quantize-stats command

Command that calculates some statistics over the errors introduced by
quantization, at the moment mean square error and max error for layer
weights. Should be useful for testing quantization improvements.

Needs some internal state from ggml and llama that should not be part of
the public API.
This commit is contained in:
Håkon H. Hitland 2023-04-02 15:59:14 +02:00
parent cd7fa95690
commit ed667e9581
9 changed files with 382 additions and 11 deletions

1
.gitignore vendored
View file

@ -19,6 +19,7 @@ models/*
/main
/quantize
/quantize-stats
/result
/perplexity
/embedding

View file

@ -148,7 +148,7 @@ common.o: examples/common.cpp examples/common.h
$(CXX) $(CXXFLAGS) -c examples/common.cpp -o common.o
clean:
rm -vf *.o main quantize perplexity embedding
rm -vf *.o main quantize quantize-stats perplexity embedding
main: examples/main/main.cpp ggml.o llama.o common.o
$(CXX) $(CXXFLAGS) examples/main/main.cpp ggml.o llama.o common.o -o main $(LDFLAGS)
@ -159,6 +159,9 @@ main: examples/main/main.cpp ggml.o llama.o common.o
quantize: examples/quantize/quantize.cpp ggml.o llama.o
$(CXX) $(CXXFLAGS) examples/quantize/quantize.cpp ggml.o llama.o -o quantize $(LDFLAGS)
quantize-stats: examples/quantize-stats/quantize-stats.cpp ggml.o llama.o
$(CXX) $(CXXFLAGS) examples/quantize-stats/quantize-stats.cpp ggml.o llama.o -o quantize-stats $(LDFLAGS)
perplexity: examples/perplexity/perplexity.cpp ggml.o llama.o common.o
$(CXX) $(CXXFLAGS) examples/perplexity/perplexity.cpp ggml.o llama.o common.o -o perplexity $(LDFLAGS)

View file

@ -31,6 +31,7 @@ if (EMSCRIPTEN)
else()
add_subdirectory(main)
add_subdirectory(quantize)
add_subdirectory(quantize-stats)
add_subdirectory(perplexity)
add_subdirectory(embedding)
endif()

View file

@ -0,0 +1,4 @@
set(TARGET quantize-stats)
add_executable(${TARGET} quantize-stats.cpp)
target_link_libraries(${TARGET} PRIVATE llama ${CMAKE_THREAD_LIBS_INIT})
target_compile_features(${TARGET} PRIVATE cxx_std_11)

View file

@ -0,0 +1,321 @@
#include "ggml.h"
#include "ggml_internal.h"
#include "llama.h"
#include "llama_internal.h"
#include <algorithm>
#include <cassert>
#include <cinttypes>
#include <cmath>
#include <cstdio>
#include <cstring>
#include <map>
#include <string>
#include <unordered_map>
#include <vector>
static const char * type_strs[] = { "q4_0", "q4_1", "i8", "i16", "i32", "f16", "f32" };
static_assert(sizeof(type_strs) == GGML_TYPE_COUNT * sizeof(char *), "Incomplete type list");
struct quantize_stats_params {
std::string model = "models/7B/ggml-model-f16.bin";
bool verbose = false;
bool per_layer_stats = false;
bool print_histogram = false;
std::vector<std::string> include_layers;
std::vector<std::string> exclude_layers;
std::vector<enum ggml_type> include_types;
};
const size_t HISTOGRAM_BUCKETS = 30;
const double HISTOGRAM_RANGE = 0.03;
struct error_stats {
size_t num_samples;
double total_error;
double max_error;
uint64_t error_histogram[HISTOGRAM_BUCKETS];
};
void quantize_stats_print_usage(int /*argc*/, char ** argv) {
quantize_stats_params params;
fprintf(stderr, "usage: %s [options]\n", argv[0]);
fprintf(stderr, "\n");
fprintf(stderr, "options:\n");
fprintf(stderr, " -h, --help show this help message and exit\n");
fprintf(stderr, " -m FNAME, --model FNAME\n");
fprintf(stderr, " model path (default: %s)\n", params.model.c_str());
fprintf(stderr, " -v, --verbose\n");
fprintf(stderr, " verbose output (default: false)\n");
fprintf(stderr, " -p, --per-layer-stats\n");
fprintf(stderr, " print stats per layer (default: false)\n");
fprintf(stderr, " --histogram\n");
fprintf(stderr, " print error histogram (default: false)\n");
fprintf(stderr, " -l LAYER, --include-layer LAYER\n");
fprintf(stderr, " only test layers containing substring\n");
fprintf(stderr, " -L LAYER, --exclude-layer LAYER\n");
fprintf(stderr, " exclude layers containing substring\n");
fprintf(stderr, " -t TYPE, --type TYPE\n");
fprintf(stderr, " only test given type (q4_0, q4_1)\n");
fprintf(stderr, "\n");
}
// Check if a layer is included/excluded by command line
bool layer_included(const quantize_stats_params params, const std::string & layer) {
for (const auto& excluded : params.exclude_layers) {
if (layer.find(excluded) != std::string::npos) {
return false;
}
}
for (const auto& included : params.include_layers) {
if (layer.find(included) != std::string::npos) {
return true;
}
}
return params.include_layers.empty();
}
// Update error statistics given vectors with the before/after result of quantization
void update_error_stats(int64_t nelements, const float * input, const float * output, error_stats & stats) {
for (int64_t i = 0; i < nelements; i++) {
double diff = input[i] - output[i];
stats.total_error += diff * diff;
stats.max_error = fmax(fabs(diff), stats.max_error);
stats.error_histogram[std::max(std::min((size_t) floor(fabs(diff) / HISTOGRAM_RANGE * HISTOGRAM_BUCKETS), HISTOGRAM_BUCKETS-1), (size_t) 0)]++;
}
stats.num_samples += nelements;
}
void print_error_stats(const std::string & name, const error_stats & stats, bool print_histogram) {
printf("%-50s: mse %.8f, maxerr %.8f\n", name.c_str(), stats.total_error / (double) stats.num_samples, stats.max_error);
if (print_histogram) {
printf("Error distribution:\n");
for (size_t i = 0; i < HISTOGRAM_BUCKETS; i++) {
double lower = i * HISTOGRAM_RANGE / HISTOGRAM_BUCKETS;
double upper = (i+1) * HISTOGRAM_RANGE / HISTOGRAM_BUCKETS;
if (i == HISTOGRAM_BUCKETS -1) upper = INFINITY;
printf("[%3.3f, %3.3f): %11" PRIu64 "\n", lower, upper, stats.error_histogram[i]);
}
}
}
// copied from ggml.h - verify that we can access this as a flat array
static bool tensor_is_contiguous(const struct ggml_tensor * tensor) {
static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
return
tensor->nb[0] == ggml_type_size(tensor->type) &&
tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/ggml_blck_size(tensor->type) &&
tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
}
// Run quantization function for a single layer and update error stats
void test_roundtrip_on_layer(
std::string & name,
bool print_layer_stats,
const quantize_fns_t & qfns,
const ggml_tensor * layer,
float * input_scratch,
char *quantized_scratch,
float * output_scratch,
error_stats & total_error) {
assert(tensor_is_contiguous(layer));
int64_t nelements = ggml_nelements(layer);
if (layer->type == GGML_TYPE_F16) {
for (int i = 0; i < nelements; i++) {
input_scratch[i] = ggml_get_f32_1d(layer, i);
}
} else {
input_scratch = ggml_get_data_f32(layer);
}
qfns.quantize_row_q(input_scratch, quantized_scratch, nelements);
qfns.dequantize_row_q(quantized_scratch, output_scratch, nelements);
update_error_stats(nelements, input_scratch, output_scratch, total_error);
if (print_layer_stats) {
error_stats layer_error {};
update_error_stats(nelements, input_scratch, output_scratch, layer_error);
print_error_stats(name, layer_error, false);
}
}
int main(int argc, char ** argv) {
ggml_time_init();
quantize_stats_params params;
// read command line
bool invalid_param = false;
std::string arg;
for (int i = 1; i < argc; i++) {
arg = argv[i];
if (arg == "-h" || arg == "--help") {
quantize_stats_print_usage(argc, argv);
exit(0);
} else if (arg == "-v") {
params.verbose = true;
} else if (arg == "-p" || arg == "--per-layer-stats") {
params.per_layer_stats = true;
} else if (arg == "--histogram") {
params.print_histogram = true;
} else if (arg == "-m" || arg == "--model") {
if (++i >= argc) {
invalid_param = true;
break;
}
params.model = argv[i];
} else if (arg == "-l" || arg == "--include-layer") {
if (++i >= argc) {
invalid_param = true;
break;
}
params.include_layers.push_back(argv[i]);
} else if (arg == "-L" || arg == "--exclude-layer") {
if (++i >= argc) {
invalid_param = true;
break;
}
params.exclude_layers.push_back(argv[i]);
} else if (arg == "-t" || arg == "--type") {
if (++i >= argc) {
invalid_param = true;
break;
}
int j;
for (j = 0; j < GGML_TYPE_COUNT && strcmp(argv[i], type_strs[j]) != 0; j++) {
// find match
}
if (j < GGML_TYPE_COUNT) {
params.include_types.push_back((ggml_type) j);
} else {
fprintf(stderr, "error: %s not in list of types\n", argv[i]);
invalid_param = true;
}
} else {
fprintf(stderr, "error: unknown argument: %s\n", arg.c_str());
quantize_stats_print_usage(argc, argv);
return 1;
}
}
if (invalid_param) {
fprintf(stderr, "error: invalid parameter for argument: %s\n", arg.c_str());
quantize_stats_print_usage(argc, argv);
return 1;
}
// load the model
fprintf(stderr, "Loading model\n");
const int64_t t_main_start_us = ggml_time_us();
llama_context * ctx;
{
auto lparams = llama_context_default_params();
lparams.n_ctx = 256;
lparams.n_parts = 1;
lparams.seed = 1;
lparams.f16_kv = false;
lparams.use_mlock = false;
ctx = llama_init_from_file(params.model.c_str(), lparams);
if (ctx == NULL) {
fprintf(stderr, "%s: error: failed to load model '%s'\n", __func__, params.model.c_str());
return 1;
}
}
// Sort tensors for consistent output
const auto tensors = llama_internal_get_tensor_map(ctx);
std::map<std::string, struct ggml_tensor *> tensors_sorted { tensors.begin(), tensors.end() };
// check layer tensors
int included_layers = 0;
int64_t max_nelements = 0;
bool is_f16 = false;
for (const auto& kv_tensor : tensors_sorted) {
if (!layer_included(params, kv_tensor.first)) {
continue;
}
if (params.verbose) {
printf("%s: type %s, size %" PRId64 "\n", kv_tensor.first.c_str(), type_strs[kv_tensor.second->type], ggml_nelements(kv_tensor.second));
}
if (kv_tensor.second->type == GGML_TYPE_F16) {
is_f16 = true;
} else if (kv_tensor.second->type != GGML_TYPE_F32) {
fprintf(stderr, "%s: error: Quantization should be tested with a float model, "
"this model contains already quantized layers (%s is type %d)\n", __func__, kv_tensor.first.c_str(), kv_tensor.second->type);
llama_free(ctx);
return 1;
}
included_layers++;
max_nelements = std::max(max_nelements, ggml_nelements(kv_tensor.second));
}
if (is_f16) {
printf("note: source model is f16\n");
}
printf("testing %d layers with max size %" PRId64 ", allocating %" PRId64 " bytes\n", included_layers, max_nelements, 3*4*max_nelements);
// allocate scratch space
std::vector<float> input_scratch(max_nelements);
std::vector<char> quantized_scratch(max_nelements*4);
std::vector<float> output_scratch(max_nelements);
// loop throught quantization types
for (int i = 0; i < GGML_TYPE_COUNT; i++) {
if (!params.include_types.empty() && std::find(params.include_types.begin(), params.include_types.end(), i) == params.include_types.end()) {
continue;
}
quantize_fns_t qfns = ggml_internal_get_quantize_fn(i);
if (qfns.quantize_row_q && qfns.dequantize_row_q) {
if (params.verbose) {
printf("testing %s ...\n", type_strs[i]);
}
error_stats global_stats {};
for (const auto& kv_tensor : tensors_sorted) {
if (!layer_included(params, kv_tensor.first)) {
continue;
}
if (params.verbose) {
printf(" %s ...\n", kv_tensor.first.c_str());
}
std::string layer_name { type_strs[i] };
layer_name += "::" + kv_tensor.first;
test_roundtrip_on_layer(
layer_name,
params.per_layer_stats,
qfns,
kv_tensor.second,
input_scratch.data(),
quantized_scratch.data(),
output_scratch.data(),
global_stats
);
}
print_error_stats(type_strs[i], global_stats, params.print_histogram);
}
}
llama_free(ctx);
// report timing
{
const int64_t t_main_end_us = ggml_time_us();
printf("\n");
printf("%s: total time = %8.2f ms\n", __func__, (t_main_end_us - t_main_start_us)/1000.0);
}
return 0;
}

17
ggml.c
View file

@ -2,6 +2,7 @@
#define _GNU_SOURCE
#include "ggml.h"
#include "ggml_internal.h"
#if defined(_MSC_VER) || defined(__MINGW32__)
#include <malloc.h> // using malloc.h with MSC/MINGW
@ -6496,16 +6497,6 @@ static void ggml_compute_forward_mul_mat_f16_f32(
//}
}
typedef void (*dequantize_row_q_t)(const void * restrict x, float * restrict y, int k);
typedef void (*quantize_row_q_t)(const float * restrict x, void * restrict y, int k);
typedef void (*vec_dot_q_t)(const int n, float * restrict s, const void * restrict x, const void * restrict y);
typedef struct {
dequantize_row_q_t dequantize_row_q;
quantize_row_q_t quantize_row_q;
vec_dot_q_t vec_dot_q;
} quantize_fns_t;
static const quantize_fns_t quantize_fns[GGML_TYPE_COUNT] = {
[GGML_TYPE_Q4_0] = {
.dequantize_row_q = dequantize_row_q4_0,
@ -6519,6 +6510,12 @@ static const quantize_fns_t quantize_fns[GGML_TYPE_COUNT] = {
},
};
// For internal test use
quantize_fns_t ggml_internal_get_quantize_fn(size_t i) {
GGML_ASSERT(i < GGML_TYPE_COUNT);
return quantize_fns[i];
}
static void ggml_compute_forward_mul_mat_q_f32(
const struct ggml_compute_params * params,
const struct ggml_tensor * src0,

25
ggml_internal.h Normal file
View file

@ -0,0 +1,25 @@
#pragma once
// Internal functions exposed for tests and benchmarks
#ifdef __cplusplus
// restrict not standard in C++
#define restrict
extern "C" {
#endif
typedef void (*dequantize_row_q_t)(const void * restrict x, float * restrict y, int k);
typedef void (*quantize_row_q_t)(const float * restrict x, void * restrict y, int k);
typedef void (*vec_dot_q_t)(const int n, float * restrict s, const void * restrict x, const void * restrict y);
typedef struct {
dequantize_row_q_t dequantize_row_q;
quantize_row_q_t quantize_row_q;
vec_dot_q_t vec_dot_q;
} quantize_fns_t;
quantize_fns_t ggml_internal_get_quantize_fn(size_t i);
#ifdef __cplusplus
}
#endif

View file

@ -1,4 +1,5 @@
#include "llama.h"
#include "llama_internal.h"
#include "ggml.h"
@ -1854,3 +1855,8 @@ const char * llama_print_system_info(void) {
return s.c_str();
}
// For internal test use
std::unordered_map<std::string, struct ggml_tensor *>& llama_internal_get_tensor_map(struct llama_context * ctx) {
return ctx->model.tensors;
}

13
llama_internal.h Normal file
View file

@ -0,0 +1,13 @@
#ifndef LLAMA_INTERNAL_H
#define LLAMA_INTERNAL_H
// Internal functions exposed for tests and benchmarks
#include "ggml.h"
#include <string>
#include <unordered_map>
std::unordered_map<std::string, struct ggml_tensor *>& llama_internal_get_tensor_map(struct llama_context * ctx);
#endif