llama: add support for QRWKV6 model architecture (#11001)

llama: add support for QRWKV6 model architecture (#11001)

* WIP: Add support for RWKV6Qwen2

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* RWKV: Some graph simplification

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* Add support for RWKV6Qwen2 with cpu and cuda GLA

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* RWKV6[QWEN2]: Concat lerp weights together to reduce cpu overhead

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* Fix some typos

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* code format changes

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* Fix wkv test & add gla test

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* Fix cuda warning

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* Update README.md

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* Update ggml/src/ggml-cuda/gla.cu

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Fix fused lerp weights loading with RWKV6

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* better sanity check skipping for QRWKV6 in llama-quant

thanks @compilade

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>
Co-authored-by: compilade <git@compilade.net>

---------

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Co-authored-by: compilade <git@compilade.net>
This commit is contained in:
Molly Sophia 2025-01-10 09:58:08 +08:00 committed by GitHub
parent c6860cc734
commit ee7136c6d1
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
23 changed files with 862 additions and 124 deletions

View file

@ -57,6 +57,7 @@ static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
{ LLM_ARCH_NEMOTRON, "nemotron" },
{ LLM_ARCH_EXAONE, "exaone" },
{ LLM_ARCH_RWKV6, "rwkv6" },
{ LLM_ARCH_RWKV6QWEN2, "rwkv6qwen2" },
{ LLM_ARCH_GRANITE, "granite" },
{ LLM_ARCH_GRANITE_MOE, "granitemoe" },
{ LLM_ARCH_CHAMELEON, "chameleon" },
@ -106,6 +107,7 @@ static const std::map<llm_kv, const char *> LLM_KV_NAMES = {
{ LLM_KV_TIME_DECAY_EXTRA_DIM, "%s.time_decay_extra_dim" },
{ LLM_KV_RESIDUAL_SCALE, "%s.residual_scale" },
{ LLM_KV_EMBEDDING_SCALE, "%s.embedding_scale" },
{ LLM_KV_TOKEN_SHIFT_COUNT, "%s.token_shift_count" },
{ LLM_KV_ATTENTION_HEAD_COUNT, "%s.attention.head_count" },
{ LLM_KV_ATTENTION_HEAD_COUNT_KV, "%s.attention.head_count_kv" },
@ -1166,6 +1168,7 @@ static const std::map<llm_arch, std::map<llm_tensor, const char *>> LLM_TENSOR_N
{ LLM_TENSOR_TIME_MIX_LERP_V, "blk.%d.time_mix_lerp_v" },
{ LLM_TENSOR_TIME_MIX_LERP_R, "blk.%d.time_mix_lerp_r" },
{ LLM_TENSOR_TIME_MIX_LERP_G, "blk.%d.time_mix_lerp_g" },
{ LLM_TENSOR_TIME_MIX_LERP_FUSED, "blk.%d.time_mix_lerp_fused" },
{ LLM_TENSOR_TIME_MIX_FIRST, "blk.%d.time_mix_first" },
{ LLM_TENSOR_TIME_MIX_DECAY, "blk.%d.time_mix_decay" },
{ LLM_TENSOR_TIME_MIX_DECAY_W1, "blk.%d.time_mix_decay_w1" },
@ -1183,6 +1186,32 @@ static const std::map<llm_arch, std::map<llm_tensor, const char *>> LLM_TENSOR_N
{ LLM_TENSOR_CHANNEL_MIX_RECEPTANCE, "blk.%d.channel_mix_receptance" },
},
},
{
LLM_ARCH_RWKV6QWEN2,
{
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
{ LLM_TENSOR_OUTPUT_NORM, "output_norm" },
{ LLM_TENSOR_OUTPUT, "output" },
{ LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
{ LLM_TENSOR_TIME_MIX_W1, "blk.%d.time_mix_w1" },
{ LLM_TENSOR_TIME_MIX_W2, "blk.%d.time_mix_w2" },
{ LLM_TENSOR_TIME_MIX_LERP_X, "blk.%d.time_mix_lerp_x" },
{ LLM_TENSOR_TIME_MIX_LERP_FUSED, "blk.%d.time_mix_lerp_fused" },
{ LLM_TENSOR_TIME_MIX_FIRST, "blk.%d.time_mix_first" },
{ LLM_TENSOR_TIME_MIX_DECAY, "blk.%d.time_mix_decay" },
{ LLM_TENSOR_TIME_MIX_DECAY_W1, "blk.%d.time_mix_decay_w1" },
{ LLM_TENSOR_TIME_MIX_DECAY_W2, "blk.%d.time_mix_decay_w2" },
{ LLM_TENSOR_TIME_MIX_KEY, "blk.%d.time_mix_key" },
{ LLM_TENSOR_TIME_MIX_VALUE, "blk.%d.time_mix_value" },
{ LLM_TENSOR_TIME_MIX_RECEPTANCE, "blk.%d.time_mix_receptance" },
{ LLM_TENSOR_TIME_MIX_GATE, "blk.%d.time_mix_gate" },
{ LLM_TENSOR_TIME_MIX_OUTPUT, "blk.%d.time_mix_output" },
{ LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
{ LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
{ LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
},
},
{
LLM_ARCH_GRANITE,
{
@ -1365,6 +1394,7 @@ static const std::map<llm_tensor, llm_tensor_info> LLM_TENSOR_INFOS = {
{LLM_TENSOR_TIME_MIX_LERP_V, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_ADD}},
{LLM_TENSOR_TIME_MIX_LERP_R, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_ADD}},
{LLM_TENSOR_TIME_MIX_LERP_G, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_ADD}},
{LLM_TENSOR_TIME_MIX_LERP_FUSED, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_ADD}},
{LLM_TENSOR_TIME_MIX_DECAY, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_ADD}},
{LLM_TENSOR_TIME_MIX_FIRST, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_RWKV_WKV6}},
{LLM_TENSOR_ATTN_NORM, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}},

View file

@ -61,6 +61,7 @@ enum llm_arch {
LLM_ARCH_NEMOTRON,
LLM_ARCH_EXAONE,
LLM_ARCH_RWKV6,
LLM_ARCH_RWKV6QWEN2,
LLM_ARCH_GRANITE,
LLM_ARCH_GRANITE_MOE,
LLM_ARCH_CHAMELEON,
@ -110,6 +111,7 @@ enum llm_kv {
LLM_KV_TIME_DECAY_EXTRA_DIM,
LLM_KV_RESIDUAL_SCALE,
LLM_KV_EMBEDDING_SCALE,
LLM_KV_TOKEN_SHIFT_COUNT,
LLM_KV_ATTENTION_HEAD_COUNT,
LLM_KV_ATTENTION_HEAD_COUNT_KV,
@ -253,6 +255,7 @@ enum llm_tensor {
LLM_TENSOR_TIME_MIX_LERP_V,
LLM_TENSOR_TIME_MIX_LERP_R,
LLM_TENSOR_TIME_MIX_LERP_G,
LLM_TENSOR_TIME_MIX_LERP_FUSED,
LLM_TENSOR_TIME_MIX_FIRST,
LLM_TENSOR_TIME_MIX_DECAY,
LLM_TENSOR_TIME_MIX_DECAY_W1,

View file

@ -52,7 +52,7 @@ uint32_t llama_hparams::n_embd_v_gqa(uint32_t il) const {
uint32_t llama_hparams::n_embd_k_s() const {
if (wkv_head_size != 0) {
// for RWKV models
return 2 * n_embd;
return token_shift_count * n_embd;
}
// TODO: maybe support other convolution strides than 1

View file

@ -76,6 +76,7 @@ struct llama_hparams {
uint32_t time_mix_extra_dim = 0;
uint32_t time_decay_extra_dim = 0;
uint32_t wkv_head_size = 0;
uint32_t token_shift_count = 2;
float rope_attn_factor = 1.0f;
float rope_freq_base_train;

