llama: add support for QRWKV6 model architecture (#11001)
llama: add support for QRWKV6 model architecture (#11001) * WIP: Add support for RWKV6Qwen2 Signed-off-by: Molly Sophia <mollysophia379@gmail.com> * RWKV: Some graph simplification Signed-off-by: Molly Sophia <mollysophia379@gmail.com> * Add support for RWKV6Qwen2 with cpu and cuda GLA Signed-off-by: Molly Sophia <mollysophia379@gmail.com> * RWKV6[QWEN2]: Concat lerp weights together to reduce cpu overhead Signed-off-by: Molly Sophia <mollysophia379@gmail.com> * Fix some typos Signed-off-by: Molly Sophia <mollysophia379@gmail.com> * code format changes Signed-off-by: Molly Sophia <mollysophia379@gmail.com> * Fix wkv test & add gla test Signed-off-by: Molly Sophia <mollysophia379@gmail.com> * Fix cuda warning Signed-off-by: Molly Sophia <mollysophia379@gmail.com> * Update README.md Signed-off-by: Molly Sophia <mollysophia379@gmail.com> * Update ggml/src/ggml-cuda/gla.cu Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * Fix fused lerp weights loading with RWKV6 Signed-off-by: Molly Sophia <mollysophia379@gmail.com> * better sanity check skipping for QRWKV6 in llama-quant thanks @compilade Signed-off-by: Molly Sophia <mollysophia379@gmail.com> Co-authored-by: compilade <git@compilade.net> --------- Signed-off-by: Molly Sophia <mollysophia379@gmail.com> Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> Co-authored-by: compilade <git@compilade.net>
This commit is contained in:
parent
c6860cc734
commit
ee7136c6d1
23 changed files with 862 additions and 124 deletions
|
@ -326,6 +326,7 @@ class Model:
|
|||
gguf.MODEL_TENSOR.TIME_MIX_W2,
|
||||
gguf.MODEL_TENSOR.TIME_MIX_DECAY_W1,
|
||||
gguf.MODEL_TENSOR.TIME_MIX_DECAY_W2,
|
||||
gguf.MODEL_TENSOR.TIME_MIX_LERP_FUSED,
|
||||
gguf.MODEL_TENSOR.POSNET_NORM1,
|
||||
gguf.MODEL_TENSOR.POSNET_NORM2,
|
||||
)
|
||||
|
@ -3316,6 +3317,8 @@ class Rwkv6Model(Model):
|
|||
# required by llama.cpp, unused
|
||||
self.gguf_writer.add_head_count(0)
|
||||
|
||||
lerp_weights: dict[int, dict[str, Tensor]] = {}
|
||||
|
||||
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
|
||||
new_name = self.map_tensor_name(name)
|
||||
|
||||
|
@ -3331,14 +3334,84 @@ class Rwkv6Model(Model):
|
|||
if new_name.endswith("time_mix_decay.weight") or "lerp" in new_name:
|
||||
data_torch = data_torch.squeeze()
|
||||
|
||||
rescale_every_n_layers = self.hparams["rescale_every"]
|
||||
if rescale_every_n_layers > 0:
|
||||
if new_name.endswith("time_mix_output.weight") or new_name.endswith("channel_mix_value.weight"):
|
||||
data_torch = data_torch.div_(2 ** int(bid // rescale_every_n_layers))
|
||||
try:
|
||||
rescale_every_n_layers = self.hparams["rescale_every"]
|
||||
if rescale_every_n_layers > 0:
|
||||
if new_name.endswith("time_mix_output.weight") or new_name.endswith("channel_mix_value.weight"):
|
||||
data_torch = data_torch.div_(2 ** int(bid // rescale_every_n_layers))
|
||||
except KeyError:
|
||||
pass
|
||||
|
||||
# concat time_mix_lerp weights to reduce some cpu overhead
|
||||
# also reduces the number of tensors in the model
|
||||
if bid is not None and "time_mix_lerp" in new_name and "time_mix_lerp_x" not in new_name:
|
||||
try:
|
||||
self.lerp_weights[bid][new_name] = data_torch
|
||||
except KeyError:
|
||||
self.lerp_weights[bid] = {new_name: data_torch}
|
||||
if all(f"blk.{bid}.time_mix_lerp_{i}.weight" in self.lerp_weights[bid].keys() for i in ["w", "k", "v", "r", "g"]):
|
||||
new_name = f"blk.{bid}.time_mix_lerp_fused.weight"
|
||||
data = torch.stack([self.lerp_weights[bid][f"blk.{bid}.time_mix_lerp_{i}.weight"].unsqueeze(0) for i in ["w", "k", "v", "r", "g"]], dim=0).unsqueeze(1)
|
||||
yield (new_name, data)
|
||||
return
|
||||
|
||||
yield (new_name, data_torch)
|
||||
|
||||
|
||||
@Model.register("RWKV6Qwen2ForCausalLM")
|
||||
class RWKV6Qwen2Model(Rwkv6Model):
|
||||
model_arch = gguf.MODEL_ARCH.RWKV6QWEN2
|
||||
|
||||
def set_vocab(self):
|
||||
try:
|
||||
self._set_vocab_sentencepiece()
|
||||
except FileNotFoundError:
|
||||
self._set_vocab_gpt2()
|
||||
|
||||
def set_gguf_parameters(self):
|
||||
block_count = self.hparams["num_hidden_layers"]
|
||||
num_attention_heads = self.hparams["num_attention_heads"]
|
||||
num_key_value_heads = self.hparams["num_key_value_heads"]
|
||||
hidden_size = self.hparams["hidden_size"]
|
||||
head_size = hidden_size // num_attention_heads
|
||||
rms_norm_eps = self.hparams["rms_norm_eps"]
|
||||
intermediate_size = self.hparams["intermediate_size"]
|
||||
time_mix_extra_dim = 64 if hidden_size >= 4096 else 32
|
||||
time_decay_extra_dim = 128 if hidden_size >= 4096 else 64
|
||||
|
||||
# RWKV isn't context limited
|
||||
self.gguf_writer.add_context_length(1048576)
|
||||
self.gguf_writer.add_embedding_length(hidden_size)
|
||||
self.gguf_writer.add_block_count(block_count)
|
||||
self.gguf_writer.add_wkv_head_size(head_size)
|
||||
self.gguf_writer.add_time_mix_extra_dim(time_mix_extra_dim)
|
||||
self.gguf_writer.add_time_decay_extra_dim(time_decay_extra_dim)
|
||||
self.gguf_writer.add_feed_forward_length(intermediate_size)
|
||||
self.gguf_writer.add_file_type(self.ftype)
|
||||
|
||||
# special parameters for time_mixing in RWKV6QWEN2
|
||||
self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
|
||||
self.gguf_writer.add_token_shift_count(1)
|
||||
# RWKV6QWEN2 use grouped key/value like GQA
|
||||
self.gguf_writer.add_head_count_kv(num_key_value_heads)
|
||||
|
||||
# required by llama.cpp, unused
|
||||
self.gguf_writer.add_head_count(0)
|
||||
|
||||
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
|
||||
for new_name, data in super().modify_tensors(data_torch, name, bid):
|
||||
if "time_mix_w1" in new_name or "time_mix_w2" in new_name:
|
||||
data = data.view(5, -1, data.shape[-1])
|
||||
# rwkv6qwen2 has a different order of rkvwg instead of the original wkvrg
|
||||
# permute them here to avoid code changes
|
||||
data = torch.stack([data[3], data[1], data[2], data[0], data[4]], dim=0).view(-1, data.shape[-1])
|
||||
if "w2" in new_name:
|
||||
data = data.view(5, -1, data.shape[-1])
|
||||
yield (new_name, data)
|
||||
continue
|
||||
yield (new_name, data)
|
||||
|
||||
|
||||
@Model.register("MambaForCausalLM", "MambaLMHeadModel", "FalconMambaForCausalLM")
|
||||
class MambaModel(Model):
|
||||
model_arch = gguf.MODEL_ARCH.MAMBA
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue