tts : extend python example to generate spectrogram
ggml-ci
This commit is contained in:
parent
5038abe1ee
commit
edb7896b49
2 changed files with 118 additions and 82 deletions
|
@ -143,7 +143,7 @@ response_json = response.json()
|
|||
#print(json.dumps(response_json, indent=4))
|
||||
#print(json.dumps(response_json["prompt"], indent=4).replace("\\n", "\n"))
|
||||
#print(json.dumps(response_json["timings"], indent=4))
|
||||
print(json.dumps(response_json["tokens"], indent=4))
|
||||
#print(json.dumps(response_json["tokens"], indent=4))
|
||||
|
||||
codes = response_json["tokens"]
|
||||
|
||||
|
@ -160,9 +160,15 @@ response_json = response.json()
|
|||
|
||||
#print(json.dumps(response_json, indent=4))
|
||||
|
||||
# spectrogram
|
||||
embd = response_json["data"][0]["embedding"]
|
||||
|
||||
print(len(embd))
|
||||
|
||||
n_codes = len(embd)
|
||||
n_embd = len(embd[0])
|
||||
|
||||
print('spectrogram generated: n_codes: %d, n_embd: %d' % (n_codes, n_embd))
|
||||
|
||||
# post-process the spectrogram to convert to audio
|
||||
# TODO: see the tts.cpp:embd_to_audio() and implement it in Python
|
||||
print('converting to audio ...')
|
||||
print('TODO: see the tts.cpp:embd_to_audio() and implement it in Python')
|
||||
|
|
|
@ -63,7 +63,47 @@ static void print_usage(int, char ** argv) {
|
|||
LOG("\n");
|
||||
}
|
||||
|
||||
static void fill_hann_window(int length, bool periodic, double * output) {
|
||||
struct wav_header {
|
||||
char riff[4] = {'R', 'I', 'F', 'F'};
|
||||
uint32_t chunk_size;
|
||||
char wave[4] = {'W', 'A', 'V', 'E'};
|
||||
char fmt[4] = {'f', 'm', 't', ' '};
|
||||
uint32_t fmt_chunk_size = 16;
|
||||
uint16_t audio_format = 1; // PCM
|
||||
uint16_t num_channels = 1; // Mono
|
||||
uint32_t sample_rate;
|
||||
uint32_t byte_rate;
|
||||
uint16_t block_align;
|
||||
uint16_t bits_per_sample = 16;
|
||||
char data[4] = {'d', 'a', 't', 'a'};
|
||||
uint32_t data_size;
|
||||
};
|
||||
|
||||
static void save_wav16(const std::string & fname, const std::vector<float> & data, int sample_rate) {
|
||||
std::ofstream file(fname, std::ios::binary);
|
||||
if (!file) {
|
||||
LOG_ERR("%s: Failed to open file '%s' for writing", __func__, fname.c_str());
|
||||
return;
|
||||
}
|
||||
|
||||
wav_header header;
|
||||
header.sample_rate = sample_rate;
|
||||
header.byte_rate = header.sample_rate * header.num_channels * (header.bits_per_sample / 8);
|
||||
header.block_align = header.num_channels * (header.bits_per_sample / 8);
|
||||
header.data_size = data.size() * (header.bits_per_sample / 8);
|
||||
header.chunk_size = 36 + header.data_size;
|
||||
|
||||
file.write(reinterpret_cast<const char*>(&header), sizeof(header));
|
||||
|
||||
for (const auto & sample : data) {
|
||||
int16_t pcm_sample = static_cast<int16_t>(std::clamp(sample * 32767.0, -32768.0, 32767.0));
|
||||
file.write(reinterpret_cast<const char*>(&pcm_sample), sizeof(pcm_sample));
|
||||
}
|
||||
|
||||
file.close();
|
||||
}
|
||||
|
||||
static void fill_hann_window(int length, bool periodic, float * output) {
|
||||
int offset = -1;
|
||||
if (periodic) {
|
||||
offset = 0;
|
||||
|
@ -74,31 +114,31 @@ static void fill_hann_window(int length, bool periodic, double * output) {
|
|||
}
|
||||
|
||||
// very poor-man fft
|
||||
static void twiddle(double * real, double * imag, int k, int N) {
|
||||
double angle = 2 * M_PI * k / N;
|
||||
static void twiddle(float * real, float * imag, int k, int N) {
|
||||
float angle = 2 * M_PI * k / N;
|
||||
*real = cos(angle);
|
||||
*imag = sin(angle);
|
||||
}
|
||||
|
||||
static void irfft(int n, const double * inp_cplx, double * out_real) {
|
||||
static void irfft(int n, const float * inp_cplx, float * out_real) {
|
||||
int N = n / 2 + 1;
|
||||
|
||||
std::vector<double> real_input(N);
|
||||
std::vector<double> imag_input(N);
|
||||
std::vector<float> real_input(N);
|
||||
std::vector<float> imag_input(N);
|
||||
for (int i = 0; i < N; ++i) {
|
||||
real_input[i] = inp_cplx[2 * i];
|
||||
imag_input[i] = inp_cplx[2 * i + 1];
|
||||
}
|
||||
|
||||
std::vector<double> real_output(n);
|
||||
std::vector<double> imag_output(n);
|
||||
std::vector<float> real_output(n);
|
||||
std::vector<float> imag_output(n);
|
||||
|
||||
for (int k = 0; k < n; ++k) {
|
||||
real_output[k] = 0.0f;
|
||||
imag_output[k] = 0.0f;
|
||||
for (int m = 0; m < N; ++m) {
|
||||
double twiddle_real;
|
||||
double twiddle_imag;
|
||||
float twiddle_real;
|
||||
float twiddle_imag;
|
||||
|
||||
twiddle(&twiddle_real, &twiddle_imag, k * m, n);
|
||||
|
||||
|
@ -123,7 +163,7 @@ static void irfft(int n, const double * inp_cplx, double * out_real) {
|
|||
// hop_length = 320
|
||||
// pad = 480
|
||||
//
|
||||
static void fold(const std::vector<double> & data, int64_t n_out, int64_t n_win, int64_t n_hop, int64_t n_pad, std::vector<double> & output) {
|
||||
static void fold(const std::vector<float> & data, int64_t n_out, int64_t n_win, int64_t n_hop, int64_t n_pad, std::vector<float> & output) {
|
||||
int64_t output_height = n_out;
|
||||
int64_t kernel_w = n_win;
|
||||
int64_t stride_w = n_hop;
|
||||
|
@ -147,103 +187,63 @@ static void fold(const std::vector<double> & data, int64_t n_out, int64_t n_win,
|
|||
output.resize(n_out - 2 * n_pad);
|
||||
}
|
||||
|
||||
struct wav_header {
|
||||
char riff[4] = {'R', 'I', 'F', 'F'};
|
||||
uint32_t chunk_size;
|
||||
char wave[4] = {'W', 'A', 'V', 'E'};
|
||||
char fmt[4] = {'f', 'm', 't', ' '};
|
||||
uint32_t fmt_chunk_size = 16;
|
||||
uint16_t audio_format = 1; // PCM
|
||||
uint16_t num_channels = 1; // Mono
|
||||
uint32_t sample_rate;
|
||||
uint32_t byte_rate;
|
||||
uint16_t block_align;
|
||||
uint16_t bits_per_sample = 16;
|
||||
char data[4] = {'d', 'a', 't', 'a'};
|
||||
uint32_t data_size;
|
||||
};
|
||||
|
||||
static void save_wav16(const std::string & fname, const std::vector<double> & data, int sample_rate) {
|
||||
std::ofstream file(fname, std::ios::binary);
|
||||
if (!file) {
|
||||
LOG_ERR("%s: Failed to open file '%s' for writing", __func__, fname.c_str());
|
||||
return;
|
||||
}
|
||||
|
||||
wav_header header;
|
||||
header.sample_rate = sample_rate;
|
||||
header.byte_rate = header.sample_rate * header.num_channels * (header.bits_per_sample / 8);
|
||||
header.block_align = header.num_channels * (header.bits_per_sample / 8);
|
||||
header.data_size = data.size() * (header.bits_per_sample / 8);
|
||||
header.chunk_size = 36 + header.data_size;
|
||||
|
||||
file.write(reinterpret_cast<const char*>(&header), sizeof(header));
|
||||
|
||||
for (const auto & sample : data) {
|
||||
int16_t pcm_sample = static_cast<int16_t>(std::clamp(sample * 32767.0, -32768.0, 32767.0));
|
||||
file.write(reinterpret_cast<const char*>(&pcm_sample), sizeof(pcm_sample));
|
||||
}
|
||||
|
||||
file.close();
|
||||
}
|
||||
|
||||
static std::vector<double> embd_to_audio(
|
||||
// TODO: not optimized at all
|
||||
static std::vector<float> embd_to_audio(
|
||||
const float * embd,
|
||||
const std::vector<llama_token> & codes,
|
||||
const int n_codes,
|
||||
const int n_embd,
|
||||
const int n_thread) {
|
||||
const int n = codes.size();
|
||||
const int n_fft = 1280;
|
||||
const int n_hop = 320;
|
||||
const int n_win = 1280;
|
||||
const int n_pad = (n_win - n_hop)/2;
|
||||
const int n_out = (n - 1)*n_hop + n_win;
|
||||
const int n_out = (n_codes - 1)*n_hop + n_win;
|
||||
|
||||
std::vector<double> hann(n_fft);
|
||||
std::vector<float> hann(n_fft);
|
||||
|
||||
fill_hann_window(hann.size(), true, hann.data());
|
||||
|
||||
int n_spec = n_embd*n;
|
||||
int n_spec = n_embd*n_codes;
|
||||
|
||||
std::vector<double> E (n_spec);
|
||||
std::vector<double> S (n_spec);
|
||||
std::vector<double> ST(n_spec);
|
||||
std::vector<float> E (n_spec);
|
||||
std::vector<float> S (n_spec);
|
||||
std::vector<float> ST(n_spec);
|
||||
|
||||
for (int l = 0; l < n; ++l) {
|
||||
for (int l = 0; l < n_codes; ++l) {
|
||||
for (int k = 0; k < n_embd; ++k) {
|
||||
E[k*n + l] = embd[l*n_embd + k];
|
||||
E[k*n_codes + l] = embd[l*n_embd + k];
|
||||
}
|
||||
}
|
||||
|
||||
for (int k = 0; k < n_embd/2; ++k) {
|
||||
for (int l = 0; l < n; ++l) {
|
||||
double mag = E[(k )*n + l];
|
||||
double phi = E[(k + n_embd/2)*n + l];
|
||||
for (int l = 0; l < n_codes; ++l) {
|
||||
float mag = E[(k )*n_codes + l];
|
||||
float phi = E[(k + n_embd/2)*n_codes + l];
|
||||
|
||||
mag = exp(mag);
|
||||
|
||||
if (mag > 1e2) {
|
||||
mag = 1e2;
|
||||
}
|
||||
S[2*(k*n + l) + 0] = mag*cosf(phi);
|
||||
S[2*(k*n + l) + 1] = mag*sinf(phi);
|
||||
S[2*(k*n_codes + l) + 0] = mag*cosf(phi);
|
||||
S[2*(k*n_codes + l) + 1] = mag*sinf(phi);
|
||||
}
|
||||
}
|
||||
|
||||
for (int l = 0; l < n; ++l) {
|
||||
for (int l = 0; l < n_codes; ++l) {
|
||||
for (int k = 0; k < n_embd/2; ++k) {
|
||||
ST[l*n_embd + 2*k + 0] = S[2*(k*n + l) + 0];
|
||||
ST[l*n_embd + 2*k + 1] = S[2*(k*n + l) + 1];
|
||||
ST[l*n_embd + 2*k + 0] = S[2*(k*n_codes + l) + 0];
|
||||
ST[l*n_embd + 2*k + 1] = S[2*(k*n_codes + l) + 1];
|
||||
}
|
||||
}
|
||||
|
||||
std::vector<double> res (n*n_fft);
|
||||
std::vector<double> hann2(n*n_fft);
|
||||
std::vector<float> res (n_codes*n_fft);
|
||||
std::vector<float> hann2(n_codes*n_fft);
|
||||
|
||||
std::vector<std::thread> workers(n_thread);
|
||||
for (int i = 0; i < n_thread; ++i) {
|
||||
workers[i] = std::thread([&, i]() {
|
||||
for (int l = i; l < n; l += n_thread) {
|
||||
for (int l = i; l < n_codes; l += n_thread) {
|
||||
irfft(n_fft, ST.data() + l*n_embd, res.data() + l*n_fft);
|
||||
for (int j = 0; j < n_fft; ++j) {
|
||||
res [l*n_fft + j] *= hann[j];
|
||||
|
@ -256,8 +256,8 @@ static std::vector<double> embd_to_audio(
|
|||
workers[i].join();
|
||||
}
|
||||
|
||||
std::vector<double> audio;
|
||||
std::vector<double> env;
|
||||
std::vector<float> audio;
|
||||
std::vector<float> env;
|
||||
|
||||
fold(res, n_out, n_win, n_hop, n_pad, audio);
|
||||
fold(hann2, n_out, n_win, n_hop, n_pad, env); // TODO: can be done once
|
||||
|
@ -844,12 +844,14 @@ lovely<|t_0.56|><|code_start|><|634|><|596|><|1766|><|1556|><|1306|><|1285|><|14
|
|||
|
||||
const auto t_voc_start = ggml_time_us();
|
||||
|
||||
llama_batch batch = llama_batch_init(codes.size(), 0, 1);
|
||||
const int n_codes = codes.size();
|
||||
|
||||
llama_batch batch = llama_batch_init(n_codes, 0, 1);
|
||||
|
||||
for (size_t i = 0; i < codes.size(); ++i) {
|
||||
common_batch_add(batch, codes[i], i, { 0 }, true); // TODO: all logits?
|
||||
}
|
||||
GGML_ASSERT(batch.n_tokens == (int) codes.size());
|
||||
GGML_ASSERT(batch.n_tokens == n_codes);
|
||||
|
||||
if (llama_decode(ctx_cts, batch) != 0) {
|
||||
LOG_ERR("%s: llama_decode() failed\n", __func__);
|
||||
|
@ -862,12 +864,40 @@ lovely<|t_0.56|><|code_start|><|634|><|596|><|1766|><|1556|><|1306|><|1285|><|14
|
|||
|
||||
const auto t_spec_start = ggml_time_us();
|
||||
|
||||
#if 1
|
||||
// spectral operations
|
||||
// TODO: not optimized at all
|
||||
const int n_embd = llama_n_embd(model_cts);
|
||||
const float * embd = llama_get_embeddings(ctx_cts);
|
||||
|
||||
auto audio = embd_to_audio(embd, codes, n_embd, params.cpuparams.n_threads);
|
||||
auto audio = embd_to_audio(embd, n_codes, n_embd, params.cpuparams.n_threads);
|
||||
|
||||
#else
|
||||
// read the spectrogram from a file for debugging purposes
|
||||
std::vector<float> audio;
|
||||
{
|
||||
std::ifstream fin("out.bin", std::ios::binary);
|
||||
if (!fin) {
|
||||
LOG_ERR("%s: failed to open file '%s'\n", __func__, "out.bin");
|
||||
return 1;
|
||||
}
|
||||
|
||||
std::vector<float> embd;
|
||||
|
||||
int n_codes;
|
||||
int n_embd;
|
||||
|
||||
fin.read(reinterpret_cast<char *>(&n_codes), sizeof(int));
|
||||
fin.read(reinterpret_cast<char *>(&n_embd), sizeof(int));
|
||||
|
||||
embd.resize(n_codes * n_embd);
|
||||
fin.read(reinterpret_cast<char *>(embd.data()), n_codes * n_embd * sizeof(float));
|
||||
fin.close();
|
||||
|
||||
LOG_INF("%s: n_codes: %d, n_embd: %d\n", __func__, n_codes, n_embd);
|
||||
|
||||
audio = embd_to_audio(embd.data(), n_codes, n_embd, params.cpuparams.n_threads);
|
||||
}
|
||||
#endif
|
||||
|
||||
const std::string fname = "output.wav";
|
||||
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue