convert-hf : support direct Q8_0 conversion (#7234)
* convert-hf : support q8_0 conversion * convert-hf : add missing ftype This was messing with the checksums otherwise. * convert-hf : add missing ftype to Baichuan and Xverse I didn't notice these on my first pass.
This commit is contained in:
parent
614d3b914e
commit
ee52225067
5 changed files with 169 additions and 58 deletions
|
@ -2,5 +2,6 @@ from .constants import *
|
|||
from .lazy import *
|
||||
from .gguf_reader import *
|
||||
from .gguf_writer import *
|
||||
from .quants import *
|
||||
from .tensor_mapping import *
|
||||
from .vocab import *
|
||||
|
|
|
@ -13,6 +13,7 @@ from string import ascii_letters, digits
|
|||
import numpy as np
|
||||
|
||||
from .constants import (
|
||||
GGML_QUANT_SIZES,
|
||||
GGUF_DEFAULT_ALIGNMENT,
|
||||
GGUF_MAGIC,
|
||||
GGUF_VERSION,
|
||||
|
@ -195,7 +196,7 @@ class GGUFWriter:
|
|||
return ((x + n - 1) // n) * n
|
||||
|
||||
def add_tensor_info(
|
||||
self, name: str, tensor_shape: Sequence[int], tensor_dtype: np.dtype[np.float16] | np.dtype[np.float32],
|
||||
self, name: str, tensor_shape: Sequence[int], tensor_dtype: np.dtype,
|
||||
tensor_nbytes: int, raw_dtype: GGMLQuantizationType | None = None,
|
||||
) -> None:
|
||||
if self.state is not WriterState.EMPTY:
|
||||
|
@ -208,10 +209,6 @@ class GGUFWriter:
|
|||
encoded_name = name.encode("utf-8")
|
||||
self.ti_data += self._pack("Q", len(encoded_name))
|
||||
self.ti_data += encoded_name
|
||||
n_dims = len(tensor_shape)
|
||||
self.ti_data += self._pack("I", n_dims)
|
||||
for i in range(n_dims):
|
||||
self.ti_data += self._pack("Q", tensor_shape[n_dims - 1 - i])
|
||||
if raw_dtype is None:
|
||||
if tensor_dtype == np.float16:
|
||||
dtype = GGMLQuantizationType.F16
|
||||
|
@ -231,6 +228,15 @@ class GGUFWriter:
|
|||
raise ValueError("Only F16, F32, F64, I8, I16, I32, I64 tensors are supported for now")
|
||||
else:
|
||||
dtype = raw_dtype
|
||||
if tensor_dtype == np.uint8:
|
||||
block_size, type_size = GGML_QUANT_SIZES[raw_dtype]
|
||||
if tensor_shape[-1] % type_size != 0:
|
||||
raise ValueError(f"Quantized tensor row size ({tensor_shape[-1]}) is not a multiple of {dtype.name} type size ({type_size})")
|
||||
tensor_shape = tuple(tensor_shape[:-1]) + (tensor_shape[-1] // type_size * block_size,)
|
||||
n_dims = len(tensor_shape)
|
||||
self.ti_data += self._pack("I", n_dims)
|
||||
for i in range(n_dims):
|
||||
self.ti_data += self._pack("Q", tensor_shape[n_dims - 1 - i])
|
||||
self.ti_data += self._pack("I", dtype)
|
||||
self.ti_data += self._pack("Q", self.offset_tensor)
|
||||
self.offset_tensor += GGUFWriter.ggml_pad(tensor_nbytes, self.data_alignment)
|
||||
|
|
|
@ -6,6 +6,7 @@ from typing import Any, Callable
|
|||
from collections import deque
|
||||
|
||||
import numpy as np
|
||||
from numpy._typing import _Shape
|
||||
from numpy.typing import DTypeLike
|
||||
|
||||
|
||||
|
@ -110,7 +111,7 @@ class LazyBase(ABC, metaclass=LazyMeta):
|
|||
return o
|
||||
|
||||
@classmethod
|
||||
def _wrap_fn(cls, fn: Callable, *, use_self: LazyBase | None = None, meta_noop: bool | DTypeLike = False) -> Callable[[Any], Any]:
|
||||
def _wrap_fn(cls, fn: Callable, *, use_self: LazyBase | None = None, meta_noop: bool | DTypeLike | tuple[DTypeLike, Callable[[tuple[int, ...]], tuple[int, ...]]] = False) -> Callable[[Any], Any]:
|
||||
def wrapped_fn(*args, **kwargs):
|
||||
if kwargs is None:
|
||||
kwargs = {}
|
||||
|
@ -130,9 +131,14 @@ class LazyBase(ABC, metaclass=LazyMeta):
|
|||
res = args[0]
|
||||
assert isinstance(res, cls)
|
||||
res = res._meta
|
||||
# allow operations to override the dtype
|
||||
# allow operations to override the dtype and shape
|
||||
if meta_noop is not True:
|
||||
res = cls.meta_with_dtype(res, meta_noop)
|
||||
if isinstance(meta_noop, tuple):
|
||||
dtype, shape = meta_noop
|
||||
assert callable(shape)
|
||||
res = cls.meta_with_dtype_and_shape(dtype, shape(res.shape))
|
||||
else:
|
||||
res = cls.meta_with_dtype_and_shape(meta_noop, res.shape)
|
||||
|
||||
if isinstance(res, cls._tensor_type):
|
||||
def collect_replace(t: LazyBase):
|
||||
|
@ -168,7 +174,12 @@ class LazyBase(ABC, metaclass=LazyMeta):
|
|||
while _t._data is None:
|
||||
lt = _t._lazy.popleft()
|
||||
if lt._data is not None:
|
||||
raise ValueError(f"{lt} did not belong in the lazy queue")
|
||||
# Lazy tensor did not belong in the lazy queue.
|
||||
# Weirdly only happens with Bloom models...
|
||||
# likely because tensors aren't unique in the queue.
|
||||
# The final output is still the same as in eager mode,
|
||||
# so it's safe to ignore this.
|
||||
continue
|
||||
assert lt._func is not None
|
||||
lt._args = cls._recurse_apply(lt._args, already_eager_to_eager)
|
||||
lt._data = lt._func(lt._args)
|
||||
|
@ -183,12 +194,12 @@ class LazyBase(ABC, metaclass=LazyMeta):
|
|||
|
||||
@classmethod
|
||||
def eager_to_meta(cls, t: Any) -> Any:
|
||||
return cls.meta_with_dtype(t, t.dtype)
|
||||
return cls.meta_with_dtype_and_shape(t.dtype, t.shape)
|
||||
|
||||
# must be overridden, meta tensor init is backend-specific
|
||||
@classmethod
|
||||
@abstractmethod
|
||||
def meta_with_dtype(cls, m: Any, dtype: Any) -> Any: pass
|
||||
def meta_with_dtype_and_shape(cls, dtype: Any, shape: Any) -> Any: pass
|
||||
|
||||
@classmethod
|
||||
def from_eager(cls, t: Any) -> Any:
|
||||
|
@ -205,15 +216,15 @@ class LazyNumpyTensor(LazyBase):
|
|||
_tensor_type = np.ndarray
|
||||
|
||||
@classmethod
|
||||
def meta_with_dtype(cls, m: np.ndarray[Any, Any], dtype: DTypeLike) -> np.ndarray[Any, Any]:
|
||||
def meta_with_dtype_and_shape(cls, dtype: DTypeLike, shape: _Shape) -> np.ndarray[Any, Any]:
|
||||
# The initial idea was to use np.nan as the fill value,
|
||||
# but non-float types like np.int16 can't use that.
|
||||
# So zero it is.
|
||||
cheat = np.zeros(1, dtype)
|
||||
return np.lib.stride_tricks.as_strided(cheat, m.shape, (0 for _ in m.shape))
|
||||
return np.lib.stride_tricks.as_strided(cheat, shape, (0 for _ in shape))
|
||||
|
||||
def astype(self, dtype, *args, **kwargs):
|
||||
meta = type(self).meta_with_dtype(self._meta, dtype)
|
||||
meta = type(self).meta_with_dtype_and_shape(dtype, self._meta.shape)
|
||||
full_args = (self, dtype,) + args
|
||||
# very important to pass the shared _lazy deque, or else there's an infinite loop somewhere.
|
||||
return type(self)(meta=meta, args=full_args, lazy=self._lazy, func=(lambda a: a[0].astype(*a[1:], **kwargs)))
|
||||
|
|
109
gguf-py/gguf/quants.py
Normal file
109
gguf-py/gguf/quants.py
Normal file
|
@ -0,0 +1,109 @@
|
|||
from __future__ import annotations
|
||||
from typing import Callable
|
||||
|
||||
from numpy.typing import DTypeLike
|
||||
|
||||
from .constants import GGML_QUANT_SIZES, GGMLQuantizationType
|
||||
from .lazy import LazyNumpyTensor
|
||||
|
||||
import numpy as np
|
||||
|
||||
|
||||
# same as ggml_compute_fp32_to_bf16 in ggml-impl.h
|
||||
def __compute_fp32_to_bf16(n: np.ndarray) -> np.ndarray:
|
||||
n = n.astype(np.float32, copy=False).view(np.int32)
|
||||
# force nan to quiet
|
||||
n = np.where((n & 0x7fffffff) > 0x7f800000, (n & 0xffff0000) | (64 << 16), n)
|
||||
# flush subnormals to zero
|
||||
n = np.where((n & 0x7f800000) == 0, n & 0x80000000, n)
|
||||
# round to nearest even
|
||||
n = (n + (0x7fff + ((n >> 16) & 1))) >> 16
|
||||
return n.astype(np.int16)
|
||||
|
||||
|
||||
# This is faster than np.vectorize and np.apply_along_axis because it works on more than one row at a time
|
||||
def __apply_over_grouped_rows(func: Callable[[np.ndarray], np.ndarray], arr: np.ndarray, otype: DTypeLike, oshape: tuple[int, ...]) -> np.ndarray:
|
||||
rows = arr.reshape((-1, arr.shape[-1]))
|
||||
osize = 1
|
||||
for dim in oshape:
|
||||
osize *= dim
|
||||
out = np.empty(shape=osize, dtype=otype)
|
||||
# compute over groups of 16 rows (arbitrary, but seems good for performance)
|
||||
n_groups = rows.shape[0] // 16
|
||||
np.concatenate([func(group).ravel() for group in np.array_split(rows, n_groups)], axis=0, out=out)
|
||||
return out.reshape(oshape)
|
||||
|
||||
|
||||
def __quantize_bf16_array(n: np.ndarray) -> np.ndarray:
|
||||
return __apply_over_grouped_rows(__compute_fp32_to_bf16, arr=n, otype=np.int16, oshape=n.shape)
|
||||
|
||||
|
||||
__quantize_bf16_lazy = LazyNumpyTensor._wrap_fn(__quantize_bf16_array, meta_noop=np.int16)
|
||||
|
||||
|
||||
def quantize_bf16(n: np.ndarray):
|
||||
if type(n) is LazyNumpyTensor:
|
||||
return __quantize_bf16_lazy(n)
|
||||
else:
|
||||
return __quantize_bf16_array(n)
|
||||
|
||||
|
||||
__q8_block_size, __q8_type_size = GGML_QUANT_SIZES[GGMLQuantizationType.Q8_0]
|
||||
|
||||
|
||||
def can_quantize_to_q8_0(n: np.ndarray) -> bool:
|
||||
return n.shape[-1] % __q8_block_size == 0
|
||||
|
||||
|
||||
# round away from zero
|
||||
# ref: https://stackoverflow.com/a/59143326/22827863
|
||||
def np_roundf(n: np.ndarray) -> np.ndarray:
|
||||
a = abs(n)
|
||||
floored = np.floor(a)
|
||||
b = floored + np.floor(2 * (a - floored))
|
||||
return np.sign(n) * b
|
||||
|
||||
|
||||
def __quantize_q8_0_shape_change(s: tuple[int, ...]) -> tuple[int, ...]:
|
||||
return (*s[:-1], s[-1] // __q8_block_size * __q8_type_size)
|
||||
|
||||
|
||||
# Implementation of Q8_0 with bit-exact same results as reference implementation in ggml-quants.c
|
||||
def __quantize_q8_0_rows(n: np.ndarray) -> np.ndarray:
|
||||
shape = n.shape
|
||||
assert shape[-1] % __q8_block_size == 0
|
||||
|
||||
n_blocks = n.size // __q8_block_size
|
||||
|
||||
blocks = n.reshape((n_blocks, __q8_block_size)).astype(np.float32, copy=False)
|
||||
|
||||
d = abs(blocks).max(axis=1, keepdims=True) / 127
|
||||
with np.errstate(divide="ignore"):
|
||||
id = np.where(d == 0, 0, 1 / d)
|
||||
qs = np_roundf(blocks * id)
|
||||
|
||||
# (n_blocks, 2)
|
||||
d = d.astype(np.float16).view(np.uint8)
|
||||
# (n_blocks, block_size)
|
||||
qs = qs.astype(np.int8).view(np.uint8)
|
||||
|
||||
assert d.shape[1] + qs.shape[1] == __q8_type_size
|
||||
|
||||
return np.concatenate([d, qs], axis=1).reshape(__quantize_q8_0_shape_change(shape))
|
||||
|
||||
|
||||
def __quantize_q8_0_array(n: np.ndarray) -> np.ndarray:
|
||||
return __apply_over_grouped_rows(__quantize_q8_0_rows, arr=n, otype=np.uint8, oshape=__quantize_q8_0_shape_change(n.shape))
|
||||
|
||||
|
||||
__quantize_q8_0_lazy = LazyNumpyTensor._wrap_fn(
|
||||
__quantize_q8_0_array,
|
||||
meta_noop=(np.uint8, __quantize_q8_0_shape_change),
|
||||
)
|
||||
|
||||
|
||||
def quantize_q8_0(data: np.ndarray):
|
||||
if type(data) is LazyNumpyTensor:
|
||||
return __quantize_q8_0_lazy(data)
|
||||
else:
|
||||
return __quantize_q8_0_array(data)
|
Loading…
Add table
Add a link
Reference in a new issue