Merge branch 'master' into feat-seqrep-sampler-simple

This commit is contained in:
KerfuffleV2 2023-11-18 04:38:30 -07:00
commit f10956876a
23 changed files with 356 additions and 78 deletions

View file

@ -576,8 +576,12 @@ elseif (${CMAKE_SYSTEM_PROCESSOR} MATCHES "^(x86_64|i686|AMD64)$" OR "${CMAKE_GE
endif()
elseif (${CMAKE_SYSTEM_PROCESSOR} MATCHES "ppc64")
message(STATUS "PowerPC detected")
add_compile_options(-mcpu=native -mtune=native)
#TODO: Add targets for Power8/Power9 (Altivec/VSX) and Power10(MMA) and query for big endian systems (ppc64/le/be)
if (${CMAKE_SYSTEM_PROCESSOR} MATCHES "ppc64le")
add_compile_options(-mcpu=powerpc64le)
else()
add_compile_options(-mcpu=native -mtune=native)
#TODO: Add targets for Power8/Power9 (Altivec/VSX) and Power10(MMA) and query for big endian systems (ppc64/le/be)
endif()
else()
message(STATUS "Unknown architecture")
endif()

View file

@ -342,6 +342,12 @@ ifneq ($(filter ppc64%,$(UNAME_M)),)
endif
endif
ifneq ($(filter ppc64le%,$(UNAME_M)),)
MK_CFLAGS += -mcpu=powerpc64le
MK_CXXFLAGS += -mcpu=powerpc64le
CUDA_POWER_ARCH = 1
endif
else
MK_CFLAGS += -march=rv64gcv -mabi=lp64d
MK_CXXFLAGS += -march=rv64gcv -mabi=lp64d
@ -392,6 +398,8 @@ else
endif #LLAMA_CUDA_NVCC
ifdef CUDA_DOCKER_ARCH
NVCCFLAGS += -Wno-deprecated-gpu-targets -arch=$(CUDA_DOCKER_ARCH)
else ifdef CUDA_POWER_ARCH
NVCCFLAGS +=
else
NVCCFLAGS += -arch=native
endif # CUDA_DOCKER_ARCH

View file

@ -1220,6 +1220,7 @@ void dump_string_yaml_multiline(FILE * stream, const char * prop_name, const cha
if (!data_str.empty() && (std::isspace(data_str[0]) || std::isspace(data_str.back()))) {
data_str = std::regex_replace(data_str, std::regex("\n"), "\\n");
data_str = std::regex_replace(data_str, std::regex("\""), "\\\"");
data_str = std::regex_replace(data_str, std::regex(R"(\\[^n"])"), R"(\$&)");
data_str = "\"" + data_str + "\"";
fprintf(stream, "%s: %s\n", prop_name, data_str.c_str());
return;

View file

@ -1136,6 +1136,7 @@ void print_common_train_usage(int /*argc*/, char ** /*argv*/, const struct train
fprintf(stderr, " --adam-beta2 N AdamW beta2 in interval [0,1). How much to smooth the second moment of gradients. (default %f)\n", params->adam_beta2);
fprintf(stderr, " --adam-gclip N AdamW gradient clipping. Disabled when zero. (default %f)\n", params->adam_gclip);
fprintf(stderr, " --adam-epsf N AdamW epsilon for convergence test. Disabled when <= zero. (default %f)\n", params->adam_eps_f);
fprintf(stderr, " -ngl N, --n-gpu-layers N Number of model layers to offload to GPU (default %d)", params->n_gpu_layers);
fprintf(stderr, "\n");
}
@ -1355,6 +1356,17 @@ bool consume_common_train_arg(
return true;
}
params->adam_gclip = std::stof(argv[i]);
} else if (arg == "-ngl" || arg == "--n-gpu-layers") {
if (++i >= argc) {
*invalid_param = true;
return true;
}
#ifdef LLAMA_SUPPORTS_GPU_OFFLOAD
params->n_gpu_layers = std::stoi(argv[i]);
#else
fprintf(stderr, "warning: not compiled with GPU offload support, --n-gpu-layers option will be ignored\n");
fprintf(stderr, "warning: see main README.md for information on enabling GPU BLAS support\n");
#endif
} else if (arg == "-h" || arg == "--help") {
params->print_usage = true;
return true;

View file

@ -6,11 +6,9 @@ from __future__ import annotations
import argparse
import json
import os
import struct
import sys
from pathlib import Path
from typing import TYPE_CHECKING, Any
import itertools
import numpy as np
import torch
from sentencepiece import SentencePieceProcessor # type: ignore[import]

View file

@ -193,7 +193,7 @@ class Model:
return gguf.MODEL_ARCH.MPT
if arch in ("BaichuanForCausalLM", "BaiChuanForCausalLM"):
return gguf.MODEL_ARCH.BAICHUAN
if arch == "FalconForCausalLM":
if arch in ("FalconForCausalLM", "RWForCausalLM"):
return gguf.MODEL_ARCH.FALCON
if arch == "GPTBigCodeForCausalLM":
return gguf.MODEL_ARCH.STARCODER

View file

@ -2,7 +2,6 @@
from __future__ import annotations
import argparse
import math
import struct
import sys
from enum import IntEnum

View file

@ -690,6 +690,7 @@ def lazy_load_torch_file(outer_fp: IO[bytes], path: Path) -> ModelPlus:
data_base_path=pickle_paths[0][:-4],
zip_file=zf)
model = unpickler.load()
if 'model' in model: model = model['model']
as_dict = dict(model.items())
return ModelPlus(model=as_dict, paths=[path], format='torch', vocab=None)

View file

@ -24,6 +24,7 @@ else()
add_subdirectory(llama-bench)
add_subdirectory(llava)
add_subdirectory(main)
add_subdirectory(tokenize)
add_subdirectory(parallel)
add_subdirectory(perplexity)
add_subdirectory(quantize)

View file

@ -3,9 +3,7 @@
import argparse
import gguf
import os
import struct
import sys
import numpy as np
from pathlib import Path

View file

@ -548,35 +548,35 @@ static void randomize_lora(struct my_llama_lora * lora, int seed, float mean, fl
struct random_normal_distribution * rnd = init_random_normal_distribution(seed, mean, std, min, max);
randomize_tensor_normal(lora->tok_embeddings_a, rnd);
randomize_tensor_normal(lora->tok_embeddings_b, rnd);
ggml_set_zero(lora->tok_embeddings_b);
randomize_tensor_normal(lora->norm_a, rnd);
randomize_tensor_normal(lora->norm_b, rnd);
ggml_set_zero(lora->norm_b);
randomize_tensor_normal(lora->output_a, rnd);
randomize_tensor_normal(lora->output_b, rnd);
ggml_set_zero(lora->output_b);
for (uint32_t i = 0; i < n_layer; ++i) {
auto & layer = lora->layers[i];
randomize_tensor_normal(layer.attention_norm_a, rnd);
randomize_tensor_normal(layer.attention_norm_b, rnd);
ggml_set_zero(layer.attention_norm_b);
randomize_tensor_normal(layer.wq_a, rnd);
randomize_tensor_normal(layer.wq_b, rnd);
ggml_set_zero(layer.wq_b);
randomize_tensor_normal(layer.wk_a, rnd);
randomize_tensor_normal(layer.wk_b, rnd);
ggml_set_zero(layer.wk_b);
randomize_tensor_normal(layer.wv_a, rnd);
randomize_tensor_normal(layer.wv_b, rnd);
ggml_set_zero(layer.wv_b);
randomize_tensor_normal(layer.wo_a, rnd);
randomize_tensor_normal(layer.wo_b, rnd);
ggml_set_zero(layer.wo_b);
randomize_tensor_normal(layer.ffn_norm_a, rnd);
randomize_tensor_normal(layer.ffn_norm_b, rnd);
ggml_set_zero(layer.ffn_norm_b);
randomize_tensor_normal(layer.w1_a, rnd);
randomize_tensor_normal(layer.w1_b, rnd);
ggml_set_zero(layer.w1_b);
randomize_tensor_normal(layer.w2_a, rnd);
randomize_tensor_normal(layer.w2_b, rnd);
ggml_set_zero(layer.w2_b);
randomize_tensor_normal(layer.w3_a, rnd);
randomize_tensor_normal(layer.w3_b, rnd);
ggml_set_zero(layer.w3_b);
}
free_random_normal_distribution(rnd);
@ -1460,17 +1460,6 @@ static bool train_params_parse(int argc, char ** argv, struct train_params * par
}
params->n_rank_w3 = std::stoi(argv[i]);
params->custom_n_rank_w3 = true;
} else if (arg == "--gpu-layers" || arg == "-ngl" || arg == "--n-gpu-layers") {
if (++i >= argc) {
invalid_param = true;
break;
}
#ifdef LLAMA_SUPPORTS_GPU_OFFLOAD
params->common.n_gpu_layers = std::stoi(argv[i]);
#else
fprintf(stderr, "warning: not compiled with GPU offload support, --n-gpu-layers option will be ignored\n");
fprintf(stderr, "warning: see main README.md for information on enabling GPU BLAS support\n");
#endif
} else {
fprintf(stderr, "error: unknown argument: %s\n", arg.c_str());
train_print_usage(argc, argv, &default_params);

View file

@ -127,7 +127,14 @@ static bool load_file_to_bytes(const char* path, unsigned char** bytesOut, long
fclose(file);
return false;
}
fread(buffer, 1, fileSize, file); // Read the file into the buffer
errno = 0;
size_t ret = fread(buffer, 1, fileSize, file); // Read the file into the buffer
if (ferror(file)) {
die_fmt("read error: %s", strerror(errno));
}
if (ret != (size_t) fileSize) {
die("unexpectedly reached end of file");
}
fclose(file); // Close the file
*bytesOut = buffer;

View file

@ -0,0 +1,5 @@
set(TARGET tokenize)
add_executable(${TARGET} tokenize.cpp)
install(TARGETS ${TARGET} RUNTIME)
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
target_compile_features(${TARGET} PRIVATE cxx_std_11)

View file

@ -0,0 +1,44 @@
#include "common.h"
#include "llama.h"
#include <cmath>
#include <cstdio>
#include <string>
#include <vector>
int main(int argc, char ** argv) {
if (argc < 3 || argv[1][0] == '-') {
printf("usage: %s MODEL_PATH PROMPT [--ids]\n" , argv[0]);
return 1;
}
const char * model_path = argv[1];
const char * prompt = argv[2];
const bool printing_ids = argc > 3 && std::string(argv[3]) == "--ids";
llama_backend_init(false);
llama_model_params model_params = llama_model_default_params();
model_params.vocab_only = true;
llama_model * model = llama_load_model_from_file(model_path, model_params);
llama_context_params ctx_params = llama_context_default_params();
llama_context * ctx = llama_new_context_with_model(model, ctx_params);
const bool add_bos = true;
std::vector<llama_token> tokens;
tokens = ::llama_tokenize(model, prompt, add_bos, true);
for (int i = 0; i < (int) tokens.size(); i++) {
if (printing_ids) {
printf("%d\n", tokens[i]);
} else {
printf("%6d -> '%s'\n", tokens[i], llama_token_to_piece(ctx, tokens[i]).c_str());
}
}
return 0;
}

View file

@ -5840,7 +5840,7 @@ static void * ggml_cuda_pool_malloc(size_t size, size_t * actual_size) {
return ptr;
}
#ifdef DEBUG_CUDA_MALLOC
fprintf(stderr, "%s: %d buffers, max_size = %u MB, tot_size = %u MB, requested %u MB\n", __func__, nnz,
fprintf(stderr, "%s: %d buffers, max_size = %u MiB, tot_size = %u MiB, requested %u MiB\n", __func__, nnz,
(uint32_t)(max_size/1024/1024), (uint32_t)(tot_size/1024/1024), (uint32_t)(size/1024/1024));
#endif
void * ptr;
@ -5978,7 +5978,7 @@ void * ggml_cuda_host_malloc(size_t size) {
// The allocation error can be bypassed. A null ptr will assigned out of this function.
// This can fixed the OOM error in WSL.
cudaGetLastError();
fprintf(stderr, "WARNING: failed to allocate %.2f MB of pinned memory: %s\n",
fprintf(stderr, "WARNING: failed to allocate %.2f MiB of pinned memory: %s\n",
size/1024.0/1024.0, cudaGetErrorString(err));
return nullptr;
}
@ -6356,6 +6356,7 @@ static int64_t get_row_rounding(ggml_type type) {
case GGML_TYPE_Q8_0:
return max_compute_capability >= CC_RDNA2 ? 128 : 64;
case GGML_TYPE_F16:
case GGML_TYPE_F32:
return 1;
case GGML_TYPE_Q2_K:
return max_compute_capability >= CC_RDNA2 ? 128 : 32;
@ -6378,6 +6379,7 @@ static int64_t get_row_rounding(ggml_type type) {
case GGML_TYPE_Q8_0:
return 64;
case GGML_TYPE_F16:
case GGML_TYPE_F32:
return 1;
case GGML_TYPE_Q2_K:
case GGML_TYPE_Q3_K:

View file

@ -345,10 +345,10 @@ struct ggml_metal_context * ggml_metal_init(int n_cb) {
}
}
GGML_METAL_LOG_INFO("%s: hasUnifiedMemory = %s\n", __func__, ctx->device.hasUnifiedMemory ? "true" : "false");
GGML_METAL_LOG_INFO("%s: recommendedMaxWorkingSetSize = %8.2f MB\n", __func__, ctx->device.recommendedMaxWorkingSetSize / 1024.0 / 1024.0);
GGML_METAL_LOG_INFO("%s: hasUnifiedMemory = %s\n", __func__, ctx->device.hasUnifiedMemory ? "true" : "false");
GGML_METAL_LOG_INFO("%s: recommendedMaxWorkingSetSize = %8.2f MiB\n", __func__, ctx->device.recommendedMaxWorkingSetSize / 1024.0 / 1024.0);
if (ctx->device.maxTransferRate != 0) {
GGML_METAL_LOG_INFO("%s: maxTransferRate = %8.2f MB/s\n", __func__, ctx->device.maxTransferRate / 1024.0 / 1024.0);
GGML_METAL_LOG_INFO("%s: maxTransferRate = %8.2f MiB/s\n", __func__, ctx->device.maxTransferRate / 1024.0 / 1024.0);
} else {
GGML_METAL_LOG_INFO("%s: maxTransferRate = built-in GPU\n", __func__);
}
@ -541,11 +541,11 @@ bool ggml_metal_add_buffer(
ctx->buffers[ctx->n_buffers].metal = [ctx->device newBufferWithBytesNoCopy:data length:size_aligned options:MTLResourceStorageModeShared deallocator:nil];
if (ctx->buffers[ctx->n_buffers].metal == nil) {
GGML_METAL_LOG_ERROR("%s: error: failed to allocate '%-16s' buffer, size = %8.2f MB\n", __func__, name, size_aligned / 1024.0 / 1024.0);
GGML_METAL_LOG_ERROR("%s: error: failed to allocate '%-16s' buffer, size = %8.2f MiB\n", __func__, name, size_aligned / 1024.0 / 1024.0);
return false;
}
GGML_METAL_LOG_INFO("%s: allocated '%-16s' buffer, size = %8.2f MB", __func__, name, size_aligned / 1024.0 / 1024.0);
GGML_METAL_LOG_INFO("%s: allocated '%-16s' buffer, size = %8.2f MiB", __func__, name, size_aligned / 1024.0 / 1024.0);
++ctx->n_buffers;
} else {
@ -565,11 +565,11 @@ bool ggml_metal_add_buffer(
ctx->buffers[ctx->n_buffers].metal = [ctx->device newBufferWithBytesNoCopy:(void *) ((uint8_t *) data + i) length:size_step_aligned options:MTLResourceStorageModeShared deallocator:nil];
if (ctx->buffers[ctx->n_buffers].metal == nil) {
GGML_METAL_LOG_ERROR("%s: error: failed to allocate '%-16s' buffer, size = %8.2f MB\n", __func__, name, size_step_aligned / 1024.0 / 1024.0);
GGML_METAL_LOG_ERROR("%s: error: failed to allocate '%-16s' buffer, size = %8.2f MiB\n", __func__, name, size_step_aligned / 1024.0 / 1024.0);
return false;
}
GGML_METAL_LOG_INFO("%s: allocated '%-16s' buffer, size = %8.2f MB, offs = %12ld", __func__, name, size_step_aligned / 1024.0 / 1024.0, i);
GGML_METAL_LOG_INFO("%s: allocated '%-16s' buffer, size = %8.2f MiB, offs = %12ld", __func__, name, size_step_aligned / 1024.0 / 1024.0, i);
if (i + size_step < size) {
GGML_METAL_LOG_INFO("\n");
}

View file

@ -19,7 +19,7 @@
#ifdef __wasm_simd128__
#include <wasm_simd128.h>
#else
#ifdef __POWER9_VECTOR__
#if defined(__POWER9_VECTOR__) || defined(__powerpc64__)
#include <altivec.h>
#undef bool
#define bool _Bool

94
ggml.c
View file

@ -9611,10 +9611,12 @@ static void ggml_compute_forward_out_prod_f32(
const int ith = params->ith;
const int nth = params->nth;
GGML_ASSERT(ne0 == ne00);
GGML_ASSERT(ne1 == ne10);
GGML_ASSERT(ne2 == ne02);
GGML_ASSERT(ne02 == ne12);
GGML_ASSERT(ne03 == ne13);
GGML_ASSERT(ne2 == ne12);
GGML_ASSERT(ne3 == ne13);
GGML_ASSERT(ne03 == ne13);
// we don't support permuted src0 or src1
GGML_ASSERT(nb00 == sizeof(float));
@ -9625,18 +9627,25 @@ static void ggml_compute_forward_out_prod_f32(
// GGML_ASSERT(nb1 <= nb2);
// GGML_ASSERT(nb2 <= nb3);
GGML_ASSERT(ne0 == ne00);
GGML_ASSERT(ne1 == ne10);
GGML_ASSERT(ne2 == ne02);
GGML_ASSERT(ne3 == ne03);
// nb01 >= nb00 - src0 is not transposed
// compute by src0 rows
// TODO: #if defined(GGML_USE_CUBLAS) ggml_cuda_out_prod
// TODO: #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
// TODO: #if defined(GGML_USE_CLBLAST)
#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
bool use_blas = ggml_is_matrix(src0) &&
ggml_is_matrix(src1) &&
ggml_is_contiguous(src0) &&
(ggml_is_contiguous(src1) || ggml_is_transposed(src1));
#endif
if (params->type == GGML_TASK_INIT) {
#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) // gemm beta will zero dst
if (use_blas) {
return;
}
#endif
ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
return;
}
@ -9645,6 +9654,50 @@ static void ggml_compute_forward_out_prod_f32(
return;
}
#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
if (use_blas) {
if (params->ith != 0) { // All threads other than the first do no work.
return;
}
// Arguments to ggml_compute_forward_out_prod (expressed as major,minor)
// src0: (k,n)
// src1: (k,m)
// dst: (m,n)
//
// Arguments to sgemm (see https://github.com/Reference-LAPACK/lapack/blob/master/BLAS/SRC/sgemm.f)
// Also expressed as (major,minor)
// a: (m,k): so src1 transposed
// b: (k,n): so src0
// c: (m,n)
//
// However, if ggml_is_transposed(src1) is true, then
// src1->data already contains a transposed version, so sgemm mustn't
// transpose it further.
int n = src0->ne[0];
int k = src0->ne[1];
int m = src1->ne[0];
int transposeA, lda;
if (!ggml_is_transposed(src1)) {
transposeA = CblasTrans;
lda = m;
} else {
transposeA = CblasNoTrans;
lda = k;
}
float * a = (float *) ((char *) src1->data);
float * b = (float *) ((char *) src0->data);
float * c = (float *) ((char *) dst->data);
cblas_sgemm(CblasRowMajor, transposeA, CblasNoTrans, m, n, k, 1.0, a, lda, b, n, 0.0, c, n);
return;
}
#endif
// dst[:,:,:,:] = 0
// for i2,i3:
// for i1:
@ -18399,24 +18452,29 @@ int gguf_find_key(const struct gguf_context * ctx, const char * key) {
}
const char * gguf_get_key(const struct gguf_context * ctx, int key_id) {
GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
return ctx->kv[key_id].key.data;
}
enum gguf_type gguf_get_kv_type(const struct gguf_context * ctx, int key_id) {
GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
return ctx->kv[key_id].type;
}
enum gguf_type gguf_get_arr_type(const struct gguf_context * ctx, int key_id) {
GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
return ctx->kv[key_id].value.arr.type;
}
const void * gguf_get_arr_data(const struct gguf_context * ctx, int key_id) {
GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
return ctx->kv[key_id].value.arr.data;
}
const char * gguf_get_arr_str(const struct gguf_context * ctx, int key_id, int i) {
GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
struct gguf_kv * kv = &ctx->kv[key_id];
struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[i];
@ -18424,70 +18482,90 @@ const char * gguf_get_arr_str(const struct gguf_context * ctx, int key_id, int i
}
int gguf_get_arr_n(const struct gguf_context * ctx, int key_id) {
GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
return ctx->kv[key_id].value.arr.n;
}
uint8_t gguf_get_val_u8(const struct gguf_context * ctx, int key_id) {
GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT8);
return ctx->kv[key_id].value.uint8;
}
int8_t gguf_get_val_i8(const struct gguf_context * ctx, int key_id) {
GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT8);
return ctx->kv[key_id].value.int8;
}
uint16_t gguf_get_val_u16(const struct gguf_context * ctx, int key_id) {
GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT16);
return ctx->kv[key_id].value.uint16;
}
int16_t gguf_get_val_i16(const struct gguf_context * ctx, int key_id) {
GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT16);
return ctx->kv[key_id].value.int16;
}
uint32_t gguf_get_val_u32(const struct gguf_context * ctx, int key_id) {
GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT32);
return ctx->kv[key_id].value.uint32;
}
int32_t gguf_get_val_i32(const struct gguf_context * ctx, int key_id) {
GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT32);
return ctx->kv[key_id].value.int32;
}
float gguf_get_val_f32(const struct gguf_context * ctx, int key_id) {
GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_FLOAT32);
return ctx->kv[key_id].value.float32;
}
uint64_t gguf_get_val_u64(const struct gguf_context * ctx, int key_id) {
GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT64);
return ctx->kv[key_id].value.uint64;
}
int64_t gguf_get_val_i64(const struct gguf_context * ctx, int key_id) {
GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT64);
return ctx->kv[key_id].value.int64;
}
double gguf_get_val_f64(const struct gguf_context * ctx, int key_id) {
GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_FLOAT64);
return ctx->kv[key_id].value.float64;
}
bool gguf_get_val_bool(const struct gguf_context * ctx, int key_id) {
GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_BOOL);
return ctx->kv[key_id].value.bool_;
}
const char * gguf_get_val_str(const struct gguf_context * ctx, int key_id) {
GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_STRING);
return ctx->kv[key_id].value.str.data;
}
const void * gguf_get_val_data(const struct gguf_context * ctx, int key_id) {
GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
GGML_ASSERT(ctx->kv[key_id].type != GGUF_TYPE_ARRAY);
GGML_ASSERT(ctx->kv[key_id].type != GGUF_TYPE_STRING);
return &ctx->kv[key_id].value;
}
int gguf_get_n_tensors(const struct gguf_context * ctx) {
return ctx->header.n_tensors;
}

1
ggml.h
View file

@ -2045,6 +2045,7 @@ extern "C" {
GGML_API double gguf_get_val_f64 (const struct gguf_context * ctx, int key_id);
GGML_API bool gguf_get_val_bool(const struct gguf_context * ctx, int key_id);
GGML_API const char * gguf_get_val_str (const struct gguf_context * ctx, int key_id);
GGML_API const void * gguf_get_val_data(const struct gguf_context * ctx, int key_id);
GGML_API int gguf_get_arr_n (const struct gguf_context * ctx, int key_id);
GGML_API const void * gguf_get_arr_data(const struct gguf_context * ctx, int key_id);
GGML_API const char * gguf_get_arr_str (const struct gguf_context * ctx, int key_id, int i);

165
llama.cpp
View file

@ -91,7 +91,7 @@
#define LLAMA_ATTRIBUTE_FORMAT(...)
#endif
#define LLAMA_MAX_NODES 4096
#define LLAMA_MAX_NODES 8192
//
// logging
@ -604,6 +604,60 @@ static int8_t llama_rope_scaling_type_from_string(const std::string & name) {
return LLAMA_ROPE_SCALING_UNSPECIFIED;
}
static std::string gguf_data_to_str(enum gguf_type type, const void * data, int i) {
switch (type) {
case GGUF_TYPE_UINT8: return std::to_string(((const uint8_t *)data)[i]);
case GGUF_TYPE_INT8: return std::to_string(((const int8_t *)data)[i]);
case GGUF_TYPE_UINT16: return std::to_string(((const uint16_t *)data)[i]);
case GGUF_TYPE_INT16: return std::to_string(((const int16_t *)data)[i]);
case GGUF_TYPE_UINT32: return std::to_string(((const uint32_t *)data)[i]);
case GGUF_TYPE_INT32: return std::to_string(((const int32_t *)data)[i]);
case GGUF_TYPE_UINT64: return std::to_string(((const uint64_t *)data)[i]);
case GGUF_TYPE_INT64: return std::to_string(((const int64_t *)data)[i]);
case GGUF_TYPE_FLOAT32: return std::to_string(((const float *)data)[i]);
case GGUF_TYPE_FLOAT64: return std::to_string(((const double *)data)[i]);
case GGUF_TYPE_BOOL: return ((const bool *)data)[i] ? "true" : "false";
default: return format("unknown type %d", type);
}
}
static std::string gguf_kv_to_str(struct gguf_context * ctx_gguf, int i) {
const enum gguf_type type = gguf_get_kv_type(ctx_gguf, i);
switch (type) {
case GGUF_TYPE_STRING:
return gguf_get_val_str(ctx_gguf, i);
case GGUF_TYPE_ARRAY:
{
const enum gguf_type arr_type = gguf_get_arr_type(ctx_gguf, i);
int arr_n = gguf_get_arr_n(ctx_gguf, i);
const void * data = gguf_get_arr_data(ctx_gguf, i);
std::stringstream ss;
ss << "[";
for (int j = 0; j < arr_n; j++) {
if (arr_type == GGUF_TYPE_STRING) {
std::string val = gguf_get_arr_str(ctx_gguf, i, j);
// escape quotes
replace_all(val, "\\", "\\\\");
replace_all(val, "\"", "\\\"");
ss << '"' << val << '"';
} else if (arr_type == GGUF_TYPE_ARRAY) {
ss << "???";
} else {
ss << gguf_data_to_str(arr_type, data, j);
}
if (j < arr_n - 1) {
ss << ", ";
}
}
ss << "]";
return ss.str();
}
default:
return gguf_data_to_str(type, gguf_get_val_data(ctx_gguf, i), 0);
}
}
//
// ggml helpers
//
@ -1087,9 +1141,9 @@ enum e_model {
MODEL_70B,
};
static const size_t kB = 1024;
static const size_t MB = 1024*kB;
static const size_t GB = 1024*MB;
static const size_t kiB = 1024;
static const size_t MiB = 1024*kiB;
static const size_t GiB = 1024*MiB;
struct llama_hparams {
bool vocab_only;
@ -1327,6 +1381,9 @@ struct llama_model {
int n_gpu_layers;
// gguf metadata
std::unordered_map<std::string, std::string> gguf_kv;
// context
struct ggml_context * ctx = NULL;
@ -1488,7 +1545,7 @@ static bool llama_kv_cache_init(
vram_kv_cache += ggml_nbytes(cache.k);
}
if (vram_kv_cache > 0) {
LLAMA_LOG_INFO("%s: VRAM kv self = %.2f MB\n", __func__, vram_kv_cache / 1024.0 / 1024.0);
LLAMA_LOG_INFO("%s: VRAM kv self = %.2f MiB\n", __func__, vram_kv_cache / 1024.0 / 1024.0);
}
}
#endif
@ -1785,10 +1842,10 @@ struct llama_model_loader {
case GGML_TYPE_Q5_K: ftype = LLAMA_FTYPE_MOSTLY_Q5_K_M; break;
case GGML_TYPE_Q6_K: ftype = LLAMA_FTYPE_MOSTLY_Q6_K; break;
default:
{
LLAMA_LOG_WARN("%s: unknown type %s\n", __func__, ggml_type_name(type_max));
ftype = LLAMA_FTYPE_ALL_F32;
} break;
{
LLAMA_LOG_WARN("%s: unknown type %s\n", __func__, ggml_type_name(type_max));
ftype = LLAMA_FTYPE_ALL_F32;
} break;
}
// this is a way to mark that we have "guessed" the file type
@ -1802,10 +1859,20 @@ struct llama_model_loader {
}
for (int i = 0; i < n_kv; i++) {
const char * name = gguf_get_key(ctx_gguf, i);
const enum gguf_type type = gguf_get_kv_type(ctx_gguf, i);
const char * name = gguf_get_key(ctx_gguf, i);
const enum gguf_type type = gguf_get_kv_type(ctx_gguf, i);
const std::string type_name =
type == GGUF_TYPE_ARRAY
? format("%s[%s,%d]", gguf_type_name(type), gguf_type_name(gguf_get_arr_type(ctx_gguf, i)), gguf_get_arr_n(ctx_gguf, i))
: gguf_type_name(type);
LLAMA_LOG_INFO("%s: - kv %3d: %42s %-8s\n", __func__, i, name, gguf_type_name(type));
std::string value = gguf_kv_to_str(ctx_gguf, i);
const size_t MAX_VALUE_LEN = 40;
if (value.size() > MAX_VALUE_LEN) {
value = format("%s...", value.substr(0, MAX_VALUE_LEN - 3).c_str());
}
LLAMA_LOG_INFO("%s: - kv %3d: %42s %-16s = %s\n", __func__, i, name, type_name.c_str(), value.c_str());
}
// print type counts
@ -2100,6 +2167,17 @@ static void llm_load_hparams(
auto & hparams = model.hparams;
// get metadata as string
for (int i = 0; i < gguf_get_n_kv(ctx); i++) {
enum gguf_type type = gguf_get_kv_type(ctx, i);
if (type == GGUF_TYPE_ARRAY) {
continue;
}
const char * name = gguf_get_key(ctx, i);
const std::string value = gguf_kv_to_str(ctx, i);
model.gguf_kv.emplace(name, value);
}
// get general kv
GGUF_GET_KEY(ctx, model.name, gguf_get_val_str, GGUF_TYPE_STRING, false, kv(LLM_KV_GENERAL_NAME));
@ -2543,8 +2621,8 @@ static void llm_load_print_meta(llama_model_loader & ml, llama_model & model) {
LLAMA_LOG_INFO("%s: model type = %s\n", __func__, llama_model_type_name(model.type));
LLAMA_LOG_INFO("%s: model ftype = %s\n", __func__, llama_model_ftype_name(model.ftype).c_str());
LLAMA_LOG_INFO("%s: model params = %.2f B\n", __func__, ml.n_elements*1e-9);
if (ml.n_bytes < GB) {
LLAMA_LOG_INFO("%s: model size = %.2f MiB (%.2f BPW) \n", __func__, ml.n_bytes/1024.0/1024.0, ml.n_bytes*8.0/ml.n_elements);
if (ml.n_bytes < GiB) {
LLAMA_LOG_INFO("%s: model size = %.2f MiB (%.2f BPW) \n", __func__, ml.n_bytes/1024.0/1024.0, ml.n_bytes*8.0/ml.n_elements);
} else {
LLAMA_LOG_INFO("%s: model size = %.2f GiB (%.2f BPW) \n", __func__, ml.n_bytes/1024.0/1024.0/1024.0, ml.n_bytes*8.0/ml.n_elements);
}
@ -2582,7 +2660,7 @@ static void llm_load_tensors(
ml.calc_sizes(ctx_size, mmapped_size);
LLAMA_LOG_INFO("%s: ggml ctx size = %7.2f MB\n", __func__, ctx_size/1024.0/1024.0);
LLAMA_LOG_INFO("%s: ggml ctx size = %7.2f MiB\n", __func__, ctx_size/1024.0/1024.0);
// create the ggml context
{
@ -3231,7 +3309,7 @@ static void llm_load_tensors(
ctx_size +
mmapped_size - vram_weights; // weights in VRAM not in memory
LLAMA_LOG_INFO("%s: mem required = %7.2f MB\n", __func__, mem_required / 1024.0 / 1024.0);
LLAMA_LOG_INFO("%s: mem required = %7.2f MiB\n", __func__, mem_required / 1024.0 / 1024.0);
#if defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST)
const int n_gpu = std::min(n_gpu_layers, int(hparams.n_layer));
@ -3250,7 +3328,7 @@ static void llm_load_tensors(
#endif // GGML_USE_CUBLAS
LLAMA_LOG_INFO("%s: offloaded %d/%d layers to GPU\n", __func__, std::min(n_gpu_layers, max_offloadable_layers), max_backend_supported_layers);
LLAMA_LOG_INFO("%s: VRAM used: %.2f MB\n", __func__, vram_weights / 1024.0 / 1024.0);
LLAMA_LOG_INFO("%s: VRAM used: %.2f MiB\n", __func__, vram_weights / 1024.0 / 1024.0);
#else
(void) n_gpu_layers;
#endif // defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST)
@ -7962,7 +8040,7 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
workers.clear();
}
LLAMA_LOG_INFO("size = %8.2f MB -> %8.2f MB | hist: ", ggml_nbytes(tensor)/1024.0/1024.0, new_size/1024.0/1024.0);
LLAMA_LOG_INFO("size = %8.2f MiB -> %8.2f MiB | hist: ", ggml_nbytes(tensor)/1024.0/1024.0, new_size/1024.0/1024.0);
int64_t tot_count = 0;
for (size_t i = 0; i < hist_cur.size(); i++) {
hist_all[i] += hist_cur[i];
@ -8502,7 +8580,7 @@ struct llama_context * llama_new_context_with_model(
{
const size_t memory_size = ggml_nbytes(ctx->kv_self.k) + ggml_nbytes(ctx->kv_self.v);
LLAMA_LOG_INFO("%s: kv self size = %7.2f MB\n", __func__, memory_size / 1024.0 / 1024.0);
LLAMA_LOG_INFO("%s: kv self size = %7.2f MiB\n", __func__, memory_size / 1024.0 / 1024.0);
}
// resized during inference
@ -8547,7 +8625,7 @@ struct llama_context * llama_new_context_with_model(
// measure memory requirements for the graph
size_t alloc_size = ggml_allocr_alloc_graph(ctx->alloc, gf) + tensor_alignment;
LLAMA_LOG_INFO("%s: compute buffer total size = %.2f MB\n", __func__, (ctx->buf_compute.size + alloc_size) / 1024.0 / 1024.0);
LLAMA_LOG_INFO("%s: compute buffer total size = %.2f MiB\n", __func__, (ctx->buf_compute.size + alloc_size) / 1024.0 / 1024.0);
// recreate allocator with exact memory requirements
ggml_allocr_free(ctx->alloc);
@ -8561,7 +8639,7 @@ struct llama_context * llama_new_context_with_model(
#endif
#ifdef GGML_USE_CUBLAS
ggml_cuda_set_scratch_size(alloc_size);
LLAMA_LOG_INFO("%s: VRAM scratch buffer: %.2f MB\n", __func__, alloc_size / 1024.0 / 1024.0);
LLAMA_LOG_INFO("%s: VRAM scratch buffer: %.2f MiB\n", __func__, alloc_size / 1024.0 / 1024.0);
// calculate total VRAM usage
auto add_tensor = [](const ggml_tensor * t, size_t & size) {
@ -8581,10 +8659,10 @@ struct llama_context * llama_new_context_with_model(
size_t ctx_vram_size = alloc_size + kv_vram_size;
size_t total_vram_size = model_vram_size + ctx_vram_size;
LLAMA_LOG_INFO("%s: total VRAM used: %.2f MB (model: %.2f MB, context: %.2f MB)\n", __func__,
LLAMA_LOG_INFO("%s: total VRAM used: %.2f MiB (model: %.2f MiB, context: %.2f MiB)\n", __func__,
total_vram_size / 1024.0 / 1024.0,
model_vram_size / 1024.0 / 1024.0,
ctx_vram_size / 1024.0 / 1024.0);
ctx_vram_size / 1024.0 / 1024.0);
#endif
}
@ -8605,7 +8683,7 @@ struct llama_context * llama_new_context_with_model(
const size_t max_size = ggml_get_max_tensor_size(ctx->model.ctx);
LLAMA_LOG_INFO("%s: max tensor size = %8.2f MB\n", __func__, max_size/1024.0/1024.0);
LLAMA_LOG_INFO("%s: max tensor size = %8.2f MiB\n", __func__, max_size/1024.0/1024.0);
#define LLAMA_METAL_CHECK_BUF(result) \
if (!(result)) { \
@ -8671,6 +8749,45 @@ float llama_rope_freq_scale_train(const struct llama_model * model) {
return model->hparams.rope_freq_scale_train;
}
int llama_model_meta_val_str(const struct llama_model * model, const char * key, char * buf, size_t buf_size) {
const auto & it = model->gguf_kv.find(key);
if (it == model->gguf_kv.end()) {
if (buf_size > 0) {
buf[0] = '\0';
}
return -1;
}
return snprintf(buf, buf_size, "%s", it->second.c_str());
}
int llama_model_meta_count(const struct llama_model * model) {
return (int)model->gguf_kv.size();
}
int llama_model_meta_key_by_index(const struct llama_model * model, int i, char * buf, size_t buf_size) {
if (i < 0 || i >= (int)model->gguf_kv.size()) {
if (buf_size > 0) {
buf[0] = '\0';
}
return -1;
}
auto it = model->gguf_kv.begin();
std::advance(it, i);
return snprintf(buf, buf_size, "%s", it->first.c_str());
}
int llama_model_meta_val_str_by_index(const struct llama_model * model, int i, char * buf, size_t buf_size) {
if (i < 0 || i >= (int)model->gguf_kv.size()) {
if (buf_size > 0) {
buf[0] = '\0';
}
return -1;
}
auto it = model->gguf_kv.begin();
std::advance(it, i);
return snprintf(buf, buf_size, "%s", it->second.c_str());
}
int llama_model_desc(const struct llama_model * model, char * buf, size_t buf_size) {
return snprintf(buf, buf_size, "%s %s %s",
llama_model_arch_name(model->arch).c_str(),

17
llama.h
View file

@ -301,6 +301,23 @@ extern "C" {
// Get the model's RoPE frequency scaling factor
LLAMA_API float llama_rope_freq_scale_train(const struct llama_model * model);
// Functions to access the model's GGUF metadata scalar values
// - The functions return the length of the string on success, or -1 on failure
// - The output string is always null-terminated and cleared on failure
// - GGUF array values are not supported by these functions
// Get metadata value as a string by key name
LLAMA_API int llama_model_meta_val_str(const struct llama_model * model, const char * key, char * buf, size_t buf_size);
// Get the number of metadata key/value pairs
LLAMA_API int llama_model_meta_count(const struct llama_model * model);
// Get metadata key name by index
LLAMA_API int llama_model_meta_key_by_index(const struct llama_model * model, int i, char * buf, size_t buf_size);
// Get metadata value as a string by index
LLAMA_API int llama_model_meta_val_str_by_index(const struct llama_model * model, int i, char * buf, size_t buf_size);
// Get a string describing the model type
LLAMA_API int llama_model_desc(const struct llama_model * model, char * buf, size_t buf_size);

View file

@ -1,7 +1,5 @@
# tests with BPE tokenizer
import os
import sys
import argparse
from transformers import AutoTokenizer

View file

@ -1,7 +1,5 @@
# tests with SPM tokenizer
import os
import sys
import argparse
from sentencepiece import SentencePieceProcessor