convert-hf : save memory with lazy evaluation

This commit is contained in:
Francis Couture-Harpin 2024-05-03 22:00:05 -04:00
parent 215a0d38c8
commit f09674fbbd
2 changed files with 196 additions and 10 deletions

View file

@ -7,7 +7,7 @@ import struct
import tempfile
from enum import Enum, auto
from io import BufferedWriter
from typing import IO, Any, Sequence, Mapping
from typing import IO, Any, Callable, Sequence, Mapping
from string import ascii_letters, digits
import numpy as np
@ -28,6 +28,47 @@ from .constants import (
logger = logging.getLogger(__name__)
class LazyTensor:
data: Callable[[], np.ndarray[Any, Any]]
# to avoid too deep recursion
functions: list[Callable[[np.ndarray[Any, Any]], np.ndarray[Any, Any]]]
dtype: np.dtype[Any]
shape: tuple[int, ...]
def __init__(self, data: Callable[[], np.ndarray[Any, Any]], *, dtype: type, shape: tuple[int, ...]):
self.data = data
self.functions = []
self.dtype = np.dtype(dtype)
self.shape = shape
def astype(self, dtype: type, **kwargs) -> LazyTensor:
self.functions.append(lambda n: n.astype(dtype, **kwargs))
self.dtype = np.dtype(dtype)
return self
@property
def nbytes(self) -> int:
size = 1
for n in self.shape:
size *= n
return size * self.dtype.itemsize
def tofile(self, *args, **kwargs) -> None:
data = self.data()
for f in self.functions:
data = f(data)
assert data.shape == self.shape
assert data.dtype == self.dtype
assert data.nbytes == self.nbytes
self.functions = []
self.data = lambda: data
data.tofile(*args, **kwargs)
def byteswap(self, *args, **kwargs) -> LazyTensor:
self.functions.append(lambda n: n.byteswap(*args, **kwargs))
return self
class WriterState(Enum):
EMPTY = auto()
HEADER = auto()
@ -38,7 +79,7 @@ class WriterState(Enum):
class GGUFWriter:
fout: BufferedWriter
temp_file: tempfile.SpooledTemporaryFile[bytes] | None
tensors: list[np.ndarray[Any, Any]]
tensors: list[np.ndarray[Any, Any] | LazyTensor]
_simple_value_packing = {
GGUFValueType.UINT8: "B",
GGUFValueType.INT8: "b",
@ -237,7 +278,7 @@ class GGUFWriter:
self.ti_data_count += 1
def add_tensor(
self, name: str, tensor: np.ndarray[Any, Any], raw_shape: Sequence[int] | None = None,
self, name: str, tensor: np.ndarray[Any, Any] | LazyTensor, raw_shape: Sequence[int] | None = None,
raw_dtype: GGMLQuantizationType | None = None,
) -> None:
if self.endianess == GGUFEndian.BIG:
@ -262,7 +303,7 @@ class GGUFWriter:
if pad != 0:
fp.write(bytes([0] * pad))
def write_tensor_data(self, tensor: np.ndarray[Any, Any]) -> None:
def write_tensor_data(self, tensor: np.ndarray[Any, Any] | LazyTensor) -> None:
if self.state is not WriterState.TI_DATA:
raise ValueError(f'Expected output file to contain tensor info, got {self.state}')
@ -272,15 +313,33 @@ class GGUFWriter:
tensor.tofile(self.fout)
self.write_padding(self.fout, tensor.nbytes)
def write_tensors_to_file(self) -> None:
def write_tensors_to_file(self, *, progress: bool = False) -> None:
self.write_ti_data_to_file()
self.write_padding(self.fout, self.fout.tell())
if self.temp_file is None:
self.tensors.reverse() # to pop from the "beginning" in constant time
if progress:
from tqdm import tqdm
total_bytes = sum(t.nbytes for t in self.tensors)
bar = tqdm(desc="Writing", total=total_bytes, unit="byte", unit_scale=True)
while True:
try:
tensor = self.tensors.pop()
except IndexError:
break
tensor.tofile(self.fout)
bar.update(tensor.nbytes)
self.write_padding(self.fout, tensor.nbytes)
return
while True:
try:
tensor = self.tensors.pop(0)
tensor = self.tensors.pop()
except IndexError:
break
tensor.tofile(self.fout)