View file

@ -1054,12 +1054,15 @@ void llm_load_hparams(llama_model_loader & ml, llama_model & model) {
}
} break;
case LLM_ARCH_RWKV6:
case LLM_ARCH_RWKV6QWEN2:
{
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps, false);
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps, false);
ml.get_key(LLM_KV_WKV_HEAD_SIZE, hparams.wkv_head_size);
ml.get_key(LLM_KV_TIME_MIX_EXTRA_DIM, hparams.time_mix_extra_dim);
ml.get_key(LLM_KV_TIME_DECAY_EXTRA_DIM, hparams.time_decay_extra_dim);
ml.get_key(LLM_KV_RESCALE_EVERY_N_LAYERS, hparams.rescale_every_n_layers, false);
ml.get_key(LLM_KV_TOKEN_SHIFT_COUNT, hparams.token_shift_count, false);
switch (hparams.n_layer) {
case 24: model.type = e_model::MODEL_1_6B; break;
@ -1070,6 +1073,7 @@ void llm_load_hparams(llama_model_loader & ml, llama_model & model) {
default: model.type = e_model::MODEL_UNKNOWN;
} break;
case 61: model.type = e_model::MODEL_14B; break;
case 64: model.type = e_model::MODEL_32B; break;
default: model.type = e_model::MODEL_UNKNOWN;
}
} break;
@ -2064,6 +2068,7 @@ enum llama_rope_type llama_rope_type(const struct llama_model * model) {
case LLM_ARCH_T5ENCODER:
case LLM_ARCH_JAIS:
case LLM_ARCH_RWKV6:
case LLM_ARCH_RWKV6QWEN2:
case LLM_ARCH_WAVTOKENIZER_DEC:
return LLAMA_ROPE_TYPE_NONE;
@ -2208,6 +2213,7 @@ bool llama_model_is_recurrent(const struct llama_model * model) {
switch (model->arch) {
case LLM_ARCH_MAMBA: return true;
case LLM_ARCH_RWKV6: return true;
case LLM_ARCH_RWKV6QWEN2: return true;
default: return false;
}
}

View file

@ -241,15 +241,19 @@ struct llama_layer {
struct ggml_tensor * time_mix_lerp_v = nullptr;
struct ggml_tensor * time_mix_lerp_r = nullptr;
struct ggml_tensor * time_mix_lerp_g = nullptr;
struct ggml_tensor * time_mix_lerp_fused = nullptr;
struct ggml_tensor * time_mix_first = nullptr;
struct ggml_tensor * time_mix_decay = nullptr;
struct ggml_tensor * time_mix_decay_w1 = nullptr;
struct ggml_tensor * time_mix_decay_w2 = nullptr;
struct ggml_tensor * time_mix_key = nullptr;
struct ggml_tensor * time_mix_value = nullptr;
struct ggml_tensor * time_mix_receptance = nullptr;
struct ggml_tensor * time_mix_gate = nullptr;
struct ggml_tensor * time_mix_first = nullptr;
struct ggml_tensor * time_mix_decay = nullptr;
struct ggml_tensor * time_mix_decay_w1 = nullptr;
struct ggml_tensor * time_mix_decay_w2 = nullptr;
struct ggml_tensor * time_mix_key = nullptr;
struct ggml_tensor * time_mix_key_b = nullptr;
struct ggml_tensor * time_mix_value = nullptr;
struct ggml_tensor * time_mix_value_b = nullptr;
struct ggml_tensor * time_mix_receptance = nullptr;
struct ggml_tensor * time_mix_receptance_b = nullptr;
struct ggml_tensor * time_mix_gate = nullptr;
struct ggml_tensor * time_mix_ln = nullptr;
struct ggml_tensor * time_mix_ln_b = nullptr;

View file

@ -620,7 +620,8 @@ static void llama_model_quantize_impl(const std::string & fname_inp, const std::
qs.n_ffn_down = qs.n_ffn_gate = qs.n_ffn_up = (int)model.hparams.n_layer;
// sanity checks
// sanity checks for models that have attention layers
if (qs.n_attention_wv != 0)
{
const auto & n_head_kv_iter = model.hparams.n_head_kv_arr.begin();
// attention layers have a non-zero number of kv heads
@ -758,6 +759,7 @@ static void llama_model_quantize_impl(const std::string & fname_inp, const std::
quantize &= name.find("time_mix_w2.weight") == std::string::npos;
quantize &= name.find("time_mix_decay_w1.weight") == std::string::npos;
quantize &= name.find("time_mix_decay_w2.weight") == std::string::npos;
quantize &= name.find("time_mix_lerp_fused.weight") == std::string::npos;
// do not quantize relative position bias (T5)
quantize &= name.find("attn_rel_b.weight") == std::string::npos;

View file

@ -134,11 +134,11 @@ static bool weight_buft_supported(const llama_hparams & hparams, ggml_tensor * w
const int64_t H = 123;
const int64_t n_tokens = 123;
const int64_t n_seqs = 123;
ggml_tensor * k = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, S, 1, H, n_tokens);
ggml_tensor * v = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, 1, S, H, n_tokens);
ggml_tensor * r = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, 1, S, H, n_tokens);
ggml_tensor * k = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, S, H, n_tokens);
ggml_tensor * v = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, S, H, n_tokens);
ggml_tensor * r = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, S, H, n_tokens);
ggml_tensor * tf = w;
ggml_tensor * td = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, 1, S, H, n_tokens);
ggml_tensor * td = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, S, H, n_tokens);
ggml_tensor * state = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, S, n_seqs, S, H);
op_tensor = ggml_rwkv_wkv6(ctx, k, v, r, tf, td, state);
} break;
@ -2186,11 +2186,13 @@ static bool llm_load_tensors(
layer.time_mix_w2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_W2, "weight", i), {time_mix_extra_dim, n_embd, 5}, 0);
layer.time_mix_lerp_x = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_X, "weight", i), {n_embd, 1, 1}, 0);
layer.time_mix_lerp_w = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_W, "weight", i), {n_embd, 1, 1}, 0);
layer.time_mix_lerp_k = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_K, "weight", i), {n_embd, 1, 1}, 0);
layer.time_mix_lerp_v = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_V, "weight", i), {n_embd, 1, 1}, 0);
layer.time_mix_lerp_r = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_R, "weight", i), {n_embd, 1, 1}, 0);
layer.time_mix_lerp_g = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_G, "weight", i), {n_embd, 1, 1}, 0);
layer.time_mix_lerp_w = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_W, "weight", i), {n_embd, 1, 1}, llama_model_loader::TENSOR_NOT_REQUIRED);
layer.time_mix_lerp_k = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_K, "weight", i), {n_embd, 1, 1}, llama_model_loader::TENSOR_NOT_REQUIRED);
layer.time_mix_lerp_v = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_V, "weight", i), {n_embd, 1, 1}, llama_model_loader::TENSOR_NOT_REQUIRED);
layer.time_mix_lerp_r = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_R, "weight", i), {n_embd, 1, 1}, llama_model_loader::TENSOR_NOT_REQUIRED);
layer.time_mix_lerp_g = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_G, "weight", i), {n_embd, 1, 1}, llama_model_loader::TENSOR_NOT_REQUIRED);
layer.time_mix_lerp_fused = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_FUSED, "weight", i), {n_embd, 1, 1, 5}, llama_model_loader::TENSOR_NOT_REQUIRED);
GGML_ASSERT(!(layer.time_mix_lerp_fused == NULL && layer.time_mix_lerp_w == NULL));
layer.time_mix_first = create_tensor(tn(LLM_TENSOR_TIME_MIX_FIRST, "weight", i), {head_size, n_embd / head_size}, 0);
layer.time_mix_decay = create_tensor(tn(LLM_TENSOR_TIME_MIX_DECAY, "weight", i), {n_embd}, 0);
@ -2214,6 +2216,59 @@ static bool llm_load_tensors(
}
} break;
case LLM_ARCH_RWKV6QWEN2:
{
model.tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
model.output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
model.output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
model.output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
const int time_mix_extra_dim = hparams.time_mix_extra_dim;
const int time_decay_extra_dim = hparams.time_decay_extra_dim;
const int head_size = hparams.wkv_head_size;
const int attn_hidden_size = n_embd;
const int n_head_kv = hparams.n_head_kv();
int attn_key_value_size;
if (n_head_kv == 0 || attn_hidden_size / head_size == n_head_kv) {
attn_key_value_size = attn_hidden_size;
} else {
attn_key_value_size = n_head_kv * head_size;
}
for (int i = 0; i < n_layer; ++i) {
auto & layer = model.layers[i];
layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
layer.time_mix_w1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_W1, "weight", i), {n_embd, time_mix_extra_dim * 5}, 0);
layer.time_mix_w2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_W2, "weight", i), {time_mix_extra_dim, n_embd, 5}, 0);
layer.time_mix_lerp_x = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_X, "weight", i), {n_embd, 1, 1}, 0);
layer.time_mix_lerp_fused = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_FUSED, "weight", i), {n_embd, 1, 1, 5}, 0);
layer.time_mix_first = create_tensor(tn(LLM_TENSOR_TIME_MIX_FIRST, "weight", i), {head_size, n_embd / head_size}, llama_model_loader::TENSOR_NOT_REQUIRED);
layer.time_mix_decay = create_tensor(tn(LLM_TENSOR_TIME_MIX_DECAY, "weight", i), {n_embd}, 0);
layer.time_mix_decay_w1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_DECAY_W1, "weight", i), {n_embd, time_decay_extra_dim}, 0);
layer.time_mix_decay_w2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_DECAY_W2, "weight", i), {time_decay_extra_dim, attn_hidden_size}, 0);
layer.time_mix_key = create_tensor(tn(LLM_TENSOR_TIME_MIX_KEY, "weight", i), {n_embd, attn_key_value_size}, 0);
layer.time_mix_value = create_tensor(tn(LLM_TENSOR_TIME_MIX_VALUE, "weight", i), {n_embd, attn_key_value_size}, 0);
layer.time_mix_receptance = create_tensor(tn(LLM_TENSOR_TIME_MIX_RECEPTANCE, "weight", i), {attn_hidden_size, n_embd}, 0);
layer.time_mix_gate = create_tensor(tn(LLM_TENSOR_TIME_MIX_GATE, "weight", i), {attn_hidden_size, n_embd}, 0);
// optional bias tensors
layer.time_mix_key_b = create_tensor(tn(LLM_TENSOR_TIME_MIX_KEY, "bias", i), {attn_key_value_size}, llama_model_loader::TENSOR_NOT_REQUIRED);
layer.time_mix_value_b = create_tensor(tn(LLM_TENSOR_TIME_MIX_VALUE, "bias", i), {attn_key_value_size}, llama_model_loader::TENSOR_NOT_REQUIRED);
layer.time_mix_receptance_b = create_tensor(tn(LLM_TENSOR_TIME_MIX_RECEPTANCE, "bias", i), {attn_hidden_size}, llama_model_loader::TENSOR_NOT_REQUIRED);
layer.time_mix_output = create_tensor(tn(LLM_TENSOR_TIME_MIX_OUTPUT, "weight", i), {n_embd, attn_hidden_size}, 0);
layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
}
} break;
case LLM_ARCH_CHAMELEON:
{
model.tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
@ -3337,16 +3392,20 @@ static struct ggml_tensor * llm_build_rwkv6_time_mix(
const struct llama_layer * layer,
struct ggml_tensor * cur,
struct ggml_tensor * x_prev,
struct ggml_tensor ** wkv_state) {
struct ggml_tensor ** wkv_state,
size_t wkv_head_size,
size_t head_count_kv) {
size_t n_embd = cur->ne[0];
size_t n_seq_tokens = cur->ne[1];
size_t n_seqs = cur->ne[2];
size_t head_size = layer->time_mix_first->ne[0];
size_t head_count = layer->time_mix_first->ne[1];
size_t head_size = wkv_head_size;
size_t head_count = n_embd / head_size;
size_t n_tokens = n_seqs * n_seq_tokens;
bool is_qrwkv = layer->time_mix_first == nullptr;
struct ggml_tensor * sx = ggml_sub(ctx, x_prev, cur);
sx = ggml_reshape_2d(ctx, sx, n_embd, n_tokens);
@ -3375,69 +3434,64 @@ static struct ggml_tensor * llm_build_rwkv6_time_mix(
xxx
);
struct ggml_tensor *mw = ggml_view_2d(ctx, xxx, n_embd, n_tokens, xxx->nb[1], 0);
struct ggml_tensor *mk = ggml_view_2d(ctx, xxx, n_embd, n_tokens, xxx->nb[1], n_embd * n_tokens * sizeof(float));
struct ggml_tensor *mv = ggml_view_2d(ctx, xxx, n_embd, n_tokens, xxx->nb[1], n_embd * n_tokens * 2 * sizeof(float));
struct ggml_tensor *mr = ggml_view_2d(ctx, xxx, n_embd, n_tokens, xxx->nb[1], n_embd * n_tokens * 3 * sizeof(float));
struct ggml_tensor *mg = ggml_view_2d(ctx, xxx, n_embd, n_tokens, xxx->nb[1], n_embd * n_tokens * 4 * sizeof(float));
struct ggml_tensor *xw, *xk, *xv, *xr, *xg;
if (layer->time_mix_lerp_fused) {
// fusing these weights makes some performance improvement
sx = ggml_reshape_3d(ctx, sx, n_embd, 1, n_tokens);
cur = ggml_reshape_3d(ctx, cur, n_embd, 1, n_tokens);
xxx = ggml_add(ctx, ggml_mul(ctx, ggml_add(ctx, xxx, layer->time_mix_lerp_fused), sx), cur);
xw = ggml_view_2d(ctx, xxx, n_embd, n_tokens, xxx->nb[1], 0);
xk = ggml_view_2d(ctx, xxx, n_embd, n_tokens, xxx->nb[1], n_embd * n_tokens * sizeof(float));
xv = ggml_view_2d(ctx, xxx, n_embd, n_tokens, xxx->nb[1], n_embd * n_tokens * 2 * sizeof(float));
xr = ggml_view_2d(ctx, xxx, n_embd, n_tokens, xxx->nb[1], n_embd * n_tokens * 3 * sizeof(float));
xg = ggml_view_2d(ctx, xxx, n_embd, n_tokens, xxx->nb[1], n_embd * n_tokens * 4 * sizeof(float));
} else {
// for backward compatibility
xw = ggml_view_2d(ctx, xxx, n_embd, n_tokens, xxx->nb[1], 0);
xk = ggml_view_2d(ctx, xxx, n_embd, n_tokens, xxx->nb[1], n_embd * n_tokens * sizeof(float));
xv = ggml_view_2d(ctx, xxx, n_embd, n_tokens, xxx->nb[1], n_embd * n_tokens * 2 * sizeof(float));
xr = ggml_view_2d(ctx, xxx, n_embd, n_tokens, xxx->nb[1], n_embd * n_tokens * 3 * sizeof(float));
xg = ggml_view_2d(ctx, xxx, n_embd, n_tokens, xxx->nb[1], n_embd * n_tokens * 4 * sizeof(float));
struct ggml_tensor * xw = ggml_add(
ctx,
ggml_mul(
ctx,
ggml_add(ctx, mw, layer->time_mix_lerp_w),
sx
),
cur
);
xw = ggml_add(ctx, ggml_mul(ctx, ggml_add(ctx, xw, layer->time_mix_lerp_w), sx), cur);
xk = ggml_add(ctx, ggml_mul(ctx, ggml_add(ctx, xk, layer->time_mix_lerp_k), sx), cur);
xv = ggml_add(ctx, ggml_mul(ctx, ggml_add(ctx, xv, layer->time_mix_lerp_v), sx), cur);
xr = ggml_add(ctx, ggml_mul(ctx, ggml_add(ctx, xr, layer->time_mix_lerp_r), sx), cur);
xg = ggml_add(ctx, ggml_mul(ctx, ggml_add(ctx, xg, layer->time_mix_lerp_g), sx), cur);
}
struct ggml_tensor * xk = ggml_add(
ctx,
ggml_mul(
ctx,
ggml_add(ctx, mk, layer->time_mix_lerp_k),
sx
),
cur
);
struct ggml_tensor * r = llm_build_lora_mm(lctx, ctx, layer->time_mix_receptance, xr);
struct ggml_tensor * k = llm_build_lora_mm(lctx, ctx, layer->time_mix_key, xk);
struct ggml_tensor * v = llm_build_lora_mm(lctx, ctx, layer->time_mix_value, xv);
if (layer->time_mix_receptance_b) {
r = ggml_add(ctx, r, layer->time_mix_receptance_b);
}
if (layer->time_mix_key_b) {
k = ggml_add(ctx, k, layer->time_mix_key_b);
}
if (layer->time_mix_value_b) {
v = ggml_add(ctx, v, layer->time_mix_value_b);
}
struct ggml_tensor * xv = ggml_add(
ctx,
ggml_mul(
ctx,
ggml_add(ctx, mv, layer->time_mix_lerp_v),
sx
),
cur
);
struct ggml_tensor * g = llm_build_lora_mm(lctx, ctx, layer->time_mix_gate, xg);
if (is_qrwkv) {
g = ggml_sigmoid(ctx, g);
} else {
g = ggml_silu(ctx, g);
}
struct ggml_tensor * xr = ggml_add(
ctx,
ggml_mul(
ctx,
ggml_add(ctx, mr, layer->time_mix_lerp_r),
sx
),
cur
);
if (head_count_kv != head_count) {
GGML_ASSERT(head_count % head_count_kv == 0);
k = ggml_reshape_4d(ctx, k, head_size, 1, head_count_kv, n_tokens);
v = ggml_reshape_4d(ctx, v, head_size, 1, head_count_kv, n_tokens);
struct ggml_tensor * tmp = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, head_size, head_count / head_count_kv, head_count_kv, n_tokens);
k = ggml_repeat(ctx, k, tmp);
v = ggml_repeat(ctx, v, tmp);
}
struct ggml_tensor * xg = ggml_add(
ctx,
ggml_mul(
ctx,
ggml_add(ctx, mg, layer->time_mix_lerp_g),
sx
),
cur
);
struct ggml_tensor * r = ggml_reshape_4d(ctx, llm_build_lora_mm(lctx, ctx, layer->time_mix_receptance, xr), head_size, 1, head_count, n_tokens);
struct ggml_tensor * k = ggml_reshape_4d(ctx, llm_build_lora_mm(lctx, ctx, layer->time_mix_key, xk), 1, head_size, head_count, n_tokens);
struct ggml_tensor * v = ggml_reshape_4d(ctx, llm_build_lora_mm(lctx, ctx, layer->time_mix_value, xv), head_size, 1, head_count, n_tokens);
struct ggml_tensor * g = ggml_silu(
ctx,
llm_build_lora_mm(lctx, ctx, layer->time_mix_gate, xg)
);
k = ggml_reshape_3d(ctx, k, head_size, head_count, n_tokens);
v = ggml_reshape_3d(ctx, v, head_size, head_count, n_tokens);
r = ggml_reshape_3d(ctx, r, head_size, head_count, n_tokens);
struct ggml_tensor * w = ggml_mul_mat(
ctx,
@ -3448,25 +3502,35 @@ static struct ggml_tensor * llm_build_rwkv6_time_mix(
)
);
w = ggml_add(ctx, w, ggml_reshape_1d(ctx, layer->time_mix_decay, n_embd));
w = ggml_add(ctx, w, layer->time_mix_decay);
w = ggml_exp(ctx, ggml_neg(ctx, ggml_exp(ctx, w)));
w = ggml_reshape_4d(ctx, w, 1, head_size, head_count, n_tokens);
w = ggml_reshape_3d(ctx, w, head_size, head_count, n_tokens);
k = ggml_transpose(ctx, k);
v = ggml_transpose(ctx, v);
r = ggml_transpose(ctx, r);
if (is_qrwkv) {
// k = k * (1 - w)
k = ggml_sub(ctx, k, ggml_mul(ctx, k, w));
}
struct ggml_tensor * wkv_output = ggml_rwkv_wkv6(ctx, k, v, r, layer->time_mix_first, w, *wkv_state);
struct ggml_tensor * wkv_output;
if (!layer->time_mix_first) {
wkv_output = ggml_gated_linear_attn(ctx, k, v, r, w, *wkv_state, pow(head_size, -0.5f));
} else {
wkv_output = ggml_rwkv_wkv6(ctx, k, v, r, layer->time_mix_first, w, *wkv_state);
}
cur = ggml_view_1d(ctx, wkv_output, n_embd * n_tokens, 0);
*wkv_state = ggml_view_1d(ctx, wkv_output, n_embd * head_size * n_seqs, n_embd * n_tokens * sizeof(float));
// group norm with head_count groups
cur = ggml_reshape_3d(ctx, cur, n_embd / head_count, head_count, n_tokens);
cur = ggml_norm(ctx, cur, 64e-5f);
if (!is_qrwkv) {
// group norm with head_count groups
cur = ggml_reshape_3d(ctx, cur, n_embd / head_count, head_count, n_tokens);
cur = ggml_norm(ctx, cur, 64e-5f);
// Convert back to regular vectors.
cur = ggml_reshape_2d(ctx, cur, n_embd, n_tokens);
cur = ggml_add(ctx, ggml_mul(ctx, cur, layer->time_mix_ln), layer->time_mix_ln_b);
// Convert back to regular vectors.
cur = ggml_reshape_2d(ctx, cur, n_embd, n_tokens);
cur = ggml_add(ctx, ggml_mul(ctx, cur, layer->time_mix_ln), layer->time_mix_ln_b);
} else {
cur = ggml_reshape_2d(ctx, cur, n_embd, n_tokens);
}
cur = ggml_mul(ctx, cur, g);
cur = llm_build_lora_mm(lctx, ctx, layer->time_mix_output, cur);
@ -10048,7 +10112,7 @@ struct llm_build_context {
1
);
cur = ggml_add(ctx0, cur, llm_build_rwkv6_time_mix(lctx, ctx0, layer, x_norm_att, x_prev, &wkv_states));
cur = ggml_add(ctx0, cur, llm_build_rwkv6_time_mix(lctx, ctx0, layer, x_norm_att, x_prev, &wkv_states, hparams.wkv_head_size, n_embd / hparams.wkv_head_size));
ggml_build_forward_expand(gf, cur);
ggml_build_forward_expand(
gf,
@ -10115,6 +10179,118 @@ struct llm_build_context {
return gf;
}
// ref: https://huggingface.co/recursal/QRWKV6-32B-Instruct-Preview-v0.1/blob/main/modeling_rwkv6qwen2.py
ggml_cgraph * build_rwkv6qwen2() {
ggml_cgraph *gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
GGML_ASSERT(n_embd == hparams.n_embd_k_s());
const int64_t n_seqs = ubatch.n_seqs;
const int64_t n_seq_tokens = ubatch.n_seq_tokens;
const int64_t n_tokens = ubatch.n_tokens;
GGML_ASSERT(n_seqs != 0);
GGML_ASSERT(ubatch.equal_seqs);
GGML_ASSERT(n_tokens == n_seq_tokens * n_seqs);
struct ggml_tensor * cur;
struct ggml_tensor * inpL;
struct ggml_tensor * state_copy = build_inp_s_copy();
struct ggml_tensor * state_mask = build_inp_s_mask();
inpL = llm_build_inp_embd(ctx0, lctx, hparams, ubatch, model.tok_embd, cb);
for (int il = 0; il < n_layer; ++il) {
const llama_layer * layer = &model.layers[il];
// (ab)using the KV cache to store the states
struct ggml_tensor * token_shift = llm_build_copy_mask_state(ctx0,
gf, kv_self.k_l[il], state_copy, state_mask,
hparams.n_embd_k_s(), kv_self.size, kv_head, n_kv, n_seqs);
struct ggml_tensor * wkv_states = llm_build_copy_mask_state(ctx0,
gf, kv_self.v_l[il], state_copy, state_mask,
hparams.n_embd_v_s(), kv_self.size, kv_head, n_kv, n_seqs);
cur = ggml_reshape_3d(ctx0, inpL, n_embd, n_seq_tokens, n_seqs);
token_shift = ggml_reshape_3d(ctx0, token_shift, n_embd, 1, n_seqs);
struct ggml_tensor * x_norm_att = llm_build_norm(ctx0, cur, hparams, layer->attn_norm, layer->attn_norm_b, LLM_NORM_RMS, cb, il);
struct ggml_tensor * x_prev = ggml_concat(
ctx0,
token_shift,
ggml_view_3d(ctx0, x_norm_att, n_embd, n_seq_tokens - 1, n_seqs, x_norm_att->nb[1], x_norm_att->nb[2], 0),
1
);
ggml_build_forward_expand(
gf,
ggml_cpy(
ctx0,
wkv_states,
ggml_view_1d(
ctx0,
kv_self.v_l[il],
hparams.n_embd_v_s() * n_seqs,
hparams.n_embd_v_s() * kv_head * ggml_element_size(kv_self.v_l[il])
)
)
);
struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, llm_build_rwkv6_time_mix(lctx, ctx0, layer, x_norm_att, x_prev, &wkv_states, hparams.wkv_head_size, hparams.n_head_kv()));
ggml_build_forward_expand(gf, ffn_inp);
ggml_build_forward_expand(
gf,
ggml_cpy(
ctx0,
wkv_states,
ggml_view_1d(
ctx0,
kv_self.v_l[il],
hparams.n_embd_v_s() * n_seqs,
hparams.n_embd_v_s() * kv_head * ggml_element_size(kv_self.v_l[il])
)
)
);
cb(ffn_inp, "ffn_inp", il);
// feed-forward network
cur = llm_build_norm(ctx0, ffn_inp, hparams,
model.layers[il].ffn_norm, NULL,
LLM_NORM_RMS, cb, il);
cb(cur, "ffn_norm", il);
cur = llm_build_ffn(ctx0, lctx, cur,
model.layers[il].ffn_up, NULL, NULL,
model.layers[il].ffn_gate, NULL, NULL,
model.layers[il].ffn_down, NULL, NULL,
NULL,
LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
cb(cur, "ffn_out", il);
cur = ggml_add(ctx0, cur, ffn_inp);
cur = lctx.cvec.apply_to(ctx0, cur, il);
cb(cur, "l_out", il);
// input for next layer
inpL = cur;
}
cur = inpL;
struct ggml_tensor * inp_out_ids = build_inp_out_ids();
cur = ggml_reshape_2d(ctx0, cur, n_embd, n_tokens);
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
cur = llm_build_norm(ctx0, cur, hparams, model.output_norm, model.output_norm_b, LLM_NORM_RMS, cb, -1);
cb(cur, "result_norm", -1);
cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
cb(cur, "result_output", -1);
ggml_build_forward_expand(gf, cur);
return gf;
}
// ref: https://github.com/facebookresearch/chameleon
// based on the original build_llama() function, changes:
// * qk-norm
@ -10724,6 +10900,10 @@ static struct ggml_cgraph * llama_build_graph(
{
result = llm.build_rwkv6();
} break;
case LLM_ARCH_RWKV6QWEN2:
{
result = llm.build_rwkv6qwen2();
} break;
case LLM_ARCH_CHAMELEON:
{
result = llm.build_chameleon();