parent
1d8de31565
commit
ed582c1dde
3 changed files with 256 additions and 2 deletions
|
@ -1438,7 +1438,7 @@ class Qwen2MoeModel(Model):
|
||||||
self.gguf_writer.add_head_count(self.hparams["n_heads"])
|
self.gguf_writer.add_head_count(self.hparams["n_heads"])
|
||||||
self.gguf_writer.add_head_count_kv(attn_config["kv_n_heads"])
|
self.gguf_writer.add_head_count_kv(attn_config["kv_n_heads"])
|
||||||
self.gguf_writer.add_rope_freq_base(attn_config["rope_theta"])
|
self.gguf_writer.add_rope_freq_base(attn_config["rope_theta"])
|
||||||
self.gguf_writer.add_clip_kqv(attn_config["clip_qkv"])
|
self.gguf_writer.add_clamp_kqv(attn_config["clip_qkv"])
|
||||||
self.gguf_writer.add_file_type(self.ftype)
|
self.gguf_writer.add_file_type(self.ftype)
|
||||||
|
|
||||||
self.gguf_writer.add_expert_count(ffn_config["moe_num_experts"])
|
self.gguf_writer.add_expert_count(ffn_config["moe_num_experts"])
|
||||||
|
|
|
@ -54,7 +54,6 @@ class Keys:
|
||||||
LAYERNORM_EPS = "{arch}.attention.layer_norm_epsilon"
|
LAYERNORM_EPS = "{arch}.attention.layer_norm_epsilon"
|
||||||
LAYERNORM_RMS_EPS = "{arch}.attention.layer_norm_rms_epsilon"
|
LAYERNORM_RMS_EPS = "{arch}.attention.layer_norm_rms_epsilon"
|
||||||
CAUSAL = "{arch}.attention.causal"
|
CAUSAL = "{arch}.attention.causal"
|
||||||
CLIP_KQV = "{arch}.attention.clip_kqv"
|
|
||||||
|
|
||||||
class Rope:
|
class Rope:
|
||||||
DIMENSION_COUNT = "{arch}.rope.dimension_count"
|
DIMENSION_COUNT = "{arch}.rope.dimension_count"
|
||||||
|
|
255
llama.cpp
255
llama.cpp
|
@ -220,6 +220,7 @@ enum llm_arch {
|
||||||
LLM_ARCH_MAMBA,
|
LLM_ARCH_MAMBA,
|
||||||
LLM_ARCH_XVERSE,
|
LLM_ARCH_XVERSE,
|
||||||
LLM_ARCH_COMMAND_R,
|
LLM_ARCH_COMMAND_R,
|
||||||
|
LLM_ARCH_DBRX,
|
||||||
LLM_ARCH_UNKNOWN,
|
LLM_ARCH_UNKNOWN,
|
||||||
};
|
};
|
||||||
|
|
||||||
|
@ -252,6 +253,7 @@ static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
|
||||||
{ LLM_ARCH_MAMBA, "mamba" },
|
{ LLM_ARCH_MAMBA, "mamba" },
|
||||||
{ LLM_ARCH_XVERSE, "xverse" },
|
{ LLM_ARCH_XVERSE, "xverse" },
|
||||||
{ LLM_ARCH_COMMAND_R, "command-r" },
|
{ LLM_ARCH_COMMAND_R, "command-r" },
|
||||||
|
{ LLM_ARCH_DBRX, "dbrx" },
|
||||||
{ LLM_ARCH_UNKNOWN, "(unknown)" },
|
{ LLM_ARCH_UNKNOWN, "(unknown)" },
|
||||||
};
|
};
|
||||||
|
|
||||||
|
@ -926,6 +928,23 @@ static const std::map<llm_arch, std::map<llm_tensor, std::string>> LLM_TENSOR_NA
|
||||||
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
|
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
|
||||||
},
|
},
|
||||||
},
|
},
|
||||||
|
{
|
||||||
|
LLM_ARCH_DBRX,
|
||||||
|
{
|
||||||
|
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
|
||||||
|
{ LLM_TENSOR_OUTPUT_NORM, "output_norm" },
|
||||||
|
{ LLM_TENSOR_OUTPUT, "output" },
|
||||||
|
{ LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
|
||||||
|
{ LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
|
||||||
|
{ LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
|
||||||
|
{ LLM_TENSOR_ATTN_NORM_2, "blk.%d.attn_norm_2" },
|
||||||
|
{ LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
|
||||||
|
{ LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" },
|
||||||
|
{ LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" },
|
||||||
|
{ LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
|
||||||
|
{ LLM_TENSOR_LAYER_OUT_NORM, "blk.%d.layer_output_norm" },
|
||||||
|
},
|
||||||
|
},
|
||||||
{
|
{
|
||||||
LLM_ARCH_UNKNOWN,
|
LLM_ARCH_UNKNOWN,
|
||||||
{
|
{
|
||||||
|
@ -1692,6 +1711,7 @@ enum e_model {
|
||||||
MODEL_40B,
|
MODEL_40B,
|
||||||
MODEL_65B,
|
MODEL_65B,
|
||||||
MODEL_70B,
|
MODEL_70B,
|
||||||
|
MODEL_132B,
|
||||||
MODEL_314B,
|
MODEL_314B,
|
||||||
MODEL_SMALL,
|
MODEL_SMALL,
|
||||||
MODEL_MEDIUM,
|
MODEL_MEDIUM,
|
||||||
|
@ -3961,6 +3981,15 @@ static void llm_load_hparams(
|
||||||
default: model.type = e_model::MODEL_UNKNOWN;
|
default: model.type = e_model::MODEL_UNKNOWN;
|
||||||
}
|
}
|
||||||
} break;
|
} break;
|
||||||
|
case LLM_ARCH_DBRX:
|
||||||
|
{
|
||||||
|
ml.get_key(LLM_KV_ATTENTION_CLAMP_KQV, hparams.f_clamp_kqv);
|
||||||
|
|
||||||
|
switch (hparams.n_layer) {
|
||||||
|
case 40: model.type = e_model::MODEL_132B; break;
|
||||||
|
default: model.type = e_model::MODEL_UNKNOWN;
|
||||||
|
}
|
||||||
|
} break;
|
||||||
default: (void)0;
|
default: (void)0;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -4635,6 +4664,46 @@ static bool llm_load_tensors(
|
||||||
layer.layer_out_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_LAYER_OUT_NORM, "weight", i), {n_embd});
|
layer.layer_out_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_LAYER_OUT_NORM, "weight", i), {n_embd});
|
||||||
}
|
}
|
||||||
} break;
|
} break;
|
||||||
|
case LLM_ARCH_DBRX:
|
||||||
|
{
|
||||||
|
if (n_expert == 0) {
|
||||||
|
throw std::runtime_error("DBRX model cannot have zero experts");
|
||||||
|
}
|
||||||
|
|
||||||
|
model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
|
||||||
|
|
||||||
|
// output
|
||||||
|
{
|
||||||
|
model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
|
||||||
|
model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, false);
|
||||||
|
// if output is NULL, init from the input tok embed
|
||||||
|
if (model.output == NULL) {
|
||||||
|
model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
|
||||||
|
ml.n_created--; // artificial tensor
|
||||||
|
ml.size_data += ggml_nbytes(model.output);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
for (int i = 0; i < n_layer; ++i) {
|
||||||
|
ggml_context * ctx_layer = ctx_for_layer(i);
|
||||||
|
ggml_context * ctx_split = ctx_for_layer_split(i);
|
||||||
|
|
||||||
|
auto & layer = model.layers[i];
|
||||||
|
|
||||||
|
layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
|
||||||
|
layer.attn_norm_2 = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM_2,"weight", i), {n_embd});
|
||||||
|
|
||||||
|
layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd});
|
||||||
|
layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
|
||||||
|
|
||||||
|
layer.ffn_gate_inp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert});
|
||||||
|
layer.ffn_gate_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, false);
|
||||||
|
layer.ffn_down_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff, n_embd, n_expert});
|
||||||
|
layer.ffn_up_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert});
|
||||||
|
|
||||||
|
layer.layer_out_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_LAYER_OUT_NORM, "weight", i), {n_embd});
|
||||||
|
}
|
||||||
|
} break;
|
||||||
case LLM_ARCH_BAICHUAN:
|
case LLM_ARCH_BAICHUAN:
|
||||||
{
|
{
|
||||||
model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
|
model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
|
||||||
|
@ -7030,6 +7099,187 @@ struct llm_build_context {
|
||||||
return gf;
|
return gf;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
struct ggml_cgraph * build_dbrx() {
|
||||||
|
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
|
||||||
|
|
||||||
|
// mutable variable, needed during the last layer of the computation to skip unused tokens
|
||||||
|
int32_t n_tokens = this->n_tokens;
|
||||||
|
|
||||||
|
const int64_t n_embd_head = hparams.n_embd_head_v;
|
||||||
|
const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
|
||||||
|
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
|
||||||
|
GGML_ASSERT(n_embd_head == hparams.n_rot);
|
||||||
|
|
||||||
|
struct ggml_tensor * cur;
|
||||||
|
struct ggml_tensor * inpL;
|
||||||
|
|
||||||
|
inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
|
||||||
|
|
||||||
|
// inp_pos - contains the positions
|
||||||
|
struct ggml_tensor * inp_pos = build_inp_pos();
|
||||||
|
|
||||||
|
// KQ_mask (mask for 1 head, it will be broadcasted to all heads)
|
||||||
|
struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
|
||||||
|
|
||||||
|
for (int il = 0; il < n_layer; ++il) {
|
||||||
|
struct ggml_tensor * inpSA = inpL;
|
||||||
|
|
||||||
|
// norm
|
||||||
|
cur = llm_build_norm(ctx0, inpL, hparams,
|
||||||
|
model.layers[il].attn_norm, NULL,
|
||||||
|
LLM_NORM_RMS, cb, il);
|
||||||
|
cb(cur, "attn_norm", il);
|
||||||
|
|
||||||
|
|
||||||
|
// self-attention
|
||||||
|
{
|
||||||
|
if (model.layers[il].attn_norm_2) {
|
||||||
|
// DBRX
|
||||||
|
cur = llm_build_norm(ctx0, inpL, hparams,
|
||||||
|
model.layers[il].attn_norm_2,
|
||||||
|
NULL,
|
||||||
|
LLM_NORM, cb, il);
|
||||||
|
cb(cur, "attn_norm_2", il);
|
||||||
|
}
|
||||||
|
|
||||||
|
cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
|
||||||
|
cb(cur, "wqkv", il);
|
||||||
|
|
||||||
|
if (hparams.f_clamp_kqv > 0.0f) {
|
||||||
|
cur = ggml_clamp(ctx0, cur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
|
||||||
|
cb(cur, "wqkv_clamped", il);
|
||||||
|
}
|
||||||
|
|
||||||
|
struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
|
||||||
|
Qcur = ggml_rope_custom(
|
||||||
|
ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
|
||||||
|
n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
|
||||||
|
ext_factor, attn_factor, beta_fast, beta_slow
|
||||||
|
);
|
||||||
|
cb(Qcur, "Qcur", il);
|
||||||
|
|
||||||
|
struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
|
||||||
|
Kcur = ggml_rope_custom(
|
||||||
|
ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
|
||||||
|
n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
|
||||||
|
ext_factor, attn_factor, beta_fast, beta_slow
|
||||||
|
);
|
||||||
|
cb(Kcur, "Kcur", il);
|
||||||
|
|
||||||
|
struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
|
||||||
|
cb(Vcur, "Vcur", il);
|
||||||
|
|
||||||
|
cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
|
||||||
|
model.layers[il].wo, model.layers[il].bo,
|
||||||
|
Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f, cb, il);
|
||||||
|
}
|
||||||
|
|
||||||
|
if (il == n_layer - 1) {
|
||||||
|
// skip computing output for unused tokens
|
||||||
|
struct ggml_tensor * inp_out_ids = build_inp_out_ids();
|
||||||
|
n_tokens = n_outputs;
|
||||||
|
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
|
||||||
|
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
|
||||||
|
}
|
||||||
|
|
||||||
|
struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
|
||||||
|
cb(ffn_inp, "ffn_inp", il);
|
||||||
|
|
||||||
|
// feed-forward network
|
||||||
|
// MoE branch
|
||||||
|
cur = llm_build_norm(ctx0, ffn_inp, hparams,
|
||||||
|
model.layers[il].ffn_norm, NULL,
|
||||||
|
LLM_NORM_RMS, cb, il);
|
||||||
|
cb(cur, "ffn_norm", il);
|
||||||
|
|
||||||
|
ggml_tensor * logits = ggml_mul_mat(ctx0, model.layers[il].ffn_gate_inp, cur); // [n_tokens, num_experts]
|
||||||
|
cb(logits, "ffn_moe_logits", il);
|
||||||
|
|
||||||
|
ggml_tensor * probs = ggml_soft_max(ctx0, logits); // [n_tokens, num_experts]
|
||||||
|
cb(probs, "ffn_moe_probs", il);
|
||||||
|
|
||||||
|
// select experts
|
||||||
|
ggml_tensor * selected_experts = ggml_top_k(ctx0, probs, n_expert_used); // [n_tokens, num_experts_per_tok]
|
||||||
|
cb(selected_experts->src[0], "ffn_moe_argsort", il);
|
||||||
|
|
||||||
|
ggml_tensor * weights = ggml_get_rows(ctx0,
|
||||||
|
ggml_reshape_3d(ctx0, probs, 1, n_expert, n_tokens), selected_experts);
|
||||||
|
cb(weights, "ffn_moe_weights", il);
|
||||||
|
|
||||||
|
weights = ggml_reshape_2d(ctx0, weights, n_expert_used, n_tokens); // [n_tokens, num_experts_per_tok]
|
||||||
|
|
||||||
|
ggml_tensor * weights_sum = ggml_sum_rows(ctx0, weights);
|
||||||
|
cb(weights_sum, "ffn_moe_weights_sum", il);
|
||||||
|
|
||||||
|
weights = ggml_div(ctx0, weights, weights_sum); // [n_tokens, num_experts_per_tok]
|
||||||
|
cb(weights, "ffn_moe_weights_norm", il);
|
||||||
|
|
||||||
|
// compute expert outputs
|
||||||
|
ggml_tensor * moe_out = nullptr;
|
||||||
|
|
||||||
|
for (int i = 0; i < n_expert_used; ++i) {
|
||||||
|
ggml_tensor * cur_expert;
|
||||||
|
|
||||||
|
ggml_tensor * cur_up = ggml_mul_mat_id(ctx0, model.layers[il].ffn_up_exps, selected_experts, i, cur);
|
||||||
|
cb(cur_up, "ffn_moe_up", il);
|
||||||
|
|
||||||
|
ggml_tensor * cur_gate = ggml_mul_mat_id(ctx0, model.layers[il].ffn_gate_exps, selected_experts, i, cur);
|
||||||
|
cb(cur_gate, "ffn_moe_gate", il);
|
||||||
|
|
||||||
|
//GeLU
|
||||||
|
cur_gate = ggml_gelu(ctx0, cur_gate);
|
||||||
|
cb(cur_gate, "ffn_moe_gelu", il);
|
||||||
|
|
||||||
|
cur_expert = ggml_mul(ctx0, cur_up, cur_gate);
|
||||||
|
cb(cur_expert, "ffn_moe_gate_par", il);
|
||||||
|
|
||||||
|
cur_expert = ggml_mul_mat_id(ctx0, model.layers[il].ffn_down_exps, selected_experts, i, cur_expert); // [n_tokens, n_embd]
|
||||||
|
cb(cur_expert, "ffn_moe_down", il);
|
||||||
|
|
||||||
|
cur_expert = ggml_mul(ctx0, cur_expert,
|
||||||
|
ggml_view_2d(ctx0, weights, 1, n_tokens, weights->nb[1], i*weights->nb[0]));
|
||||||
|
cb(cur_expert, "ffn_moe_weighted", il);
|
||||||
|
|
||||||
|
if (i == 0) {
|
||||||
|
moe_out = cur_expert;
|
||||||
|
} else {
|
||||||
|
moe_out = ggml_add(ctx0, moe_out, cur_expert);
|
||||||
|
cb(moe_out, "ffn_moe_out", il);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
cur = moe_out;
|
||||||
|
|
||||||
|
cur = ggml_add(ctx0, cur, ffn_inp);
|
||||||
|
cb(cur, "ffn_out", il);
|
||||||
|
|
||||||
|
ggml_tensor * layer_dir = lctx.cvec.tensor_for(il);
|
||||||
|
if (layer_dir != nullptr) {
|
||||||
|
cur = ggml_add(ctx0, cur, layer_dir);
|
||||||
|
}
|
||||||
|
cb(cur, "l_out", il);
|
||||||
|
|
||||||
|
// input for next layer
|
||||||
|
inpL = cur;
|
||||||
|
}
|
||||||
|
|
||||||
|
cur = inpL;
|
||||||
|
|
||||||
|
cur = llm_build_norm(ctx0, cur, hparams,
|
||||||
|
model.output_norm, NULL,
|
||||||
|
LLM_NORM_RMS, cb, -1);
|
||||||
|
cb(cur, "result_norm", -1);
|
||||||
|
|
||||||
|
// lm_head
|
||||||
|
cur = ggml_mul_mat(ctx0, model.output, cur);
|
||||||
|
|
||||||
|
cb(cur, "result_output", -1);
|
||||||
|
|
||||||
|
ggml_build_forward_expand(gf, cur);
|
||||||
|
|
||||||
|
return gf;
|
||||||
|
}
|
||||||
|
|
||||||
struct ggml_cgraph * build_starcoder() {
|
struct ggml_cgraph * build_starcoder() {
|
||||||
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
|
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
|
||||||
|
|
||||||
|
@ -9719,6 +9969,10 @@ static struct ggml_cgraph * llama_build_graph(
|
||||||
{
|
{
|
||||||
result = llm.build_command_r();
|
result = llm.build_command_r();
|
||||||
} break;
|
} break;
|
||||||
|
case LLM_ARCH_DBRX:
|
||||||
|
{
|
||||||
|
result = llm.build_dbrx();
|
||||||
|
} break;
|
||||||
default:
|
default:
|
||||||
GGML_ASSERT(false);
|
GGML_ASSERT(false);
|
||||||
}
|
}
|
||||||
|
@ -14525,6 +14779,7 @@ enum llama_rope_type llama_rope_type(const struct llama_model * model) {
|
||||||
case LLM_ARCH_MINICPM:
|
case LLM_ARCH_MINICPM:
|
||||||
case LLM_ARCH_XVERSE:
|
case LLM_ARCH_XVERSE:
|
||||||
case LLM_ARCH_COMMAND_R:
|
case LLM_ARCH_COMMAND_R:
|
||||||
|
case LLM_ARCH_DBRX: // FIXME REVIEW @ggerganov I am not sure what to put here
|
||||||
return LLAMA_ROPE_TYPE_NORM;
|
return LLAMA_ROPE_TYPE_NORM;
|
||||||
|
|
||||||
// the pairs of head values are offset by n_rot/2
|
// the pairs of head values are offset by n_rot/2
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue