARGS__, "\n") + #define LOG_TEELN(str, ...) LOG_TEE_IMPL("%s" str, "", __VA_ARGS__, "\n") +#endif + +// INTERNAL, DO NOT USE +inline FILE *log_handler1_impl(bool change = false, LogTriState disable = LogTriStateSame, const std::string & filename = LOG_DEFAULT_FILE_NAME, FILE *target = nullptr) +{ + static bool _initialized{false}; + static bool _disabled{(filename.empty() && target == nullptr)}; + static std::string log_current_filename{filename}; + static FILE *log_current_target{target}; + static FILE *logfile = nullptr; + + if (change) + { + if (disable == LogTriStateTrue) + { + // Disable primary target + _disabled = true; + } + // If previously disabled, only enable, and keep previous target + else if (disable == LogTriStateFalse) + { + _disabled = false; + } + // Otherwise, process the arguments + else if (log_current_filename != filename || log_current_target != target) + { + _initialized = false; + } + } + + if (_initialized) + { + if (_disabled) + { + // Log is disabled + return nullptr; + } + + // with fallback in case something went wrong + return logfile ? logfile : stderr; + } + + // do the (re)initialization + if (target != nullptr) + { + if (logfile != nullptr && logfile != stdout && logfile != stderr) + { + fclose(logfile); + } + + log_current_filename = LOG_DEFAULT_FILE_NAME; + log_current_target = target; + + logfile = target; + } + else + { + if (log_current_filename != filename) + { + if (logfile != nullptr && logfile != stdout && logfile != stderr) + { + fclose(logfile); + } + } + + logfile = fopen(filename.c_str(), "w"); + } + + if (!logfile) + { + // Verify whether the file was opened, otherwise fallback to stderr + logfile = stderr; + + fprintf(stderr, "Failed to open logfile '%s' with error '%s'\n", filename.c_str(), std::strerror(errno)); + fflush(stderr); + + // At this point we let the init flag be to true below, and let the target fallback to stderr + // otherwise we would repeatedly fopen() which was already unsuccessful + } + + _initialized = true; + + return logfile ? logfile : stderr; +} + +// INTERNAL, DO NOT USE +inline FILE *log_handler2_impl(bool change = false, LogTriState disable = LogTriStateSame, FILE *target = nullptr, const std::string & filename = LOG_DEFAULT_FILE_NAME) +{ + return log_handler1_impl(change, disable, filename, target); +} + +// Disables logs entirely at runtime. +// Makes LOG() and LOG_TEE() produce no output, +// untill enabled back. +#define log_disable() log_disable_impl() + +// INTERNAL, DO NOT USE +inline FILE *log_disable_impl() +{ + return log_handler1_impl(true, LogTriStateTrue); +} + +// Enables logs at runtime. +#define log_enable() log_enable_impl() + +// INTERNAL, DO NOT USE +inline FILE *log_enable_impl() +{ + return log_handler1_impl(true, LogTriStateFalse); +} + +// Sets target fir logs, either by a file name or FILE* pointer (stdout, stderr, or any valid FILE*) +#define log_set_target(target) log_set_target_impl(target) + +// INTERNAL, DO NOT USE +inline FILE *log_set_target_impl(const std::string & filename) { return log_handler1_impl(true, LogTriStateSame, filename); } +inline FILE *log_set_target_impl(FILE *target) { return log_handler2_impl(true, LogTriStateSame, target); } + +// INTERNAL, DO NOT USE +inline FILE *log_handler() { return log_handler1_impl(); } + +inline void log_test() +{ + log_disable(); + LOG("01 Hello World to nobody, because logs are disabled!\n") + log_enable(); + LOG("02 Hello World to default output, which is \"%s\" ( Yaaay, arguments! )!\n", LOG_STRINGIZE(LOG_TARGET)) + LOG_TEE("03 Hello World to **both** default output and " LOG_TEE_TARGET_STRING "!\n") + log_set_target(stderr); + LOG("04 Hello World to stderr!\n") + LOG_TEE("05 Hello World TEE with double printing to stderr prevented!\n") + log_set_target(LOG_DEFAULT_FILE_NAME); + LOG("06 Hello World to default log file!\n") + log_set_target(stdout); + LOG("07 Hello World to stdout!\n") + log_set_target(LOG_DEFAULT_FILE_NAME); + LOG("08 Hello World to default log file again!\n") + log_disable(); + LOG("09 Hello World _1_ into the void!\n") + log_enable(); + LOG("10 Hello World back from the void ( you should not see _1_ in the log or the output )!\n") + log_disable(); + log_set_target("llama.anotherlog.log"); + LOG("11 Hello World _2_ to nobody, new target was selected but logs are still disabled!\n") + log_enable(); + LOG("12 Hello World this time in a new file ( you should not see _2_ in the log or the output )?\n") + log_set_target("llama.yetanotherlog.log"); + LOG("13 Hello World this time in yet new file?\n") + log_set_target(log_filename_generator("llama_autonamed", "log")); + LOG("14 Hello World in log with generated filename!\n") +#ifdef _WIN32 + LOG_TEE("15 Hello msvc TEE without arguments\n") + LOG_TEE("16 Hello msvc TEE with (%d)(%s) arguments\n", 1, "test") + LOG_TEELN("17 Hello msvc TEELN without arguments\n") + LOG_TEELN("18 Hello msvc TEELN with (%d)(%s) arguments\n", 1, "test") + LOG("19 Hello msvc LOG without arguments\n") + LOG("20 Hello msvc LOG with (%d)(%s) arguments\n", 1, "test") + LOGLN("21 Hello msvc LOGLN without arguments\n") + LOGLN("22 Hello msvc LOGLN with (%d)(%s) arguments\n", 1, "test") +#endif +} + +inline bool log_param_single_parse(const std::string & param) +{ + if ( param == "--log-test") + { + log_test(); + return true; + } + + if ( param == "--log-disable") + { + log_disable(); + return true; + } + + if ( param == "--log-enable") + { + log_enable(); + return true; + } + + return false; +} + +inline bool log_param_pair_parse(bool check_but_dont_parse, const std::string & param, const std::string & next = std::string()) +{ + if ( param == "--log-file") + { + if (!check_but_dont_parse) + { + log_set_target(log_filename_generator(next.empty() ? "unnamed" : next, "log")); + } + + return true; + } + + return false; +} + +inline void log_print_usage() +{ + fprintf(stdout, "log options:\n"); + /* format + fprintf(stdout, " -h, --help show this help message and exit\n");*/ + /* spacing + fprintf(stdout, "__-param----------------Description\n");*/ + fprintf(stdout, " --log-test Run simple logging test\n"); + fprintf(stdout, " --log-disable Disable trace logs\n"); + fprintf(stdout, " --log-enable Enable trace logs\n"); + fprintf(stdout, " --log-file Specify a log filename (without extension)\n"); + fprintf(stdout, " Log file will be tagged with unique ID and written as \"..log\"\n"); /* */ +} + +#define log_dump_cmdline(argc, argv) log_dump_cmdline_impl(argc, argv) + +// INTERNAL, DO NOT USE +inline void log_dump_cmdline_impl(int argc, char **argv) +{ + std::stringstream buf; + for (int i = 0; i < argc; ++i) + { + if (std::string(argv[i]).find(' ') != std::string::npos) + { + buf << " \"" << argv[i] <<"\""; + } + else + { + buf << " " << argv[i]; + } + } + LOGLN("Cmd:%s", buf.str().c_str()) +} + +#define log_tostr(var) log_var_to_string_impl(var).c_str() + +inline std::string log_var_to_string_impl(bool var) +{ + return var ? "true" : "false"; +} + +inline std::string log_var_to_string_impl(std::string var) +{ + return var; +} + +inline std::string log_var_to_string_impl(const std::vector & var) +{ + std::stringstream buf; + buf << "[ "; + bool first = true; + for (auto e : var) + { + if (first) + { + first = false; + } + else + { + buf << ", "; + } + buf << std::to_string(e); + } + buf << " ]"; + + return buf.str(); +} + +#define LOG_TOKENS_TOSTR_PRETTY(ctx, tokens) \ + [&tokens, &ctx]() \ + { \ + std::stringstream buf; \ + buf << "[ "; \ + \ + bool first = true; \ + for (const auto &token : tokens) \ + { \ + if (!first) \ + buf << ", "; \ + else \ + first = false; \ + \ + auto detokenized = llama_token_to_piece(ctx, token); \ + \ + detokenized.erase( \ + std::remove_if( \ + detokenized.begin(), \ + detokenized.end(), \ + [](const unsigned char c) { return !std::isprint(c); }), \ + detokenized.end()); \ + \ + buf \ + << "'" << detokenized << "'" \ + << ":" << std::to_string(token); \ + } \ + buf << " ]"; \ + \ + return buf.str(); \ + }() \ + .c_str() + +#ifdef LOG_DISABLE_LOGS + +#undef LOG +#define LOG(...) // dummy stub +#undef LOGLN +#define LOGLN(...) // dummy stub + +#undef LOG_TEE +#define LOG_TEE(...) fprintf(stderr, __VA_ARGS__); // convert to normal fprintf + +#undef LOG_TEELN +#define LOG_TEELN(...) fprintf(stderr, __VA_ARGS__); // convert to normal fprintf + +#undef LOG_DISABLE +#define LOG_DISABLE() // dummy stub + +#undef LOG_ENABLE +#define LOG_ENABLE() // dummy stub + +#undef LOG_ENABLE +#define LOG_ENABLE() // dummy stub + +#undef LOG_SET_TARGET +#define LOG_SET_TARGET(...) // dummy stub + +#undef LOG_DUMP_CMDLINE +#define LOG_DUMP_CMDLINE(...) // dummy stub + +#endif // LOG_DISABLE_LOGS diff --git a/examples/chat.sh b/examples/chat.sh index 9a928ef05..d567acecd 100755 --- a/examples/chat.sh +++ b/examples/chat.sh @@ -11,6 +11,6 @@ cd .. # # "--keep 48" is based on the contents of prompts/chat-with-bob.txt # -./main -m ./models/7B/ggml-model-q4_0.bin -c 512 -b 1024 -n 256 --keep 48 \ +./main -m ./models/llama-7b/ggml-model-q4_0.gguf -c 512 -b 1024 -n 256 --keep 48 \ --repeat_penalty 1.0 --color -i \ -r "User:" -f prompts/chat-with-bob.txt diff --git a/examples/main/main.cpp b/examples/main/main.cpp index 89cc4f602..7117db4b0 100644 --- a/examples/main/main.cpp +++ b/examples/main/main.cpp @@ -4,6 +4,7 @@ #endif #include "common.h" + #include "console.h" #include "llama.h" #include "build-info.h" @@ -112,6 +113,15 @@ int main(int argc, char ** argv) { return 1; } +#ifndef LOG_DISABLE_LOGS + log_set_target(log_filename_generator("main", "log")); + LOG_TEE("Log start\n"); + log_dump_cmdline(argc,argv); +#endif // LOG_DISABLE_LOGS + + // TODO: Dump params ? + //LOG("Params perplexity: %s\n", LOG_TOSTR(params.perplexity)); + // save choice to use color for later // (note for later: this is a slightly awkward choice) console::init(params.simple_io, params.use_color); @@ -134,34 +144,35 @@ int main(int argc, char ** argv) { } if (params.rope_freq_base != 10000.0) { - fprintf(stderr, "%s: warning: changing RoPE frequency base to %g (default 10000.0)\n", __func__, params.rope_freq_base); + LOG_TEE("%s: warning: changing RoPE frequency base to %g (default 10000.0)\n", __func__, params.rope_freq_base); } if (params.rope_freq_scale != 1.0) { - fprintf(stderr, "%s: warning: scaling RoPE frequency by %g (default 1.0)\n", __func__, params.rope_freq_scale); + LOG_TEE("%s: warning: scaling RoPE frequency by %g (default 1.0)\n", __func__, params.rope_freq_scale); } if (params.n_ctx > 2048) { // TODO: determine the actual max context of the model (e.g. 4096 for LLaMA v2) and use that instead of 2048 - fprintf(stderr, "%s: warning: base model only supports context sizes no greater than 2048 tokens (%d specified)\n", __func__, params.n_ctx); + LOG_TEE("%s: warning: base model only supports context sizes no greater than 2048 tokens (%d specified)\n", __func__, params.n_ctx); } else if (params.n_ctx < 8) { - fprintf(stderr, "%s: warning: minimum context size is 8, using minimum size.\n", __func__); + LOG_TEE("%s: warning: minimum context size is 8, using minimum size.\n", __func__); params.n_ctx = 8; } - fprintf(stderr, "%s: build = %d (%s)\n", __func__, BUILD_NUMBER, BUILD_COMMIT); + LOG_TEE("%s: build = %d (%s)\n", __func__, BUILD_NUMBER, BUILD_COMMIT); if (params.seed == LLAMA_DEFAULT_SEED) { params.seed = time(NULL); } - fprintf(stderr, "%s: seed = %u\n", __func__, params.seed); + LOG_TEE("%s: seed = %u\n", __func__, params.seed); std::mt19937 rng(params.seed); if (params.random_prompt) { params.prompt = gpt_random_prompt(rng); } + LOG("%s: llama backend init\n", __func__); llama_backend_init(params.numa); llama_model * model; @@ -171,6 +182,7 @@ int main(int argc, char ** argv) { g_ctx = &ctx; // load the model and apply lora adapter, if any + LOG("%s: load the model and apply lora adapter, if any\n", __func__); std::tie(model, ctx) = llama_init_from_gpt_params(params); if (params.cfg_scale > 1.f) { struct llama_context_params lparams = llama_context_params_from_gpt_params(params); @@ -178,14 +190,14 @@ int main(int argc, char ** argv) { } if (model == NULL) { - fprintf(stderr, "%s: error: unable to load model\n", __func__); + LOG_TEE("%s: error: unable to load model\n", __func__); return 1; } // print system information { - fprintf(stderr, "\n"); - fprintf(stderr, "system_info: n_threads = %d / %d | %s\n", + LOG_TEE("\n"); + LOG_TEE("system_info: n_threads = %d / %d | %s\n", params.n_threads, std::thread::hardware_concurrency(), llama_print_system_info()); } @@ -193,7 +205,7 @@ int main(int argc, char ** argv) { // uncomment the "used_mem" line in llama.cpp to see the results if (params.mem_test) { { - fprintf(stderr, "%s: testing memory usage for n_batch = %d, n_ctx = %d\n", __func__, params.n_batch, params.n_ctx); + LOG_TEE("%s: testing memory usage for n_batch = %d, n_ctx = %d\n", __func__, params.n_batch, params.n_ctx); const std::vector tmp(params.n_batch, llama_token_bos(ctx)); llama_eval(ctx, tmp.data(), tmp.size(), params.n_ctx, params.n_threads); @@ -219,7 +231,7 @@ int main(int argc, char ** argv) { std::vector session_tokens; if (!path_session.empty()) { - fprintf(stderr, "%s: attempting to load saved session from '%s'\n", __func__, path_session.c_str()); + LOG_TEE("%s: attempting to load saved session from '%s'\n", __func__, path_session.c_str()); // fopen to check for existing session FILE * fp = std::fopen(path_session.c_str(), "rb"); @@ -229,33 +241,38 @@ int main(int argc, char ** argv) { session_tokens.resize(params.n_ctx); size_t n_token_count_out = 0; if (!llama_load_session_file(ctx, path_session.c_str(), session_tokens.data(), session_tokens.capacity(), &n_token_count_out)) { - fprintf(stderr, "%s: error: failed to load session file '%s'\n", __func__, path_session.c_str()); + LOG_TEE("%s: error: failed to load session file '%s'\n", __func__, path_session.c_str()); return 1; } session_tokens.resize(n_token_count_out); llama_set_rng_seed(ctx, params.seed); - fprintf(stderr, "%s: loaded a session with prompt size of %d tokens\n", __func__, (int) session_tokens.size()); + LOG_TEE("%s: loaded a session with prompt size of %d tokens\n", __func__, (int) session_tokens.size()); } else { - fprintf(stderr, "%s: session file does not exist, will create\n", __func__); + LOG_TEE("%s: session file does not exist, will create\n", __func__); } } - // Add BOS if SPM tokenizer const bool add_bos = llama_vocab_type(ctx) == LLAMA_VOCAB_TYPE_SPM; + LOG("add_bos: %d\n", add_bos); - // tokenize the prompt std::vector embd_inp; if (params.interactive_first || params.instruct || !params.prompt.empty() || session_tokens.empty()) { + LOG("tokenize the prompt\n"); embd_inp = ::llama_tokenize(ctx, params.prompt, add_bos); } else { + LOG("use session tokens\n"); embd_inp = session_tokens; } + LOG("prompt: \"%s\"\n", log_tostr(params.prompt)); + LOG("tokens: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, embd_inp)); + // Should not run without any tokens if (embd_inp.empty()) { embd_inp.push_back(llama_token_bos(ctx)); + LOG("embd_inp was considered empty and bos was added: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, embd_inp)); } // Tokenize negative prompt @@ -263,23 +280,31 @@ int main(int argc, char ** argv) { int guidance_offset = 0; int original_prompt_len = 0; if (ctx_guidance) { + LOG("cfg_negative_prompt: \"%s\"\n", log_tostr(params.cfg_negative_prompt)); + guidance_inp = ::llama_tokenize(ctx_guidance, params.cfg_negative_prompt, add_bos); + LOG("guidance_inp tokenized: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx_guidance, guidance_inp)); std::vector original_inp = ::llama_tokenize(ctx, params.prompt, add_bos); + LOG("original_inp tokenized: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, original_inp)); + original_prompt_len = original_inp.size(); guidance_offset = (int)guidance_inp.size() - original_prompt_len; + LOG("original_prompt_len: %s", log_tostr(original_prompt_len)); + LOG("guidance_offset: %s", log_tostr(guidance_offset)); } const int n_ctx = llama_n_ctx(ctx); + LOG("n_ctx: %d\n", n_ctx); if ((int) embd_inp.size() > n_ctx - 4) { - fprintf(stderr, "%s: error: prompt is too long (%d tokens, max %d)\n", __func__, (int) embd_inp.size(), n_ctx - 4); + LOG_TEE("%s: error: prompt is too long (%d tokens, max %d)\n", __func__, (int) embd_inp.size(), n_ctx - 4); return 1; } // debug message about similarity of saved session, if applicable size_t n_matching_session_tokens = 0; - if (session_tokens.size()) { + if (session_tokens.size() > 0) { for (llama_token id : session_tokens) { if (n_matching_session_tokens >= embd_inp.size() || id != embd_inp[n_matching_session_tokens]) { break; @@ -287,22 +312,27 @@ int main(int argc, char ** argv) { n_matching_session_tokens++; } if (params.prompt.empty() && n_matching_session_tokens == embd_inp.size()) { - fprintf(stderr, "%s: using full prompt from session file\n", __func__); + LOG_TEE("%s: using full prompt from session file\n", __func__); } else if (n_matching_session_tokens >= embd_inp.size()) { - fprintf(stderr, "%s: session file has exact match for prompt!\n", __func__); + LOG_TEE("%s: session file has exact match for prompt!\n", __func__); } else if (n_matching_session_tokens < (embd_inp.size() / 2)) { - fprintf(stderr, "%s: warning: session file has low similarity to prompt (%zu / %zu tokens); will mostly be reevaluated\n", + LOG_TEE("%s: warning: session file has low similarity to prompt (%zu / %zu tokens); will mostly be reevaluated\n", __func__, n_matching_session_tokens, embd_inp.size()); } else { - fprintf(stderr, "%s: session file matches %zu / %zu tokens of prompt\n", + LOG_TEE("%s: session file matches %zu / %zu tokens of prompt\n", __func__, n_matching_session_tokens, embd_inp.size()); } } + LOGLN( + "recalculate the cached logits (check): embd_inp.empty() %s, n_matching_session_tokens %zu, embd_inp.size() %zu, session_tokens.size() %zu, embd_inp.size() %zu", + log_tostr(embd_inp.empty()), n_matching_session_tokens, embd_inp.size(), session_tokens.size(), embd_inp.size()); + // if we will use the cache for the full prompt without reaching the end of the cache, force // reevaluation of the last token token to recalculate the cached logits - if (!embd_inp.empty() && n_matching_session_tokens == embd_inp.size() && - session_tokens.size() > embd_inp.size()) { + if (!embd_inp.empty() && n_matching_session_tokens == embd_inp.size() && session_tokens.size() > embd_inp.size()) { + LOGLN("recalculate the cached logits (do): session_tokens.resize( %zu )", embd_inp.size() - 1); + session_tokens.resize(embd_inp.size() - 1); } @@ -315,6 +345,9 @@ int main(int argc, char ** argv) { const auto inp_pfx = ::llama_tokenize(ctx, "\n\n### Instruction:\n\n", add_bos); const auto inp_sfx = ::llama_tokenize(ctx, "\n\n### Response:\n\n", false); + LOG("inp_pfx: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, inp_pfx)); + LOG("inp_sfx: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, inp_sfx)); + // in instruct mode, we inject a prefix and a suffix to each input by the user if (params.instruct) { params.interactive_first = true; @@ -327,30 +360,30 @@ int main(int argc, char ** argv) { } if (params.verbose_prompt) { - fprintf(stderr, "\n"); - fprintf(stderr, "%s: prompt: '%s'\n", __func__, params.prompt.c_str()); - fprintf(stderr, "%s: number of tokens in prompt = %zu\n", __func__, embd_inp.size()); + LOG_TEE("\n"); + LOG_TEE("%s: prompt: '%s'\n", __func__, params.prompt.c_str()); + LOG_TEE("%s: number of tokens in prompt = %zu\n", __func__, embd_inp.size()); for (int i = 0; i < (int) embd_inp.size(); i++) { - fprintf(stderr, "%6d -> '%s'\n", embd_inp[i], llama_token_to_piece(ctx, embd_inp[i]).c_str()); + LOG_TEE("%6d -> '%s'\n", embd_inp[i], llama_token_to_piece(ctx, embd_inp[i]).c_str()); } if (ctx_guidance) { - fprintf(stderr, "\n"); - fprintf(stderr, "%s: negative prompt: '%s'\n", __func__, params.cfg_negative_prompt.c_str()); - fprintf(stderr, "%s: number of tokens in negative prompt = %zu\n", __func__, guidance_inp.size()); + LOG_TEE("\n"); + LOG_TEE("%s: negative prompt: '%s'\n", __func__, params.cfg_negative_prompt.c_str()); + LOG_TEE("%s: number of tokens in negative prompt = %zu\n", __func__, guidance_inp.size()); for (int i = 0; i < (int) guidance_inp.size(); i++) { - fprintf(stderr, "%6d -> '%s'\n", guidance_inp[i], llama_token_to_piece(ctx, guidance_inp[i]).c_str()); + LOG_TEE("%6d -> '%s'\n", guidance_inp[i], llama_token_to_piece(ctx, guidance_inp[i]).c_str()); } } if (params.n_keep > 0) { - fprintf(stderr, "%s: static prompt based on n_keep: '", __func__); + LOG_TEE("%s: static prompt based on n_keep: '", __func__); for (int i = 0; i < params.n_keep; i++) { - fprintf(stderr, "%s", llama_token_to_piece(ctx, embd_inp[i]).c_str()); + LOG_TEE("%s", llama_token_to_piece(ctx, embd_inp[i]).c_str()); } - fprintf(stderr, "'\n"); + LOG_TEE("'\n"); } - fprintf(stderr, "\n"); + LOG_TEE("\n"); } if (params.interactive) { @@ -367,30 +400,30 @@ int main(int argc, char ** argv) { SetConsoleCtrlHandler(reinterpret_cast(console_ctrl_handler), true); #endif - fprintf(stderr, "%s: interactive mode on.\n", __func__); + LOG_TEE("%s: interactive mode on.\n", __func__); if (params.antiprompt.size()) { - for (auto antiprompt : params.antiprompt) { - fprintf(stderr, "Reverse prompt: '%s'\n", antiprompt.c_str()); + for (const auto & antiprompt : params.antiprompt) { + LOG_TEE("Reverse prompt: '%s'\n", antiprompt.c_str()); } } if (params.input_prefix_bos) { - fprintf(stderr, "Input prefix with BOS\n"); + LOG_TEE("Input prefix with BOS\n"); } if (!params.input_prefix.empty()) { - fprintf(stderr, "Input prefix: '%s'\n", params.input_prefix.c_str()); + LOG_TEE("Input prefix: '%s'\n", params.input_prefix.c_str()); } if (!params.input_suffix.empty()) { - fprintf(stderr, "Input suffix: '%s'\n", params.input_suffix.c_str()); + LOG_TEE("Input suffix: '%s'\n", params.input_suffix.c_str()); } } - fprintf(stderr, "sampling: repeat_last_n = %d, repeat_penalty = %f, presence_penalty = %f, frequency_penalty = %f, top_k = %d, tfs_z = %f, top_p = %f, typical_p = %f, temp = %f, mirostat = %d, mirostat_lr = %f, mirostat_ent = %f\n", + LOG_TEE("sampling: repeat_last_n = %d, repeat_penalty = %f, presence_penalty = %f, frequency_penalty = %f, top_k = %d, tfs_z = %f, top_p = %f, typical_p = %f, temp = %f, mirostat = %d, mirostat_lr = %f, mirostat_ent = %f\n", params.repeat_last_n, params.repeat_penalty, params.presence_penalty, params.frequency_penalty, params.top_k, params.tfs_z, params.top_p, params.typical_p, params.temp, params.mirostat, params.mirostat_eta, params.mirostat_tau); - fprintf(stderr, "generate: n_ctx = %d, n_batch = %d, n_predict = %d, n_keep = %d\n", n_ctx, params.n_batch, params.n_predict, params.n_keep); - fprintf(stderr, "\n\n"); + LOG_TEE("generate: n_ctx = %d, n_batch = %d, n_predict = %d, n_keep = %d\n", n_ctx, params.n_batch, params.n_predict, params.n_keep); + LOG_TEE("\n\n"); grammar_parser::parse_state parsed_grammar; llama_grammar * grammar = NULL; @@ -400,14 +433,14 @@ int main(int argc, char ** argv) { if (parsed_grammar.rules.empty()) { return 1; } - fprintf(stderr, "%s: grammar:\n", __func__); + LOG_TEE("%s: grammar:\n", __func__); grammar_parser::print_grammar(stderr, parsed_grammar); - fprintf(stderr, "\n"); + LOG_TEE("\n"); { auto it = params.logit_bias.find(llama_token_eos(ctx)); if (it != params.logit_bias.end() && it->second == -INFINITY) { - fprintf(stderr, "%s: warning: EOS token is disabled, which will cause most grammars to fail\n", __func__); + LOG_TEE("%s: warning: EOS token is disabled, which will cause most grammars to fail\n", __func__); } } @@ -430,11 +463,11 @@ int main(int argc, char ** argv) { " - To return control without starting a new line, end your input with '/'.\n" " - If you want to submit another line, end your input with '\\'.\n"; } - fprintf(stderr, "== Running in interactive mode. ==\n" + LOG_TEE("== Running in interactive mode. ==\n"); #if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__)) || defined (_WIN32) - " - Press Ctrl+C to interject at any time.\n" + LOG_TEE( " - Press Ctrl+C to interject at any time.\n"); #endif - "%s\n", control_message); + LOG_TEE( "%s\n", control_message); is_interacting = params.interactive_first; } @@ -459,8 +492,9 @@ int main(int argc, char ** argv) { std::vector embd; std::vector embd_guidance; - // do one empty run to warm up the model { + LOG("warming up the model with an empty run\n"); + const std::vector tmp = { llama_token_bos(ctx), }; llama_eval(ctx, tmp.data(), tmp.size(), 0, params.n_threads); llama_reset_timings(ctx); @@ -471,15 +505,17 @@ int main(int argc, char ** argv) { if (embd.size() > 0) { // Note: n_ctx - 4 here is to match the logic for commandline prompt handling via // --prompt or --file which uses the same value. - auto max_embd_size = n_ctx - 4; + int max_embd_size = n_ctx - 4; + // Ensure the input doesn't exceed the context size by truncating embd if necessary. - if ((int)embd.size() > max_embd_size) { - auto skipped_tokens = embd.size() - max_embd_size; + if ((int) embd.size() > max_embd_size) { + const int skipped_tokens = (int) embd.size() - max_embd_size; + embd.resize(max_embd_size); + console::set_display(console::error); - printf("<>", skipped_tokens, skipped_tokens != 1 ? "s" : ""); + printf("<>", skipped_tokens, skipped_tokens != 1 ? "s" : ""); console::set_display(console::reset); fflush(stdout); - embd.resize(max_embd_size); } // infinite text generation via context swapping @@ -488,28 +524,26 @@ int main(int argc, char ** argv) { // - take half of the last (n_ctx - n_keep) tokens and recompute the logits in batches if (n_past + (int) embd.size() + std::max(0, guidance_offset) > n_ctx) { if (params.n_predict == -2) { - fprintf(stderr, "\n\n%s: context full, stopping generation\n", __func__); + LOG_TEE("\n\n%s: context full and n_predict == -%d => stopping\n", __func__, params.n_predict); break; } const int n_left = n_past - params.n_keep; + LOG("context full, swapping: n_past = %d, n_left = %d, n_ctx = %d, n_keep = %d\n", n_past, n_left, n_ctx, params.n_keep); + // always keep the first token - BOS - n_past = std::max(1, params.n_keep); + n_past = std::max(1, params.n_keep); n_past_guidance = std::max(1, params.n_keep + guidance_offset); + LOG("after swap: n_past = %d, n_past_guidance = %d\n", n_past, n_past_guidance); + // insert n_left/2 tokens at the start of embd from last_n_tokens embd.insert(embd.begin(), last_n_tokens.begin() + n_ctx - n_left/2 - embd.size(), last_n_tokens.end() - embd.size()); - // stop saving session if we run out of context - path_session.clear(); + LOG("embd: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, embd)); - //printf("\n---\n"); - //printf("resetting: '"); - //for (int i = 0; i < (int) embd.size(); i++) { - // printf("%s", llama_token_to_piece(ctx, embd[i])); - //} - //printf("'\n"); - //printf("\n---\n"); + LOG("clear session path\n"); + path_session.clear(); } // try to reuse a matching prefix from the loaded session instead of re-eval (via n_past) @@ -539,7 +573,7 @@ int main(int argc, char ** argv) { if (ctx_guidance) { int input_size = 0; - llama_token* input_buf = NULL; + llama_token * input_buf = NULL; if (n_past_guidance < (int) guidance_inp.size()) { // Guidance context should have the same data with these modifications: @@ -555,22 +589,19 @@ int main(int argc, char ** argv) { ); } - input_buf = embd_guidance.data(); + input_buf = embd_guidance.data(); input_size = embd_guidance.size(); - //fprintf(stderr, "\n---------------------\n"); - //for (int i = 0; i < (int) embd_guidance.size(); i++) { - //fprintf(stderr, "%s", llama_token_to_piece(ctx, embd_guidance[i])); - //} - //fprintf(stderr, "\n---------------------\n"); + + LOG("guidance context: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, embd_guidance)); } else { - input_buf = embd.data(); + input_buf = embd.data(); input_size = embd.size(); } for (int i = 0; i < input_size; i += params.n_batch) { int n_eval = std::min(input_size - i, params.n_batch); if (llama_eval(ctx_guidance, input_buf + i, n_eval, n_past_guidance, params.n_threads)) { - fprintf(stderr, "%s : failed to eval\n", __func__); + LOG_TEE("%s : failed to eval\n", __func__); return 1; } @@ -583,11 +614,17 @@ int main(int argc, char ** argv) { if (n_eval > params.n_batch) { n_eval = params.n_batch; } + + LOG("eval: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, embd)); + if (llama_eval(ctx, &embd[i], n_eval, n_past, params.n_threads)) { - fprintf(stderr, "%s : failed to eval\n", __func__); + LOG_TEE("%s : failed to eval\n", __func__); return 1; } + n_past += n_eval; + + LOG("n_past = %d\n", n_past); } if (embd.size() > 0 && !path_session.empty()) { @@ -600,7 +637,6 @@ int main(int argc, char ** argv) { embd_guidance.clear(); if ((int) embd_inp.size() <= n_consumed && !is_interacting) { - // out of user input, sample next token const float temp = params.temp; const int32_t top_k = params.top_k <= 0 ? llama_n_vocab(ctx) : params.top_k; const float top_p = params.top_p; @@ -619,6 +655,8 @@ int main(int argc, char ** argv) { if (!path_session.empty() && need_to_save_session && !params.prompt_cache_ro) { need_to_save_session = false; llama_save_session_file(ctx, path_session.c_str(), session_tokens.data(), session_tokens.size()); + + LOG("saved session to %s\n", path_session.c_str()); } llama_token id = 0; @@ -638,55 +676,68 @@ int main(int argc, char ** argv) { candidates.emplace_back(llama_token_data{token_id, logits[token_id], 0.0f}); } - llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false }; + llama_token_data_array cur_p = { candidates.data(), candidates.size(), false }; if (ctx_guidance) { - llama_sample_classifier_free_guidance(ctx, &candidates_p, ctx_guidance, params.cfg_scale); + llama_sample_classifier_free_guidance(ctx, &cur_p, ctx_guidance, params.cfg_scale); } // Apply penalties float nl_logit = logits[llama_token_nl(ctx)]; auto last_n_repeat = std::min(std::min((int)last_n_tokens.size(), repeat_last_n), n_ctx); - llama_sample_repetition_penalty(ctx, &candidates_p, + llama_sample_repetition_penalty(ctx, &cur_p, last_n_tokens.data() + last_n_tokens.size() - last_n_repeat, last_n_repeat, repeat_penalty); - llama_sample_frequency_and_presence_penalties(ctx, &candidates_p, + llama_sample_frequency_and_presence_penalties(ctx, &cur_p, last_n_tokens.data() + last_n_tokens.size() - last_n_repeat, last_n_repeat, alpha_frequency, alpha_presence); if (!penalize_nl) { - for (size_t idx = 0; idx < candidates_p.size; idx++) { - if (candidates_p.data[idx].id == llama_token_nl(ctx)) { - candidates_p.data[idx].logit = nl_logit; + for (size_t idx = 0; idx < cur_p.size; idx++) { + if (cur_p.data[idx].id == llama_token_nl(ctx)) { + cur_p.data[idx].logit = nl_logit; break; } } } if (grammar != NULL) { - llama_sample_grammar(ctx, &candidates_p, grammar); + llama_sample_grammar(ctx, &cur_p, grammar); } if (temp <= 0) { // Greedy sampling - id = llama_sample_token_greedy(ctx, &candidates_p); + id = llama_sample_token_greedy(ctx, &cur_p); } else { if (mirostat == 1) { static float mirostat_mu = 2.0f * mirostat_tau; const int mirostat_m = 100; - llama_sample_temperature(ctx, &candidates_p, temp); - id = llama_sample_token_mirostat(ctx, &candidates_p, mirostat_tau, mirostat_eta, mirostat_m, &mirostat_mu); + llama_sample_temperature(ctx, &cur_p, temp); + id = llama_sample_token_mirostat(ctx, &cur_p, mirostat_tau, mirostat_eta, mirostat_m, &mirostat_mu); } else if (mirostat == 2) { static float mirostat_mu = 2.0f * mirostat_tau; - llama_sample_temperature(ctx, &candidates_p, temp); - id = llama_sample_token_mirostat_v2(ctx, &candidates_p, mirostat_tau, mirostat_eta, &mirostat_mu); + llama_sample_temperature(ctx, &cur_p, temp); + id = llama_sample_token_mirostat_v2(ctx, &cur_p, mirostat_tau, mirostat_eta, &mirostat_mu); } else { // Temperature sampling - llama_sample_top_k(ctx, &candidates_p, top_k, 1); - llama_sample_tail_free(ctx, &candidates_p, tfs_z, 1); - llama_sample_typical(ctx, &candidates_p, typical_p, 1); - llama_sample_top_p(ctx, &candidates_p, top_p, 1); - llama_sample_temperature(ctx, &candidates_p, temp); - id = llama_sample_token(ctx, &candidates_p); + llama_sample_top_k (ctx, &cur_p, top_k, 1); + llama_sample_tail_free (ctx, &cur_p, tfs_z, 1); + llama_sample_typical (ctx, &cur_p, typical_p, 1); + llama_sample_top_p (ctx, &cur_p, top_p, 1); + llama_sample_temperature(ctx, &cur_p, temp); + + { + const int n_top = 10; + LOG("top %d candidates:\n", n_top); + + for (int i = 0; i < n_top; i++) { + const llama_token id = cur_p.data[i].id; + LOG(" - %5d: '%12s' (%.3f)\n", id, llama_token_to_piece(ctx, id).c_str(), cur_p.data[i].p); + } + } + + id = llama_sample_token(ctx, &cur_p); + + LOG("sampled token: %5d: '%s'\n", id, llama_token_to_piece(ctx, id).c_str()); } } // printf("`%d`", candidates_p.size); @@ -697,9 +748,10 @@ int main(int argc, char ** argv) { last_n_tokens.erase(last_n_tokens.begin()); last_n_tokens.push_back(id); + + LOG("last: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, last_n_tokens)); } - // add it to the context embd.push_back(id); // echo this to console @@ -707,8 +759,11 @@ int main(int argc, char ** argv) { // decrement remaining sampling budget --n_remain; + + LOG("n_remain: %d\n", n_remain); } else { // some user input remains from prompt or interaction, forward it to processing + LOG("embd_inp.size(): %d, n_consumed: %d\n", (int) embd_inp.size(), n_consumed); while ((int) embd_inp.size() > n_consumed) { embd.push_back(embd_inp[n_consumed]); last_n_tokens.erase(last_n_tokens.begin()); @@ -736,13 +791,12 @@ int main(int argc, char ** argv) { fflush(stdout); } // reset color to default if we there is no pending user input - if (input_echo && (int)embd_inp.size() == n_consumed) { + if (input_echo && (int) embd_inp.size() == n_consumed) { console::set_display(console::reset); } // if not currently processing queued inputs; if ((int) embd_inp.size() <= n_consumed) { - // check for reverse prompt if (params.antiprompt.size()) { std::string last_output; @@ -760,7 +814,7 @@ int main(int argc, char ** argv) { ? last_output.length() - static_cast(antiprompt.length() + extra_padding) : 0; - if (last_output.find(antiprompt.c_str(), search_start_pos) != std::string::npos) { + if (last_output.find(antiprompt, search_start_pos) != std::string::npos) { if (params.interactive) { is_interacting = true; console::set_display(console::user_input); @@ -770,10 +824,16 @@ int main(int argc, char ** argv) { break; } } + + if (is_antiprompt) { + LOG("found antiprompt: %s\n", last_output.c_str()); + } } // deal with end of text token in interactive mode if (last_n_tokens.back() == llama_token_eos(ctx)) { + LOG("found EOS token\n"); + if (params.interactive) { if (params.antiprompt.size() != 0) { // tokenize and inject first reverse prompt @@ -792,16 +852,20 @@ int main(int argc, char ** argv) { } if (n_past > 0 && is_interacting) { + LOG("waiting for user input\n"); + if (params.instruct) { printf("\n> "); } if (params.input_prefix_bos) { + LOG("adding input prefix BOS token\n"); embd_inp.push_back(llama_token_bos(ctx)); } std::string buffer; if (!params.input_prefix.empty()) { + LOG("appending input prefix: '%s'\n", params.input_prefix.c_str()); buffer += params.input_prefix; printf("%s", buffer.c_str()); } @@ -821,23 +885,30 @@ int main(int argc, char ** argv) { if (buffer.length() > 1) { // append input suffix if any if (!params.input_suffix.empty()) { + LOG("appending input suffix: '%s'\n", params.input_suffix.c_str()); buffer += params.input_suffix; printf("%s", params.input_suffix.c_str()); } + LOG("buffer: '%s'\n", buffer.c_str()); + const size_t original_size = embd_inp.size(); // instruct mode: insert instruction prefix if (params.instruct && !is_antiprompt) { + LOG("inserting instruction prefix\n"); n_consumed = embd_inp.size(); embd_inp.insert(embd_inp.end(), inp_pfx.begin(), inp_pfx.end()); } - auto line_inp = ::llama_tokenize(ctx, buffer, false); + const auto line_inp = ::llama_tokenize(ctx, buffer, false); + LOG("input tokens: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, line_inp)); + embd_inp.insert(embd_inp.end(), line_inp.begin(), line_inp.end()); // instruct mode: insert response suffix if (params.instruct) { + LOG("inserting instruction suffix\n"); embd_inp.insert(embd_inp.end(), inp_sfx.begin(), inp_sfx.end()); } @@ -848,6 +919,9 @@ int main(int argc, char ** argv) { } n_remain -= line_inp.size(); + LOG("n_remain: %d\n", n_remain); + } else { + LOG("empty line, passing control back\n"); } input_echo = false; // do not echo this again @@ -871,7 +945,7 @@ int main(int argc, char ** argv) { // end of text token if (!embd.empty() && embd.back() == llama_token_eos(ctx) && !(params.instruct || params.interactive)) { - fprintf(stderr, " [end of text]\n"); + LOG_TEE(" [end of text]\n"); break; } @@ -884,7 +958,7 @@ int main(int argc, char ** argv) { } if (!path_session.empty() && params.prompt_cache_all && !params.prompt_cache_ro) { - fprintf(stderr, "\n%s: saving final output to session file '%s'\n", __func__, path_session.c_str()); + LOG_TEE("\n%s: saving final output to session file '%s'\n", __func__, path_session.c_str()); llama_save_session_file(ctx, path_session.c_str(), session_tokens.data(), session_tokens.size()); } @@ -900,5 +974,9 @@ int main(int argc, char ** argv) { } llama_backend_free(); +#ifndef LOG_DISABLE_LOGS + LOG_TEE("Log end\n") +#endif // LOG_DISABLE_LOGS + return 0; } From ad9ddcff6ef322db5cf13785bd7c856b610d242e Mon Sep 17 00:00:00 2001 From: chaihahaha Date: Wed, 30 Aug 2023 14:50:55 +0800 Subject: [PATCH 14/21] llm.vim : stop generation at multiple linebreaks, bind to (#2879) --- examples/llm.vim | 3 ++- 1 file changed, 2 insertions(+), 1 deletion(-) diff --git a/examples/llm.vim b/examples/llm.vim index 594a28549..d580a3d00 100644 --- a/examples/llm.vim +++ b/examples/llm.vim @@ -8,7 +8,7 @@ function! Llm() let buffer_content = join(getline(1, '$'), "\n") " Create the JSON payload - let json_payload = {"temp":0.72,"top_k":100,"top_p":0.73,"repeat_penalty":1.100000023841858,"n_predict":10,"stream": v:false} + let json_payload = {"temp":0.72,"top_k":100,"top_p":0.73,"repeat_penalty":1.100000023841858,"n_predict":256,"stop": ["\n\n\n"],"stream": v:false} let json_payload.prompt = buffer_content " Define the curl command @@ -25,3 +25,4 @@ function! Llm() endfunction command! Llm call Llm() +noremap :Llm From dc07dc492ef9640bbb82904d7c7679f7bdcf6d76 Mon Sep 17 00:00:00 2001 From: Kerfuffle <44031344+KerfuffleV2@users.noreply.github.com> Date: Wed, 30 Aug 2023 02:25:50 -0600 Subject: [PATCH 15/21] convert : various script cleanups/fixes + merges and special token handling (#2842) * convert: Fix permute calls and method/func definitions * Cleanups for gguf-py * Minor types cleanups. * Initial implementation of handling merges and special tokens * convert: Handle special tokens and merges in vocab only mode convert: Vocab only mode no longer requires loading model tensors * gguf: Refactor tensor name mapping * convert: Fix type hint for special_token_types in SpecialVocab * Use common special vocab handling in various conversion scripts * First pass at implementing suggested changes * Second pass * gguf: SpecialVocab: Fix issue with special token content not in a dict gguf: SpecialVocab: Allow skipping handling of merges * convert-falcon-hf-to-gguf: Support --vocab-only option, bail out if no tokenizer.json * convert-gptneox-hf-to-gguf and convert: Only handle merges for BPE tokenizer * gguf: SpecialVocab: Actually set load_merges in object * Uniform args parsing and vocab only mode for convert examples * convert.py: Set gpt2 as tokenizer model when using BPE * Squish last type warning in gguf.py - yay! --- convert-falcon-hf-to-gguf.py | 170 +++++----- convert-gptneox-hf-to-gguf.py | 175 ++++------ convert-llama-7b-pth-to-gguf.py | 200 +++++------- convert-llama-ggmlv3-to-gguf.py | 28 +- convert-llama-hf-to-gguf.py | 203 +++++------- convert-lora-to-ggml.py | 6 +- convert.py | 142 ++++---- gguf-py/gguf/gguf.py | 551 +++++++++++++++++++------------- gguf-py/gguf/py.typed | 0 gguf-py/pyproject.toml | 1 + 10 files changed, 728 insertions(+), 748 deletions(-) create mode 100644 gguf-py/gguf/py.typed diff --git a/convert-falcon-hf-to-gguf.py b/convert-falcon-hf-to-gguf.py index 168bcf17f..0fdea70e1 100755 --- a/convert-falcon-hf-to-gguf.py +++ b/convert-falcon-hf-to-gguf.py @@ -8,6 +8,7 @@ import struct import json import numpy as np import torch +import argparse from typing import Any, List from pathlib import Path @@ -32,11 +33,10 @@ def bytes_to_unicode(): bs.append(b) cs.append(2**8+n) n += 1 - cs = [chr(n) for n in cs] - return dict(zip(bs, cs)) + return dict(zip(bs, (chr(n) for n in cs))) -def count_model_parts(dir_model: str) -> int: +def count_model_parts(dir_model: Path) -> int: num_parts = 0 for filename in os.listdir(dir_model): if filename.startswith("pytorch_model-"): @@ -47,17 +47,22 @@ def count_model_parts(dir_model: str) -> int: return num_parts -if len(sys.argv) < 3: - print(f"Usage: python {sys.argv[0]} dir-model ftype\n") - print(" ftype == 0 -> float32") - print(" ftype == 1 -> float16") +def parse_args() -> argparse.Namespace: + parser = argparse.ArgumentParser(description="Convert a Falcon model to a GGML compatible file") + parser.add_argument("--vocab-only", action="store_true", help="extract only the vocab") + parser.add_argument("--outfile", type=Path, help="path to write to; default: based on input") + parser.add_argument("model", type=Path, help="directory containing model file, or model file itself (*.bin)") + parser.add_argument("ftype", type=int, choices=[0, 1], help="output format - use 0 for float32, 1 for float16", default = 1) + return parser.parse_args() + +args = parse_args() + +dir_model = args.model +ftype = args.ftype +if not dir_model.is_dir(): + print(f'Error: {args.model} is not a directory', file = sys.stderr) sys.exit(1) - -# output in the same directory as the model -dir_model = sys.argv[1] -last_dir = os.path.basename(os.path.normpath(dir_model)) - # possible tensor data types # ftype == 0 -> float32 # ftype == 1 -> float16 @@ -65,25 +70,21 @@ last_dir = os.path.basename(os.path.normpath(dir_model)) # map from ftype to string ftype_str = ["f32", "f16"] -ftype = 1 -if len(sys.argv) > 2: - ftype = int(sys.argv[2]) - if ftype < 0 or ftype > 1: - print("Invalid ftype: " + str(ftype)) +if args.outfile is not None: + fname_out = args.outfile +else: + # output in the same directory as the model by default + fname_out = dir_model / f'ggml-model-{ftype_str[ftype]}.gguf' - sys.exit(1) +print("gguf: loading model "+dir_model.name) -fname_out = sys.argv[1] + "/ggml-model-" + ftype_str[ftype] + ".gguf" - -print("gguf: loading model "+last_dir) - -with open(dir_model + "/config.json", "r", encoding="utf-8") as f: +with open(dir_model / "config.json", "r", encoding="utf-8") as f: hparams = json.load(f) if hparams["architectures"][0] != "RWForCausalLM": print("Model architecture not supported: " + hparams["architectures"][0]) - sys.exit() + sys.exit(1) # get number of model parts num_parts = count_model_parts(dir_model) @@ -113,77 +114,58 @@ gguf_writer.add_file_type(ftype) print("gguf: get tokenizer metadata") -tokens: List[str] = [] +tokens: List[bytearray] = [] scores: List[float] = [] toktypes: List[int] = [] -merges: List[str] = [] +tokenizer_json_file = dir_model / 'tokenizer.json' +if not tokenizer_json_file.is_file(): + print(f'Error: Missing {tokenizer_json_file}', file = sys.stderr) + sys.exit(1) -if Path(dir_model + "/tokenizer.json").is_file(): - # gpt2 tokenizer - gguf_writer.add_tokenizer_model("gpt2") +# gpt2 tokenizer +gguf_writer.add_tokenizer_model("gpt2") - print("gguf: get gpt2 tokenizer merges") +with open(tokenizer_json_file, "r", encoding="utf-8") as f: + tokenizer_json = json.load(f) - with open(dir_model + "/tokenizer.json", "r", encoding="utf-8") as f: - tokenizer_json = json.load(f) - merges = tokenizer_json["model"]["merges"] +print("gguf: get gpt2 tokenizer vocab") - gguf_writer.add_token_merges(merges) +vocab_size = len(tokenizer_json["model"]["vocab"]) - print("gguf: get gpt2 tokenizer vocab") +# ref: https://github.com/cmp-nct/ggllm.cpp/blob/master/falcon_convert.py +tokenizer = AutoTokenizer.from_pretrained(dir_model) - vocab_size = len(tokenizer_json["model"]["vocab"]) +reverse_vocab = {id: encoded_tok for encoded_tok, id in tokenizer.vocab.items()} +byte_encoder = bytes_to_unicode() +byte_decoder = {v: k for k, v in byte_encoder.items()} - # ref: https://github.com/cmp-nct/ggllm.cpp/blob/master/falcon_convert.py - tokenizer = AutoTokenizer.from_pretrained(dir_model) +for i in range(vocab_size): + if i in reverse_vocab: + try: + text = bytearray([byte_decoder[c] for c in reverse_vocab[i]]) + except KeyError: + text = bytearray() + for c in reverse_vocab[i]: + if ord(c) < 256: # single byte character + text.append(byte_decoder[ord(c)]) + else: # multibyte special token character + text.extend(c.encode('utf-8')) + else: + print(f"Key {i} not in tokenizer vocabulary. Padding with an arbitrary token.") + pad_token = f"[PAD{i}]".encode("utf8") + text = bytearray(pad_token) - reverse_vocab = {id: encoded_tok for encoded_tok, id in tokenizer.vocab.items()} - byte_encoder = bytes_to_unicode() - byte_decoder = {v: k for k, v in byte_encoder.items()} + tokens.append(text) + scores.append(0.0) # dymmy + toktypes.append(gguf.TokenType.NORMAL) # dummy - for i in range(vocab_size): - if i in reverse_vocab: - try: - text = bytearray([byte_decoder[c] for c in reverse_vocab[i]]) - except KeyError: - text = bytearray() - for c in reverse_vocab[i]: - if ord(c) < 256: # single byte character - text.append(byte_decoder[ord(c)]) - else: # multibyte special token character - text.extend(c.encode('utf-8')) - else: - print(f"Key {i} not in tokenizer vocabulary. Padding with an arbitrary token.") - pad_token = f"[PAD{i}]".encode("utf8") - text = bytearray(pad_token) - - tokens.append(text) - scores.append(0.0) # dymmy - toktypes.append(gguf.TokenType.NORMAL) # dummy - - gguf_writer.add_token_list(tokens) - gguf_writer.add_token_scores(scores) - gguf_writer.add_token_types(toktypes) - -print("gguf: get special token ids") -# Look for special tokens in config.json - -if "bos_token_id" in hparams and hparams["bos_token_id"] != None: - gguf_writer.add_bos_token_id(hparams["bos_token_id"]) - -if "eos_token_id" in hparams and hparams["eos_token_id"] != None: - gguf_writer.add_eos_token_id(hparams["eos_token_id"]) - -if "unk_token_id" in hparams and hparams["unk_token_id"] != None: - gguf_writer.add_unk_token_id(hparams["unk_token_id"]) - -if "sep_token_id" in hparams and hparams["sep_token_id"] != None: - gguf_writer.add_sep_token_id(hparams["sep_token_id"]) - -if "pad_token_id" in hparams and hparams["pad_token_id"] != None: - gguf_writer.add_pad_token_id(hparams["pad_token_id"]) +gguf_writer.add_token_list(tokens) +gguf_writer.add_token_scores(scores) +gguf_writer.add_token_types(toktypes) +special_vocab = gguf.SpecialVocab(dir_model, load_merges = True) +special_vocab.add_to_gguf(gguf_writer) # TENSORS @@ -199,15 +181,17 @@ head_dim = hparams["hidden_size"] // n_head print("gguf: get tensor metadata") if num_parts == 0: - part_names = ("pytorch_model.bin",) + part_names = iter(("pytorch_model.bin",)) else: part_names = ( f"pytorch_model-{n:05}-of-{num_parts:05}.bin" for n in range(1, num_parts + 1) ) for part_name in part_names: + if args.vocab_only: + break print("gguf: loading model part '" + part_name + "'") - model_part = torch.load(f"{dir_model}/{part_name}", map_location="cpu") + model_part = torch.load(dir_model / part_name, map_location="cpu") for name in model_part.keys(): data = model_part[name] @@ -238,11 +222,8 @@ for part_name in part_names: data = data.squeeze().numpy() # map tensor names - if name.endswith(".weight") and name[:-7] in tensor_map: - name = tensor_map[name[:-7]] + ".weight" - elif name.endswith(".bias") and name[:-5] in tensor_map: - name = tensor_map[name[:-5]] + ".bias" - else: + new_name = tensor_map.get_name(name, try_suffixes = (".weight", ".bias")) + if new_name is None: print("Can not map tensor '" + name + "'") sys.exit() @@ -261,19 +242,20 @@ for part_name in part_names: if ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2: data = data.astype(np.float16) - print(name + ", n_dims = " + str(n_dims) + ", " + str(old_dtype) + " --> " + str(data.dtype)) + print(new_name + ", n_dims = " + str(n_dims) + ", " + str(old_dtype) + " --> " + str(data.dtype)) - gguf_writer.add_tensor(name, data) + gguf_writer.add_tensor(new_name, data) print("gguf: write header") gguf_writer.write_header_to_file() print("gguf: write metadata") gguf_writer.write_kv_data_to_file() -print("gguf: write tensors") -gguf_writer.write_tensors_to_file() +if not args.vocab_only: + print("gguf: write tensors") + gguf_writer.write_tensors_to_file() gguf_writer.close() -print("gguf: model successfully exported to '" + fname_out + "'") +print(f"gguf: model successfully exported to '{fname_out}'") print("") diff --git a/convert-gptneox-hf-to-gguf.py b/convert-gptneox-hf-to-gguf.py index d9c42d76b..38e71e03b 100755 --- a/convert-gptneox-hf-to-gguf.py +++ b/convert-gptneox-hf-to-gguf.py @@ -8,6 +8,7 @@ import struct import json import numpy as np import torch +import argparse from typing import Any, List from pathlib import Path @@ -34,11 +35,10 @@ def bytes_to_unicode(): bs.append(b) cs.append(2**8+n) n += 1 - cs = [chr(n) for n in cs] - return dict(zip(bs, cs)) + return dict(zip(bs, (chr(n) for n in cs))) -def count_model_parts(dir_model: str) -> int: +def count_model_parts(dir_model: Path) -> int: num_parts = 0 for filename in os.listdir(dir_model): if filename.startswith("pytorch_model-"): @@ -49,17 +49,22 @@ def count_model_parts(dir_model: str) -> int: return num_parts -if len(sys.argv) < 3: - print(f"Usage: python {sys.argv[0]} dir-model ftype\n") - print(" ftype == 0 -> float32") - print(" ftype == 1 -> float16") +def parse_args() -> argparse.Namespace: + parser = argparse.ArgumentParser(description="Convert a GPT-NeoX model to a GGML compatible file") + parser.add_argument("--vocab-only", action="store_true", help="extract only the vocab") + parser.add_argument("--outfile", type=Path, help="path to write to; default: based on input") + parser.add_argument("model", type=Path, help="directory containing model file, or model file itself (*.bin)") + parser.add_argument("ftype", type=int, choices=[0, 1], help="output format - use 0 for float32, 1 for float16", default = 1) + return parser.parse_args() + +args = parse_args() + +dir_model = args.model +ftype = args.ftype +if not dir_model.is_dir(): + print(f'Error: {args.model} is not a directory', file = sys.stderr) sys.exit(1) - -# output in the same directory as the model -dir_model = sys.argv[1] -last_dir = os.path.basename(os.path.normpath(dir_model)) - # possible tensor data types # ftype == 0 -> float32 # ftype == 1 -> float16 @@ -67,19 +72,15 @@ last_dir = os.path.basename(os.path.normpath(dir_model)) # map from ftype to string ftype_str = ["f32", "f16"] -ftype = 1 -if len(sys.argv) > 2: - ftype = int(sys.argv[2]) - if ftype < 0 or ftype > 1: - print("Invalid ftype: " + str(ftype)) +if args.outfile is not None: + fname_out = args.outfile +else: + # output in the same directory as the model by default + fname_out = dir_model / f'ggml-model-{ftype_str[ftype]}.gguf' - sys.exit(1) +print("gguf: loading model "+dir_model.name) -fname_out = sys.argv[1] + "/ggml-model-" + ftype_str[ftype] + ".gguf" - -print("gguf: loading model "+last_dir) - -with open(dir_model + "/config.json", "r", encoding="utf-8") as f: +with open(dir_model / "config.json", "r", encoding="utf-8") as f: hparams = json.load(f) if hparams["architectures"][0] != "GPTNeoXForCausalLM": @@ -97,7 +98,7 @@ print("gguf: get model metadata") block_count = hparams["num_hidden_layers"] -gguf_writer.add_name(last_dir) +gguf_writer.add_name(dir_model.name) gguf_writer.add_context_length(hparams["max_position_embeddings"]) gguf_writer.add_embedding_length(hparams["hidden_size"]) gguf_writer.add_block_count(block_count) @@ -111,86 +112,52 @@ gguf_writer.add_layer_norm_eps(hparams["layer_norm_eps"]) print("gguf: get tokenizer metadata") -tokens: List[str] = [] -merges: List[str] = [] +tokens: List[bytearray] = [] +tokenizer_json_file = dir_model / 'tokenizer.json' +if not tokenizer_json_file.is_file(): + print(f'Error: Missing {tokenizer_json_file}', file = sys.stderr) + sys.exit(1) -if Path(dir_model + "/tokenizer.json").is_file(): - # gpt2 tokenizer - gguf_writer.add_tokenizer_model("gpt2") +# gpt2 tokenizer +gguf_writer.add_tokenizer_model("gpt2") - print("gguf: get gpt2 tokenizer merges") +with open(tokenizer_json_file, "r", encoding="utf-8") as f: + tokenizer_json = json.load(f) - with open(dir_model + "/tokenizer.json", "r", encoding="utf-8") as f: - tokenizer_json = json.load(f) - merges = tokenizer_json["model"]["merges"] +print("gguf: get gpt2 tokenizer vocab") - gguf_writer.add_token_merges(merges) +vocab_size = len(tokenizer_json["model"]["vocab"]) - print("gguf: get gpt2 tokenizer vocab") +# ref: https://github.com/cmp-nct/ggllm.cpp/blob/master/falcon_convert.py +tokenizer = AutoTokenizer.from_pretrained(dir_model) - vocab_size = len(tokenizer_json["model"]["vocab"]) +reverse_vocab = {id: encoded_tok for encoded_tok, id in tokenizer.vocab.items()} +byte_encoder = bytes_to_unicode() +byte_decoder = {v: k for k, v in byte_encoder.items()} - # ref: https://github.com/cmp-nct/ggllm.cpp/blob/master/falcon_convert.py - tokenizer = AutoTokenizer.from_pretrained(dir_model) +for i in range(vocab_size): + if i in reverse_vocab: + try: + text = bytearray([byte_decoder[c] for c in reverse_vocab[i]]) + except KeyError: + text = bytearray() + for c in reverse_vocab[i]: + if ord(c) < 256: # single byte character + text.append(byte_decoder[ord(c)]) + else: # multibyte special token character + text.extend(c.encode('utf-8')) + else: + print(f"Key {i} not in tokenizer vocabulary. Padding with an arbitrary token.") + pad_token = f"[PAD{i}]".encode("utf8") + text = bytearray(pad_token) - reverse_vocab = {id: encoded_tok for encoded_tok, id in tokenizer.vocab.items()} - byte_encoder = bytes_to_unicode() - byte_decoder = {v: k for k, v in byte_encoder.items()} + tokens.append(text) - for i in range(vocab_size): - if i in reverse_vocab: - try: - text = bytearray([byte_decoder[c] for c in reverse_vocab[i]]) - except KeyError: - text = bytearray() - for c in reverse_vocab[i]: - if ord(c) < 256: # single byte character - text.append(byte_decoder[ord(c)]) - else: # multibyte special token character - text.extend(c.encode('utf-8')) - else: - print(f"Key {i} not in tokenizer vocabulary. Padding with an arbitrary token.") - pad_token = f"[PAD{i}]".encode("utf8") - text = bytearray(pad_token) - - tokens.append(text) - - gguf_writer.add_token_list(tokens) - - if "added_tokens" in tokenizer_json and Path(dir_model + "/tokenizer_config.json").is_file(): - print("gguf: get special token ids") - - with open(dir_model + "/tokenizer_config.json", "r", encoding="utf-8") as f: - tokenizer_config = json.load(f) - - # find special token ids - - if "bos_token" in tokenizer_config: - for key in tokenizer_json["added_tokens"]: - if key["content"] == tokenizer_config["bos_token"]: - gguf_writer.add_bos_token_id(key["id"]) - - if "eos_token" in tokenizer_config: - for key in tokenizer_json["added_tokens"]: - if key["content"] == tokenizer_config["eos_token"]: - gguf_writer.add_eos_token_id(key["id"]) - - if "unk_token" in tokenizer_config: - for key in tokenizer_json["added_tokens"]: - if key["content"] == tokenizer_config["unk_token"]: - gguf_writer.add_unk_token_id(key["id"]) - - if "sep_token" in tokenizer_config: - for key in tokenizer_json["added_tokens"]: - if key["content"] == tokenizer_config["sep_token"]: - gguf_writer.add_sep_token_id(key["id"]) - - if "pad_token" in tokenizer_config: - for key in tokenizer_json["added_tokens"]: - if key["content"] == tokenizer_config["pad_token"]: - gguf_writer.add_pad_token_id(key["id"]) +gguf_writer.add_token_list(tokens) +special_vocab = gguf.SpecialVocab(dir_model, load_merges = True) +special_vocab.add_to_gguf(gguf_writer) # TENSORS @@ -200,13 +167,15 @@ tensor_map = gguf.get_tensor_name_map(ARCH,block_count) print("gguf: get tensor metadata") if num_parts == 0: - part_names = ("pytorch_model.bin",) + part_names = iter(("pytorch_model.bin",)) else: part_names = ( f"pytorch_model-{n:05}-of-{num_parts:05}.bin" for n in range(1, num_parts + 1) ) for part_name in part_names: + if args.vocab_only: + break print("gguf: loading model part '" + part_name + "'") model_part = torch.load(f"{dir_model}/{part_name}", map_location="cpu") @@ -226,11 +195,8 @@ for part_name in part_names: data = data.squeeze().numpy() # map tensor names - if name.endswith(".weight") and name[:-7] in tensor_map: - name = tensor_map[name[:-7]] + ".weight" - elif name.endswith(".bias") and name[:-5] in tensor_map: - name = tensor_map[name[:-5]] + ".bias" - else: + new_name = tensor_map.get_name(name, try_suffixes = (".weight", ".bias")) + if new_name is None: print("Can not map tensor '" + name + "'") sys.exit() @@ -249,19 +215,20 @@ for part_name in part_names: if ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2: data = data.astype(np.float16) - print(name + ", n_dims = " + str(n_dims) + ", " + str(old_dtype) + " --> " + str(data.dtype)) + print(new_name + ", n_dims = " + str(n_dims) + ", " + str(old_dtype) + " --> " + str(data.dtype)) - gguf_writer.add_tensor(name, data) + gguf_writer.add_tensor(new_name, data) print("gguf: write header") gguf_writer.write_header_to_file() print("gguf: write metadata") gguf_writer.write_kv_data_to_file() -print("gguf: write tensors") -gguf_writer.write_tensors_to_file() +if not args.vocab_only: + print("gguf: write tensors") + gguf_writer.write_tensors_to_file() gguf_writer.close() -print("gguf: model successfully exported to '" + fname_out + "'") +print(f"gguf: model successfully exported to '{fname_out}'") print("") diff --git a/convert-llama-7b-pth-to-gguf.py b/convert-llama-7b-pth-to-gguf.py index 2ab082383..6e973a116 100755 --- a/convert-llama-7b-pth-to-gguf.py +++ b/convert-llama-7b-pth-to-gguf.py @@ -10,8 +10,9 @@ import struct import json import numpy as np import torch +import argparse -from typing import Any, List +from typing import Any, List, TypeAlias from pathlib import Path from sentencepiece import SentencePieceProcessor @@ -20,7 +21,7 @@ from sentencepiece import SentencePieceProcessor NDArray: 'TypeAlias' = 'np.ndarray[Any, Any]' -def count_model_parts(dir_model: str) -> int: +def count_model_parts(dir_model: Path) -> int: num_parts = 0 for filename in os.listdir(dir_model): if filename.startswith("consolidated."): @@ -31,19 +32,22 @@ def count_model_parts(dir_model: str) -> int: return num_parts -if len(sys.argv) < 3: - print(f"Usage: python {sys.argv[0]} dir-model ftype\n") - print(" ftype == 0 -> float32") - print(" ftype == 1 -> float16") +def parse_args() -> argparse.Namespace: + parser = argparse.ArgumentParser(description="Convert a PyTorch 7B LLaMA model to a GGML compatible file") + parser.add_argument("--vocab-only", action="store_true", help="extract only the vocab") + parser.add_argument("--outfile", type=Path, help="path to write to; default: based on input") + parser.add_argument("model", type=Path, help="directory containing model file, or model file itself (*.bin)") + parser.add_argument("ftype", type=int, choices=[0, 1], help="output format - use 0 for float32, 1 for float16", default = 1) + return parser.parse_args() +args = parse_args() + +dir_model = args.model +ftype = args.ftype +if not dir_model.is_dir(): + print(f'Error: {args.model} is not a directory', file = sys.stderr) sys.exit(1) - -# output in the same directory as the model -dir_model = sys.argv[1] -last_dir = os.path.basename(os.path.normpath(dir_model)) - - # possible tensor data types # ftype == 0 -> float32 # ftype == 1 -> float16 @@ -51,19 +55,15 @@ last_dir = os.path.basename(os.path.normpath(dir_model)) # map from ftype to string ftype_str = ["f32", "f16"] -ftype = 1 -if len(sys.argv) > 2: - ftype = int(sys.argv[2]) - if ftype < 0 or ftype > 1: - print("Invalid ftype: " + str(ftype)) +if args.outfile is not None: + fname_out = args.outfile +else: + # output in the same directory as the model by default + fname_out = dir_model / f'ggml-model-{ftype_str[ftype]}.gguf' - sys.exit(1) +print("gguf: loading model "+dir_model.name) -fname_out = sys.argv[1] + "/ggml-model-" + ftype_str[ftype] + ".gguf" - -print("gguf: loading model "+last_dir) - -with open(dir_model + "/config.json", "r", encoding="utf-8") as f: +with open(dir_model / "config.json", "r", encoding="utf-8") as f: hparams = json.load(f) if hparams["architectures"][0] != "LlamaForCausalLM": @@ -107,7 +107,7 @@ else: sys.exit() -gguf_writer.add_name(last_dir) +gguf_writer.add_name(dir_model.name) gguf_writer.add_source_hf_repo(hf_repo) gguf_writer.add_tensor_data_layout("Meta AI original pth") gguf_writer.add_context_length(ctx_length) @@ -133,109 +133,60 @@ tokens: List[bytes] = [] scores: List[float] = [] toktypes: List[int] = [] -if Path(dir_model + "/tokenizer.model").is_file(): - # vocab type sentencepiece - print("gguf: get sentencepiece tokenizer vocab and scores") +tokenizer_model_file = dir_model / 'tokenizer.model' +if not tokenizer_model_file.is_file(): + print(f'Error: Missing {tokenizer_model_file}', file = sys.stderr) + sys.exit(1) - tokenizer = SentencePieceProcessor(dir_model + "/tokenizer.model") +# vocab type sentencepiece +print("gguf: get sentencepiece tokenizer vocab and scores") - for i in range(tokenizer.vocab_size()): - text: bytes - score: float +tokenizer = SentencePieceProcessor(str(tokenizer_model_file)) - piece = tokenizer.id_to_piece(i) - text = piece.encode("utf-8") - score = tokenizer.get_score(i) +for i in range(tokenizer.vocab_size()): + text: bytes + score: float - toktype = 1 # defualt to normal token type - if tokenizer.is_unknown(i): - toktype = 2 - if tokenizer.is_control(i): - toktype = 3 + piece = tokenizer.id_to_piece(i) + text = piece.encode("utf-8") + score = tokenizer.get_score(i) - # toktype = 4 is user-defined = tokens from added_tokens.json + toktype = 1 # defualt to normal token type + if tokenizer.is_unknown(i): + toktype = 2 + if tokenizer.is_control(i): + toktype = 3 - if tokenizer.is_unused(i): - toktype = 5 - if tokenizer.is_byte(i): - toktype = 6 + # toktype = 4 is user-defined = tokens from added_tokens.json - tokens.append(text) - scores.append(score) - toktypes.append(toktype) + if tokenizer.is_unused(i): + toktype = 5 + if tokenizer.is_byte(i): + toktype = 6 - if Path(dir_model + "/added_tokens.json").is_file(): - with open(dir_model + "/added_tokens.json", "r", encoding="utf-8") as f: - addtokens_json = json.load(f) + tokens.append(text) + scores.append(score) + toktypes.append(toktype) - print("gguf: get added tokens") +added_tokens_file = dir_model / 'added_tokens.json' +if added_tokens_file.is_file(): + with open(added_tokens_file, "r", encoding="utf-8") as f: + addtokens_json = json.load(f) - for key in addtokens_json: - tokens.append( key.encode("utf-8") ) - scores.append(-1000.0) - toktypes.append(4) # user-defined token type + print("gguf: get added tokens") - gguf_writer.add_tokenizer_model("llama") - gguf_writer.add_token_list(tokens) - gguf_writer.add_token_scores(scores) - gguf_writer.add_token_types(toktypes) + for key in addtokens_json: + tokens.append( key.encode("utf-8") ) + scores.append(-1000.0) + toktypes.append(4) # user-defined token type +gguf_writer.add_tokenizer_model("llama") +gguf_writer.add_token_list(tokens) +gguf_writer.add_token_scores(scores) +gguf_writer.add_token_types(toktypes) -print("gguf: get special token ids") - -if Path(dir_model + "/tokenizer.json").is_file(): - # Look for special tokens in tokenizer.json if it exists - - with open(dir_model + "/tokenizer.json", "r", encoding="utf-8") as f: - tokenizer = json.load(f) - - if "added_tokens" in tokenizer and Path(dir_model + "/tokenizer_config.json").is_file(): - - with open(dir_model + "/tokenizer_config.json", "r", encoding="utf-8") as f: - tokenizer_config = json.load(f) - - if "bos_token" in tokenizer_config and tokenizer_config["bos_token"] != None: - for key in tokenizer["added_tokens"]: - if key["content"] == tokenizer_config["bos_token"]["content"]: - gguf_writer.add_bos_token_id(key["id"]) - - if "eos_token" in tokenizer_config and tokenizer_config["eos_token"] != None: - for key in tokenizer["added_tokens"]: - if key["content"] == tokenizer_config["eos_token"]["content"]: - gguf_writer.add_eos_token_id(key["id"]) - - if "unk_token" in tokenizer_config and tokenizer_config["unk_token"] != None: - for key in tokenizer["added_tokens"]: - if key["content"] == tokenizer_config["unk_token"]["content"]: - gguf_writer.add_unk_token_id(key["id"]) - - if "sep_token" in tokenizer_config and tokenizer_config["sep_token"] != None: - for key in tokenizer["added_tokens"]: - if key["content"] == tokenizer_config["sep_token"]["content"]: - gguf_writer.add_sep_token_id(key["id"]) - - if "pad_token" in tokenizer_config and tokenizer_config["pad_token"] != None: - for key in tokenizer["added_tokens"]: - if key["content"] == tokenizer_config["pad_token"]["content"]: - gguf_writer.add_pad_token_id(key["id"]) -else: - # If no tokenizer.json: Look for special tokens in config.json - - if "bos_token_id" in hparams and hparams["bos_token_id"] != None: - gguf_writer.add_bos_token_id(hparams["bos_token_id"]) - - if "eos_token_id" in hparams and hparams["eos_token_id"] != None: - gguf_writer.add_eos_token_id(hparams["eos_token_id"]) - - if "unk_token_id" in hparams and hparams["unk_token_id"] != None: - gguf_writer.add_unk_token_id(hparams["unk_token_id"]) - - if "sep_token_id" in hparams and hparams["sep_token_id"] != None: - gguf_writer.add_sep_token_id(hparams["sep_token_id"]) - - if "pad_token_id" in hparams and hparams["pad_token_id"] != None: - gguf_writer.add_pad_token_id(hparams["pad_token_id"]) - +special_vocab = gguf.SpecialVocab(dir_model) +special_vocab.add_to_gguf(gguf_writer) # TENSORS @@ -247,6 +198,8 @@ print("gguf: get tensor metadata") part_names = (f"consolidated.{n:02}.pth" for n in range(0, num_parts)) for part_name in part_names: + if args.vocab_only: + break print("gguf: loading model part '" + part_name + "'") model_part = torch.load(f"{dir_model}/{part_name}", map_location="cpu") @@ -266,11 +219,8 @@ for part_name in part_names: data = data.squeeze().numpy() # map tensor names - if name.endswith(".weight") and name[:-7] in tensor_map: - name = tensor_map[name[:-7]] + ".weight" - elif name.endswith(".bias") and name[:-5] in tensor_map: - name = tensor_map[name[:-5]] + ".bias" - else: + new_name = tensor_map.get_name(name, try_suffixes = (".weight", ".bias")) + if new_name is None: print("Can not map tensor '" + name + "'") sys.exit() @@ -289,20 +239,20 @@ for part_name in part_names: if ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2: data = data.astype(np.float16) - print(name + ", n_dims = " + str(n_dims) + ", " + str(old_dtype) + " --> " + str(data.dtype)) + print(new_name + ", n_dims = " + str(n_dims) + ", " + str(old_dtype) + " --> " + str(data.dtype)) - gguf_writer.add_tensor(name, data) + gguf_writer.add_tensor(new_name, data) print("gguf: write header") gguf_writer.write_header_to_file() print("gguf: write metadata") gguf_writer.write_kv_data_to_file() -print("gguf: write tensors") -gguf_writer.write_tensors_to_file() +if not args.vocab_only: + print("gguf: write tensors") + gguf_writer.write_tensors_to_file() gguf_writer.close() - -print("gguf: model successfully exported to '" + fname_out + "'") +print(f"gguf: model successfully exported to '{fname_out}'") print("") diff --git a/convert-llama-ggmlv3-to-gguf.py b/convert-llama-ggmlv3-to-gguf.py index 3bf93627d..c8e7f1761 100755 --- a/convert-llama-ggmlv3-to-gguf.py +++ b/convert-llama-ggmlv3-to-gguf.py @@ -75,7 +75,7 @@ class Tensor: self.dims = () self.dtype = None self.start_offset = 0 - self.len_bytes = 0 + self.len_bytes = np.int64(0) def load(self, data, offset): orig_offset = offset @@ -134,13 +134,14 @@ class GGMLV3Model: return offset class GGMLToGGUF: - def __init__(self, ggml_model, data, cfg, params_override = None, vocab_override = None): + def __init__(self, ggml_model, data, cfg, params_override = None, vocab_override = None, special_vocab = None): hp = ggml_model.hyperparameters self.model = ggml_model self.data = data self.cfg = cfg self.params_override = params_override self.vocab_override = vocab_override + self.special_vocab = special_vocab if params_override is not None: n_kv_head = params_override.n_head_kv else: @@ -162,6 +163,8 @@ class GGMLToGGUF: gguf_writer = gguf.GGUFWriter(self.cfg.output, gguf.MODEL_ARCH_NAMES[gguf.MODEL_ARCH.LLAMA], use_temp_file = False) self.add_params(gguf_writer) self.add_vocab(gguf_writer) + if self.special_vocab is not None: + self.special_vocab.add_to_gguf(gguf_writer) self.add_tensors(gguf_writer) print(" gguf: write header") gguf_writer.write_header_to_file() @@ -259,20 +262,13 @@ class GGMLToGGUF: gguf_writer.add_eos_token_id(2) def add_tensors(self, gguf_writer): - nm = self.name_map + tensor_map = self.name_map data = self.data print(f'* Adding {len(self.model.tensors)} tensor(s)') for tensor in self.model.tensors: name = str(tensor.name, 'UTF-8') - if name.endswith('.weight'): - name = name[:-7] - suffix = '.weight' - elif name.endswith('.bias'): - name = name[:-5] - suffix = '.bias' - mapped_name = nm.get(name) + mapped_name = tensor_map.get_name(name, try_suffixes = (".weight", ".bias")) assert mapped_name is not None, f'Bad name {name}' - mapped_name += suffix tempdims = list(tensor.dims[:]) if len(tempdims) > 1: temp = tempdims[1] @@ -302,8 +298,10 @@ def handle_metadata(cfg, hp): else: raise ValueError('Unable to load metadata') vocab = convert.load_vocab(cfg.vocab_dir if cfg.vocab_dir is not None else cfg.model_metadata_dir, cfg.vocabtype) + # FIXME: Respect cfg.vocab_dir? + svocab = gguf.SpecialVocab(cfg.model_metadata_dir) convert.check_vocab_size(params, vocab) - return (params, vocab) + return (params, vocab, svocab) def handle_args(): parser = argparse.ArgumentParser(description = 'Convert GGMLv3 models to GGUF') @@ -330,14 +328,16 @@ def main(): print(f'* GGML model hyperparameters: {model.hyperparameters}') vocab_override = None params_override = None + special_vocab = None if cfg.model_metadata_dir is not None: - (params_override, vocab_override) = handle_metadata(cfg, model.hyperparameters) + (params_override, vocab_override, special_vocab) = handle_metadata(cfg, model.hyperparameters) print('!! Note: When overriding params the --gqa, --eps and --context-length options are ignored.') print(f'* Overriding params: {params_override}') print(f'* Overriding vocab: {vocab_override}') + print(f'* Special vocab: {special_vocab}') else: print('\n=== WARNING === Special tokens may not be converted correctly. Use --model-metadata-dir if possible === WARNING ===\n') - converter = GGMLToGGUF(model, data, cfg, params_override = params_override, vocab_override = vocab_override) + converter = GGMLToGGUF(model, data, cfg, params_override = params_override, vocab_override = vocab_override, special_vocab = special_vocab) converter.save() print(f'* Successful completion. Output saved to: {cfg.output}') diff --git a/convert-llama-hf-to-gguf.py b/convert-llama-hf-to-gguf.py index b00810dbb..ab94b5eab 100755 --- a/convert-llama-hf-to-gguf.py +++ b/convert-llama-hf-to-gguf.py @@ -8,8 +8,9 @@ import struct import json import numpy as np import torch +import argparse -from typing import Any, List, Optional +from typing import Any, List, Optional, TypeAlias from pathlib import Path from sentencepiece import SentencePieceProcessor @@ -43,40 +44,38 @@ def count_model_parts(dir_model: str) -> int: return num_parts -if len(sys.argv) < 3: - print(f"Usage: python {sys.argv[0]} dir-model ftype\n") - print(" ftype == 0 -> float32") - print(" ftype == 1 -> float16") +def parse_args() -> argparse.Namespace: + parser = argparse.ArgumentParser(description="Convert a HuggingFace LLaMA model to a GGML compatible file") + parser.add_argument("--vocab-only", action="store_true", help="extract only the vocab") + parser.add_argument("--outfile", type=Path, help="path to write to; default: based on input") + parser.add_argument("model", type=Path, help="directory containing model file, or model file itself (*.bin)") + parser.add_argument("ftype", type=int, choices=[0, 1], help="output format - use 0 for float32, 1 for float16", default = 1) + return parser.parse_args() +args = parse_args() + +dir_model = args.model +ftype = args.ftype +if not dir_model.is_dir(): + print(f'Error: {args.model} is not a directory', file = sys.stderr) sys.exit(1) - -# output in the same directory as the model -dir_model = sys.argv[1] -last_dir = os.path.basename(os.path.normpath(dir_model)) - - # possible tensor data types # ftype == 0 -> float32 # ftype == 1 -> float16 - # map from ftype to string ftype_str = ["f32", "f16"] -ftype = 1 -if len(sys.argv) > 2: - ftype = int(sys.argv[2]) - if ftype < 0 or ftype > 1: - print("Invalid ftype: " + str(ftype)) +if args.outfile is not None: + fname_out = args.outfile +else: + # output in the same directory as the model by default + fname_out = dir_model / f'ggml-model-{ftype_str[ftype]}.gguf' - sys.exit(1) +print("gguf: loading model "+dir_model.name) -fname_out = sys.argv[1] + "/ggml-model-" + ftype_str[ftype] + ".gguf" - -print("gguf: loading model "+last_dir) - -with open(dir_model + "/config.json", "r", encoding="utf-8") as f: +with open(dir_model / "config.json", "r", encoding="utf-8") as f: hparams = json.load(f) if hparams["architectures"][0] != "LlamaForCausalLM": @@ -115,7 +114,7 @@ else: sys.exit() -gguf_writer.add_name(last_dir) +gguf_writer.add_name(dir_model.name) gguf_writer.add_source_hf_repo(hf_repo) gguf_writer.add_tensor_data_layout("Meta AI original pth") gguf_writer.add_context_length(ctx_length) @@ -141,110 +140,61 @@ tokens: List[bytes] = [] scores: List[float] = [] toktypes: List[int] = [] -if Path(dir_model + "/tokenizer.model").is_file(): - # vocab type sentencepiece - print("gguf: get sentencepiece tokenizer vocab, scores and token types") +tokenizer_model_file = dir_model / 'tokenizer.model' +if not tokenizer_model_file.is_file(): + print(f'Error: Missing {tokenizer_model_file}', file = sys.stderr) + sys.exit(1) - tokenizer = SentencePieceProcessor(dir_model + "/tokenizer.model") +# vocab type sentencepiece +print("gguf: get sentencepiece tokenizer vocab, scores and token types") - for i in range(tokenizer.vocab_size()): - text: bytes - score: float +tokenizer = SentencePieceProcessor(str(tokenizer_model_file)) - piece = tokenizer.id_to_piece(i) - text = piece.encode("utf-8") - score = tokenizer.get_score(i) +for i in range(tokenizer.vocab_size()): + text: bytes + score: float - toktype = 1 # defualt to normal token type - if tokenizer.is_unknown(i): - toktype = 2 - if tokenizer.is_control(i): - toktype = 3 + piece = tokenizer.id_to_piece(i) + text = piece.encode("utf-8") + score = tokenizer.get_score(i) - # toktype = 4 is user-defined = tokens from added_tokens.json + toktype = 1 # defualt to normal token type + if tokenizer.is_unknown(i): + toktype = 2 + if tokenizer.is_control(i): + toktype = 3 - if tokenizer.is_unused(i): - toktype = 5 - if tokenizer.is_byte(i): - toktype = 6 + # toktype = 4 is user-defined = tokens from added_tokens.json - tokens.append(text) - scores.append(score) - toktypes.append(toktype) + if tokenizer.is_unused(i): + toktype = 5 + if tokenizer.is_byte(i): + toktype = 6 - if Path(dir_model + "/added_tokens.json").is_file(): - with open(dir_model + "/added_tokens.json", "r", encoding="utf-8") as f: - addtokens_json = json.load(f) + tokens.append(text) + scores.append(score) + toktypes.append(toktype) - print("gguf: get added tokens") +added_tokens_file = dir_model / 'added_tokens.json' +if added_tokens_file.is_file(): + with open(added_tokens_file, "r", encoding="utf-8") as f: + addtokens_json = json.load(f) - for key in addtokens_json: - tokens.append( key.encode("utf-8") ) - scores.append(-1000.0) - toktypes.append(4) # user-defined token type + print("gguf: get added tokens") + + for key in addtokens_json: + tokens.append( key.encode("utf-8") ) + scores.append(-1000.0) + toktypes.append(4) # user-defined token type - gguf_writer.add_tokenizer_model("llama") - gguf_writer.add_token_list(tokens) - gguf_writer.add_token_scores(scores) - gguf_writer.add_token_types(toktypes) - - -print("gguf: get special token ids") - -if Path(dir_model + "/tokenizer.json").is_file(): - # Look for special tokens in tokenizer.json if it exists - - with open(dir_model + "/tokenizer.json", "r", encoding="utf-8") as f: - tokenizer = json.load(f) - - if "added_tokens" in tokenizer and Path(dir_model + "/tokenizer_config.json").is_file(): - - with open(dir_model + "/tokenizer_config.json", "r", encoding="utf-8") as f: - tokenizer_config = json.load(f) - - if "bos_token" in tokenizer_config and tokenizer_config["bos_token"] != None: - for key in tokenizer["added_tokens"]: - if key["content"] == tokenizer_config["bos_token"]["content"]: - gguf_writer.add_bos_token_id(key["id"]) - - if "eos_token" in tokenizer_config and tokenizer_config["eos_token"] != None: - for key in tokenizer["added_tokens"]: - if key["content"] == tokenizer_config["eos_token"]["content"]: - gguf_writer.add_eos_token_id(key["id"]) - - if "unk_token" in tokenizer_config and tokenizer_config["unk_token"] != None: - for key in tokenizer["added_tokens"]: - if key["content"] == tokenizer_config["unk_token"]["content"]: - gguf_writer.add_unk_token_id(key["id"]) - - if "sep_token" in tokenizer_config and tokenizer_config["sep_token"] != None: - for key in tokenizer["added_tokens"]: - if key["content"] == tokenizer_config["sep_token"]["content"]: - gguf_writer.add_sep_token_id(key["id"]) - - if "pad_token" in tokenizer_config and tokenizer_config["pad_token"] != None: - for key in tokenizer["added_tokens"]: - if key["content"] == tokenizer_config["pad_token"]["content"]: - gguf_writer.add_pad_token_id(key["id"]) -else: - # If no tokenizer.json: Look for special tokens in config.json - - if "bos_token_id" in hparams and hparams["bos_token_id"] != None: - gguf_writer.add_bos_token_id(hparams["bos_token_id"]) - - if "eos_token_id" in hparams and hparams["eos_token_id"] != None: - gguf_writer.add_eos_token_id(hparams["eos_token_id"]) - - if "unk_token_id" in hparams and hparams["unk_token_id"] != None: - gguf_writer.add_unk_token_id(hparams["unk_token_id"]) - - if "sep_token_id" in hparams and hparams["sep_token_id"] != None: - gguf_writer.add_sep_token_id(hparams["sep_token_id"]) - - if "pad_token_id" in hparams and hparams["pad_token_id"] != None: - gguf_writer.add_pad_token_id(hparams["pad_token_id"]) +gguf_writer.add_tokenizer_model("llama") +gguf_writer.add_token_list(tokens) +gguf_writer.add_token_scores(scores) +gguf_writer.add_token_types(toktypes) +special_vocab = gguf.SpecialVocab(dir_model) +special_vocab.add_to_gguf(gguf_writer) # TENSORS @@ -254,13 +204,15 @@ tensor_map = gguf.get_tensor_name_map(ARCH,block_count) print("gguf: get tensor metadata") if num_parts == 0: - part_names = ("pytorch_model.bin",) + part_names = iter(("pytorch_model.bin",)) else: part_names = ( f"pytorch_model-{n:05}-of-{num_parts:05}.bin" for n in range(1, num_parts + 1) ) for part_name in part_names: + if args.vocab_only: + break print("gguf: loading model part '" + part_name + "'") model_part = torch.load(f"{dir_model}/{part_name}", map_location="cpu") @@ -286,11 +238,8 @@ for part_name in part_names: data = reverse_hf_permute(data, head_count, head_count_kv) # map tensor names - if name.endswith(".weight") and name[:-7] in tensor_map: - name = tensor_map[name[:-7]] + ".weight" - elif name.endswith(".bias") and name[:-5] in tensor_map: - name = tensor_map[name[:-5]] + ".bias" - else: + new_name = tensor_map.get_name(name, try_suffixes = (".weight", ".bias")) + if new_name is None: print("Can not map tensor '" + name + "'") sys.exit() @@ -309,20 +258,20 @@ for part_name in part_names: if ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2: data = data.astype(np.float16) - print(name + ", n_dims = " + str(n_dims) + ", " + str(old_dtype) + " --> " + str(data.dtype)) + print(new_name + ", n_dims = " + str(n_dims) + ", " + str(old_dtype) + " --> " + str(data.dtype)) - gguf_writer.add_tensor(name, data) + gguf_writer.add_tensor(new_name, data) print("gguf: write header") gguf_writer.write_header_to_file() print("gguf: write metadata") gguf_writer.write_kv_data_to_file() -print("gguf: write tensors") -gguf_writer.write_tensors_to_file() +if not args.vocab_only: + print("gguf: write tensors") + gguf_writer.write_tensors_to_file() gguf_writer.close() - -print("gguf: model successfully exported to '" + fname_out + "'") +print(f"gguf: model successfully exported to '{fname_out}'") print("") diff --git a/convert-lora-to-ggml.py b/convert-lora-to-ggml.py index a94a7d0af..a00339b47 100755 --- a/convert-lora-to-ggml.py +++ b/convert-lora-to-ggml.py @@ -4,7 +4,7 @@ import os import re import struct import sys -from typing import Any, Dict, Sequence, TextIO +from typing import Any, Dict, Sequence, BinaryIO import numpy as np import torch @@ -46,7 +46,7 @@ def translate_tensor_name(t: str) -> str: sys.exit(1) -def write_file_header(fout: TextIO, params: Dict[str, Any]) -> None: +def write_file_header(fout: BinaryIO, params: Dict[str, Any]) -> None: fout.write(b"ggla"[::-1]) # magic (ggml lora) fout.write(struct.pack("i", 1)) # file version fout.write(struct.pack("i", params["r"])) @@ -60,7 +60,7 @@ def write_file_header(fout: TextIO, params: Dict[str, Any]) -> None: def write_tensor_header( - self, name: str, shape: Sequence[int], data_type: np.dtype + self, name: str, shape: Sequence[int], data_type: np.dtype[Any] ) -> None: sname = name.encode("utf-8") fout.write( diff --git a/convert.py b/convert.py index 3f0a1c932..448b6f0f3 100755 --- a/convert.py +++ b/convert.py @@ -25,7 +25,7 @@ import numpy as np from abc import ABCMeta, abstractmethod from dataclasses import dataclass from pathlib import Path -from typing import (IO, TYPE_CHECKING, Any, Callable, Dict, Generator, Iterable, List, Literal, Optional, Sequence, Set, Tuple, TypeVar, Union) +from typing import (IO, TYPE_CHECKING, Any, Callable, Dict, Generator, Iterable, List, Literal, Optional, Sequence, Set, Tuple, Type, TypeVar, Union) from sentencepiece import SentencePieceProcessor # type: ignore if TYPE_CHECKING: @@ -299,8 +299,10 @@ class Params: params = Params.loadHFTransformerJson(model_plus.model, hf_config_path) elif orig_config_path.exists(): params = Params.loadOriginalParamsJson(model_plus.model, orig_config_path) - else: + elif model_plus.format != 'none': params = Params.guessed(model_plus.model) + else: + raise ValueError('Cannot guess params when model format is none') params.path_model = model_plus.paths[0].parent @@ -353,7 +355,7 @@ class BpeVocab: yield from self.added_tokens() def __repr__(self) -> str: - return f"BpeVocab with {self.vocab_size_base} base tokens and {len(self.added_tokens_list)} added tokens>" + return f"" class SentencePieceVocab: @@ -416,7 +418,6 @@ class SentencePieceVocab: Vocab = Union[BpeVocab, SentencePieceVocab] - # # data loading # TODO: reuse (probably move to gguf.py?) @@ -439,14 +440,14 @@ class Tensor(metaclass=ABCMeta): @abstractmethod def permute(self, n_head: int, n_head_kv: int) -> 'Tensor': ... @abstractmethod - def permute_part(self, n_part: int, n_head: int) -> 'UnquantizedTensor': ... + def permute_part(self, n_part: int, n_head: int, n_head_kv: int) -> 'UnquantizedTensor': ... @abstractmethod def part(self, n_part: int) -> 'UnquantizedTensor': ... @abstractmethod def to_ggml(self) -> 'GGMLCompatibleTensor': ... -def bf16_to_fp32(bf16_arr: np.ndarray) -> np.ndarray: +def bf16_to_fp32(bf16_arr: np.ndarray[Any, np.dtype[np.uint16]]) -> NDArray: assert bf16_arr.dtype == np.uint16, f"Input array should be of dtype uint16, but got {bf16_arr.dtype}" fp32_arr = bf16_arr.astype(np.uint32) << 16 return fp32_arr.view(np.float32) @@ -467,9 +468,9 @@ class UnquantizedTensor(Tensor): def to_ggml(self) -> 'UnquantizedTensor': return self - def permute_part(self, n_part: int, n_head: int) -> 'UnquantizedTensor': + def permute_part(self, n_part: int, n_head: int, n_head_kv: int) -> 'UnquantizedTensor': r = self.ndarray.shape[0] // 3 - return UnquantizedTensor(permute(self.ndarray[r * n_part : r * n_part + r, ...], n_head, n_head)) + return UnquantizedTensor(permute(self.ndarray[r * n_part : r * n_part + r, ...], n_head, n_head_kv)) def part(self, n_part: int) -> 'UnquantizedTensor': r = self.ndarray.shape[0] // 3 @@ -531,7 +532,7 @@ LazyModel = Dict[str, LazyTensor] class ModelPlus: model: LazyModel paths: List[Path] # Where this was read from. - format: Literal['ggml', 'torch', 'safetensors'] + format: Literal['ggml', 'torch', 'safetensors', 'none'] vocab: Optional[Vocab] # For GGML models (which have vocab built in), the vocab. @@ -597,12 +598,12 @@ def permute_lazy(lazy_tensor: LazyTensor, n_head: int, n_head_kv: int) -> LazyTe return lazy_tensor.load().permute(n_head, n_head_kv) return LazyTensor(load, lazy_tensor.shape, lazy_tensor.data_type, f'permute({n_head}, {n_head_kv}) ' + lazy_tensor.description) -def permute_part_lazy(lazy_tensor: LazyTensor, n_part: int, n_head: int) -> LazyTensor: +def permute_part_lazy(lazy_tensor: LazyTensor, n_part: int, n_head: int, n_head_kv: int) -> LazyTensor: def load() -> Tensor: - return lazy_tensor.load().permute_part(n_part, n_head) + return lazy_tensor.load().permute_part(n_part, n_head, n_head_kv) s = lazy_tensor.shape.copy() s[0] = s[0] // 3 - return LazyTensor(load, s, lazy_tensor.data_type, f'permute({n_head}) ' + lazy_tensor.description) + return LazyTensor(load, s, lazy_tensor.data_type, f'permute({n_head}, {n_head_kv}) ' + lazy_tensor.description) def part_lazy(lazy_tensor: LazyTensor, n_part: int) -> LazyTensor: def load() -> Tensor: @@ -657,7 +658,7 @@ class LazyUnpickler(pickle.Unpickler): description = f'storage data_type={data_type} path-in-zip={filename} path={self.zip_file.filename}' return LazyStorage(load=load, kind=pid[1], description=description) - # @staticmethod + @staticmethod def lazy_rebuild_tensor_v2(storage: Any, storage_offset: Any, size: Any, stride: Any, # pyright: ignore[reportSelfClsParameterName] requires_grad: Any, backward_hooks: Any, metadata: Any = None) -> LazyTensor: @@ -669,13 +670,15 @@ class LazyUnpickler(pickle.Unpickler): description = f'pickled storage_offset={storage_offset} in {storage.description}' return LazyTensor(load, list(size), storage.kind.data_type, description) - # @staticmethod + @staticmethod def rebuild_from_type_v2(func, new_type, args, state): return func(*args) - CLASSES: Dict[Any, Any] = { - ('torch._tensor', '_rebuild_from_type_v2'): rebuild_from_type_v2, - ('torch._utils', '_rebuild_tensor_v2'): lazy_rebuild_tensor_v2, + CLASSES: Dict[Tuple[str, str], Any] = { + # getattr used here as a workaround for mypy not being smart enough to detrmine + # the staticmethods have a __func__ attribute. + ('torch._tensor', '_rebuild_from_type_v2'): getattr(rebuild_from_type_v2, '__func__'), + ('torch._utils', '_rebuild_tensor_v2'): getattr(lazy_rebuild_tensor_v2, '__func__'), ('torch', 'BFloat16Storage'): LazyStorageKind(DT_BF16), ('torch', 'HalfStorage'): LazyStorageKind(DT_F16), ('torch', 'FloatStorage'): LazyStorageKind(DT_F32), @@ -751,7 +754,7 @@ def lazy_load_file(path: Path) -> ModelPlus: In = TypeVar('In') Out = TypeVar('Out') -def bounded_parallel_map(func: Callable[[In], Out], iterable: Iterable[In], concurrency: int, max_workers: Optional[int] = None, factory: Callable = ThreadPoolExecutor) -> Iterable[Out]: +def bounded_parallel_map(func: Callable[[In], Out], iterable: Iterable[In], concurrency: int, max_workers: Optional[int] = None, use_processpool_executor: bool = False) -> Iterable[Out]: '''Parallel map, but with backpressure. If the caller doesn't call `next` fast enough, this will stop calling `func` at some point rather than letting results pile up in memory. Specifically, there is a max of one @@ -760,7 +763,12 @@ def bounded_parallel_map(func: Callable[[In], Out], iterable: Iterable[In], conc yield from map(func, iterable) # Not reached. iterable = iter(iterable) - with factory(max_workers = max_workers) as executor: + executor_class: Union[Type[ThreadPoolExecutor], Type[ProcessPoolExecutor]] + if use_processpool_executor: + executor_class = ProcessPoolExecutor + else: + executor_class = ThreadPoolExecutor + with executor_class(max_workers = max_workers) as executor: futures: List[concurrent.futures.Future[Out]] = [] done = False for _ in range(concurrency): @@ -838,11 +846,19 @@ class OutputFile: scores.append(score) toktypes.append(toktype) - self.gguf.add_tokenizer_model("llama") + if isinstance(vocab, SentencePieceVocab): + self.gguf.add_tokenizer_model("llama") + elif isinstance(vocab, BpeVocab): + self.gguf.add_tokenizer_model("gpt2") + else: + raise ValueError(f'Unknown vocab type: Not BpeVocab or SentencePieceVocab') self.gguf.add_token_list(tokens) self.gguf.add_token_scores(scores) self.gguf.add_token_types(toktypes) + def add_meta_special_vocab(self, svocab: gguf.SpecialVocab) -> None: + svocab.add_to_gguf(self.gguf) + def add_tensor_info(self, name: str, tensor: LazyTensor) -> None: n_elements = int(np.prod(tensor.shape)) raw_dtype = getattr(tensor.data_type, 'ggml_type', None) @@ -861,7 +877,7 @@ class OutputFile: self.gguf.close() @staticmethod - def write_vocab_only(fname_out: Path, params: Params, vocab: Vocab) -> None: + def write_vocab_only(fname_out: Path, params: Params, vocab: Vocab, svocab: gguf.SpecialVocab) -> None: check_vocab_size(params, vocab) of = OutputFile(fname_out) @@ -869,6 +885,8 @@ class OutputFile: # meta data of.add_meta_arch(params) of.add_meta_vocab(vocab) + of.add_meta_special_vocab(svocab) + of.write_meta() of.close() @@ -887,7 +905,7 @@ class OutputFile: return dt.quantize(arr) @staticmethod - def write_all(fname_out: Path, ftype: GGMLFileType, params: Params, model: LazyModel, vocab: Vocab, concurrency: int = DEFAULT_CONCURRENCY) -> None: + def write_all(fname_out: Path, ftype: GGMLFileType, params: Params, model: LazyModel, vocab: Vocab, svocab: gguf.SpecialVocab, concurrency: int = DEFAULT_CONCURRENCY) -> None: check_vocab_size(params, vocab) of = OutputFile(fname_out) @@ -895,6 +913,7 @@ class OutputFile: # meta data of.add_meta_arch(params) of.add_meta_vocab(vocab) + of.add_meta_special_vocab(svocab) # tensor info for name, lazy_tensor in model.items(): @@ -906,7 +925,7 @@ class OutputFile: # tensor data ndarrays_inner = bounded_parallel_map(OutputFile.do_item, model.items(), concurrency = concurrency) if ftype == GGMLFileType.MostlyQ8_0: - ndarrays = bounded_parallel_map(OutputFile.maybe_do_quantize, ndarrays_inner, concurrency = concurrency, max_workers = concurrency, factory = ProcessPoolExecutor) + ndarrays = bounded_parallel_map(OutputFile.maybe_do_quantize, ndarrays_inner, concurrency = concurrency, max_workers = concurrency, use_processpool_executor = True) else: ndarrays = map(OutputFile.maybe_do_quantize, ndarrays_inner) @@ -939,7 +958,8 @@ def convert_to_output_type(model: LazyModel, output_type: GGMLFileType) -> LazyM for (name, tensor) in model.items()} def convert_model_names(model: LazyModel, params: Params) -> LazyModel: - tmap = gguf.get_tensor_name_map(ARCH, params.n_layer) + tmap = gguf.TensorNameMap(ARCH, params.n_layer) + should_skip: Set[gguf.MODEL_TENSOR] = set(gguf.MODEL_TENSOR_SKIP.get(ARCH, [])) tmp = model @@ -952,8 +972,8 @@ def convert_model_names(model: LazyModel, params: Params) -> LazyModel: #tmp[f"model.layers.{i}.self_attn.v_proj.weight"] = model[f"model.layers.{i}.self_attn.v_proj.weight"] elif f"model.layers.{i}.self_attn.W_pack.weight" in model: print(f"Unpacking and permuting layer {i}") - tmp[f"model.layers.{i}.self_attn.q_proj.weight"] = permute_part_lazy(model[f"model.layers.{i}.self_attn.W_pack.weight"], 0, params.n_head) - tmp[f"model.layers.{i}.self_attn.k_proj.weight"] = permute_part_lazy(model[f"model.layers.{i}.self_attn.W_pack.weight"], 1, params.n_head) + tmp[f"model.layers.{i}.self_attn.q_proj.weight"] = permute_part_lazy(model[f"model.layers.{i}.self_attn.W_pack.weight"], 0, params.n_head, params.n_head) + tmp[f"model.layers.{i}.self_attn.k_proj.weight"] = permute_part_lazy(model[f"model.layers.{i}.self_attn.W_pack.weight"], 1, params.n_head, params.n_head_kv) tmp[f"model.layers.{i}.self_attn.v_proj.weight"] = part_lazy (model[f"model.layers.{i}.self_attn.W_pack.weight"], 2) del tmp[f"model.layers.{i}.self_attn.W_pack.weight"] else: @@ -961,23 +981,16 @@ def convert_model_names(model: LazyModel, params: Params) -> LazyModel: out: LazyModel = {} for name, lazy_tensor in model.items(): - name_new = name - - if name in tmap: - name_new = tmap[name] - elif name.endswith(".weight") and name[:-7] in tmap: - name_new = tmap[name[:-7]] + ".weight" - elif name.endswith(".bias") and name[:-5] in tmap: - name_new = tmap[name[:-5]] + ".bias" - else: + tensor_type, name_new = tmap.get_type_and_name(name, try_suffixes = (".weight", ".bias")) or (None, None) + if name_new is None: raise Exception(f"Unexpected tensor name: {name}") - if gguf.should_skip_tensor_TMP(ARCH, params.n_layer, name_new): + if tensor_type in should_skip: print(f"skipping tensor {name_new}") continue - else: - print(f"{name:48s} -> {name_new:40s} | {lazy_tensor.data_type.name:6s} | {lazy_tensor.shape}") - out[name_new] = lazy_tensor + + print(f"{name:48s} -> {name_new:40s} | {lazy_tensor.data_type.name:6s} | {lazy_tensor.shape}") + out[name_new] = lazy_tensor return out @@ -1117,8 +1130,16 @@ def main(args_in: Optional[List[str]] = None) -> None: if args.dump_single: model_plus = lazy_load_file(args.model) do_dump_model(model_plus) + return - model_plus = load_some_model(args.model) + if not args.vocab_only: + model_plus = load_some_model(args.model) + else: + model_plus = ModelPlus(model = {}, paths = [args.model / 'dummy'], format = 'none', vocab = None) + + if args.dump: + do_dump_model(model_plus) + return params = Params.load(model_plus) if params.n_ctx == -1: @@ -1140,33 +1161,34 @@ def main(args_in: Optional[List[str]] = None) -> None: vocab: Vocab if args.vocab_only: - vocab = load_vocab(args.vocab_dir or args.model, args.vocabtype) assert args.outfile, "need --outfile if using --vocab-only" + # FIXME: Try to respect vocab_dir somehow? + vocab = load_vocab(args.vocab_dir or args.model, args.vocabtype) + special_vocab = gguf.SpecialVocab(model_plus.paths[0].parent, load_merges = args.vocabtype == 'bpe') outfile = args.outfile - OutputFile.write_vocab_only(outfile, params, vocab) + OutputFile.write_vocab_only(outfile, params, vocab, special_vocab) print(f"Wrote {outfile}") + return + + if model_plus.vocab is not None and args.vocab_dir is None: + vocab = model_plus.vocab else: - if args.dump: - do_dump_model(model_plus) - return + vocab_dir = args.vocab_dir if args.vocab_dir else model_plus.paths[0].parent + vocab = load_vocab(vocab_dir, args.vocabtype) + # FIXME: Try to respect vocab_dir somehow? + special_vocab = gguf.SpecialVocab(model_plus.paths[0].parent, load_merges = args.vocabtype == 'bpe') - if model_plus.vocab is not None and args.vocab_dir is None: - vocab = model_plus.vocab - else: - vocab_dir = args.vocab_dir if args.vocab_dir else model_plus.paths[0].parent - vocab = load_vocab(vocab_dir, args.vocabtype) + model = model_plus.model + model = convert_model_names(model, params) + ftype = pick_output_type(model, args.outtype) + model = convert_to_output_type(model, ftype) + outfile = args.outfile or default_outfile(model_plus.paths, ftype) - model = model_plus.model - model = convert_model_names(model, params) - ftype = pick_output_type(model, args.outtype) - model = convert_to_output_type(model, ftype) - outfile = args.outfile or default_outfile(model_plus.paths, ftype) + params.ftype = ftype + print(f"Writing {outfile}, format {ftype}") - params.ftype = ftype - print(f"Writing {outfile}, format {ftype}") - - OutputFile.write_all(outfile, ftype, params, model, vocab, concurrency = args.concurrency) - print(f"Wrote {outfile}") + OutputFile.write_all(outfile, ftype, params, model, vocab, special_vocab, concurrency = args.concurrency) + print(f"Wrote {outfile}") if __name__ == '__main__': diff --git a/gguf-py/gguf/gguf.py b/gguf-py/gguf/gguf.py index 838a2c0f8..de3edbc99 100644 --- a/gguf-py/gguf/gguf.py +++ b/gguf-py/gguf/gguf.py @@ -4,9 +4,13 @@ import sys import struct import tempfile import numpy as np +import json +import os +from pathlib import Path from enum import IntEnum, auto -from typing import Any, IO, List, Optional +from io import BufferedWriter +from typing import Any, BinaryIO, Callable, IO, Dict, List, Optional, Sequence, Tuple, Union # # constants @@ -71,35 +75,35 @@ KEY_TOKENIZER_RWKV = "tokenizer.rwkv.world" class MODEL_ARCH(IntEnum): - LLAMA = auto() - FALCON = auto() - GPT2 = auto() - GPTJ = auto() - GPTNEOX = auto() - MPT = auto() + LLAMA : int = auto() + FALCON : int = auto() + GPT2 : int = auto() + GPTJ : int = auto() + GPTNEOX: int = auto() + MPT : int = auto() class MODEL_TENSOR(IntEnum): - TOKEN_EMBD = auto() - POS_EMBD = auto() - OUTPUT = auto() - OUTPUT_NORM = auto() - ROPE_FREQS = auto() - ATTN_Q = auto() - ATTN_K = auto() - ATTN_V = auto() - ATTN_QKV = auto() - ATTN_OUT = auto() - ATTN_NORM = auto() - ATTN_NORM_2 = auto() - ATTN_ROT_EMBD = auto() - FFN_GATE = auto() - FFN_DOWN = auto() - FFN_UP = auto() - FFN_NORM = auto() + TOKEN_EMBD : int = auto() + POS_EMBD : int = auto() + OUTPUT : int = auto() + OUTPUT_NORM : int = auto() + ROPE_FREQS : int = auto() + ATTN_Q : int = auto() + ATTN_K : int = auto() + ATTN_V : int = auto() + ATTN_QKV : int = auto() + ATTN_OUT : int = auto() + ATTN_NORM : int = auto() + ATTN_NORM_2 : int = auto() + ATTN_ROT_EMBD: int = auto() + FFN_GATE : int = auto() + FFN_DOWN : int = auto() + FFN_UP : int = auto() + FFN_NORM : int = auto() -MODEL_ARCH_NAMES = { +MODEL_ARCH_NAMES: Dict[MODEL_ARCH, str] = { MODEL_ARCH.LLAMA: "llama", MODEL_ARCH.FALCON: "falcon", MODEL_ARCH.GPT2: "gpt2", @@ -108,7 +112,7 @@ MODEL_ARCH_NAMES = { MODEL_ARCH.MPT: "mpt", } -MODEL_TENSOR_NAMES = { +MODEL_TENSOR_NAMES: Dict[MODEL_ARCH, Dict[MODEL_TENSOR, str]] = { MODEL_ARCH.LLAMA: { MODEL_TENSOR.TOKEN_EMBD: "token_embd", MODEL_TENSOR.OUTPUT_NORM: "output_norm", @@ -154,7 +158,7 @@ MODEL_TENSOR_NAMES = { } # tensors that will not be serialized -MODEL_TENSOR_SKIP = { +MODEL_TENSOR_SKIP: Dict[MODEL_ARCH, List[MODEL_TENSOR]] = { MODEL_ARCH.LLAMA: [ MODEL_TENSOR.ROPE_FREQS, MODEL_TENSOR.ATTN_ROT_EMBD, @@ -162,167 +166,198 @@ MODEL_TENSOR_SKIP = { } -# TODO: the following helper functions should be removed -# instead, get_tensor_name_map should return tuples of (name, MODEL_TENSOR) -# however, my Python is very bad, and I couldn't figure out how to do this, hence these functions -# REMOVE -def should_skip_tensor_TMP(arch: MODEL_ARCH, n_blocks: int, name: str) -> bool: - for skip in MODEL_TENSOR_SKIP.get(arch, []): - for i in range(n_blocks): - if name == MODEL_TENSOR_NAMES[arch][skip].format(bid=i): - return True +class TensorNameMap: + mappings_cfg: Dict[MODEL_TENSOR, Tuple[str, ...]] = { + # Token embeddings + MODEL_TENSOR.TOKEN_EMBD: ( + "gpt_neox.embed_in", # gptneox + "transformer.wte", # gpt2 mpt + "transformer.word_embeddings", # falcon + "model.embed_tokens", # llama-hf + "tok_embeddings", # llama-pth + ), - return False + # Position embeddings + MODEL_TENSOR.POS_EMBD: ( + "transformer.wpe", # gpt2 + ), + # Output + MODEL_TENSOR.OUTPUT: ( + "embed_out", # gptneox + "lm_head", # gpt2 mpt falcon llama-hf + "output", # llama-pth + ), -def get_tensor_name_map(arch: MODEL_ARCH, n_blocks: int) -> dict: - tensor_map = {} + # Output norm + MODEL_TENSOR.OUTPUT_NORM: ( + "gpt_neox.final_layer_norm", # gptneox + "transformer.ln_f", # gpt2 falcon + "model.norm", # llama-hf + "norm", # llama-pth + ), - # Token embeddings - mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.TOKEN_EMBD, None) + # Rope frequencies + MODEL_TENSOR.ROPE_FREQS: ( + "rope.freqs", # llama-pth + ), + } - tensor_map["gpt_neox.embed_in"] = mapped_to # gptneox - tensor_map["transformer.wte"] = mapped_to # gpt2 mpt - tensor_map["transformer.word_embeddings"] = mapped_to # falcon - tensor_map["model.embed_tokens"] = mapped_to # llama-hf - tensor_map["tok_embeddings"] = mapped_to # llama-pth - - # Position embeddings - mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.POS_EMBD, None) - - tensor_map["transformer.wpe"] = mapped_to # gpt2 - - # Output - mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.OUTPUT, None) - - tensor_map["embed_out"] = mapped_to # gptneox - tensor_map["lm_head"] = mapped_to # gpt2 mpt falcon llama-hf - tensor_map["output"] = mapped_to # llama-pth - - # Output norm - mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.OUTPUT_NORM, None) - - tensor_map["gpt_neox.final_layer_norm"] = mapped_to # gptneox - tensor_map["transformer.ln_f"] = mapped_to # gpt2 falcon - tensor_map["transformer.norm_f"] = mapped_to # mpt - tensor_map["model.norm"] = mapped_to # llama-hf - tensor_map["norm"] = mapped_to # llama-pth - - # Rope frequencies - mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.ROPE_FREQS, None) - - tensor_map["rope.freqs"] = mapped_to # llama-pth - - # Attention and feed-forward blocks - for i in range(0, n_blocks): + block_mappings_cfg: Dict[MODEL_TENSOR, Tuple[str, ...]] = { # Attention norm - # TODO: is there are simpler way to write these 2 lines in Python? - mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.ATTN_NORM, None) - mapped_to = mapped_to.format(bid=i) if mapped_to else None - - tensor_map["gpt_neox.layers."+str(i)+".input_layernorm"] = mapped_to # gptneox - tensor_map["transformer.h."+str(i)+".ln_1"] = mapped_to # gpt2 - tensor_map["transformer.blocks."+str(i)+".norm_1"] = mapped_to # mpt - tensor_map["transformer.h."+str(i)+".input_layernorm"] = mapped_to # falcon7b - tensor_map["transformer.h."+str(i)+".ln_mlp"] = mapped_to # falcon40b - tensor_map["model.layers."+str(i)+".input_layernorm"] = mapped_to # llama-hf - tensor_map["layers."+str(i)+".attention_norm"] = mapped_to # llama-pth + MODEL_TENSOR.ATTN_NORM: ( + "gpt_neox.layers.{bid}.input_layernorm", # gptneox + "transformer.h.{bid}.ln_1", # gpt2 + "transformer.blocks.{bid}.norm_1", # mpt + "transformer.h.{bid}.input_layernorm", # falcon7b + "transformer.h.{bid}.ln_mlp", # falcon40b + "model.layers.{bid}.input_layernorm", # llama-hf + "layers.{bid}.attention_norm", # llama-pth + ), # Attention norm 2 - mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.ATTN_NORM_2, None) - mapped_to = mapped_to.format(bid=i) if mapped_to is not None else None - - tensor_map["transformer.h."+str(i)+".ln_attn"] = mapped_to # falcon40b + MODEL_TENSOR.ATTN_NORM_2: ( + "transformer.h.{bid}.ln_attn", # falcon40b + ), # Attention query-key-value - mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.ATTN_QKV, None) - mapped_to = mapped_to.format(bid=i) if mapped_to is not None else None - - tensor_map["gpt_neox.layers."+str(i)+".attention.query_key_value"] = mapped_to # gptneox - tensor_map["transformer.h."+str(i)+".attn.c_attn"] = mapped_to # gpt2 - tensor_map["transformer.blocks."+str(i)+".attn.Wqkv"] = mapped_to # mpt - tensor_map["transformer.h."+str(i)+".self_attention.query_key_value"] = mapped_to # falcon + MODEL_TENSOR.ATTN_QKV: ( + "gpt_neox.layers.{bid}.attention.query_key_value", # gptneox + "transformer.h.{bid}.attn.c_attn", # gpt2 + "transformer.blocks.{bid}.attn.Wqkv", # mpt + "transformer.h.{bid}.self_attention.query_key_value", # falcon + ), # Attention query - mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.ATTN_Q, None) - mapped_to = mapped_to.format(bid=i) if mapped_to is not None else None - - tensor_map["model.layers."+str(i)+".self_attn.q_proj"] = mapped_to # llama-hf - tensor_map["layers."+str(i)+".attention.wq"] = mapped_to # llama-pth + MODEL_TENSOR.ATTN_Q: ( + "model.layers.{bid}.self_attn.q_proj", # llama-hf + "layers.{bid}.attention.wq", # llama-pth + ), # Attention key - mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.ATTN_K, None) - mapped_to = mapped_to.format(bid=i) if mapped_to is not None else None - - tensor_map["model.layers."+str(i)+".self_attn.k_proj"] = mapped_to # llama-hf - tensor_map["layers."+str(i)+".attention.wk"] = mapped_to # llama-pth + MODEL_TENSOR.ATTN_K: ( + "model.layers.{bid}.self_attn.k_proj", # llama-hf + "layers.{bid}.attention.wk", # llama-pth + ), # Attention value - mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.ATTN_V, None) - mapped_to = mapped_to.format(bid=i) if mapped_to is not None else None - - tensor_map["model.layers."+str(i)+".self_attn.v_proj"] = mapped_to # llama-hf - tensor_map["layers."+str(i)+".attention.wv"] = mapped_to # llama-pth + MODEL_TENSOR.ATTN_V: ( + "model.layers.{bid}.self_attn.v_proj", # llama-hf + "layers.{bid}.attention.wv", # llama-pth + ), # Attention output - mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.ATTN_OUT, None) - mapped_to = mapped_to.format(bid=i) if mapped_to is not None else None - - tensor_map["gpt_neox.layers."+str(i)+".attention.dense"] = mapped_to # gptneox - tensor_map["transformer.h."+str(i)+".attn.c_proj"] = mapped_to # gpt2 - tensor_map["transformer.blocks."+str(i)+".attn.out_proj"] = mapped_to # mpt - tensor_map["transformer.h."+str(i)+".self_attention.dense"] = mapped_to # falcon - tensor_map["model.layers."+str(i)+".self_attn.o_proj"] = mapped_to # llama-hf - tensor_map["layers."+str(i)+".attention.wo"] = mapped_to # llama-pth + MODEL_TENSOR.ATTN_OUT: ( + "gpt_neox.layers.{bid}.attention.dense", # gptneox + "transformer.h.{bid}.attn.c_proj", # gpt2 + "transformer.blocks.{bid}.attn.out_proj", # mpt + "transformer.h.{bid}.self_attention.dense", # falcon + "model.layers.{bid}.self_attn.o_proj", # llama-hf + "layers.{bid}.attention.wo", # llama-pth + ), # Rotary embeddings - mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.ATTN_ROT_EMBD, None) - mapped_to = mapped_to.format(bid=i) if mapped_to is not None else None - - tensor_map["model.layers."+str(i)+".self_attn.rotary_emb.inv_freq"] = mapped_to # llama-hf - tensor_map["layers."+str(i)+".attention.inner_attention.rope.freqs"] = mapped_to # llama-pth + MODEL_TENSOR.ATTN_ROT_EMBD: ( + "model.layers.{bid}.self_attn.rotary_emb.inv_freq", # llama-hf + "layers.{bid}.attention.inner_attention.rope.freqs", # llama-pth + ), # Feed-forward norm - mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.FFN_NORM, None) - mapped_to = mapped_to.format(bid=i) if mapped_to is not None else None - - tensor_map["gpt_neox.layers."+str(i)+".post_attention_layernorm"] = mapped_to # gptneox - tensor_map["transformer.h."+str(i)+".ln_2"] = mapped_to # gpt2 - tensor_map["transformer.blocks."+str(i)+".norm_2"] = mapped_to # mpt - tensor_map["model.layers."+str(i)+".post_attention_layernorm"] = mapped_to # llama-hf - tensor_map["layers."+str(i)+".ffn_norm"] = mapped_to # llama-pth + MODEL_TENSOR.FFN_NORM: ( + "gpt_neox.layers.{bid}.post_attention_layernorm", # gptneox + "transformer.h.{bid}.ln_2", # gpt2 + "transformer.blocks.{bid}.norm_2", # mpt + "model.layers.{bid}.post_attention_layernorm", # llama-hf + "layers.{bid}.ffn_norm", # llama-pth + ), # Feed-forward up - mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.FFN_UP, None) - mapped_to = mapped_to.format(bid=i) if mapped_to is not None else None - - tensor_map["gpt_neox.layers."+str(i)+".mlp.dense_h_to_4h"] = mapped_to # gptneox - tensor_map["transformer.h."+str(i)+".mlp.c_fc"] = mapped_to # gpt2 - tensor_map["transformer.blocks."+str(i)+".ffn.up_proj"] = mapped_to # mpt - tensor_map["transformer.h."+str(i)+".mlp.dense_h_to_4h"] = mapped_to # falcon - tensor_map["model.layers."+str(i)+".mlp.up_proj"] = mapped_to # llama-hf - tensor_map["layers."+str(i)+".feed_forward.w3"] = mapped_to # llama-pth + MODEL_TENSOR.FFN_UP: ( + "gpt_neox.layers.{bid}.mlp.dense_h_to_4h", # gptneox + "transformer.h.{bid}.mlp.c_fc", # gpt2 + "transformer.blocks.{bid}.ffn.up_proj", # mpt + "transformer.h.{bid}.mlp.dense_h_to_4h", # falcon + "model.layers.{bid}.mlp.up_proj", # llama-hf + "layers.{bid}.feed_forward.w3", # llama-pth + ), # Feed-forward gate - mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.FFN_GATE, None) - mapped_to = mapped_to.format(bid=i) if mapped_to is not None else None - - tensor_map["model.layers."+str(i)+".mlp.gate_proj"] = mapped_to # llama-hf - tensor_map["layers."+str(i)+".feed_forward.w1"] = mapped_to # llama-pth + MODEL_TENSOR.FFN_GATE: ( + "model.layers.{bid}.mlp.gate_proj", # llama-hf + "layers.{bid}.feed_forward.w1", # llama-pth + ), # Feed-forward down - mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.FFN_DOWN, None) - mapped_to = mapped_to.format(bid=i) if mapped_to is not None else None + MODEL_TENSOR.FFN_DOWN: ( + "gpt_neox.layers.{bid}.mlp.dense_4h_to_h", # gptneox + "transformer.h.{bid}.mlp.c_proj", # gpt2 + "transformer.blocks.{bid}.ffn.down_proj", # mpt + "transformer.h.{bid}.mlp.dense_4h_to_h", # falcon + "model.layers.{bid}.mlp.down_proj", # llama-hf + "layers.{bid}.feed_forward.w2", # llama-pth + ), + } - tensor_map["gpt_neox.layers."+str(i)+".mlp.dense_4h_to_h"] = mapped_to # gptneox - tensor_map["transformer.h."+str(i)+".mlp.c_proj"] = mapped_to # gpt2 - tensor_map["transformer.blocks."+str(i)+".ffn.down_proj"] = mapped_to # mpt - tensor_map["transformer.h."+str(i)+".mlp.dense_4h_to_h"] = mapped_to # falcon - tensor_map["model.layers."+str(i)+".mlp.down_proj"] = mapped_to # llama-hf - tensor_map["layers."+str(i)+".feed_forward.w2"] = mapped_to # llama-pth + mapping: Dict[str, Tuple[MODEL_TENSOR, str]] - return tensor_map + tensor_names: Dict[MODEL_TENSOR, str] + def __init__(self, arch: MODEL_ARCH, n_blocks: int): + mapping = self.mapping = {} + tensor_names = self.tensor_names = MODEL_TENSOR_NAMES[arch] + for tensor, keys in self.mappings_cfg.items(): + tensor_name = tensor_names.get(tensor) + if tensor_name is None: + continue + for key in keys: + mapping[key] = (tensor, tensor_name) + for bid in range(n_blocks): + for tensor, keys in self.block_mappings_cfg.items(): + tensor_name = tensor_names.get(tensor) + if tensor_name is None: + continue + tensor_name = tensor_name.format(bid = bid) + for key in keys: + key = key.format(bid = bid) + mapping[key] = (tensor, tensor_name) + + def get_type_and_name(self, key: str, try_suffixes: Sequence[str]) -> Optional[Tuple[MODEL_TENSOR, str]]: + result = self.mapping.get(key) + if result is not None: + return result + for suffix in try_suffixes: + if key.endswith(suffix): + result = self.mapping.get(key[:-len(suffix)]) + if result is not None: + return (result[0], result[1] + suffix) + return None + + def get_name(self, key: str, try_suffixes: Sequence[str]) -> Optional[str]: + result = self.get_type_and_name(key, try_suffixes = try_suffixes) + if result is None: + return None + return result[1] + + def get_type(self, key: str, try_suffixes: Sequence[str]) -> Optional[MODEL_TENSOR]: + result = self.get_type_and_name(key, try_suffixes = try_suffixes) + if result is None: + return None + return result[0] + + def __getitem__(self, key: str) -> str: + try: + return self.mapping[key][1] + except KeyError: + raise KeyError(key) + + def __contains__(self, key: str) -> bool: + return key in self.mapping + + def __repr__(self) -> str: + return repr(self.mapping) + +def get_tensor_name_map(arch: MODEL_ARCH, n_blocks: int) -> TensorNameMap: + return TensorNameMap(arch, n_blocks) class TokenType(IntEnum): NORMAL = 1 @@ -388,15 +423,21 @@ class GGUFValueType(IntEnum): class GGUFWriter: - def __init__(self, path: str, arch: str, use_temp_file = True): + fout: BufferedWriter + arch: str + offset_tensor = 0 + data_alignment = GGUF_DEFAULT_ALIGNMENT + kv_data = b"" + kv_data_count = 0 + ti_data = b"" + ti_data_count = 0 + use_temp_file: bool + temp_file: Optional[tempfile.SpooledTemporaryFile[bytes]] = None + tensors: List[Tuple[np.ndarray[Any, Any], int]] + + def __init__(self, path: Union[os.PathLike[str], str], arch: str, use_temp_file = True): self.fout = open(path, "wb") self.arch = arch - self.offset_tensor = 0 - self.data_alignment = GGUF_DEFAULT_ALIGNMENT - self.kv_data = b"" - self.kv_data_count = 0 - self.ti_data = b"" - self.ti_data_count = 0 self.add_architecture() self.use_temp_file = use_temp_file self.tensors = [] @@ -470,14 +511,27 @@ class GGUFWriter: self.add_key(key) self.add_val(val, GGUFValueType.STRING) - def add_array(self, key: str, val: list): - if not isinstance(val, list): - raise ValueError("Value must be a list for array type") + def add_array(self, key: str, val: Sequence[Any]): + if not isinstance(val, Sequence): + raise ValueError("Value must be a sequence for array type") self.add_key(key) self.add_val(val, GGUFValueType.ARRAY) - def add_val(self: str, val: Any, vtype: GGUFValueType = None, add_vtype: bool = True): + _simple_value_packing = { + GGUFValueType.UINT8: " 0: + ltype = GGUFValueType.get_type(val[0]) + if not all(GGUFValueType.get_type(i) is ltype for i in val[1:]): + raise ValueError("All items in a GGUF array should be of the same type") + self.kv_data += struct.pack(" int: return ((x + n - 1) // n) * n - def add_tensor_info(self, name: str, tensor_shape: np.ndarray, tensor_dtype: np.dtype, tensor_nbytes: int, raw_dtype: Optional[GGMLQuantizationType] = None): + def add_tensor_info(self, name: str, tensor_shape: Sequence[int], tensor_dtype: Union[np.dtype[np.float16], np.dtype[np.float32]], tensor_nbytes: int, raw_dtype: Optional[GGMLQuantizationType] = None): assert raw_dtype is not None or tensor_dtype in (np.float32, np.float16), "Only F32 and F16 tensors are supported for now" encoded_name = name.encode("utf8") @@ -544,16 +580,18 @@ class GGUFWriter: self.offset_tensor += GGUFWriter.ggml_pad(tensor_nbytes, self.data_alignment) self.ti_data_count += 1 - def add_tensor(self, name: str, tensor: np.ndarray, raw_shape: Optional[np.ndarray] = None, raw_dtype: Optional[GGMLQuantizationType] = None): - if self.use_temp_file and not hasattr(self, "temp_file"): - self.temp_file = tempfile.SpooledTemporaryFile(mode="w+b", max_size=256*1024*1024) - self.temp_file.seek(0) + def add_tensor(self, name: str, tensor: np.ndarray[Any, Any], raw_shape: Optional[Sequence[int]] = None, raw_dtype: Optional[GGMLQuantizationType] = None): + if self.use_temp_file and self.temp_file is None: + fp = tempfile.SpooledTemporaryFile(mode="w+b", max_size=256*1024*1024) + fp.seek(0) + self.temp_file = fp - self.add_tensor_info(name, raw_shape if raw_shape is not None else tensor.shape, tensor.dtype, tensor.nbytes, raw_dtype = raw_dtype) + shape: Sequence[int] = raw_shape if raw_shape is not None else tensor.shape + self.add_tensor_info(name, shape, tensor.dtype, tensor.nbytes, raw_dtype = raw_dtype) pad = GGUFWriter.ggml_pad(tensor.nbytes, self.data_alignment) - tensor.nbytes - if not self.use_temp_file: + if self.temp_file is None: self.tensors.append((tensor, pad)) return @@ -562,25 +600,22 @@ class GGUFWriter: if pad != 0: self.temp_file.write(bytes([0] * pad)) - def write_tensor_data(self, tensor: np.ndarray): - pad = GGUFWriter.ggml_pad(self.fout.tell(), self.data_alignment) - self.fout.tell() + def write_padding(self, fp: BinaryIO, n: int, align: Optional[int] = None): + pad = GGUFWriter.ggml_pad(n, align if align is not None else self.data_alignment) - n if pad != 0: - self.fout.write(bytes([0] * pad)) + fp.write(bytes([0] * pad)) + def write_tensor_data(self, tensor: np.ndarray[Any, Any]): + self.write_padding(self.fout, self.fout.tell()) tensor.tofile(self.fout) - - pad = GGUFWriter.ggml_pad(tensor.nbytes, self.data_alignment) - tensor.nbytes - if pad != 0: - self.fout.write(bytes([0] * pad)) + self.write_padding(self.fout, tensor.nbytes) def write_tensors_to_file(self): self.write_ti_data_to_file() - pad = GGUFWriter.ggml_pad(self.fout.tell(), self.data_alignment) - self.fout.tell() - if pad != 0: - self.fout.write(bytes([0] * pad)) + self.write_padding(self.fout, self.fout.tell()) - if not self.use_temp_file: + if self.temp_file is None: for (currtensor, currpad) in self.tensors: currtensor.tofile(self.fout) if currpad != 0: @@ -654,10 +689,6 @@ class GGUFWriter: self.add_bool( KEY_USE_PARALLEL_RESIDUAL.format(arch=self.arch), use) - def add_tensor_data_layout(self, layout: str): - self.add_string( - KEY_TENSOR_DATA_LAYOUT.format(arch=self.arch), layout) - def add_head_count(self, count: int): self.add_uint32( KEY_ATTENTION_HEAD_COUNT.format(arch=self.arch), count) @@ -695,16 +726,16 @@ class GGUFWriter: def add_tokenizer_model(self, model: str): self.add_string(KEY_TOKENIZER_MODEL, model) - def add_token_list(self, tokens: List): + def add_token_list(self, tokens: Union[Sequence[str], Sequence[bytes], Sequence[bytearray]]): self.add_array(KEY_TOKENIZER_LIST, tokens) - def add_token_merges(self, merges: List): + def add_token_merges(self, merges: Union[Sequence[str], Sequence[bytes], Sequence[bytearray]]): self.add_array(KEY_TOKENIZER_MERGES, merges) - def add_token_types(self, types: List[int]): + def add_token_types(self, types: Union[Sequence[TokenType], Sequence[int]]): self.add_array(KEY_TOKENIZER_TOKEN_TYPE, types) - def add_token_scores(self, scores: List[float]): + def add_token_scores(self, scores: Sequence[float]): self.add_array(KEY_TOKENIZER_SCORES, scores) def add_bos_token_id(self, id: int): @@ -723,6 +754,84 @@ class GGUFWriter: self.add_uint32(KEY_TOKENIZER_PAD_ID, id) +class SpecialVocab: + load_merges: bool = False + merges: List[str] = [] + special_token_types: Tuple[str, ...] = tuple(('bos', 'eos', 'unk', 'sep', 'pad')) + special_token_ids: Dict[str, int] = {} + + def __init__(self, path: Path, load_merges: bool = False, special_token_types: Optional[Tuple[str, ...]] = None): + self.special_token_ids = {} + self.load_merges = load_merges + if special_token_types is not None: + self.special_token_types = special_token_types + self.load(path) + + def load(self, path: Path): + if not self.try_load_from_tokenizer_json(path): + self.try_load_from_config_json(path) + + def try_load_from_tokenizer_json(self, path: Path) -> bool: + tokenizer_file = path / 'tokenizer.json' + if not tokenizer_file.is_file(): + return False + with open(tokenizer_file, 'r', encoding = 'utf-8') as f: + tokenizer = json.load(f) + if self.load_merges: + merges = tokenizer.get('model', {}).get('merges') + if isinstance(merges, list) and len(merges) > 0 and isinstance(merges[0], str): + self.merges = merges + tokenizer_config_file = path / 'tokenizer_config.json' + added_tokens = tokenizer.get('added_tokens') + if added_tokens is None or not tokenizer_config_file.is_file(): + return True + with open(tokenizer_config_file, 'r', encoding = 'utf-8') as f: + tokenizer_config = json.load(f) + for typ in self.special_token_types: + entry = tokenizer_config.get(f'{typ}_token') + if isinstance(entry, str): + tc_content = entry + elif isinstance(entry, dict): + entry_content = entry.get('content') + if not isinstance(entry_content, str): + continue + tc_content = entry_content + else: + continue + for maybe_token_id in (atok.get('id') for atok in added_tokens if atok.get('content') == tc_content): + if isinstance(maybe_token_id, int): + self.special_token_ids[typ] = maybe_token_id + break + return True + + def try_load_from_config_json(self, path: Path) -> bool: + config_file = path / 'config.json' + if not config_file.is_file(): + return False + with open(config_file, 'r', encoding = 'utf-8') as f: + config = json.load(f) + for typ in self.special_token_types: + maybe_token_id = config.get(f'{typ}_token_id') + if isinstance(maybe_token_id, int): + self.special_token_ids[typ] = maybe_token_id + return True + + def add_to_gguf(self, gw: GGUFWriter): + if len(self.merges) > 0: + print(f'gguf: Adding {len(self.merges)} merge(s).') + gw.add_token_merges(self.merges) + for typ, tokid in self.special_token_ids.items(): + handler: Optional[Callable[[int], None]] = getattr(gw, f'add_{typ}_token_id', None) + if handler is None: + print(f'gguf: WARNING: No handler for special token type {typ} with id {tokid} - skipping') + continue + print(f'gguf: Setting special token type {typ} to {tokid}') + handler(tokid) + + def __repr__(self): + return f'' + + # Example usage: if __name__ == "__main__": # Example usage with a file diff --git a/gguf-py/gguf/py.typed b/gguf-py/gguf/py.typed new file mode 100644 index 000000000..e69de29bb diff --git a/gguf-py/pyproject.toml b/gguf-py/pyproject.toml index cc70e28b7..c66b069f9 100644 --- a/gguf-py/pyproject.toml +++ b/gguf-py/pyproject.toml @@ -5,6 +5,7 @@ description = "Write ML models in GGUF for GGML" authors = ["GGML "] packages = [ {include = "gguf"}, + {include = "gguf/py.typed"}, ] readme = "README.md" homepage = "https://ggml.ai" From 35092fb54712d032860f3976a6fc1ae1f84a4a28 Mon Sep 17 00:00:00 2001 From: Gilad S Date: Wed, 30 Aug 2023 11:40:12 +0300 Subject: [PATCH 16/21] docs : add `node-llama-cpp` to `README.md` (#2885) --- README.md | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/README.md b/README.md index a880fd29f..d727b0554 100644 --- a/README.md +++ b/README.md @@ -107,7 +107,7 @@ as the main playground for developing new features for the [ggml](https://github - Python: [abetlen/llama-cpp-python](https://github.com/abetlen/llama-cpp-python) - Go: [go-skynet/go-llama.cpp](https://github.com/go-skynet/go-llama.cpp) -- Node.js: [hlhr202/llama-node](https://github.com/hlhr202/llama-node) +- Node.js: [withcatai/node-llama-cpp](https://github.com/withcatai/node-llama-cpp), [hlhr202/llama-node](https://github.com/hlhr202/llama-node) - Ruby: [yoshoku/llama_cpp.rb](https://github.com/yoshoku/llama_cpp.rb) - Rust: [mdrokz/rust-llama.cpp](https://github.com/mdrokz/rust-llama.cpp) - C#/.NET: [SciSharp/LLamaSharp](https://github.com/SciSharp/LLamaSharp) From 950929442070874d45561d2a4b68b010457767de Mon Sep 17 00:00:00 2001 From: alonfaraj Date: Wed, 30 Aug 2023 12:42:51 +0300 Subject: [PATCH 17/21] make : add test and update CI (#2897) * build ci: run make test * makefile: - add all - add test * enable tests/test-tokenizer-0-llama * fix path to model * remove gcc-8 from macos build test * Update Makefile * Update Makefile --- .github/workflows/build.yml | 12 ++++++++++++ Makefile | 17 +++++++++++++++++ 2 files changed, 29 insertions(+) diff --git a/.github/workflows/build.yml b/.github/workflows/build.yml index 10320ad1f..20fd8c2b5 100644 --- a/.github/workflows/build.yml +++ b/.github/workflows/build.yml @@ -41,6 +41,12 @@ jobs: run: | CC=gcc-8 make + - name: Test + id: make_test + run: | + CC=gcc-8 make tests + make test + ubuntu-latest-cmake: runs-on: ubuntu-latest @@ -157,6 +163,12 @@ jobs: run: | make + - name: Test + id: make_test + run: | + make tests + make test + macOS-latest-cmake: runs-on: macos-latest diff --git a/Makefile b/Makefile index c8b8a92d7..bd2d92869 100644 --- a/Makefile +++ b/Makefile @@ -6,6 +6,23 @@ TEST_TARGETS = tests/test-llama-grammar tests/test-grammar-parser tests/test-dou default: $(BUILD_TARGETS) +test: + @echo "Running tests..." + @for test_target in $(TEST_TARGETS); do \ + if [ "$$test_target" = "tests/test-tokenizer-0-llama" ]; then \ + ./$$test_target $(CURDIR)/models/ggml-vocab-llama.gguf; \ + elif [ "$$test_target" = "tests/test-tokenizer-0-falcon" ]; then \ + continue; \ + elif [ "$$test_target" = "tests/test-tokenizer-1" ]; then \ + continue; \ + else \ + ./$$test_target; \ + fi; \ + done + @echo "All tests have been run." + +all: $(BUILD_TARGETS) $(TEST_TARGETS) + ifndef UNAME_S UNAME_S := $(shell uname -s) endif From 0d1c706181cd31e7f368dd14eeb16c1a2569e4df Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?M=2E=20Yusuf=20Sar=C4=B1g=C3=B6z?= Date: Wed, 30 Aug 2023 12:47:40 +0300 Subject: [PATCH 18/21] gguf : add workflow for Pypi publishing (#2896) * gguf : add workflow for Pypi publishing * gguf : add workflow for Pypi publishing * fix trailing whitespace --- .github/workflows/gguf-publish.yml | 43 ++++++++++++++++++++++++++++++ gguf-py/README.md | 23 +++++++++++++--- 2 files changed, 63 insertions(+), 3 deletions(-) create mode 100644 .github/workflows/gguf-publish.yml diff --git a/.github/workflows/gguf-publish.yml b/.github/workflows/gguf-publish.yml new file mode 100644 index 000000000..a6289e335 --- /dev/null +++ b/.github/workflows/gguf-publish.yml @@ -0,0 +1,43 @@ +# This workflow will upload a Python Package using Twine when a GGUF release is created +# For more information see: https://help.github.com/en/actions/language-and-framework-guides/using-python-with-github-actions#publishing-to-package-registries + +# See `gguf-py/README.md` for how to make a release. + +# This workflow uses actions that are not certified by GitHub. +# They are provided by a third-party and are governed by +# separate terms of service, privacy policy, and support +# documentation. + +name: Upload Python Package + +on: + workflow_dispatch: + push: + # Pattern matched against refs/tags + tags: + - 'gguf-v*' # Push events to every version tag + + +jobs: + deploy: + + runs-on: ubuntu-latest + + steps: + - uses: actions/checkout@v2 + - name: Set up Python + uses: actions/setup-python@v2 + with: + python-version: '3.9.x' + - name: Install dependencies + run: | + cd gguf-py + python -m pip install poetry + poetry install + + - name: Build package + run: poetry build + - name: Publish package + uses: pypa/gh-action-pypi-publish@release/v1 + with: + password: ${{ secrets.PYPI_API_TOKEN }} diff --git a/gguf-py/README.md b/gguf-py/README.md index 03ad306ec..ffe25c495 100644 --- a/gguf-py/README.md +++ b/gguf-py/README.md @@ -27,8 +27,25 @@ In this case, upgrade Pip to the latest: pip install --upgrade pip ``` -## Publishing -To publish the package, you need to have `twine` and `build` installed: +## Automatic publishing with CI + +There's a GitHub workflow to make a release automatically upon creation of tags in a specified format. + +1. Bump the version in `pyproject.toml`. +2. Create a tag named `gguf-vx.x.x` where `x.x.x` is the semantic version number. + +```sh +git tag -a gguf-v1.0.0 -m "Version 1.0 release" +``` + +3. Push the tags. + +```sh +git push origin --tags +``` + +## Manual publishing +If you want to publish the package manually for any reason, you need to have `twine` and `build` installed: ```sh pip install build twine @@ -36,7 +53,7 @@ pip install build twine Then, folow these steps to release a new version: -1. Update the version in `pyproject.toml`. +1. Bump the version in `pyproject.toml`. 2. Build the package: ```sh From c90d135eb433cf0d40fb95e46a48d1391d2352b5 Mon Sep 17 00:00:00 2001 From: Georgi Gerganov Date: Wed, 30 Aug 2023 12:52:46 +0300 Subject: [PATCH 19/21] examples : fix underscore in beam-search + .gitignore (close #2900) --- .gitignore | 3 +++ Makefile | 4 ++-- examples/CMakeLists.txt | 2 +- examples/{beam_search => beam-search}/CMakeLists.txt | 4 ++-- .../beam_search.cpp => beam-search/beam-search.cpp} | 0 5 files changed, 8 insertions(+), 5 deletions(-) rename examples/{beam_search => beam-search}/CMakeLists.txt (78%) rename examples/{beam_search/beam_search.cpp => beam-search/beam-search.cpp} (100%) diff --git a/.gitignore b/.gitignore index 54ea2b522..8b5f45a2d 100644 --- a/.gitignore +++ b/.gitignore @@ -42,6 +42,9 @@ models-mnt /gguf-llama-simple /libllama.so /llama-bench +/baby-llama +/beam-search +/save-load-state build-info.h arm_neon.h compile_commands.json diff --git a/Makefile b/Makefile index bd2d92869..b750540fe 100644 --- a/Makefile +++ b/Makefile @@ -1,5 +1,5 @@ # Define the default target now so that it is always the first target -BUILD_TARGETS = main quantize quantize-stats perplexity embedding vdot train-text-from-scratch convert-llama2c-to-ggml simple save-load-state server embd-input-test gguf llama-bench baby-llama beam_search tests/test-c.o +BUILD_TARGETS = main quantize quantize-stats perplexity embedding vdot train-text-from-scratch convert-llama2c-to-ggml simple save-load-state server embd-input-test gguf llama-bench baby-llama beam-search tests/test-c.o # Binaries only useful for tests TEST_TARGETS = tests/test-llama-grammar tests/test-grammar-parser tests/test-double-float tests/test-grad0 tests/test-opt tests/test-quantize-fns tests/test-quantize-perf tests/test-sampling tests/test-tokenizer-0-llama tests/test-tokenizer-0-falcon tests/test-tokenizer-1 @@ -446,7 +446,7 @@ llama-bench: examples/llama-bench/llama-bench.cpp build-info.h ggml.o llama.o co baby-llama: examples/baby-llama/baby-llama.cpp ggml.o llama.o common.o $(OBJS) $(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS) -beam_search: examples/beam_search/beam_search.cpp build-info.h ggml.o llama.o common.o $(OBJS) +beam-search: examples/beam-search/beam-search.cpp build-info.h ggml.o llama.o common.o $(OBJS) $(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS) ifneq '' '$(or $(filter clean,$(MAKECMDGOALS)),$(LLAMA_METAL))' diff --git a/examples/CMakeLists.txt b/examples/CMakeLists.txt index 94b785224..6e65eb087 100644 --- a/examples/CMakeLists.txt +++ b/examples/CMakeLists.txt @@ -25,7 +25,7 @@ else() add_subdirectory(simple) add_subdirectory(embd-input) add_subdirectory(llama-bench) - add_subdirectory(beam_search) + add_subdirectory(beam-search) if (LLAMA_METAL) add_subdirectory(metal) endif() diff --git a/examples/beam_search/CMakeLists.txt b/examples/beam-search/CMakeLists.txt similarity index 78% rename from examples/beam_search/CMakeLists.txt rename to examples/beam-search/CMakeLists.txt index b29e01092..e44a74975 100644 --- a/examples/beam_search/CMakeLists.txt +++ b/examples/beam-search/CMakeLists.txt @@ -1,5 +1,5 @@ -set(TARGET beam_search) -add_executable(${TARGET} beam_search.cpp) +set(TARGET beam-search) +add_executable(${TARGET} beam-search.cpp) install(TARGETS ${TARGET} RUNTIME) target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT}) target_compile_features(${TARGET} PRIVATE cxx_std_11) diff --git a/examples/beam_search/beam_search.cpp b/examples/beam-search/beam-search.cpp similarity index 100% rename from examples/beam_search/beam_search.cpp rename to examples/beam-search/beam-search.cpp From b532a69b2fd08067f34f32f37a2fd9b37678a34a Mon Sep 17 00:00:00 2001 From: Georgi Gerganov Date: Wed, 30 Aug 2023 13:29:40 +0300 Subject: [PATCH 20/21] convert.py : use dir name to name the llama --- convert.py | 9 +++++---- 1 file changed, 5 insertions(+), 4 deletions(-) diff --git a/convert.py b/convert.py index 448b6f0f3..a7f4c2d75 100755 --- a/convert.py +++ b/convert.py @@ -811,10 +811,12 @@ class OutputFile: def add_meta_arch(self, params: Params) -> None: name = "LLaMA" + + # TODO: better logic to determine model name if (params.n_ctx == 4096): name = "LLaMA v2" - if params.path_model: - name = str(params.path_model.parent).split('/')[-1] + elif params.path_model: + name = str(params.path_model.parent).split('/')[-1] self.gguf.add_name (name) self.gguf.add_context_length (params.n_ctx) @@ -839,8 +841,7 @@ class OutputFile: tokens = [] scores = [] toktypes = [] - # NOTE: `all_tokens` returns the the base vocabulary and added tokens - # TODO: add special tokens? + # NOTE: `all_tokens` returns the base vocabulary and added tokens for text, score, toktype in vocab.all_tokens(): tokens.append(text) scores.append(score) From 71d6975559acfd6c8407a4ef8275a9979c737765 Mon Sep 17 00:00:00 2001 From: Henri Vasserman Date: Wed, 30 Aug 2023 19:14:53 +0300 Subject: [PATCH 21/21] [Docker] fix tools.sh argument passing. (#2884) * [Docker] fix tools.sh argument passing. This should allow passing multiple arguments to containers with the full image that are using the tools.sh frontend. Fix from https://github.com/ggerganov/llama.cpp/issues/2535#issuecomment-1697091734 --- .devops/tools.sh | 11 ++++------- 1 file changed, 4 insertions(+), 7 deletions(-) diff --git a/.devops/tools.sh b/.devops/tools.sh index 2787c21fe..9d999315f 100755 --- a/.devops/tools.sh +++ b/.devops/tools.sh @@ -7,15 +7,12 @@ arg1="$1" # Shift the arguments to remove the first one shift -# Join the remaining arguments into a single string -arg2="$@" - if [[ "$arg1" == '--convert' || "$arg1" == '-c' ]]; then - python3 ./convert.py "$arg2" + python3 ./convert.py "$@" elif [[ "$arg1" == '--quantize' || "$arg1" == '-q' ]]; then - ./quantize "$arg2" + ./quantize "$@" elif [[ "$arg1" == '--run' || "$arg1" == '-r' ]]; then - ./main "$arg2" + ./main "$@" elif [[ "$arg1" == '--all-in-one' || "$arg1" == '-a' ]]; then echo "Converting PTH to GGML..." for i in `ls $1/$2/ggml-model-f16.bin*`; do @@ -27,7 +24,7 @@ elif [[ "$arg1" == '--all-in-one' || "$arg1" == '-a' ]]; then fi done elif [[ "$arg1" == '--server' || "$arg1" == '-s' ]]; then - ./server "$arg2" + ./server "$@" else echo "Unknown command: $arg1" echo "Available commands: "