Remove direct access to std streams from llama_main
The goal is to allow running llama_main while connected to other streams, such as TCP sockets. Signed-off-by: Thiago Padilha <thiago@padilha.cc>
This commit is contained in:
parent
1088d2dd04
commit
edc17cfa9f
3 changed files with 41 additions and 35 deletions
69
llama.cpp
69
llama.cpp
|
@ -718,13 +718,16 @@ int llama_main(
|
|||
gpt_vocab vocab,
|
||||
llama_model model,
|
||||
int64_t t_load_us,
|
||||
int64_t t_main_start_us) {
|
||||
int64_t t_main_start_us,
|
||||
FILE *instream,
|
||||
FILE *outstream,
|
||||
FILE *errstream) {
|
||||
|
||||
if (params.seed < 0) {
|
||||
params.seed = time(NULL);
|
||||
}
|
||||
|
||||
fprintf(stderr, "%s: seed = %d\n", __func__, params.seed);
|
||||
fprintf(errstream, "%s: seed = %d\n", __func__, params.seed);
|
||||
|
||||
std::mt19937 rng(params.seed);
|
||||
if (params.prompt.empty()) {
|
||||
|
@ -751,13 +754,13 @@ int llama_main(
|
|||
// tokenize the reverse prompt
|
||||
std::vector<gpt_vocab::id> antiprompt_inp = ::llama_tokenize(vocab, params.antiprompt, false);
|
||||
|
||||
fprintf(stderr, "\n");
|
||||
fprintf(stderr, "%s: prompt: '%s'\n", __func__, params.prompt.c_str());
|
||||
fprintf(stderr, "%s: number of tokens in prompt = %zu\n", __func__, embd_inp.size());
|
||||
fprintf(errstream, "\n");
|
||||
fprintf(errstream, "%s: prompt: '%s'\n", __func__, params.prompt.c_str());
|
||||
fprintf(errstream, "%s: number of tokens in prompt = %zu\n", __func__, embd_inp.size());
|
||||
for (int i = 0; i < (int) embd_inp.size(); i++) {
|
||||
fprintf(stderr, "%6d -> '%s'\n", embd_inp[i], vocab.id_to_token.at(embd_inp[i]).c_str());
|
||||
fprintf(errstream, "%6d -> '%s'\n", embd_inp[i], vocab.id_to_token.at(embd_inp[i]).c_str());
|
||||
}
|
||||
fprintf(stderr, "\n");
|
||||
fprintf(errstream, "\n");
|
||||
if (params.interactive) {
|
||||
#if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__))
|
||||
struct sigaction sigint_action;
|
||||
|
@ -769,19 +772,19 @@ int llama_main(
|
|||
signal(SIGINT, sigint_handler);
|
||||
#endif
|
||||
|
||||
fprintf(stderr, "%s: interactive mode on.\n", __func__);
|
||||
fprintf(errstream, "%s: interactive mode on.\n", __func__);
|
||||
|
||||
if(antiprompt_inp.size()) {
|
||||
fprintf(stderr, "%s: reverse prompt: '%s'\n", __func__, params.antiprompt.c_str());
|
||||
fprintf(stderr, "%s: number of tokens in reverse prompt = %zu\n", __func__, antiprompt_inp.size());
|
||||
fprintf(errstream, "%s: reverse prompt: '%s'\n", __func__, params.antiprompt.c_str());
|
||||
fprintf(errstream, "%s: number of tokens in reverse prompt = %zu\n", __func__, antiprompt_inp.size());
|
||||
for (int i = 0; i < (int) antiprompt_inp.size(); i++) {
|
||||
fprintf(stderr, "%6d -> '%s'\n", antiprompt_inp[i], vocab.id_to_token.at(antiprompt_inp[i]).c_str());
|
||||
fprintf(errstream, "%6d -> '%s'\n", antiprompt_inp[i], vocab.id_to_token.at(antiprompt_inp[i]).c_str());
|
||||
}
|
||||
fprintf(stderr, "\n");
|
||||
fprintf(errstream, "\n");
|
||||
}
|
||||
}
|
||||
fprintf(stderr, "sampling parameters: temp = %f, top_k = %d, top_p = %f, repeat_last_n = %i, repeat_penalty = %f\n", params.temp, params.top_k, params.top_p, params.repeat_last_n, params.repeat_penalty);
|
||||
fprintf(stderr, "\n\n");
|
||||
fprintf(errstream, "sampling parameters: temp = %f, top_k = %d, top_p = %f, repeat_last_n = %i, repeat_penalty = %f\n", params.temp, params.top_k, params.top_p, params.repeat_last_n, params.repeat_penalty);
|
||||
fprintf(errstream, "\n\n");
|
||||
|
||||
std::vector<gpt_vocab::id> embd;
|
||||
|
||||
|
@ -795,7 +798,7 @@ int llama_main(
|
|||
|
||||
|
||||
if (params.interactive) {
|
||||
fprintf(stderr, "== Running in interactive mode. ==\n"
|
||||
fprintf(errstream, "== Running in interactive mode. ==\n"
|
||||
#if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__)) || defined (_WIN32)
|
||||
" - Press Ctrl+C to interject at any time.\n"
|
||||
#endif
|
||||
|
@ -814,7 +817,7 @@ int llama_main(
|
|||
|
||||
// set the color for the prompt which will be output initially
|
||||
if (params.use_color) {
|
||||
printf(ANSI_COLOR_YELLOW);
|
||||
fprintf(outstream, ANSI_COLOR_YELLOW);
|
||||
}
|
||||
|
||||
while (remaining_tokens > 0) {
|
||||
|
@ -823,7 +826,7 @@ int llama_main(
|
|||
const int64_t t_start_us = ggml_time_us();
|
||||
|
||||
if (!llama_eval(model, params.n_threads, n_past, embd, logits, mem_per_token)) {
|
||||
fprintf(stderr, "Failed to predict\n");
|
||||
fprintf(errstream, "Failed to predict\n");
|
||||
return 1;
|
||||
}
|
||||
|
||||
|
@ -877,16 +880,16 @@ int llama_main(
|
|||
|
||||
// reset color to default if we there is no pending user input
|
||||
if (!input_noecho && params.use_color && embd_inp.size() == input_consumed) {
|
||||
printf(ANSI_COLOR_RESET);
|
||||
fprintf(outstream, ANSI_COLOR_RESET);
|
||||
}
|
||||
}
|
||||
|
||||
// display text
|
||||
if (!input_noecho) {
|
||||
for (auto id : embd) {
|
||||
printf("%s", vocab.id_to_token[id].c_str());
|
||||
fprintf(outstream, "%s", vocab.id_to_token[id].c_str());
|
||||
}
|
||||
fflush(stdout);
|
||||
fflush(outstream);
|
||||
}
|
||||
|
||||
// in interactive mode, and not currently processing queued inputs;
|
||||
|
@ -901,16 +904,16 @@ int llama_main(
|
|||
// currently being interactive
|
||||
bool another_line=true;
|
||||
while (another_line) {
|
||||
fflush(stdout);
|
||||
fflush(outstream);
|
||||
char buf[256] = {0};
|
||||
int n_read;
|
||||
if(params.use_color) printf(ANSI_BOLD ANSI_COLOR_GREEN);
|
||||
if (scanf("%255[^\n]%n%*c", buf, &n_read) <= 0) {
|
||||
if(params.use_color) fprintf(outstream, ANSI_BOLD ANSI_COLOR_GREEN);
|
||||
if (fscanf(instream, "%255[^\n]%n%*c", buf, &n_read) <= 0) {
|
||||
// presumable empty line, consume the newline
|
||||
std::ignore = scanf("%*c");
|
||||
std::ignore = fscanf(instream, "%*c");
|
||||
n_read=0;
|
||||
}
|
||||
if(params.use_color) printf(ANSI_COLOR_RESET);
|
||||
if(params.use_color) fprintf(outstream, ANSI_COLOR_RESET);
|
||||
|
||||
if (n_read > 0 && buf[n_read-1]=='\\') {
|
||||
another_line = true;
|
||||
|
@ -936,7 +939,7 @@ int llama_main(
|
|||
|
||||
// end of text token
|
||||
if (embd.back() == 2) {
|
||||
fprintf(stderr, " [end of text]\n");
|
||||
fprintf(errstream, " [end of text]\n");
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
@ -949,18 +952,18 @@ int llama_main(
|
|||
{
|
||||
const int64_t t_main_end_us = ggml_time_us();
|
||||
|
||||
fprintf(stderr, "\n\n");
|
||||
fprintf(stderr, "%s: mem per token = %8zu bytes\n", __func__, mem_per_token);
|
||||
fprintf(stderr, "%s: load time = %8.2f ms\n", __func__, t_load_us/1000.0f);
|
||||
fprintf(stderr, "%s: sample time = %8.2f ms\n", __func__, t_sample_us/1000.0f);
|
||||
fprintf(stderr, "%s: predict time = %8.2f ms / %.2f ms per token\n", __func__, t_predict_us/1000.0f, t_predict_us/1000.0f/n_past);
|
||||
fprintf(stderr, "%s: total time = %8.2f ms\n", __func__, (t_main_end_us - t_main_start_us)/1000.0f);
|
||||
fprintf(errstream, "\n\n");
|
||||
fprintf(errstream, "%s: mem per token = %8zu bytes\n", __func__, mem_per_token);
|
||||
fprintf(errstream, "%s: load time = %8.2f ms\n", __func__, t_load_us/1000.0f);
|
||||
fprintf(errstream, "%s: sample time = %8.2f ms\n", __func__, t_sample_us/1000.0f);
|
||||
fprintf(errstream, "%s: predict time = %8.2f ms / %.2f ms per token\n", __func__, t_predict_us/1000.0f, t_predict_us/1000.0f/n_past);
|
||||
fprintf(errstream, "%s: total time = %8.2f ms\n", __func__, (t_main_end_us - t_main_start_us)/1000.0f);
|
||||
}
|
||||
|
||||
ggml_free(model.ctx);
|
||||
|
||||
if (params.use_color) {
|
||||
printf(ANSI_COLOR_RESET);
|
||||
fprintf(outstream, ANSI_COLOR_RESET);
|
||||
}
|
||||
|
||||
return 0;
|
||||
|
|
5
llama.h
5
llama.h
|
@ -64,5 +64,8 @@ int llama_main(
|
|||
gpt_vocab vocab,
|
||||
llama_model model,
|
||||
int64_t t_load_us,
|
||||
int64_t t_main_start_us);
|
||||
int64_t t_main_start_us,
|
||||
FILE *instream,
|
||||
FILE *outstream,
|
||||
FILE *errstream);
|
||||
bool llama_model_load(const std::string & fname, llama_model & model, gpt_vocab & vocab, int n_ctx);
|
||||
|
|
2
main.cpp
2
main.cpp
|
@ -56,5 +56,5 @@ int main(int argc, char ** argv) {
|
|||
params.n_threads, std::thread::hardware_concurrency(), llama_print_system_info());
|
||||
}
|
||||
|
||||
return llama_main(params, vocab, model, t_main_start_us, t_load_us);
|
||||
return llama_main(params, vocab, model, t_main_start_us, t_load_us, stdin, stdout, stderr);
|
||||
}
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue