llama : more tokenizer fixes (#2810)
* tests : write a Python tokenizer test (wip) * llama : prefix input text for tokenization with whitespace * llama : distinguish pieces from decoded text + fix detokenization * common : add comments * examples : no longer manually add leading space when tokenizing * tests : use Python to generate tokenizer tests for C++ * tests : add option to tokenize text files ggml-ci * tests : add test-tokenizer-1.py * llama.cpp : fix LF token * hellaswag : move the concat space for clarity * tests : add falcon tests (py + cpp, currently do not pass Unicode) ggml-ci * common : temporary separate llama_detokenize calls for SPM and BPE --------- Co-authored-by: klosax <131523366+klosax@users.noreply.github.com>
This commit is contained in:
parent
1591e2e590
commit
edd4c14817
20 changed files with 671 additions and 224 deletions
60
llama.cpp
60
llama.cpp
|
@ -796,12 +796,12 @@ static void llama_nop(struct ggml_tensor * tensor) { // don't offload by default
|
|||
(void) tensor;
|
||||
}
|
||||
|
||||
static std::string llama_token_to_text(const struct llama_context * ctx, llama_token token) {
|
||||
static std::string llama_token_to_str(const struct llama_context * ctx, llama_token token) {
|
||||
std::vector<char> result(8, 0);
|
||||
const int n_tokens = llama_token_to_str(ctx, token, result.data(), result.size());
|
||||
const int n_tokens = llama_token_to_piece(ctx, token, result.data(), result.size());
|
||||
if (n_tokens < 0) {
|
||||
result.resize(-n_tokens);
|
||||
int check = llama_token_to_str(ctx, token, result.data(), result.size());
|
||||
int check = llama_token_to_piece(ctx, token, result.data(), result.size());
|
||||
GGML_ASSERT(check == -n_tokens);
|
||||
} else {
|
||||
result.resize(n_tokens);
|
||||
|
@ -1635,7 +1635,8 @@ static void llm_load_hparams(
|
|||
}
|
||||
|
||||
// TODO: This should probably be in llama.h
|
||||
static std::vector<llama_vocab::id> llama_tokenize_internal(const llama_vocab & vocab, const std::string & raw_text, bool bos);
|
||||
static std::vector<llama_vocab::id> llama_tokenize_internal(const llama_vocab & vocab, std::string raw_text, bool bos);
|
||||
static llama_token llama_byte_to_token(const llama_vocab & vocab, uint8_t ch);
|
||||
|
||||
static void llm_load_vocab(
|
||||
llama_model_loader & ml,
|
||||
|
@ -1737,7 +1738,11 @@ static void llm_load_vocab(
|
|||
}
|
||||
|
||||
// determine the newline token: LLaMA "<0x0A>" == 10 == '\n', Falcon 193 == '\n'
|
||||
vocab.linefeed_id = llama_tokenize_internal(vocab, "\n", false)[0];
|
||||
if (vocab.type == LLAMA_VOCAB_TYPE_SPM) {
|
||||
vocab.linefeed_id = llama_byte_to_token(vocab, '\n');
|
||||
} else {
|
||||
vocab.linefeed_id = llama_tokenize_internal(vocab, "\n", false)[0];
|
||||
}
|
||||
|
||||
// special tokens
|
||||
GGUF_GET_KEY(ctx, vocab.special_bos_id, gguf_get_val_u32, GGUF_TYPE_UINT32, false, kv(LLM_KV_TOKENIZER_BOS_ID));
|
||||
|
@ -3026,10 +3031,8 @@ static llama_token llama_byte_to_token(const llama_vocab & vocab, uint8_t ch) {
|
|||
return vocab.token_to_id.at(buf);
|
||||
}
|
||||
|
||||
static std::string llama_escape_whitespace(const std::string& text) {
|
||||
std::string result = text;
|
||||
replace_all(result, " ", "\xe2\x96\x81");
|
||||
return result;
|
||||
static void llama_escape_whitespace(std::string & text) {
|
||||
replace_all(text, " ", "\xe2\x96\x81");
|
||||
}
|
||||
|
||||
static void llama_unescape_whitespace(std::string & word) {
|
||||
|
@ -3373,22 +3376,31 @@ private:
|
|||
llm_bigram_bpe::queue work_queue;
|
||||
};
|
||||
|
||||
static std::vector<llama_vocab::id> llama_tokenize_internal(const llama_vocab & vocab, const std::string & raw_text, bool bos) {
|
||||
static std::vector<llama_vocab::id> llama_tokenize_internal(const llama_vocab & vocab, std::string raw_text, bool bos) {
|
||||
std::vector<llama_vocab::id> output;
|
||||
|
||||
if (raw_text.empty()) {
|
||||
return output;
|
||||
}
|
||||
// OG tokenizer behavior:
|
||||
//
|
||||
// tokenizer.encode('', add_bos=True) returns [1]
|
||||
// tokenizer.encode('', add_bos=False) returns []
|
||||
|
||||
if (bos && vocab.special_bos_id != -1) {
|
||||
output.push_back(vocab.special_bos_id);
|
||||
}
|
||||
|
||||
if (raw_text.empty()) {
|
||||
return output;
|
||||
}
|
||||
|
||||
switch (vocab.type) {
|
||||
case LLAMA_VOCAB_TYPE_SPM:
|
||||
{
|
||||
// without adding this leading whitespace, we do not get the same results as the original tokenizer
|
||||
raw_text = " " + raw_text;
|
||||
|
||||
llm_tokenizer_spm tokenizer(vocab);
|
||||
tokenizer.tokenize(llama_escape_whitespace(raw_text), output);
|
||||
llama_escape_whitespace(raw_text);
|
||||
tokenizer.tokenize(raw_text, output);
|
||||
} break;
|
||||
case LLAMA_VOCAB_TYPE_BPE:
|
||||
{
|
||||
|
@ -4078,16 +4090,16 @@ void llama_sample_grammar(struct llama_context * ctx, llama_token_data_array * c
|
|||
std::vector<llama_grammar_candidate> candidates_grammar;
|
||||
|
||||
for (size_t i = 0; i < candidates->size; ++i) {
|
||||
const llama_token id = candidates->data[i].id;
|
||||
const std::string text = llama_token_to_text(ctx, id);
|
||||
const llama_token id = candidates->data[i].id;
|
||||
const std::string piece = llama_token_to_str(ctx, id);
|
||||
if (id == eos) {
|
||||
if (!allow_eos) {
|
||||
candidates->data[i].logit = -INFINITY;
|
||||
}
|
||||
} else if (text.empty() || text[0] == 0) {
|
||||
} else if (piece.empty() || piece[0] == 0) {
|
||||
candidates->data[i].logit = -INFINITY;
|
||||
} else {
|
||||
candidates_decoded.push_back(decode_utf8(text.c_str(), grammar->partial_utf8));
|
||||
candidates_decoded.push_back(decode_utf8(piece.c_str(), grammar->partial_utf8));
|
||||
candidates_grammar.push_back({ i, candidates_decoded.back().first.data(), candidates_decoded.back().second });
|
||||
}
|
||||
}
|
||||
|
@ -4291,10 +4303,10 @@ void llama_grammar_accept_token(struct llama_context * ctx, struct llama_grammar
|
|||
GGML_ASSERT(false);
|
||||
}
|
||||
|
||||
const std::string text = llama_token_to_text(ctx, token);
|
||||
const std::string piece = llama_token_to_str(ctx, token);
|
||||
|
||||
// Note terminating 0 in decoded string
|
||||
const auto decoded = decode_utf8(text.c_str(), grammar->partial_utf8);
|
||||
const auto decoded = decode_utf8(piece.c_str(), grammar->partial_utf8);
|
||||
const auto & code_points = decoded.first;
|
||||
for (auto it = code_points.begin(), end = code_points.end() - 1; it != end; ++it) {
|
||||
grammar->stacks = llama_grammar_accept(grammar->rules, grammar->stacks, *it);
|
||||
|
@ -6101,12 +6113,12 @@ int llama_tokenize_with_model(
|
|||
return res.size();
|
||||
}
|
||||
|
||||
int llama_token_to_str(const struct llama_context * ctx, llama_token token, char * buf, int length) {
|
||||
return llama_token_to_str_with_model(&ctx->model, token, buf, length);
|
||||
int llama_token_to_piece(const struct llama_context * ctx, llama_token token, char * buf, int length) {
|
||||
return llama_token_to_piece_with_model(&ctx->model, token, buf, length);
|
||||
}
|
||||
|
||||
// does not write null-terminator to str
|
||||
int llama_token_to_str_with_model(const struct llama_model * model, llama_token token, char * buf, int length) {
|
||||
// does not write null-terminator to buf
|
||||
int llama_token_to_piece_with_model(const struct llama_model * model, llama_token token, char * buf, int length) {
|
||||
if (0 <= token && token < llama_model_n_vocab(model)) {
|
||||
if (llama_is_normal_token(model->vocab, token)) {
|
||||
std::string result = model->vocab.id_to_token[token].text;
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue