Update llama.cpp and re-organize low-level api
This commit is contained in:
parent
d9dfdec2bd
commit
ef5a9a6160
1 changed files with 116 additions and 73 deletions
|
@ -19,6 +19,9 @@ _lib = ctypes.CDLL(str(libfile))
|
|||
|
||||
|
||||
# C types
|
||||
llama_context_p = c_void_p
|
||||
|
||||
|
||||
llama_token = c_int
|
||||
llama_token_p = POINTER(llama_token)
|
||||
|
||||
|
@ -45,97 +48,63 @@ class llama_context_params(Structure):
|
|||
c_bool,
|
||||
), # the llama_eval() call computes all logits, not just the last one
|
||||
("vocab_only", c_bool), # only load the vocabulary, no weights
|
||||
("use_mlock", c_bool), # force system to keep model in RAM
|
||||
("embedding", c_bool), # embedding mode only
|
||||
]
|
||||
|
||||
|
||||
llama_context_params_p = POINTER(llama_context_params)
|
||||
|
||||
llama_context_p = c_void_p
|
||||
|
||||
# C functions
|
||||
lib.llama_context_default_params.argtypes = []
|
||||
lib.llama_context_default_params.restype = llama_context_params
|
||||
|
||||
lib.llama_init_from_file.argtypes = [c_char_p, llama_context_params]
|
||||
lib.llama_init_from_file.restype = llama_context_p
|
||||
|
||||
lib.llama_free.argtypes = [llama_context_p]
|
||||
lib.llama_free.restype = None
|
||||
|
||||
lib.llama_model_quantize.argtypes = [c_char_p, c_char_p, c_int, c_int]
|
||||
lib.llama_model_quantize.restype = c_int
|
||||
|
||||
lib.llama_eval.argtypes = [llama_context_p, llama_token_p, c_int, c_int, c_int]
|
||||
lib.llama_eval.restype = c_int
|
||||
|
||||
lib.llama_tokenize.argtypes = [llama_context_p, c_char_p, llama_token_p, c_int, c_bool]
|
||||
lib.llama_tokenize.restype = c_int
|
||||
|
||||
lib.llama_n_vocab.argtypes = [llama_context_p]
|
||||
lib.llama_n_vocab.restype = c_int
|
||||
|
||||
lib.llama_n_ctx.argtypes = [llama_context_p]
|
||||
lib.llama_n_ctx.restype = c_int
|
||||
|
||||
lib.llama_get_logits.argtypes = [llama_context_p]
|
||||
lib.llama_get_logits.restype = POINTER(c_float)
|
||||
|
||||
lib.llama_token_to_str.argtypes = [llama_context_p, llama_token]
|
||||
lib.llama_token_to_str.restype = c_char_p
|
||||
|
||||
lib.llama_token_bos.argtypes = []
|
||||
lib.llama_token_bos.restype = llama_token
|
||||
|
||||
lib.llama_token_eos.argtypes = []
|
||||
lib.llama_token_eos.restype = llama_token
|
||||
|
||||
lib.llama_sample_top_p_top_k.argtypes = [
|
||||
llama_context_p,
|
||||
llama_token_p,
|
||||
c_int,
|
||||
c_int,
|
||||
c_double,
|
||||
c_double,
|
||||
c_double,
|
||||
]
|
||||
lib.llama_sample_top_p_top_k.restype = llama_token
|
||||
|
||||
lib.llama_print_timings.argtypes = [llama_context_p]
|
||||
lib.llama_print_timings.restype = None
|
||||
|
||||
lib.llama_reset_timings.argtypes = [llama_context_p]
|
||||
lib.llama_reset_timings.restype = None
|
||||
|
||||
lib.llama_print_system_info.argtypes = []
|
||||
lib.llama_print_system_info.restype = c_char_p
|
||||
# Functions
|
||||
|
||||
|
||||
# Python functions
|
||||
def llama_context_default_params() -> llama_context_params:
|
||||
return _lib.llama_context_default_params()
|
||||
|
||||
|
||||
_lib.llama_context_default_params.argtypes = []
|
||||
_lib.llama_context_default_params.restype = llama_context_params
|
||||
|
||||
|
||||
# Various functions for loading a ggml llama model.
|
||||
# Allocate (almost) all memory needed for the model.
|
||||
# Return NULL on failure
|
||||
def llama_init_from_file(
|
||||
path_model: bytes, params: llama_context_params
|
||||
) -> llama_context_p:
|
||||
"""Various functions for loading a ggml llama model.
|
||||
Allocate (almost) all memory needed for the model.
|
||||
Return NULL on failure"""
|
||||
return _lib.llama_init_from_file(path_model, params)
|
||||
|
||||
|
||||
_lib.llama_init_from_file.argtypes = [c_char_p, llama_context_params]
|
||||
_lib.llama_init_from_file.restype = llama_context_p
|
||||
|
||||
|
||||
# Frees all allocated memory
|
||||
def llama_free(ctx: llama_context_p):
|
||||
"""Free all allocated memory"""
|
||||
return _lib.llama_free(ctx)
|
||||
|
||||
|
||||
_lib.llama_free.argtypes = [llama_context_p]
|
||||
_lib.llama_free.restype = None
|
||||
|
||||
|
||||
# TODO: not great API - very likely to change
|
||||
# Returns 0 on success
|
||||
def llama_model_quantize(
|
||||
fname_inp: bytes, fname_out: bytes, itype: c_int, qk: c_int
|
||||
) -> c_int:
|
||||
"""Returns 0 on success"""
|
||||
return _lib.llama_model_quantize(fname_inp, fname_out, itype, qk)
|
||||
|
||||
|
||||
_lib.llama_model_quantize.argtypes = [c_char_p, c_char_p, c_int, c_int]
|
||||
_lib.llama_model_quantize.restype = c_int
|
||||
|
||||
|
||||
# Run the llama inference to obtain the logits and probabilities for the next token.
|
||||
# tokens + n_tokens is the provided batch of new tokens to process
|
||||
# n_past is the number of tokens to use from previous eval calls
|
||||
# Returns 0 on success
|
||||
def llama_eval(
|
||||
ctx: llama_context_p,
|
||||
tokens: llama_token_p,
|
||||
|
@ -143,13 +112,18 @@ def llama_eval(
|
|||
n_past: c_int,
|
||||
n_threads: c_int,
|
||||
) -> c_int:
|
||||
"""Run the llama inference to obtain the logits and probabilities for the next token.
|
||||
tokens + n_tokens is the provided batch of new tokens to process
|
||||
n_past is the number of tokens to use from previous eval calls
|
||||
Returns 0 on success"""
|
||||
return _lib.llama_eval(ctx, tokens, n_tokens, n_past, n_threads)
|
||||
|
||||
|
||||
_lib.llama_eval.argtypes = [llama_context_p, llama_token_p, c_int, c_int, c_int]
|
||||
_lib.llama_eval.restype = c_int
|
||||
|
||||
|
||||
# Convert the provided text into tokens.
|
||||
# The tokens pointer must be large enough to hold the resulting tokens.
|
||||
# Returns the number of tokens on success, no more than n_max_tokens
|
||||
# Returns a negative number on failure - the number of tokens that would have been returned
|
||||
# TODO: not sure if correct
|
||||
def llama_tokenize(
|
||||
ctx: llama_context_p,
|
||||
text: bytes,
|
||||
|
@ -160,36 +134,77 @@ def llama_tokenize(
|
|||
return _lib.llama_tokenize(ctx, text, tokens, n_max_tokens, add_bos)
|
||||
|
||||
|
||||
_lib.llama_tokenize.argtypes = [llama_context_p, c_char_p, llama_token_p, c_int, c_bool]
|
||||
_lib.llama_tokenize.restype = c_int
|
||||
|
||||
|
||||
def llama_n_vocab(ctx: llama_context_p) -> c_int:
|
||||
return _lib.llama_n_vocab(ctx)
|
||||
|
||||
|
||||
_lib.llama_n_vocab.argtypes = [llama_context_p]
|
||||
_lib.llama_n_vocab.restype = c_int
|
||||
|
||||
|
||||
def llama_n_ctx(ctx: llama_context_p) -> c_int:
|
||||
return _lib.llama_n_ctx(ctx)
|
||||
|
||||
|
||||
_lib.llama_n_ctx.argtypes = [llama_context_p]
|
||||
_lib.llama_n_ctx.restype = c_int
|
||||
|
||||
|
||||
# Token logits obtained from the last call to llama_eval()
|
||||
# The logits for the last token are stored in the last row
|
||||
# Can be mutated in order to change the probabilities of the next token
|
||||
# Rows: n_tokens
|
||||
# Cols: n_vocab
|
||||
def llama_get_logits(ctx: llama_context_p):
|
||||
"""Token logits obtained from the last call to llama_eval()
|
||||
The logits for the last token are stored in the last row
|
||||
Can be mutated in order to change the probabilities of the next token
|
||||
Rows: n_tokens
|
||||
Cols: n_vocab"""
|
||||
return _lib.llama_get_logits(ctx)
|
||||
|
||||
|
||||
_lib.llama_get_logits.argtypes = [llama_context_p]
|
||||
_lib.llama_get_logits.restype = POINTER(c_float)
|
||||
|
||||
|
||||
# Get the embeddings for the input
|
||||
# shape: [n_embd] (1-dimensional)
|
||||
def llama_get_embeddings(ctx: llama_context_p):
|
||||
return _lib.llama_get_embeddings(ctx)
|
||||
|
||||
|
||||
_lib.llama_get_embeddings.argtypes = [llama_context_p]
|
||||
_lib.llama_get_embeddings.restype = POINTER(c_float)
|
||||
|
||||
|
||||
# Token Id -> String. Uses the vocabulary in the provided context
|
||||
def llama_token_to_str(ctx: llama_context_p, token: int) -> bytes:
|
||||
"""Token Id -> String. Uses the vocabulary in the provided context"""
|
||||
return _lib.llama_token_to_str(ctx, token)
|
||||
|
||||
|
||||
_lib.llama_token_to_str.argtypes = [llama_context_p, llama_token]
|
||||
_lib.llama_token_to_str.restype = c_char_p
|
||||
|
||||
# Special tokens
|
||||
|
||||
|
||||
def llama_token_bos() -> llama_token:
|
||||
return _lib.llama_token_bos()
|
||||
|
||||
|
||||
_lib.llama_token_bos.argtypes = []
|
||||
_lib.llama_token_bos.restype = llama_token
|
||||
|
||||
|
||||
def llama_token_eos() -> llama_token:
|
||||
return _lib.llama_token_eos()
|
||||
|
||||
|
||||
_lib.llama_token_eos.argtypes = []
|
||||
_lib.llama_token_eos.restype = llama_token
|
||||
|
||||
|
||||
# TODO: improve the last_n_tokens interface ?
|
||||
def llama_sample_top_p_top_k(
|
||||
ctx: llama_context_p,
|
||||
last_n_tokens_data: llama_token_p,
|
||||
|
@ -204,13 +219,41 @@ def llama_sample_top_p_top_k(
|
|||
)
|
||||
|
||||
|
||||
_lib.llama_sample_top_p_top_k.argtypes = [
|
||||
llama_context_p,
|
||||
llama_token_p,
|
||||
c_int,
|
||||
c_int,
|
||||
c_double,
|
||||
c_double,
|
||||
c_double,
|
||||
]
|
||||
_lib.llama_sample_top_p_top_k.restype = llama_token
|
||||
|
||||
|
||||
# Performance information
|
||||
|
||||
|
||||
def llama_print_timings(ctx: llama_context_p):
|
||||
_lib.llama_print_timings(ctx)
|
||||
|
||||
|
||||
_lib.llama_print_timings.argtypes = [llama_context_p]
|
||||
_lib.llama_print_timings.restype = None
|
||||
|
||||
|
||||
def llama_reset_timings(ctx: llama_context_p):
|
||||
_lib.llama_reset_timings(ctx)
|
||||
|
||||
|
||||
_lib.llama_reset_timings.argtypes = [llama_context_p]
|
||||
_lib.llama_reset_timings.restype = None
|
||||
|
||||
|
||||
# Print system information
|
||||
def llama_print_system_info() -> bytes:
|
||||
return _lib.llama_print_system_info()
|
||||
|
||||
|
||||
_lib.llama_print_system_info.argtypes = []
|
||||
_lib.llama_print_system_info.restype = c_char_p
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue