Merge pull request #2 from Umpire2018/fix/flake8-error
fix: resolve Flake8 errors in `convert-hf-to-gguf.py`
This commit is contained in:
commit
ed54a65d10
1 changed files with 1 additions and 3 deletions
|
@ -3060,6 +3060,7 @@ class JaisModel(Model):
|
||||||
super().write_tensors()
|
super().write_tensors()
|
||||||
self.gguf_writer.add_max_alibi_bias(self.max_alibi_bias)
|
self.gguf_writer.add_max_alibi_bias(self.max_alibi_bias)
|
||||||
|
|
||||||
|
|
||||||
@Model.register("ChatGLMModel", "ChatGLMForConditionalGeneration")
|
@Model.register("ChatGLMModel", "ChatGLMForConditionalGeneration")
|
||||||
class ChatGLMModel(Model):
|
class ChatGLMModel(Model):
|
||||||
model_arch = gguf.MODEL_ARCH.CHATGLM
|
model_arch = gguf.MODEL_ARCH.CHATGLM
|
||||||
|
@ -3077,8 +3078,6 @@ class ChatGLMModel(Model):
|
||||||
assert max(tokenizer.get_vocab().values()) < vocab_size
|
assert max(tokenizer.get_vocab().values()) < vocab_size
|
||||||
role_special_tokens = ["<|system|>", "<|user|>", "<|assistant|>", "<|observation|>"]
|
role_special_tokens = ["<|system|>", "<|user|>", "<|assistant|>", "<|observation|>"]
|
||||||
special_tokens = ["[MASK]", "[gMASK]", "[sMASK]", "sop", "eop"] + role_special_tokens
|
special_tokens = ["[MASK]", "[gMASK]", "[sMASK]", "sop", "eop"] + role_special_tokens
|
||||||
print(vocab_size)
|
|
||||||
print(max(tokenizer.get_vocab().values()))
|
|
||||||
for token_id in range(vocab_size):
|
for token_id in range(vocab_size):
|
||||||
piece = tokenizer._convert_id_to_token(token_id)
|
piece = tokenizer._convert_id_to_token(token_id)
|
||||||
if token_id == 0:
|
if token_id == 0:
|
||||||
|
@ -3234,7 +3233,6 @@ class ChatGLMModel(Model):
|
||||||
self.gguf_writer.add_add_bos_token(False)
|
self.gguf_writer.add_add_bos_token(False)
|
||||||
self.gguf_writer.add_rope_freq_base(self.hparams.get("rope_ratio", 10000))
|
self.gguf_writer.add_rope_freq_base(self.hparams.get("rope_ratio", 10000))
|
||||||
|
|
||||||
|
|
||||||
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
|
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
|
||||||
del bid # unused
|
del bid # unused
|
||||||
|
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue