ggml-cuda : update rope implementation for parallel decoding

This commit is contained in:
slaren 2023-09-18 23:48:34 +02:00
parent fa0e677820
commit eec6b66ac9

View file

@ -5,6 +5,7 @@
#include <stdio.h>
#include <atomic>
#include <assert.h>
#include <vector>
#if defined(GGML_USE_HIPBLAS)
#include <hip/hip_runtime.h>
@ -4355,7 +4356,7 @@ static __global__ void cpy_f32_f16(const char * cx, char * cdst, const int ne,
}
// rope == RoPE == rotary positional embedding
static __global__ void rope_f32(const float * x, float * dst, const int ncols, const float p0,
static __global__ void rope_f32(const float * x, float * dst, const int ncols, const float * p0,
const float p_delta, const int p_delta_rows, const float theta_scale) {
const int col = 2*(blockDim.y*blockIdx.y + threadIdx.y);
@ -4365,8 +4366,9 @@ static __global__ void rope_f32(const float * x, float * dst, const int ncols, c
const int row = blockDim.x*blockIdx.x + threadIdx.x;
const int i = row*ncols + col;
const int i2 = row/p_delta_rows;
const float theta = (p0 + p_delta * (row/p_delta_rows))*powf(theta_scale, col/2);
const float theta = (p0[i2] + p_delta*i2)*powf(theta_scale, col/2);
const float sin_theta = sinf(theta);
const float cos_theta = cosf(theta);
@ -4377,7 +4379,7 @@ static __global__ void rope_f32(const float * x, float * dst, const int ncols, c
dst[i + 1] = x0*sin_theta + x1*cos_theta;
}
static __global__ void rope_neox_f32(const float * x, float * dst, const int ncols, const float p0,
static __global__ void rope_neox_f32(const float * x, float * dst, const int ncols, const float * p0,
const float p_delta, const int p_delta_rows, const float theta_scale) {
const int col = 2*(blockDim.y*blockIdx.y + threadIdx.y);
@ -4387,8 +4389,9 @@ static __global__ void rope_neox_f32(const float * x, float * dst, const int nco
const int row = blockDim.x*blockIdx.x + threadIdx.x;
const int i = row*ncols + col/2;
const int i2 = row/p_delta_rows;
const float theta = (p0 + p_delta * (row/p_delta_rows))*powf(theta_scale, col/2);
const float theta = (p0[i2] + p_delta*i2)*powf(theta_scale, col/2);
const float sin_theta = sinf(theta);
const float cos_theta = cosf(theta);
@ -4399,7 +4402,7 @@ static __global__ void rope_neox_f32(const float * x, float * dst, const int nco
dst[i + ncols/2] = x0*sin_theta + x1*cos_theta;
}
static __global__ void rope_glm_f32(const float * x, float * dst, const int ncols, const float p0,
static __global__ void rope_glm_f32(const float * x, float * dst, const int ncols, const float * p0,
const float p_delta, const int p_delta_rows, const float theta_scale, const int n_ctx) {
const int col = blockDim.x*blockIdx.x + threadIdx.x;
const int half_n_dims = ncols/4;
@ -4410,9 +4413,10 @@ static __global__ void rope_glm_f32(const float * x, float * dst, const int ncol
const int row = blockDim.y*blockIdx.y + threadIdx.y;
const int i = row*ncols + col;
const int i2 = row/p_delta_rows;
const float col_theta_scale = powf(theta_scale, col);
const float p = p0 + p_delta*(row/p_delta_rows);
const float p = p0[i2] + p_delta*i2;
const float theta = min(p, p_delta*(n_ctx - 2))*col_theta_scale;
const float sin_theta = sinf(theta);
@ -5361,7 +5365,7 @@ static void scale_f32_cuda(const float * x, float * dst, const float scale, cons
scale_f32<<<num_blocks, CUDA_SCALE_BLOCK_SIZE, 0, stream>>>(x, dst, scale, k);
}
static void rope_f32_cuda(const float * x, float * dst, const int ncols, const int nrows, const float p0,
static void rope_f32_cuda(const float * x, float * dst, const int ncols, const int nrows, const float * p0,
const float p_delta, const int p_delta_rows, const float theta_scale, cudaStream_t stream) {
GGML_ASSERT(ncols % 2 == 0);
const dim3 block_dims(1, CUDA_ROPE_BLOCK_SIZE, 1);
@ -5370,7 +5374,7 @@ static void rope_f32_cuda(const float * x, float * dst, const int ncols, const i
rope_f32<<<block_nums, block_dims, 0, stream>>>(x, dst, ncols, p0, p_delta, p_delta_rows, theta_scale);
}
static void rope_neox_f32_cuda(const float * x, float * dst, const int ncols, const int nrows, const float p0,
static void rope_neox_f32_cuda(const float * x, float * dst, const int ncols, const int nrows, const float * p0,
const float p_delta, const int p_delta_rows, const float theta_scale, cudaStream_t stream) {
GGML_ASSERT(ncols % 2 == 0);
const dim3 block_dims(1, CUDA_ROPE_BLOCK_SIZE, 1);
@ -5379,7 +5383,7 @@ static void rope_neox_f32_cuda(const float * x, float * dst, const int ncols, co
rope_neox_f32<<<block_nums, block_dims, 0, stream>>>(x, dst, ncols, p0, p_delta, p_delta_rows, theta_scale);
}
static void rope_glm_f32_cuda(const float * x, float * dst, const int ncols, const int nrows, const float p0,
static void rope_glm_f32_cuda(const float * x, float * dst, const int ncols, const int nrows, const float * p0,
const float p_delta, const int p_delta_rows, const float theta_scale, const int n_ctx, cudaStream_t stream) {
GGML_ASSERT(ncols % 4 == 0);
const dim3 block_dims(CUDA_ROPE_BLOCK_SIZE/4, 1, 1);
@ -6069,9 +6073,10 @@ inline void ggml_cuda_op_rope(
const int64_t ne00 = src0->ne[0];
const int64_t ne01 = src0->ne[1];
const int64_t ne2 = dst->ne[2];
const int64_t nrows = ggml_nrows(src0);
const int n_past = ((int32_t *) dst->op_params)[0];
//const int n_past = ((int32_t *) dst->op_params)[0];
const int n_dims = ((int32_t *) dst->op_params)[1];
const int mode = ((int32_t *) dst->op_params)[2];
const int n_ctx = ((int32_t *) dst->op_params)[3];
@ -6082,21 +6087,38 @@ inline void ggml_cuda_op_rope(
memcpy(&freq_scale, (int32_t *) dst->op_params + 5, sizeof(float));
const float theta_scale = powf(freq_base, -2.0f/n_dims);
const float p0 = (((mode & 1) == 0 ? n_past : 0)) * freq_scale;
//const float p0 = (((mode & 1) == 0 ? n_past : 0)) * freq_scale;
GGML_ASSERT(src1->type == GGML_TYPE_I32);
GGML_ASSERT(src1->ne[0] == ne2);
std::vector<float> p0s(ne2);
for (int64_t i = 0; i < ne2; ++i) {
int n_past = ((int32_t *) src1->data)[i];
p0s[i] = (((mode & 1) == 0 ? n_past : 0)) * freq_scale;
}
size_t p0d_as = 0;
float * p0d;
p0d = (float *) ggml_cuda_pool_malloc(ne2 * sizeof(float), &p0d_as);
CUDA_CHECK(cudaMemcpyAsync(p0d, p0s.data(), ne2 * sizeof(float), cudaMemcpyHostToDevice, main_stream));
const bool is_neox = mode & 2;
const bool is_glm = mode & 4;
// compute
if (is_glm) {
rope_glm_f32_cuda(src0_dd, dst_dd, ne00, nrows, p0, freq_scale, ne01, theta_scale, n_ctx, main_stream);
rope_glm_f32_cuda(src0_dd, dst_dd, ne00, nrows, p0d, freq_scale, ne01, theta_scale, n_ctx, main_stream);
} else if (is_neox) {
GGML_ASSERT(ne00 == n_dims && "ne00 != n_dims is not implemented for CUDA yet");
rope_neox_f32_cuda(src0_dd, dst_dd, ne00, nrows, p0, freq_scale, ne01, theta_scale, main_stream);
rope_neox_f32_cuda(src0_dd, dst_dd, ne00, nrows, p0d, freq_scale, ne01, theta_scale, main_stream);
} else {
rope_f32_cuda(src0_dd, dst_dd, ne00, nrows, p0, freq_scale, ne01, theta_scale, main_stream);
rope_f32_cuda(src0_dd, dst_dd, ne00, nrows, p0d, freq_scale, ne01, theta_scale, main_stream);
}
ggml_cuda_pool_free(p0d, p0d_as);
(void) src1;
(void) dst;
(void) src1_dd;