Add support for DeepseekV2ForCausalLM (#7519)
* common : increase max number of experts to 160 * common : add tensors ATTN_Q_A, ATTN_Q_A_NORM, ATTN_Q_B, ATTN_KV_A_MQA, ATTN_KV_A_NORM, ATTN_KV_B needed by DeepSeek-V2 MLA (multi-head latent attention) architecture * common : add model header parameters: leading_dense_block_count, expert_feed_forward_length, expert_shared_count, expert_weights_scale, attention.q_lora_rank, attention.kv_lora_rank, rope.scaling.yarn_log_multiplier * convert-hf : add model conversion support for DeepseekV2ForCausalLM * llama : add model types for DeepSeek-V2 and DeepSeek-V2-Lite models * llama : add two new llm_build_moe_ffn() arguments: scale_w (whether to scale weights of selected MoE experts) and w_scale (numerical value of the scaling factor) * llama : add inference support for LLM_ARCH_DEEPSEEK2 --------- Co-authored-by: Stanisław Szymczyk <sszymczy@gmail.com>
This commit is contained in:
parent
edc29433fa
commit
ee3dff6b8e
5 changed files with 599 additions and 26 deletions
|
@ -33,17 +33,21 @@ class Keys:
|
|||
FILE_TYPE = "general.file_type"
|
||||
|
||||
class LLM:
|
||||
VOCAB_SIZE = "{arch}.vocab_size"
|
||||
CONTEXT_LENGTH = "{arch}.context_length"
|
||||
EMBEDDING_LENGTH = "{arch}.embedding_length"
|
||||
BLOCK_COUNT = "{arch}.block_count"
|
||||
FEED_FORWARD_LENGTH = "{arch}.feed_forward_length"
|
||||
USE_PARALLEL_RESIDUAL = "{arch}.use_parallel_residual"
|
||||
TENSOR_DATA_LAYOUT = "{arch}.tensor_data_layout"
|
||||
EXPERT_COUNT = "{arch}.expert_count"
|
||||
EXPERT_USED_COUNT = "{arch}.expert_used_count"
|
||||
POOLING_TYPE = "{arch}.pooling_type"
|
||||
LOGIT_SCALE = "{arch}.logit_scale"
|
||||
VOCAB_SIZE = "{arch}.vocab_size"
|
||||
CONTEXT_LENGTH = "{arch}.context_length"
|
||||
EMBEDDING_LENGTH = "{arch}.embedding_length"
|
||||
BLOCK_COUNT = "{arch}.block_count"
|
||||
LEADING_DENSE_BLOCK_COUNT = "{arch}.leading_dense_block_count"
|
||||
FEED_FORWARD_LENGTH = "{arch}.feed_forward_length"
|
||||
EXPERT_FEED_FORWARD_LENGTH = "{arch}.expert_feed_forward_length"
|
||||
USE_PARALLEL_RESIDUAL = "{arch}.use_parallel_residual"
|
||||
TENSOR_DATA_LAYOUT = "{arch}.tensor_data_layout"
|
||||
EXPERT_COUNT = "{arch}.expert_count"
|
||||
EXPERT_USED_COUNT = "{arch}.expert_used_count"
|
||||
EXPERT_SHARED_COUNT = "{arch}.expert_shared_count"
|
||||
EXPERT_WEIGHTS_SCALE = "{arch}.expert_weights_scale"
|
||||
POOLING_TYPE = "{arch}.pooling_type"
|
||||
LOGIT_SCALE = "{arch}.logit_scale"
|
||||
|
||||
class Attention:
|
||||
HEAD_COUNT = "{arch}.attention.head_count"
|
||||
|
@ -55,6 +59,8 @@ class Keys:
|
|||
LAYERNORM_EPS = "{arch}.attention.layer_norm_epsilon"
|
||||
LAYERNORM_RMS_EPS = "{arch}.attention.layer_norm_rms_epsilon"
|
||||
CAUSAL = "{arch}.attention.causal"
|
||||
Q_LORA_RANK = "{arch}.attention.q_lora_rank"
|
||||
KV_LORA_RANK = "{arch}.attention.kv_lora_rank"
|
||||
|
||||
class Rope:
|
||||
DIMENSION_COUNT = "{arch}.rope.dimension_count"
|
||||
|
@ -64,6 +70,7 @@ class Keys:
|
|||
SCALING_ATTN_FACTOR = "{arch}.rope.scaling.attn_factor"
|
||||
SCALING_ORIG_CTX_LEN = "{arch}.rope.scaling.original_context_length"
|
||||
SCALING_FINETUNED = "{arch}.rope.scaling.finetuned"
|
||||
SCALING_YARN_LOG_MUL = "{arch}.rope.scaling.yarn_log_multiplier"
|
||||
|
||||
class SSM:
|
||||
CONV_KERNEL = "{arch}.ssm.conv_kernel"
|
||||
|
@ -140,6 +147,7 @@ class MODEL_ARCH(IntEnum):
|
|||
DBRX = auto()
|
||||
OLMO = auto()
|
||||
ARCTIC = auto()
|
||||
DEEPSEEK2 = auto()
|
||||
|
||||
|
||||
class MODEL_TENSOR(IntEnum):
|
||||
|
@ -185,6 +193,12 @@ class MODEL_TENSOR(IntEnum):
|
|||
SSM_A = auto()
|
||||
SSM_D = auto()
|
||||
SSM_OUT = auto()
|
||||
ATTN_Q_A = auto()
|
||||
ATTN_Q_B = auto()
|
||||
ATTN_KV_A_MQA = auto()
|
||||
ATTN_KV_B = auto()
|
||||
ATTN_Q_A_NORM = auto()
|
||||
ATTN_KV_A_NORM = auto()
|
||||
|
||||
|
||||
MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = {
|
||||
|
@ -221,6 +235,7 @@ MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = {
|
|||
MODEL_ARCH.DBRX: "dbrx",
|
||||
MODEL_ARCH.OLMO: "olmo",
|
||||
MODEL_ARCH.ARCTIC: "arctic",
|
||||
MODEL_ARCH.DEEPSEEK2: "deepseek2",
|
||||
}
|
||||
|
||||
TENSOR_NAMES: dict[MODEL_TENSOR, str] = {
|
||||
|
@ -266,6 +281,12 @@ TENSOR_NAMES: dict[MODEL_TENSOR, str] = {
|
|||
MODEL_TENSOR.SSM_A: "blk.{bid}.ssm_a",
|
||||
MODEL_TENSOR.SSM_D: "blk.{bid}.ssm_d",
|
||||
MODEL_TENSOR.SSM_OUT: "blk.{bid}.ssm_out",
|
||||
MODEL_TENSOR.ATTN_Q_A: "blk.{bid}.attn_q_a",
|
||||
MODEL_TENSOR.ATTN_Q_B: "blk.{bid}.attn_q_b",
|
||||
MODEL_TENSOR.ATTN_KV_A_MQA: "blk.{bid}.attn_kv_a_mqa",
|
||||
MODEL_TENSOR.ATTN_KV_B: "blk.{bid}.attn_kv_b",
|
||||
MODEL_TENSOR.ATTN_Q_A_NORM: "blk.{bid}.attn_q_a_norm",
|
||||
MODEL_TENSOR.ATTN_KV_A_NORM: "blk.{bid}.attn_kv_a_norm",
|
||||
}
|
||||
|
||||
MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
|
||||
|
@ -757,6 +778,33 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
|
|||
MODEL_TENSOR.FFN_DOWN_EXP,
|
||||
MODEL_TENSOR.FFN_UP_EXP,
|
||||
],
|
||||
MODEL_ARCH.DEEPSEEK2: [
|
||||
MODEL_TENSOR.TOKEN_EMBD,
|
||||
MODEL_TENSOR.OUTPUT_NORM,
|
||||
MODEL_TENSOR.OUTPUT,
|
||||
MODEL_TENSOR.ROPE_FREQS,
|
||||
MODEL_TENSOR.ATTN_NORM,
|
||||
MODEL_TENSOR.ATTN_Q,
|
||||
MODEL_TENSOR.ATTN_Q_A,
|
||||
MODEL_TENSOR.ATTN_Q_B,
|
||||
MODEL_TENSOR.ATTN_KV_A_MQA,
|
||||
MODEL_TENSOR.ATTN_KV_B,
|
||||
MODEL_TENSOR.ATTN_Q_A_NORM,
|
||||
MODEL_TENSOR.ATTN_KV_A_NORM,
|
||||
MODEL_TENSOR.ATTN_OUT,
|
||||
MODEL_TENSOR.ATTN_ROT_EMBD,
|
||||
MODEL_TENSOR.FFN_GATE_INP,
|
||||
MODEL_TENSOR.FFN_NORM,
|
||||
MODEL_TENSOR.FFN_GATE,
|
||||
MODEL_TENSOR.FFN_DOWN,
|
||||
MODEL_TENSOR.FFN_UP,
|
||||
MODEL_TENSOR.FFN_GATE_EXP,
|
||||
MODEL_TENSOR.FFN_DOWN_EXP,
|
||||
MODEL_TENSOR.FFN_UP_EXP,
|
||||
MODEL_TENSOR.FFN_GATE_SHEXP,
|
||||
MODEL_TENSOR.FFN_DOWN_SHEXP,
|
||||
MODEL_TENSOR.FFN_UP_SHEXP,
|
||||
],
|
||||
# TODO
|
||||
}
|
||||
|
||||
|
@ -790,6 +838,10 @@ MODEL_TENSOR_SKIP: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
|
|||
MODEL_TENSOR.ROPE_FREQS,
|
||||
MODEL_TENSOR.ATTN_ROT_EMBD,
|
||||
],
|
||||
MODEL_ARCH.DEEPSEEK2: [
|
||||
MODEL_TENSOR.ROPE_FREQS,
|
||||
MODEL_TENSOR.ATTN_ROT_EMBD,
|
||||
],
|
||||
}
|
||||
|
||||
#
|
||||
|
|
|
@ -374,9 +374,15 @@ class GGUFWriter:
|
|||
def add_block_count(self, length: int) -> None:
|
||||
self.add_uint32(Keys.LLM.BLOCK_COUNT.format(arch=self.arch), length)
|
||||
|
||||
def add_leading_dense_block_count(self, length: int) -> None:
|
||||
self.add_uint32(Keys.LLM.LEADING_DENSE_BLOCK_COUNT.format(arch=self.arch), length)
|
||||
|
||||
def add_feed_forward_length(self, length: int) -> None:
|
||||
self.add_uint32(Keys.LLM.FEED_FORWARD_LENGTH.format(arch=self.arch), length)
|
||||
|
||||
def add_expert_feed_forward_length(self, length: int) -> None:
|
||||
self.add_uint32(Keys.LLM.EXPERT_FEED_FORWARD_LENGTH.format(arch=self.arch), length)
|
||||
|
||||
def add_parallel_residual(self, use: bool) -> None:
|
||||
self.add_bool(Keys.LLM.USE_PARALLEL_RESIDUAL.format(arch=self.arch), use)
|
||||
|
||||
|
@ -407,6 +413,12 @@ class GGUFWriter:
|
|||
def add_expert_used_count(self, count: int) -> None:
|
||||
self.add_uint32(Keys.LLM.EXPERT_USED_COUNT.format(arch=self.arch), count)
|
||||
|
||||
def add_expert_shared_count(self, count: int) -> None:
|
||||
self.add_uint32(Keys.LLM.EXPERT_SHARED_COUNT.format(arch=self.arch), count)
|
||||
|
||||
def add_expert_weights_scale(self, value: float) -> None:
|
||||
self.add_float32(Keys.LLM.EXPERT_WEIGHTS_SCALE.format(arch=self.arch), value)
|
||||
|
||||
def add_layer_norm_eps(self, value: float) -> None:
|
||||
self.add_float32(Keys.Attention.LAYERNORM_EPS.format(arch=self.arch), value)
|
||||
|
||||
|
@ -416,6 +428,12 @@ class GGUFWriter:
|
|||
def add_causal_attention(self, value: bool) -> None:
|
||||
self.add_bool(Keys.Attention.CAUSAL.format(arch=self.arch), value)
|
||||
|
||||
def add_q_lora_rank(self, length: int) -> None:
|
||||
self.add_uint32(Keys.Attention.Q_LORA_RANK.format(arch=self.arch), length)
|
||||
|
||||
def add_kv_lora_rank(self, length: int) -> None:
|
||||
self.add_uint32(Keys.Attention.KV_LORA_RANK.format(arch=self.arch), length)
|
||||
|
||||
def add_pooling_type(self, value: PoolingType) -> None:
|
||||
self.add_uint32(Keys.LLM.POOLING_TYPE.format(arch=self.arch), value.value)
|
||||
|
||||
|
@ -440,6 +458,9 @@ class GGUFWriter:
|
|||
def add_rope_scaling_finetuned(self, value: bool) -> None:
|
||||
self.add_bool(Keys.Rope.SCALING_FINETUNED.format(arch=self.arch), value)
|
||||
|
||||
def add_rope_scaling_yarn_log_mul(self, value: float) -> None:
|
||||
self.add_float32(Keys.Rope.SCALING_YARN_LOG_MUL.format(arch=self.arch), value)
|
||||
|
||||
def add_ssm_conv_kernel(self, value: int) -> None:
|
||||
self.add_uint32(Keys.SSM.CONV_KERNEL.format(arch=self.arch), value)
|
||||
|
||||
|
|
|
@ -256,6 +256,7 @@ class TensorNameMap:
|
|||
|
||||
MODEL_TENSOR.FFN_UP_SHEXP: (
|
||||
"model.layers.{bid}.mlp.shared_expert.up_proj", # qwen2moe
|
||||
"model.layers.{bid}.mlp.shared_experts.up_proj", # deepseek2
|
||||
),
|
||||
|
||||
# AWQ-activation gate
|
||||
|
@ -285,6 +286,7 @@ class TensorNameMap:
|
|||
|
||||
MODEL_TENSOR.FFN_GATE_SHEXP: (
|
||||
"model.layers.{bid}.mlp.shared_expert.gate_proj", # qwen2moe
|
||||
"model.layers.{bid}.mlp.shared_experts.gate_proj", # deepseek2
|
||||
),
|
||||
|
||||
# Feed-forward down
|
||||
|
@ -320,6 +322,7 @@ class TensorNameMap:
|
|||
|
||||
MODEL_TENSOR.FFN_DOWN_SHEXP: (
|
||||
"model.layers.{bid}.mlp.shared_expert.down_proj", # qwen2moe
|
||||
"model.layers.{bid}.mlp.shared_experts.down_proj", # deepseek2
|
||||
),
|
||||
|
||||
MODEL_TENSOR.ATTN_Q_NORM: (
|
||||
|
@ -383,6 +386,30 @@ class TensorNameMap:
|
|||
"model.layers.{bid}.out_proj",
|
||||
"backbone.layers.{bid}.mixer.out_proj",
|
||||
),
|
||||
|
||||
MODEL_TENSOR.ATTN_Q_A: (
|
||||
"model.layers.{bid}.self_attn.q_a_proj", # deepseek2
|
||||
),
|
||||
|
||||
MODEL_TENSOR.ATTN_Q_B: (
|
||||
"model.layers.{bid}.self_attn.q_b_proj", # deepseek2
|
||||
),
|
||||
|
||||
MODEL_TENSOR.ATTN_KV_A_MQA: (
|
||||
"model.layers.{bid}.self_attn.kv_a_proj_with_mqa", # deepseek2
|
||||
),
|
||||
|
||||
MODEL_TENSOR.ATTN_KV_B: (
|
||||
"model.layers.{bid}.self_attn.kv_b_proj", # deepseek2
|
||||
),
|
||||
|
||||
MODEL_TENSOR.ATTN_Q_A_NORM: (
|
||||
"model.layers.{bid}.self_attn.q_a_layernorm", # deepseek2
|
||||
),
|
||||
|
||||
MODEL_TENSOR.ATTN_KV_A_NORM: (
|
||||
"model.layers.{bid}.self_attn.kv_a_layernorm", # deepseek2
|
||||
),
|
||||
}
|
||||
|
||||
# architecture-specific block mappings
|
||||
|
@ -415,7 +442,7 @@ class TensorNameMap:
|
|||
if tensor not in MODEL_TENSORS[arch]:
|
||||
continue
|
||||
# TODO: make this configurable
|
||||
n_experts = 128
|
||||
n_experts = 160
|
||||
for xid in range(n_experts):
|
||||
tensor_name = TENSOR_NAMES[tensor].format(bid = bid, xid = xid)
|
||||
self.mapping[tensor_name] = (tensor, tensor_name)
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue