Merge branch 'ggerganov:master' into master
This commit is contained in:
commit
f131a6200e
24 changed files with 1990 additions and 420 deletions
11
README.md
11
README.md
|
@ -10,7 +10,6 @@ Inference of [LLaMA](https://arxiv.org/abs/2302.13971) model in pure C/C++
|
|||
|
||||
### Hot topics
|
||||
|
||||
- ⚠️ Incoming backends: https://github.com/ggerganov/llama.cpp/discussions/5138
|
||||
- New SOTA quantized models, including pure 2-bits: https://huggingface.co/ikawrakow
|
||||
- Collecting Apple Silicon performance stats:
|
||||
- M-series: https://github.com/ggerganov/llama.cpp/discussions/4167
|
||||
|
@ -614,9 +613,9 @@ Building the program with BLAS support may lead to some performance improvements
|
|||
# obtain the original LLaMA model weights and place them in ./models
|
||||
ls ./models
|
||||
65B 30B 13B 7B tokenizer_checklist.chk tokenizer.model
|
||||
# [Optional] for models using BPE tokenizers
|
||||
ls ./models
|
||||
65B 30B 13B 7B vocab.json
|
||||
# [Optional] for models using BPE tokenizers
|
||||
ls ./models
|
||||
65B 30B 13B 7B vocab.json
|
||||
|
||||
# install Python dependencies
|
||||
python3 -m pip install -r requirements.txt
|
||||
|
@ -624,8 +623,8 @@ python3 -m pip install -r requirements.txt
|
|||
# convert the 7B model to ggml FP16 format
|
||||
python3 convert.py models/7B/
|
||||
|
||||
# [Optional] for models using BPE tokenizers
|
||||
python convert.py models/7B/ --vocabtype bpe
|
||||
# [Optional] for models using BPE tokenizers
|
||||
python convert.py models/7B/ --vocabtype bpe
|
||||
|
||||
# quantize the model to 4-bits (using q4_0 method)
|
||||
./quantize ./models/7B/ggml-model-f16.gguf ./models/7B/ggml-model-q4_0.gguf q4_0
|
||||
|
|
|
@ -1521,6 +1521,7 @@ void dump_non_result_info_yaml(FILE * stream, const gpt_params & params, const l
|
|||
fprintf(stream, "cpu_has_avx512_vnni: %s\n", ggml_cpu_has_avx512_vnni() ? "true" : "false");
|
||||
fprintf(stream, "cpu_has_cublas: %s\n", ggml_cpu_has_cublas() ? "true" : "false");
|
||||
fprintf(stream, "cpu_has_clblast: %s\n", ggml_cpu_has_clblast() ? "true" : "false");
|
||||
fprintf(stream, "cpu_has_kompute: %s\n", ggml_cpu_has_kompute() ? "true" : "false");
|
||||
fprintf(stream, "cpu_has_fma: %s\n", ggml_cpu_has_fma() ? "true" : "false");
|
||||
fprintf(stream, "cpu_has_gpublas: %s\n", ggml_cpu_has_gpublas() ? "true" : "false");
|
||||
fprintf(stream, "cpu_has_neon: %s\n", ggml_cpu_has_neon() ? "true" : "false");
|
||||
|
|
|
@ -563,6 +563,7 @@ struct test {
|
|||
static const bool cuda;
|
||||
static const bool opencl;
|
||||
static const bool vulkan;
|
||||
static const bool kompute;
|
||||
static const bool metal;
|
||||
static const bool gpu_blas;
|
||||
static const bool blas;
|
||||
|
@ -647,6 +648,9 @@ struct test {
|
|||
if (vulkan) {
|
||||
return "Vulkan";
|
||||
}
|
||||
if (kompute) {
|
||||
return "Kompute";
|
||||
}
|
||||
if (metal) {
|
||||
return "Metal";
|
||||
}
|
||||
|
@ -662,7 +666,7 @@ struct test {
|
|||
static const std::vector<std::string> & get_fields() {
|
||||
static const std::vector<std::string> fields = {
|
||||
"build_commit", "build_number",
|
||||
"cuda", "opencl", "vulkan", "metal", "gpu_blas", "blas",
|
||||
"cuda", "opencl", "vulkan", "kompute", "metal", "gpu_blas", "blas",
|
||||
"cpu_info", "gpu_info",
|
||||
"model_filename", "model_type", "model_size", "model_n_params",
|
||||
"n_batch", "n_threads", "type_k", "type_v",
|
||||
|
@ -686,8 +690,9 @@ struct test {
|
|||
field == "avg_ns" || field == "stddev_ns") {
|
||||
return INT;
|
||||
}
|
||||
if (field == "cuda" || field == "opencl" || field == "vulkan"|| field == "metal" || field == "gpu_blas" || field == "blas" ||
|
||||
field == "f16_kv" || field == "no_kv_offload" || field == "mul_mat_q") {
|
||||
if (field == "cuda" || field == "opencl" || field == "vulkan" || field == "kompute" || field == "metal" ||
|
||||
field == "gpu_blas" || field == "blas" || field == "f16_kv" || field == "no_kv_offload" ||
|
||||
field == "mul_mat_q") {
|
||||
return BOOL;
|
||||
}
|
||||
if (field == "avg_ts" || field == "stddev_ts") {
|
||||
|
@ -714,7 +719,8 @@ struct test {
|
|||
}
|
||||
std::vector<std::string> values = {
|
||||
build_commit, std::to_string(build_number),
|
||||
std::to_string(cuda), std::to_string(opencl), std::to_string(vulkan), std::to_string(metal), std::to_string(gpu_blas), std::to_string(blas),
|
||||
std::to_string(cuda), std::to_string(opencl), std::to_string(vulkan), std::to_string(vulkan),
|
||||
std::to_string(metal), std::to_string(gpu_blas), std::to_string(blas),
|
||||
cpu_info, gpu_info,
|
||||
model_filename, model_type, std::to_string(model_size), std::to_string(model_n_params),
|
||||
std::to_string(n_batch), std::to_string(n_threads), ggml_type_name(type_k), ggml_type_name(type_v),
|
||||
|
@ -743,6 +749,7 @@ const int test::build_number = LLAMA_BUILD_NUMBER;
|
|||
const bool test::cuda = !!ggml_cpu_has_cublas();
|
||||
const bool test::opencl = !!ggml_cpu_has_clblast();
|
||||
const bool test::vulkan = !!ggml_cpu_has_vulkan();
|
||||
const bool test::kompute = !!ggml_cpu_has_kompute();
|
||||
const bool test::metal = !!ggml_cpu_has_metal();
|
||||
const bool test::gpu_blas = !!ggml_cpu_has_gpublas();
|
||||
const bool test::blas = !!ggml_cpu_has_blas();
|
||||
|
|
|
@ -39,6 +39,17 @@ static std::ostringstream * g_output_ss;
|
|||
static std::vector<llama_token> * g_output_tokens;
|
||||
static bool is_interacting = false;
|
||||
|
||||
static bool file_exists(const std::string &path) {
|
||||
std::ifstream f(path.c_str());
|
||||
return f.good();
|
||||
}
|
||||
|
||||
static bool file_is_empty(const std::string &path) {
|
||||
std::ifstream f;
|
||||
f.exceptions(std::ifstream::failbit | std::ifstream::badbit);
|
||||
f.open(path.c_str(), std::ios::in | std::ios::binary | std::ios::ate);
|
||||
return f.tellg() == 0;
|
||||
}
|
||||
|
||||
static void write_logfile(
|
||||
const llama_context * ctx, const gpt_params & params, const llama_model * model,
|
||||
|
@ -215,12 +226,12 @@ int main(int argc, char ** argv) {
|
|||
|
||||
if (!path_session.empty()) {
|
||||
LOG_TEE("%s: attempting to load saved session from '%s'\n", __func__, path_session.c_str());
|
||||
|
||||
// fopen to check for existing session
|
||||
FILE * fp = std::fopen(path_session.c_str(), "rb");
|
||||
if (fp != NULL) {
|
||||
std::fclose(fp);
|
||||
|
||||
if (!file_exists(path_session)) {
|
||||
LOG_TEE("%s: session file does not exist, will create.\n", __func__);
|
||||
} else if (file_is_empty(path_session)) {
|
||||
LOG_TEE("%s: The session file is empty. A new session will be initialized.\n", __func__);
|
||||
} else {
|
||||
// The file exists and is not empty
|
||||
session_tokens.resize(n_ctx);
|
||||
size_t n_token_count_out = 0;
|
||||
if (!llama_load_session_file(ctx, path_session.c_str(), session_tokens.data(), session_tokens.capacity(), &n_token_count_out)) {
|
||||
|
@ -229,10 +240,7 @@ int main(int argc, char ** argv) {
|
|||
}
|
||||
session_tokens.resize(n_token_count_out);
|
||||
llama_set_rng_seed(ctx, params.seed);
|
||||
|
||||
LOG_TEE("%s: loaded a session with prompt size of %d tokens\n", __func__, (int) session_tokens.size());
|
||||
} else {
|
||||
LOG_TEE("%s: session file does not exist, will create\n", __func__);
|
||||
LOG_TEE("%s: loaded a session with prompt size of %d tokens\n", __func__, (int)session_tokens.size());
|
||||
}
|
||||
}
|
||||
|
||||
|
|
|
@ -378,6 +378,8 @@ int main(int argc, char ** argv) {
|
|||
printf("testing %s ...\n", ggml_type_name(type));
|
||||
}
|
||||
|
||||
ggml_quantize_init(type);
|
||||
|
||||
error_stats global_stats {};
|
||||
|
||||
for (const auto& kv_tensor : tensors) {
|
||||
|
|
|
@ -25,6 +25,7 @@ static const std::vector<struct quant_option> QUANT_OPTIONS = {
|
|||
{ "IQ2_XS", LLAMA_FTYPE_MOSTLY_IQ2_XS, " 2.31 bpw quantization", },
|
||||
{ "Q2_K", LLAMA_FTYPE_MOSTLY_Q2_K, " 2.63G, +0.6717 ppl @ LLaMA-v1-7B", },
|
||||
{ "Q2_K_S", LLAMA_FTYPE_MOSTLY_Q2_K_S, " 2.16G, +9.0634 ppl @ LLaMA-v1-7B", },
|
||||
{ "IQ3_XXS",LLAMA_FTYPE_MOSTLY_IQ3_XXS," 3.06 bpw quantization", },
|
||||
{ "Q3_K", LLAMA_FTYPE_MOSTLY_Q3_K_M, "alias for Q3_K_M" },
|
||||
{ "Q3_K_XS",LLAMA_FTYPE_MOSTLY_Q3_K_XS,"3-bit extra small quantization" , },
|
||||
{ "Q3_K_S", LLAMA_FTYPE_MOSTLY_Q3_K_S, " 2.75G, +0.5551 ppl @ LLaMA-v1-7B", },
|
||||
|
@ -36,7 +37,7 @@ static const std::vector<struct quant_option> QUANT_OPTIONS = {
|
|||
{ "Q5_K", LLAMA_FTYPE_MOSTLY_Q5_K_M, "alias for Q5_K_M", },
|
||||
{ "Q5_K_S", LLAMA_FTYPE_MOSTLY_Q5_K_S, " 4.33G, +0.0400 ppl @ LLaMA-v1-7B", },
|
||||
{ "Q5_K_M", LLAMA_FTYPE_MOSTLY_Q5_K_M, " 4.45G, +0.0122 ppl @ LLaMA-v1-7B", },
|
||||
{ "Q6_K", LLAMA_FTYPE_MOSTLY_Q6_K, " 5.15G, -0.0008 ppl @ LLaMA-v1-7B", },
|
||||
{ "Q6_K", LLAMA_FTYPE_MOSTLY_Q6_K, " 5.15G, +0.0008 ppl @ LLaMA-v1-7B", },
|
||||
{ "Q8_0", LLAMA_FTYPE_MOSTLY_Q8_0, " 6.70G, +0.0004 ppl @ LLaMA-v1-7B", },
|
||||
{ "F16", LLAMA_FTYPE_MOSTLY_F16, "13.00G @ 7B", },
|
||||
{ "F32", LLAMA_FTYPE_ALL_F32, "26.00G @ 7B", },
|
||||
|
|
|
@ -32,6 +32,7 @@ Command line options:
|
|||
- `--mmproj MMPROJ_FILE`: Path to a multimodal projector file for LLaVA.
|
||||
- `--grp-attn-n`: Set the group attention factor to extend context size through self-extend(default: 1=disabled), used together with group attention width `--grp-attn-w`
|
||||
- `--grp-attn-w`: Set the group attention width to extend context size through self-extend(default: 512), used together with group attention factor `--grp-attn-n`
|
||||
|
||||
## Build
|
||||
|
||||
server is build alongside everything else from the root of the project
|
||||
|
@ -52,21 +53,23 @@ server is build alongside everything else from the root of the project
|
|||
|
||||
To get started right away, run the following command, making sure to use the correct path for the model you have:
|
||||
|
||||
### Unix-based systems (Linux, macOS, etc.):
|
||||
### Unix-based systems (Linux, macOS, etc.)
|
||||
|
||||
```bash
|
||||
./server -m models/7B/ggml-model.gguf -c 2048
|
||||
```
|
||||
|
||||
### Windows:
|
||||
### Windows
|
||||
|
||||
```powershell
|
||||
server.exe -m models\7B\ggml-model.gguf -c 2048
|
||||
```
|
||||
|
||||
The above command will start a server that by default listens on `127.0.0.1:8080`.
|
||||
You can consume the endpoints with Postman or NodeJS with axios library. You can visit the web front end at the same url.
|
||||
|
||||
### Docker:
|
||||
### Docker
|
||||
|
||||
```bash
|
||||
docker run -p 8080:8080 -v /path/to/models:/models ggerganov/llama.cpp:server -m models/7B/ggml-model.gguf -c 512 --host 0.0.0.0 --port 8080
|
||||
|
||||
|
@ -120,6 +123,7 @@ node index.js
|
|||
```
|
||||
|
||||
## API Endpoints
|
||||
|
||||
- **GET** `/health`: Returns the current state of the server:
|
||||
- `{"status": "loading model"}` if the model is still being loaded.
|
||||
- `{"status": "error"}` if the model failed to load.
|
||||
|
@ -189,14 +193,13 @@ node index.js
|
|||
|
||||
`system_prompt`: Change the system prompt (initial prompt of all slots), this is useful for chat applications. [See more](#change-system-prompt-on-runtime)
|
||||
|
||||
### Result JSON:
|
||||
|
||||
* Note: When using streaming mode (`stream`) only `content` and `stop` will be returned until end of completion.
|
||||
### Result JSON
|
||||
|
||||
- Note: When using streaming mode (`stream`) only `content` and `stop` will be returned until end of completion.
|
||||
|
||||
- `completion_probabilities`: An array of token probabilities for each completion. The array's length is `n_predict`. Each item in the array has the following structure:
|
||||
|
||||
```
|
||||
```json
|
||||
{
|
||||
"content": "<the token selected by the model>",
|
||||
"probs": [
|
||||
|
@ -212,6 +215,7 @@ node index.js
|
|||
]
|
||||
},
|
||||
```
|
||||
|
||||
Notice that each `probs` is an array of length `n_probs`.
|
||||
|
||||
- `content`: Completion result as a string (excluding `stopping_word` if any). In case of streaming mode, will contain the next token as a string.
|
||||
|
@ -290,6 +294,7 @@ Notice that each `probs` is an array of length `n_probs`.
|
|||
|
||||
print(completion.choices[0].message)
|
||||
```
|
||||
|
||||
... or raw HTTP requests:
|
||||
|
||||
```shell
|
||||
|
@ -311,6 +316,40 @@ Notice that each `probs` is an array of length `n_probs`.
|
|||
}'
|
||||
```
|
||||
|
||||
- **POST** `/v1/embeddings`: OpenAI-compatible embeddings API.
|
||||
|
||||
*Options:*
|
||||
|
||||
See [OpenAI Embeddings API documentation](https://platform.openai.com/docs/api-reference/embeddings).
|
||||
|
||||
*Examples:*
|
||||
|
||||
- input as string
|
||||
|
||||
```shell
|
||||
curl http://localhost:8080/v1/embeddings \
|
||||
-H "Content-Type: application/json" \
|
||||
-H "Authorization: Bearer no-key" \
|
||||
-d '{
|
||||
"input": "hello",
|
||||
"model":"GPT-4",
|
||||
"encoding_format": "float"
|
||||
}'
|
||||
```
|
||||
|
||||
- `input` as string array
|
||||
|
||||
```shell
|
||||
curl http://localhost:8080/v1/embeddings \
|
||||
-H "Content-Type: application/json" \
|
||||
-H "Authorization: Bearer no-key" \
|
||||
-d '{
|
||||
"input": ["hello", "world"],
|
||||
"model":"GPT-4",
|
||||
"encoding_format": "float"
|
||||
}'
|
||||
```
|
||||
|
||||
## More examples
|
||||
|
||||
### Change system prompt on runtime
|
||||
|
@ -362,6 +401,7 @@ python api_like_OAI.py
|
|||
```
|
||||
|
||||
After running the API server, you can use it in Python by setting the API base URL.
|
||||
|
||||
```python
|
||||
openai.api_base = "http://<Your api-server IP>:port"
|
||||
```
|
||||
|
|
|
@ -48,6 +48,7 @@ chat_completion() {
|
|||
top_p: 0.9,
|
||||
n_keep: $n_keep,
|
||||
n_predict: 256,
|
||||
cache_prompt: true,
|
||||
stop: ["\n### Human:"],
|
||||
stream: true
|
||||
}')"
|
||||
|
|
|
@ -185,7 +185,7 @@ struct llama_client_slot
|
|||
llama_sampling_context *ctx_sampling = nullptr;
|
||||
|
||||
int32_t ga_i = 0; // group-attention state
|
||||
int32_t ga_n = 1;// group-attention factor
|
||||
int32_t ga_n = 1; // group-attention factor
|
||||
int32_t ga_w = 512; // group-attention width
|
||||
|
||||
int32_t n_past_se = 0; // self-extend
|
||||
|
@ -220,6 +220,7 @@ struct llama_client_slot
|
|||
infill = false;
|
||||
ga_i = 0;
|
||||
n_past_se = 0;
|
||||
|
||||
generated_token_probs.clear();
|
||||
|
||||
for (slot_image & img : images)
|
||||
|
@ -1227,7 +1228,7 @@ struct llama_server_context
|
|||
std::vector<llama_token> append_tokens = tokenize(json_prompt, false); // has next image
|
||||
for (int i = 0; i < (int) append_tokens.size(); ++i)
|
||||
{
|
||||
llama_batch_add(batch, append_tokens[i], slot.n_past, { slot.id }, true);
|
||||
llama_batch_add(batch, append_tokens[i], system_tokens.size() + slot.n_past, { slot.id }, true);
|
||||
slot.n_past += 1;
|
||||
}
|
||||
}
|
||||
|
@ -1295,6 +1296,8 @@ struct llama_server_context
|
|||
for (llama_client_slot &slot : slots)
|
||||
{
|
||||
slot.cache_tokens.clear();
|
||||
slot.n_past = 0;
|
||||
slot.n_past_se = 0;
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -1364,26 +1367,26 @@ struct llama_server_context
|
|||
kv_cache_clear();
|
||||
}
|
||||
return true;
|
||||
} else {
|
||||
}
|
||||
|
||||
task_server task;
|
||||
task.type = TASK_TYPE_NEXT_RESPONSE;
|
||||
task.target_id = -1;
|
||||
queue_tasks.post(task);
|
||||
}
|
||||
|
||||
for (llama_client_slot &slot : slots)
|
||||
{
|
||||
if (slot.ga_n == 1)
|
||||
{
|
||||
if (slot.is_processing() && slot.cache_tokens.size() >= (size_t) slot.n_ctx)
|
||||
if (slot.is_processing() && system_tokens.size() + slot.cache_tokens.size() >= (size_t) slot.n_ctx)
|
||||
{
|
||||
// Shift context
|
||||
const int n_left = slot.n_past - slot.params.n_keep - 1;
|
||||
const int n_left = system_tokens.size() + slot.n_past - slot.params.n_keep - 1;
|
||||
const int n_discard = n_left / 2;
|
||||
|
||||
LOG_TEE("slot %d: context shift - n_keep = %d, n_left = %d, n_discard = %d\n", slot.id, slot.params.n_keep, n_left, n_discard);
|
||||
llama_kv_cache_seq_rm (ctx, slot.id, slot.params.n_keep + 1 , slot.params.n_keep + n_discard + 1);
|
||||
llama_kv_cache_seq_shift(ctx, slot.id, slot.params.n_keep + 1 + n_discard, slot.n_past, -n_discard);
|
||||
llama_kv_cache_seq_shift(ctx, slot.id, slot.params.n_keep + 1 + n_discard, system_tokens.size() + slot.n_past, -n_discard);
|
||||
|
||||
for (size_t i = slot.params.n_keep + 1 + n_discard; i < slot.cache_tokens.size(); i++)
|
||||
{
|
||||
|
@ -1429,8 +1432,10 @@ struct llama_server_context
|
|||
slot.i_batch = batch.n_tokens;
|
||||
|
||||
const int32_t slot_npast = slot.n_past_se > 0 ? slot.n_past_se : slot.n_past;
|
||||
llama_batch_add(batch, slot.sampled, system_tokens.size() + slot_npast, { slot.id }, true);
|
||||
|
||||
// TODO: we always have to take into account the "system_tokens"
|
||||
// this is not great and needs to be improved somehow
|
||||
llama_batch_add(batch, slot.sampled, system_tokens.size() + slot_npast, { slot.id }, true);
|
||||
slot.n_past += 1;
|
||||
}
|
||||
|
||||
|
@ -1591,10 +1596,13 @@ struct llama_server_context
|
|||
|
||||
// process the prefix of first image
|
||||
std::vector<llama_token> prefix_tokens = has_images ? tokenize(slot.images[0].prefix_prompt, add_bos_token) : prompt_tokens;
|
||||
|
||||
int32_t slot_npast = slot.n_past_se > 0 ? slot.n_past_se : slot.n_past;
|
||||
int ga_i = slot.ga_i;
|
||||
|
||||
int32_t ga_i = slot.ga_i;
|
||||
int32_t ga_n = slot.ga_n;
|
||||
int32_t ga_w = slot.ga_w;
|
||||
|
||||
for (; slot.n_past < (int) prefix_tokens.size(); ++slot.n_past)
|
||||
{
|
||||
if (slot.ga_n != 1)
|
||||
|
@ -1606,7 +1614,7 @@ struct llama_server_context
|
|||
}
|
||||
}
|
||||
llama_batch_add(batch, prefix_tokens[slot.n_past], system_tokens.size() + slot_npast, {slot.id }, false);
|
||||
slot_npast += 1;
|
||||
slot_npast++;
|
||||
}
|
||||
|
||||
if (has_images && !ingest_images(slot, n_batch))
|
||||
|
@ -1666,6 +1674,7 @@ struct llama_server_context
|
|||
slot.n_past_se += n_tokens;
|
||||
}
|
||||
}
|
||||
|
||||
llama_batch batch_view =
|
||||
{
|
||||
n_tokens,
|
||||
|
@ -1818,15 +1827,15 @@ static void server_print_usage(const char *argv0, const gpt_params ¶ms,
|
|||
printf(" -np N, --parallel N number of slots for process requests (default: %d)\n", params.n_parallel);
|
||||
printf(" -cb, --cont-batching enable continuous batching (a.k.a dynamic batching) (default: disabled)\n");
|
||||
printf(" -spf FNAME, --system-prompt-file FNAME\n");
|
||||
printf(" Set a file to load a system prompt (initial prompt of all slots), this is useful for chat applications.\n");
|
||||
printf(" set a file to load a system prompt (initial prompt of all slots), this is useful for chat applications.\n");
|
||||
printf(" --mmproj MMPROJ_FILE path to a multimodal projector file for LLaVA.\n");
|
||||
printf(" --log-disable disables logging to a file.\n");
|
||||
printf("\n");
|
||||
printf(" --override-kv KEY=TYPE:VALUE\n");
|
||||
printf(" advanced option to override model metadata by key. may be specified multiple times.\n");
|
||||
printf(" types: int, float, bool. example: --override-kv tokenizer.ggml.add_bos_token=bool:false\n");
|
||||
printf(" -gan N, --grp-attn-n N Set the group attention factor to extend context size through self-extend(default: 1=disabled), used together with group attention width `--grp-attn-w`");
|
||||
printf(" -gaw N, --grp-attn-w N Set the group attention width to extend context size through self-extend(default: 512), used together with group attention factor `--grp-attn-n`");
|
||||
printf(" -gan N, --grp-attn-n N set the group attention factor to extend context size through self-extend(default: 1=disabled), used together with group attention width `--grp-attn-w`");
|
||||
printf(" -gaw N, --grp-attn-w N set the group attention width to extend context size through self-extend(default: 512), used together with group attention factor `--grp-attn-n`");
|
||||
printf("\n");
|
||||
}
|
||||
|
||||
|
|
331
ggml-cuda.cu
331
ggml-cuda.cu
|
@ -191,6 +191,10 @@ static __device__ __forceinline__ int __vsubss4(const int a, const int b) {
|
|||
#endif // __has_builtin(__builtin_elementwise_sub_sat)
|
||||
}
|
||||
|
||||
static __device__ __forceinline__ int __vsub4(const int a, const int b) {
|
||||
return __vsubss4(a, b);
|
||||
}
|
||||
|
||||
static __device__ __forceinline__ int __dp4a(const int a, const int b, int c) {
|
||||
#if defined(__gfx906__) || defined(__gfx908__) || defined(__gfx90a__) || defined(__gfx1030__)
|
||||
c = __builtin_amdgcn_sdot4(a, b, c, false);
|
||||
|
@ -505,6 +509,14 @@ typedef struct {
|
|||
} block_iq2_xs;
|
||||
static_assert(sizeof(block_iq2_xs) == sizeof(ggml_fp16_t) + QK_K/8*sizeof(uint16_t) + QK_K/32, "wrong iq2_xs block size/padding");
|
||||
|
||||
#define QR3_XXS 8
|
||||
#define QI3_XXS (QK_K / (4*QR3_XXS))
|
||||
typedef struct {
|
||||
half d;
|
||||
uint8_t qs[3*(QK_K/8)];
|
||||
} block_iq3_xxs;
|
||||
static_assert(sizeof(block_iq3_xxs) == sizeof(ggml_fp16_t) + 3*(QK_K/8), "wrong iq3_xxs block size/padding");
|
||||
|
||||
#define WARP_SIZE 32
|
||||
#define MATRIX_ROW_PADDING 512 // last row of quant. matrices is a multiple of this to avoid out-of-bounds memory accesses
|
||||
|
||||
|
@ -1613,6 +1625,41 @@ static const __device__ uint64_t iq2xs_grid[512] = {
|
|||
0x2b2b2b2b082b2b08, 0x2b2b2b2b082b2b2b, 0x2b2b2b2b2b190819, 0x2b2b2b2b2b2b2b2b,
|
||||
};
|
||||
|
||||
static const __device__ uint32_t iq3xxs_grid[256] = {
|
||||
0x04040404, 0x04040414, 0x04040424, 0x04040c0c, 0x04040c1c, 0x04040c3e, 0x04041404, 0x04041414,
|
||||
0x04041c0c, 0x04042414, 0x04043e1c, 0x04043e2c, 0x040c040c, 0x040c041c, 0x040c0c04, 0x040c0c14,
|
||||
0x040c140c, 0x040c142c, 0x040c1c04, 0x040c1c14, 0x040c240c, 0x040c2c24, 0x040c3e04, 0x04140404,
|
||||
0x04140414, 0x04140424, 0x04140c0c, 0x04141404, 0x04141414, 0x04141c0c, 0x04141c1c, 0x04141c3e,
|
||||
0x04142c0c, 0x04142c3e, 0x04143e2c, 0x041c040c, 0x041c043e, 0x041c0c04, 0x041c0c14, 0x041c142c,
|
||||
0x041c3e04, 0x04240c1c, 0x04241c3e, 0x04242424, 0x04242c3e, 0x04243e1c, 0x04243e2c, 0x042c040c,
|
||||
0x042c043e, 0x042c1c14, 0x042c2c14, 0x04341c2c, 0x04343424, 0x043e0c04, 0x043e0c24, 0x043e0c34,
|
||||
0x043e241c, 0x043e340c, 0x0c04040c, 0x0c04041c, 0x0c040c04, 0x0c040c14, 0x0c04140c, 0x0c04141c,
|
||||
0x0c041c04, 0x0c041c14, 0x0c041c24, 0x0c04243e, 0x0c042c04, 0x0c0c0404, 0x0c0c0414, 0x0c0c0c0c,
|
||||
0x0c0c1404, 0x0c0c1414, 0x0c14040c, 0x0c14041c, 0x0c140c04, 0x0c140c14, 0x0c14140c, 0x0c141c04,
|
||||
0x0c143e14, 0x0c1c0404, 0x0c1c0414, 0x0c1c1404, 0x0c1c1c0c, 0x0c1c2434, 0x0c1c3434, 0x0c24040c,
|
||||
0x0c24042c, 0x0c242c04, 0x0c2c1404, 0x0c2c1424, 0x0c2c2434, 0x0c2c3e0c, 0x0c34042c, 0x0c3e1414,
|
||||
0x0c3e2404, 0x14040404, 0x14040414, 0x14040c0c, 0x14040c1c, 0x14041404, 0x14041414, 0x14041434,
|
||||
0x14041c0c, 0x14042414, 0x140c040c, 0x140c041c, 0x140c042c, 0x140c0c04, 0x140c0c14, 0x140c140c,
|
||||
0x140c1c04, 0x140c341c, 0x140c343e, 0x140c3e04, 0x14140404, 0x14140414, 0x14140c0c, 0x14140c3e,
|
||||
0x14141404, 0x14141414, 0x14141c3e, 0x14142404, 0x14142c2c, 0x141c040c, 0x141c0c04, 0x141c0c24,
|
||||
0x141c3e04, 0x141c3e24, 0x14241c2c, 0x14242c1c, 0x142c041c, 0x142c143e, 0x142c240c, 0x142c3e24,
|
||||
0x143e040c, 0x143e041c, 0x143e0c34, 0x143e242c, 0x1c04040c, 0x1c040c04, 0x1c040c14, 0x1c04140c,
|
||||
0x1c04141c, 0x1c042c04, 0x1c04342c, 0x1c043e14, 0x1c0c0404, 0x1c0c0414, 0x1c0c1404, 0x1c0c1c0c,
|
||||
0x1c0c2424, 0x1c0c2434, 0x1c14040c, 0x1c14041c, 0x1c140c04, 0x1c14142c, 0x1c142c14, 0x1c143e14,
|
||||
0x1c1c0c0c, 0x1c1c1c1c, 0x1c241c04, 0x1c24243e, 0x1c243e14, 0x1c2c0404, 0x1c2c0434, 0x1c2c1414,
|
||||
0x1c2c2c2c, 0x1c340c24, 0x1c341c34, 0x1c34341c, 0x1c3e1c1c, 0x1c3e3404, 0x24040424, 0x24040c3e,
|
||||
0x24041c2c, 0x24041c3e, 0x24042c1c, 0x24042c3e, 0x240c3e24, 0x24141404, 0x24141c3e, 0x24142404,
|
||||
0x24143404, 0x24143434, 0x241c043e, 0x241c242c, 0x24240424, 0x24242c0c, 0x24243424, 0x242c142c,
|
||||
0x242c241c, 0x242c3e04, 0x243e042c, 0x243e0c04, 0x243e0c14, 0x243e1c04, 0x2c040c14, 0x2c04240c,
|
||||
0x2c043e04, 0x2c0c0404, 0x2c0c0434, 0x2c0c1434, 0x2c0c2c2c, 0x2c140c24, 0x2c141c14, 0x2c143e14,
|
||||
0x2c1c0414, 0x2c1c2c1c, 0x2c240c04, 0x2c24141c, 0x2c24143e, 0x2c243e14, 0x2c2c0414, 0x2c2c1c0c,
|
||||
0x2c342c04, 0x2c3e1424, 0x2c3e2414, 0x34041424, 0x34042424, 0x34042434, 0x34043424, 0x340c140c,
|
||||
0x340c340c, 0x34140c3e, 0x34143424, 0x341c1c04, 0x341c1c34, 0x34242424, 0x342c042c, 0x342c2c14,
|
||||
0x34341c1c, 0x343e041c, 0x343e140c, 0x3e04041c, 0x3e04042c, 0x3e04043e, 0x3e040c04, 0x3e041c14,
|
||||
0x3e042c14, 0x3e0c1434, 0x3e0c2404, 0x3e140c14, 0x3e14242c, 0x3e142c14, 0x3e1c0404, 0x3e1c0c2c,
|
||||
0x3e1c1c1c, 0x3e1c3404, 0x3e24140c, 0x3e24240c, 0x3e2c0404, 0x3e2c0414, 0x3e2c1424, 0x3e341c04,
|
||||
};
|
||||
|
||||
static const __device__ uint8_t ksigns_iq2xs[128] = {
|
||||
0, 129, 130, 3, 132, 5, 6, 135, 136, 9, 10, 139, 12, 141, 142, 15,
|
||||
144, 17, 18, 147, 20, 149, 150, 23, 24, 153, 154, 27, 156, 29, 30, 159,
|
||||
|
@ -1624,6 +1671,43 @@ static const __device__ uint8_t ksigns_iq2xs[128] = {
|
|||
240, 113, 114, 243, 116, 245, 246, 119, 120, 249, 250, 123, 252, 125, 126, 255,
|
||||
};
|
||||
|
||||
//#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
|
||||
static const __device__ uint64_t ksigns64[128] = {
|
||||
0x0000000000000000, 0xff000000000000ff, 0xff0000000000ff00, 0x000000000000ffff,
|
||||
0xff00000000ff0000, 0x0000000000ff00ff, 0x0000000000ffff00, 0xff00000000ffffff,
|
||||
0xff000000ff000000, 0x00000000ff0000ff, 0x00000000ff00ff00, 0xff000000ff00ffff,
|
||||
0x00000000ffff0000, 0xff000000ffff00ff, 0xff000000ffffff00, 0x00000000ffffffff,
|
||||
0xff0000ff00000000, 0x000000ff000000ff, 0x000000ff0000ff00, 0xff0000ff0000ffff,
|
||||
0x000000ff00ff0000, 0xff0000ff00ff00ff, 0xff0000ff00ffff00, 0x000000ff00ffffff,
|
||||
0x000000ffff000000, 0xff0000ffff0000ff, 0xff0000ffff00ff00, 0x000000ffff00ffff,
|
||||
0xff0000ffffff0000, 0x000000ffffff00ff, 0x000000ffffffff00, 0xff0000ffffffffff,
|
||||
0xff00ff0000000000, 0x0000ff00000000ff, 0x0000ff000000ff00, 0xff00ff000000ffff,
|
||||
0x0000ff0000ff0000, 0xff00ff0000ff00ff, 0xff00ff0000ffff00, 0x0000ff0000ffffff,
|
||||
0x0000ff00ff000000, 0xff00ff00ff0000ff, 0xff00ff00ff00ff00, 0x0000ff00ff00ffff,
|
||||
0xff00ff00ffff0000, 0x0000ff00ffff00ff, 0x0000ff00ffffff00, 0xff00ff00ffffffff,
|
||||
0x0000ffff00000000, 0xff00ffff000000ff, 0xff00ffff0000ff00, 0x0000ffff0000ffff,
|
||||
0xff00ffff00ff0000, 0x0000ffff00ff00ff, 0x0000ffff00ffff00, 0xff00ffff00ffffff,
|
||||
0xff00ffffff000000, 0x0000ffffff0000ff, 0x0000ffffff00ff00, 0xff00ffffff00ffff,
|
||||
0x0000ffffffff0000, 0xff00ffffffff00ff, 0xff00ffffffffff00, 0x0000ffffffffffff,
|
||||
0xffff000000000000, 0x00ff0000000000ff, 0x00ff00000000ff00, 0xffff00000000ffff,
|
||||
0x00ff000000ff0000, 0xffff000000ff00ff, 0xffff000000ffff00, 0x00ff000000ffffff,
|
||||
0x00ff0000ff000000, 0xffff0000ff0000ff, 0xffff0000ff00ff00, 0x00ff0000ff00ffff,
|
||||
0xffff0000ffff0000, 0x00ff0000ffff00ff, 0x00ff0000ffffff00, 0xffff0000ffffffff,
|
||||
0x00ff00ff00000000, 0xffff00ff000000ff, 0xffff00ff0000ff00, 0x00ff00ff0000ffff,
|
||||
0xffff00ff00ff0000, 0x00ff00ff00ff00ff, 0x00ff00ff00ffff00, 0xffff00ff00ffffff,
|
||||
0xffff00ffff000000, 0x00ff00ffff0000ff, 0x00ff00ffff00ff00, 0xffff00ffff00ffff,
|
||||
0x00ff00ffffff0000, 0xffff00ffffff00ff, 0xffff00ffffffff00, 0x00ff00ffffffffff,
|
||||
0x00ffff0000000000, 0xffffff00000000ff, 0xffffff000000ff00, 0x00ffff000000ffff,
|
||||
0xffffff0000ff0000, 0x00ffff0000ff00ff, 0x00ffff0000ffff00, 0xffffff0000ffffff,
|
||||
0xffffff00ff000000, 0x00ffff00ff0000ff, 0x00ffff00ff00ff00, 0xffffff00ff00ffff,
|
||||
0x00ffff00ffff0000, 0xffffff00ffff00ff, 0xffffff00ffffff00, 0x00ffff00ffffffff,
|
||||
0xffffffff00000000, 0x00ffffff000000ff, 0x00ffffff0000ff00, 0xffffffff0000ffff,
|
||||
0x00ffffff00ff0000, 0xffffffff00ff00ff, 0xffffffff00ffff00, 0x00ffffff00ffffff,
|
||||
0x00ffffffff000000, 0xffffffffff0000ff, 0xffffffffff00ff00, 0x00ffffffff00ffff,
|
||||
0xffffffffffff0000, 0x00ffffffffff00ff, 0x00ffffffffffff00, 0xffffffffffffffff,
|
||||
};
|
||||
//#endif
|
||||
|
||||
static const __device__ uint8_t kmask_iq2xs[8] = {1, 2, 4, 8, 16, 32, 64, 128};
|
||||
|
||||
inline bool ggml_cuda_supports_mmq(enum ggml_type type) {
|
||||
|
@ -1690,6 +1774,34 @@ static __global__ void dequantize_block_iq2_xs(const void * __restrict__ vx, dst
|
|||
|
||||
}
|
||||
|
||||
template<typename dst_t>
|
||||
static __global__ void dequantize_block_iq3_xxs(const void * __restrict__ vx, dst_t * __restrict__ yy) {
|
||||
|
||||
const int i = blockIdx.x;
|
||||
const block_iq3_xxs * x = (const block_iq3_xxs *) vx;
|
||||
|
||||
const int tid = threadIdx.x;
|
||||
#if QK_K == 256
|
||||
const int il = tid/8; // 0...3
|
||||
const int ib = tid%8; // 0...7
|
||||
dst_t * y = yy + i*QK_K + 32*ib + 8*il;
|
||||
const uint8_t * q3 = x[i].qs + 8*ib;
|
||||
const uint16_t * gas = (const uint16_t *)(x[i].qs + QK_K/4) + 2*ib;
|
||||
const uint8_t * grid1 = (const uint8_t *)(iq3xxs_grid + q3[2*il+0]);
|
||||
const uint8_t * grid2 = (const uint8_t *)(iq3xxs_grid + q3[2*il+1]);
|
||||
const uint32_t aux32 = gas[0] | (gas[1] << 16);
|
||||
const float d = (float)x[i].d * (0.5f + (aux32 >> 28)) * 0.5f;
|
||||
const uint8_t signs = ksigns_iq2xs[(aux32 >> 7*il) & 127];
|
||||
for (int j = 0; j < 4; ++j) {
|
||||
y[j+0] = d * grid1[j] * (signs & kmask_iq2xs[j+0] ? -1.f : 1.f);
|
||||
y[j+4] = d * grid2[j] * (signs & kmask_iq2xs[j+4] ? -1.f : 1.f);
|
||||
}
|
||||
#else
|
||||
assert(false);
|
||||
#endif
|
||||
|
||||
}
|
||||
|
||||
static __global__ void dequantize_mul_mat_vec_q2_k(const void * __restrict__ vx, const float * __restrict__ yy, float * __restrict__ dst, const int ncols, int nrows) {
|
||||
|
||||
static_assert(16%K_QUANTS_PER_ITERATION == 0, "16 must be divisible by K_QUANTS_PER_ITERATION");
|
||||
|
@ -4313,6 +4425,7 @@ static __device__ __forceinline__ float vec_dot_iq2_xxs_q8_1(
|
|||
|
||||
static __device__ __forceinline__ float vec_dot_iq2_xs_q8_1(
|
||||
const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
|
||||
#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
|
||||
#if QK_K == 256
|
||||
const block_iq2_xs * bq2 = (const block_iq2_xs *) vbq;
|
||||
|
||||
|
@ -4323,20 +4436,22 @@ static __device__ __forceinline__ float vec_dot_iq2_xs_q8_1(
|
|||
const uint8_t ls2 = bq2->scales[ib32] >> 4;
|
||||
int sumi1 = 0;
|
||||
for (int l = 0; l < 2; ++l) {
|
||||
const uint8_t * grid = (const uint8_t *)(iq2xs_grid + (q2[l] & 511));
|
||||
const uint8_t signs = ksigns_iq2xs[q2[l] >> 9];
|
||||
for (int j = 0; j < 8; ++j) {
|
||||
sumi1 += q8[j] * grid[j] * (signs & kmask_iq2xs[j] ? -1 : 1);
|
||||
}
|
||||
const uint32_t * grid = (const uint32_t *)(iq2xs_grid + (q2[l] & 511));
|
||||
const uint32_t * signs = (const uint32_t *)(ksigns64 + (q2[l] >> 9));
|
||||
const int grid_l = __vsub4(grid[0] ^ signs[0], signs[0]);
|
||||
const int grid_h = __vsub4(grid[1] ^ signs[1], signs[1]);
|
||||
sumi1 = __dp4a(grid_l, *((const int *)q8 + 0), sumi1);
|
||||
sumi1 = __dp4a(grid_h, *((const int *)q8 + 1), sumi1);
|
||||
q8 += 8;
|
||||
}
|
||||
int sumi2 = 0;
|
||||
for (int l = 2; l < 4; ++l) {
|
||||
const uint8_t * grid = (const uint8_t *)(iq2xs_grid + (q2[l] & 511));
|
||||
const uint8_t signs = ksigns_iq2xs[q2[l] >> 9];
|
||||
for (int j = 0; j < 8; ++j) {
|
||||
sumi2 += q8[j] * grid[j] * (signs & kmask_iq2xs[j] ? -1 : 1);
|
||||
}
|
||||
const uint32_t * grid = (const uint32_t *)(iq2xs_grid + (q2[l] & 511));
|
||||
const uint32_t * signs = (const uint32_t *)(ksigns64 + (q2[l] >> 9));
|
||||
const int grid_l = __vsub4(grid[0] ^ signs[0], signs[0]);
|
||||
const int grid_h = __vsub4(grid[1] ^ signs[1], signs[1]);
|
||||
sumi2 = __dp4a(grid_l, *((const int *)q8 + 0), sumi2);
|
||||
sumi2 = __dp4a(grid_h, *((const int *)q8 + 1), sumi2);
|
||||
q8 += 8;
|
||||
}
|
||||
const float d = (float)bq2->d * __low2float(bq8_1[ib32].ds) * 0.25f;
|
||||
|
@ -4345,6 +4460,45 @@ static __device__ __forceinline__ float vec_dot_iq2_xs_q8_1(
|
|||
assert(false);
|
||||
return 0.f;
|
||||
#endif
|
||||
#else
|
||||
assert(false);
|
||||
return 0.f;
|
||||
#endif
|
||||
}
|
||||
|
||||
static __device__ __forceinline__ float vec_dot_iq3_xxs_q8_1(
|
||||
const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
|
||||
#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
|
||||
#if QK_K == 256
|
||||
const block_iq3_xxs * bq2 = (const block_iq3_xxs *) vbq;
|
||||
|
||||
const int ib32 = iqs;
|
||||
const uint8_t * q3 = bq2->qs + 8*ib32;
|
||||
const uint16_t * gas = (const uint16_t *)(bq2->qs + QK_K/4) + 2*ib32;
|
||||
const int8_t * q8 = bq8_1[ib32].qs;
|
||||
uint32_t aux32 = gas[0] | (gas[1] << 16);
|
||||
int sumi = 0;
|
||||
for (int l = 0; l < 4; ++l) {
|
||||
const uint32_t * grid1 = iq3xxs_grid + q3[2*l+0];
|
||||
const uint32_t * grid2 = iq3xxs_grid + q3[2*l+1];
|
||||
const uint32_t * signs = (const uint32_t *)(ksigns64 + (aux32 & 127));
|
||||
const int grid_l = __vsub4(grid1[0] ^ signs[0], signs[0]);
|
||||
const int grid_h = __vsub4(grid2[0] ^ signs[1], signs[1]);
|
||||
sumi = __dp4a(grid_l, *((int *)q8+0), sumi);
|
||||
sumi = __dp4a(grid_h, *((int *)q8+1), sumi);
|
||||
q8 += 8;
|
||||
aux32 >>= 7;
|
||||
}
|
||||
const float d = (float)bq2->d * (0.5f + aux32) * __low2float(bq8_1[ib32].ds) * 0.5f;
|
||||
return d * sumi;
|
||||
#else
|
||||
assert(false);
|
||||
return 0.f;
|
||||
#endif
|
||||
#else
|
||||
assert(false);
|
||||
return 0.f;
|
||||
#endif
|
||||
}
|
||||
|
||||
template <int qk, int qr, int qi, bool need_sum, typename block_q_t, int mmq_x, int mmq_y, int nwarps,
|
||||
|
@ -5357,27 +5511,37 @@ static __device__ void cpy_1_f16_f16(const char * cxi, char * cdsti) {
|
|||
*dsti = *xi;
|
||||
}
|
||||
|
||||
static __device__ void cpy_1_f16_f32(const char * cxi, char * cdsti) {
|
||||
const half * xi = (const half *) cxi;
|
||||
float * dsti = (float *) cdsti;
|
||||
|
||||
*dsti = *xi;
|
||||
}
|
||||
|
||||
template <cpy_kernel_t cpy_1>
|
||||
static __global__ void cpy_f32_f16(const char * cx, char * cdst, const int ne,
|
||||
const int ne00, const int ne01, const int nb00, const int nb01, const int nb02,
|
||||
const int ne10, const int ne11, const int nb10, const int nb11, const int nb12) {
|
||||
const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
|
||||
const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11,
|
||||
const int nb12, const int nb13) {
|
||||
const int i = blockDim.x*blockIdx.x + threadIdx.x;
|
||||
|
||||
if (i >= ne) {
|
||||
return;
|
||||
}
|
||||
|
||||
// determine indices i02/i12, i01/i11, i00/i10 as a function of index i of flattened tensor
|
||||
// determine indices i03/i13, i02/i12, i01/i11, i00/i10 as a function of index i of flattened tensor
|
||||
// then combine those indices with the corresponding byte offsets to get the total offsets
|
||||
const int i02 = i / (ne00*ne01);
|
||||
const int i01 = (i - i02*ne01*ne00) / ne00;
|
||||
const int i00 = i - i02*ne01*ne00 - i01*ne00;
|
||||
const int x_offset = i00*nb00 + i01*nb01 + i02*nb02;
|
||||
const int i03 = i/(ne00 * ne01 * ne02);
|
||||
const int i02 = (i - i03*ne00*ne01*ne02 )/ (ne00*ne01);
|
||||
const int i01 = (i - i03*ne00*ne01*ne02 - i02*ne01*ne00) / ne00;
|
||||
const int i00 = i - i03*ne00*ne01*ne02 - i02*ne01*ne00 - i01*ne00;
|
||||
const int x_offset = i00*nb00 + i01*nb01 + i02*nb02 + i03 * nb03;
|
||||
|
||||
const int i12 = i / (ne10*ne11);
|
||||
const int i11 = (i - i12*ne10*ne11) / ne10;
|
||||
const int i10 = i - i12*ne10*ne11 - i11*ne10;
|
||||
const int dst_offset = i10*nb10 + i11*nb11 + i12*nb12;
|
||||
const int i13 = i/(ne10 * ne11 * ne12);
|
||||
const int i12 = (i - i13*ne10*ne11*ne12) / (ne10*ne11);
|
||||
const int i11 = (i - i13*ne10*ne11*ne12 - i12*ne10*ne11) / ne10;
|
||||
const int i10 = i - i13*ne10*ne11*ne12 - i12*ne10*ne11 - i11*ne10;
|
||||
const int dst_offset = i10*nb10 + i11*nb11 + i12*nb12 + i13 * nb13;
|
||||
|
||||
cpy_1(cx + x_offset, cdst + dst_offset);
|
||||
}
|
||||
|
@ -5471,23 +5635,26 @@ static __device__ void cpy_blck_f32_q4_1(const char * cxi, char * cdsti) {
|
|||
|
||||
template <cpy_kernel_t cpy_blck, int qk>
|
||||
static __global__ void cpy_f32_q(const char * cx, char * cdst, const int ne,
|
||||
const int ne00, const int ne01, const int nb00, const int nb01, const int nb02,
|
||||
const int ne10, const int ne11, const int nb10, const int nb11, const int nb12) {
|
||||
const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
|
||||
const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11,
|
||||
const int nb12, const int nb13) {
|
||||
const int i = (blockDim.x*blockIdx.x + threadIdx.x)*qk;
|
||||
|
||||
if (i >= ne) {
|
||||
return;
|
||||
}
|
||||
|
||||
const int i02 = i / (ne00*ne01);
|
||||
const int i01 = (i - i02*ne01*ne00) / ne00;
|
||||
const int i00 = (i - i02*ne01*ne00 - i01*ne00);
|
||||
const int x_offset = i00*nb00 + i01*nb01 + i02*nb02;
|
||||
const int i03 = i/(ne00 * ne01 * ne02);
|
||||
const int i02 = (i - i03*ne00*ne01*ne02 )/ (ne00*ne01);
|
||||
const int i01 = (i - i03*ne00*ne01*ne02 - i02*ne01*ne00) / ne00;
|
||||
const int i00 = i - i03*ne00*ne01*ne02 - i02*ne01*ne00 - i01*ne00;
|
||||
const int x_offset = i00*nb00 + i01*nb01 + i02*nb02 + i03 * nb03;
|
||||
|
||||
const int i12 = i / (ne10*ne11);
|
||||
const int i11 = (i - i12*ne10*ne11) / ne10;
|
||||
const int i10 = (i - i12*ne10*ne11 - i11*ne10)/qk;
|
||||
const int dst_offset = i10*nb10 + i11*nb11 + i12*nb12;
|
||||
const int i13 = i/(ne10 * ne11 * ne12);
|
||||
const int i12 = (i - i13*ne10*ne11*ne12) / (ne10*ne11);
|
||||
const int i11 = (i - i13*ne10*ne11*ne12 - i12*ne10*ne11) / ne10;
|
||||
const int i10 = i - i13*ne10*ne11*ne12 - i12*ne10*ne11 - i11*ne10;
|
||||
const int dst_offset = (i10/qk)*nb10 + i11*nb11 + i12*nb12 + i13*nb13;
|
||||
|
||||
cpy_blck(cx + x_offset, cdst + dst_offset);
|
||||
}
|
||||
|
@ -6381,6 +6548,12 @@ static void dequantize_row_iq2_xs_cuda(const void * vx, dst_t * y, const int k,
|
|||
dequantize_block_iq2_xs<<<nb, 32, 0, stream>>>(vx, y);
|
||||
}
|
||||
|
||||
template<typename dst_t>
|
||||
static void dequantize_row_iq3_xxs_cuda(const void * vx, dst_t * y, const int k, cudaStream_t stream) {
|
||||
const int nb = k / QK_K;
|
||||
dequantize_block_iq3_xxs<<<nb, 32, 0, stream>>>(vx, y);
|
||||
}
|
||||
|
||||
template <typename src_t, typename dst_t>
|
||||
static void convert_unary_cuda(const void * __restrict__ vx, dst_t * __restrict__ y, const int k, cudaStream_t stream) {
|
||||
const int num_blocks = (k + CUDA_DEQUANTIZE_BLOCK_SIZE - 1) / CUDA_DEQUANTIZE_BLOCK_SIZE;
|
||||
|
@ -6418,6 +6591,8 @@ static to_fp16_cuda_t ggml_get_to_fp16_cuda(ggml_type type) {
|
|||
return dequantize_row_iq2_xxs_cuda;
|
||||
case GGML_TYPE_IQ2_XS:
|
||||
return dequantize_row_iq2_xs_cuda;
|
||||
case GGML_TYPE_IQ3_XXS:
|
||||
return dequantize_row_iq3_xxs_cuda;
|
||||
case GGML_TYPE_F32:
|
||||
return convert_unary_cuda<float>;
|
||||
default:
|
||||
|
@ -6451,6 +6626,8 @@ static to_fp32_cuda_t ggml_get_to_fp32_cuda(ggml_type type) {
|
|||
return dequantize_row_iq2_xxs_cuda;
|
||||
case GGML_TYPE_IQ2_XS:
|
||||
return dequantize_row_iq2_xs_cuda;
|
||||
case GGML_TYPE_IQ3_XXS:
|
||||
return dequantize_row_iq3_xxs_cuda;
|
||||
case GGML_TYPE_F16:
|
||||
return convert_unary_cuda<half>;
|
||||
default:
|
||||
|
@ -6663,6 +6840,15 @@ static void mul_mat_vec_iq2_xs_q8_1_cuda(const void * vx, const void * vy, float
|
|||
<<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols, nrows);
|
||||
}
|
||||
|
||||
static void mul_mat_vec_iq3_xxs_q8_1_cuda(const void * vx, const void * vy, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
|
||||
GGML_ASSERT(ncols % QK_K == 0);
|
||||
const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
|
||||
const dim3 block_nums(block_num_y, 1, 1);
|
||||
const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
|
||||
mul_mat_vec_q<QK_K, QI3_XXS, block_iq3_xxs, 1, vec_dot_iq3_xxs_q8_1>
|
||||
<<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols, nrows);
|
||||
}
|
||||
|
||||
static void ggml_mul_mat_q4_0_q8_1_cuda(
|
||||
const void * vx, const void * vy, float * dst, const int ncols_x, const int nrows_x,
|
||||
const int ncols_y, const int nrows_y, const int nrows_dst, cudaStream_t stream) {
|
||||
|
@ -7135,69 +7321,82 @@ static void ggml_mul_mat_vec_nc_f16_f32_cuda(
|
|||
(vx, y, dst, ncols_x, nrows_x, row_stride_x, channel_stride_x, nchannels_y/nchannels_x);
|
||||
}
|
||||
|
||||
|
||||
static void ggml_cpy_f16_f32_cuda(
|
||||
const char * cx, char * cdst, const int ne,
|
||||
const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
|
||||
const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream) {
|
||||
|
||||
const int num_blocks = (ne + CUDA_CPY_BLOCK_SIZE - 1) / CUDA_CPY_BLOCK_SIZE;
|
||||
cpy_f32_f16<cpy_1_f16_f32><<<num_blocks, CUDA_CPY_BLOCK_SIZE, 0, stream>>>
|
||||
(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13);
|
||||
}
|
||||
|
||||
static void ggml_cpy_f32_f32_cuda(
|
||||
const char * cx, char * cdst, const int ne,
|
||||
const int ne00, const int ne01, const int nb00, const int nb01, const int nb02,
|
||||
const int ne10, const int ne11, const int nb10, const int nb11, const int nb12, cudaStream_t stream) {
|
||||
const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
|
||||
const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream) {
|
||||
|
||||
const int num_blocks = (ne + CUDA_CPY_BLOCK_SIZE - 1) / CUDA_CPY_BLOCK_SIZE;
|
||||
cpy_f32_f16<cpy_1_f32_f32><<<num_blocks, CUDA_CPY_BLOCK_SIZE, 0, stream>>>
|
||||
(cx, cdst, ne, ne00, ne01, nb00, nb01, nb02, ne10, ne11, nb10, nb11, nb12);
|
||||
(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13);
|
||||
}
|
||||
|
||||
static void ggml_cpy_f32_f16_cuda(
|
||||
const char * cx, char * cdst, const int ne,
|
||||
const int ne00, const int ne01, const int nb00, const int nb01, const int nb02,
|
||||
const int ne10, const int ne11, const int nb10, const int nb11, const int nb12, cudaStream_t stream) {
|
||||
const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
|
||||
const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream) {
|
||||
|
||||
const int num_blocks = (ne + CUDA_CPY_BLOCK_SIZE - 1) / CUDA_CPY_BLOCK_SIZE;
|
||||
cpy_f32_f16<cpy_1_f32_f16><<<num_blocks, CUDA_CPY_BLOCK_SIZE, 0, stream>>>
|
||||
(cx, cdst, ne, ne00, ne01, nb00, nb01, nb02, ne10, ne11, nb10, nb11, nb12);
|
||||
(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13);
|
||||
}
|
||||
|
||||
static void ggml_cpy_f32_q8_0_cuda(
|
||||
const char * cx, char * cdst, const int ne,
|
||||
const int ne00, const int ne01, const int nb00, const int nb01, const int nb02,
|
||||
const int ne10, const int ne11, const int nb10, const int nb11, const int nb12, cudaStream_t stream) {
|
||||
const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
|
||||
const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream) {
|
||||
|
||||
GGML_ASSERT(ne % QK8_0 == 0);
|
||||
const int num_blocks = ne / QK8_0;
|
||||
cpy_f32_q<cpy_blck_f32_q8_0, QK8_0><<<num_blocks, 1, 0, stream>>>
|
||||
(cx, cdst, ne, ne00, ne01, nb00, nb01, nb02, ne10, ne11, nb10, nb11, nb12);
|
||||
(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13);
|
||||
}
|
||||
|
||||
static void ggml_cpy_f32_q4_0_cuda(
|
||||
const char * cx, char * cdst, const int ne,
|
||||
const int ne00, const int ne01, const int nb00, const int nb01, const int nb02,
|
||||
const int ne10, const int ne11, const int nb10, const int nb11, const int nb12, cudaStream_t stream) {
|
||||
const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
|
||||
const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream) {
|
||||
|
||||
GGML_ASSERT(ne % QK4_0 == 0);
|
||||
const int num_blocks = ne / QK4_0;
|
||||
cpy_f32_q<cpy_blck_f32_q4_0, QK4_0><<<num_blocks, 1, 0, stream>>>
|
||||
(cx, cdst, ne, ne00, ne01, nb00, nb01, nb02, ne10, ne11, nb10, nb11, nb12);
|
||||
(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13);
|
||||
}
|
||||
|
||||
static void ggml_cpy_f32_q4_1_cuda(
|
||||
const char * cx, char * cdst, const int ne,
|
||||
const int ne00, const int ne01, const int nb00, const int nb01, const int nb02,
|
||||
const int ne10, const int ne11, const int nb10, const int nb11, const int nb12, cudaStream_t stream) {
|
||||
const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
|
||||
const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream) {
|
||||
|
||||
GGML_ASSERT(ne % QK4_1 == 0);
|
||||
const int num_blocks = ne / QK4_1;
|
||||
cpy_f32_q<cpy_blck_f32_q4_1, QK4_1><<<num_blocks, 1, 0, stream>>>
|
||||
(cx, cdst, ne, ne00, ne01, nb00, nb01, nb02, ne10, ne11, nb10, nb11, nb12);
|
||||
(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13);
|
||||
}
|
||||
|
||||
static void ggml_cpy_f16_f16_cuda(
|
||||
const char * cx, char * cdst, const int ne,
|
||||
const int ne00, const int ne01, const int nb00, const int nb01, const int nb02,
|
||||
const int ne10, const int ne11, const int nb10, const int nb11, const int nb12, cudaStream_t stream) {
|
||||
const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
|
||||
const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream) {
|
||||
|
||||
const int num_blocks = (ne + CUDA_CPY_BLOCK_SIZE - 1) / CUDA_CPY_BLOCK_SIZE;
|
||||
cpy_f32_f16<cpy_1_f16_f16><<<num_blocks, CUDA_CPY_BLOCK_SIZE, 0, stream>>>
|
||||
(cx, cdst, ne, ne00, ne01, nb00, nb01, nb02, ne10, ne11, nb10, nb11, nb12);
|
||||
(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13);
|
||||
}
|
||||
|
||||
|
||||
|
||||
static void scale_f32_cuda(const float * x, float * dst, const float scale, const int k, cudaStream_t stream) {
|
||||
const int num_blocks = (k + CUDA_SCALE_BLOCK_SIZE - 1) / CUDA_SCALE_BLOCK_SIZE;
|
||||
scale_f32<<<num_blocks, CUDA_SCALE_BLOCK_SIZE, 0, stream>>>(x, dst, scale, k);
|
||||
|
@ -8213,6 +8412,7 @@ static int64_t get_row_rounding(ggml_type type, const std::array<float, GGML_CUD
|
|||
case GGML_TYPE_Q6_K:
|
||||
case GGML_TYPE_IQ2_XXS:
|
||||
case GGML_TYPE_IQ2_XS:
|
||||
case GGML_TYPE_IQ3_XXS:
|
||||
return max_compute_capability >= CC_RDNA2 ? 128 : 64;
|
||||
default:
|
||||
GGML_ASSERT(false);
|
||||
|
@ -8235,6 +8435,7 @@ static int64_t get_row_rounding(ggml_type type, const std::array<float, GGML_CUD
|
|||
case GGML_TYPE_Q5_K:
|
||||
case GGML_TYPE_IQ2_XXS:
|
||||
case GGML_TYPE_IQ2_XS:
|
||||
case GGML_TYPE_IQ3_XXS:
|
||||
return max_compute_capability >= CC_VOLTA ? 128 : 64;
|
||||
case GGML_TYPE_Q6_K:
|
||||
return 64;
|
||||
|
@ -8306,6 +8507,9 @@ static void ggml_cuda_op_mul_mat_vec_q(
|
|||
case GGML_TYPE_IQ2_XS:
|
||||
mul_mat_vec_iq2_xs_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream);
|
||||
break;
|
||||
case GGML_TYPE_IQ3_XXS:
|
||||
mul_mat_vec_iq3_xxs_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream);
|
||||
break;
|
||||
default:
|
||||
GGML_ASSERT(false);
|
||||
break;
|
||||
|
@ -9941,19 +10145,25 @@ static void ggml_cuda_cpy(const ggml_tensor * src0, const ggml_tensor * src1, gg
|
|||
|
||||
const int64_t ne00 = src0->ne[0];
|
||||
const int64_t ne01 = src0->ne[1];
|
||||
GGML_ASSERT(src0->ne[3] == 1);
|
||||
const int64_t ne02 = src0->ne[2];
|
||||
|
||||
//GGML_ASSERT(src0->ne[3] == 1);
|
||||
|
||||
const int64_t nb00 = src0->nb[0];
|
||||
const int64_t nb01 = src0->nb[1];
|
||||
const int64_t nb02 = src0->nb[2];
|
||||
const int64_t nb03 = src0->nb[3];
|
||||
|
||||
const int64_t ne10 = src1->ne[0];
|
||||
const int64_t ne11 = src1->ne[1];
|
||||
GGML_ASSERT(src1->ne[3] == 1);
|
||||
const int64_t ne12 = src1->ne[2];
|
||||
|
||||
//GGML_ASSERT(src1->ne[3] == 1);
|
||||
|
||||
const int64_t nb10 = src1->nb[0];
|
||||
const int64_t nb11 = src1->nb[1];
|
||||
const int64_t nb12 = src1->nb[2];
|
||||
const int64_t nb13 = src1->nb[3];
|
||||
|
||||
ggml_cuda_set_device(g_main_device);
|
||||
cudaStream_t main_stream = g_cudaStreams[g_main_device][0];
|
||||
|
@ -9965,17 +10175,19 @@ static void ggml_cuda_cpy(const ggml_tensor * src0, const ggml_tensor * src1, gg
|
|||
char * src1_ddc = (char *) src1_extra->data_device[g_main_device];
|
||||
|
||||
if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32) {
|
||||
ggml_cpy_f32_f32_cuda (src0_ddc, src1_ddc, ne, ne00, ne01, nb00, nb01, nb02, ne10, ne11, nb10, nb11, nb12, main_stream);
|
||||
ggml_cpy_f32_f32_cuda (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
|
||||
} else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F16) {
|
||||
ggml_cpy_f32_f16_cuda (src0_ddc, src1_ddc, ne, ne00, ne01, nb00, nb01, nb02, ne10, ne11, nb10, nb11, nb12, main_stream);
|
||||
ggml_cpy_f32_f16_cuda (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
|
||||
} else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_Q8_0) {
|
||||
ggml_cpy_f32_q8_0_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, nb00, nb01, nb02, ne10, ne11, nb10, nb11, nb12, main_stream);
|
||||
ggml_cpy_f32_q8_0_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
|
||||
} else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_Q4_0) {
|
||||
ggml_cpy_f32_q4_0_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, nb00, nb01, nb02, ne10, ne11, nb10, nb11, nb12, main_stream);
|
||||
ggml_cpy_f32_q4_0_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
|
||||
} else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_Q4_1) {
|
||||
ggml_cpy_f32_q4_1_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, nb00, nb01, nb02, ne10, ne11, nb10, nb11, nb12, main_stream);
|
||||
ggml_cpy_f32_q4_1_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
|
||||
} else if (src0->type == GGML_TYPE_F16 && src1->type == GGML_TYPE_F16) {
|
||||
ggml_cpy_f16_f16_cuda (src0_ddc, src1_ddc, ne, ne00, ne01, nb00, nb01, nb02, ne10, ne11, nb10, nb11, nb12, main_stream);
|
||||
ggml_cpy_f16_f16_cuda (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
|
||||
} else if (src0->type == GGML_TYPE_F16 && src1->type == GGML_TYPE_F32) {
|
||||
ggml_cpy_f16_f32_cuda (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
|
||||
} else {
|
||||
fprintf(stderr, "%s: unsupported type combination (%s to %s)\n", __func__,
|
||||
ggml_type_name(src0->type), ggml_type_name(src1->type));
|
||||
|
@ -10934,7 +11146,7 @@ GGML_CALL static bool ggml_backend_cuda_supports_op(ggml_backend_t backend, cons
|
|||
return false;
|
||||
}
|
||||
ggml_type a_type = a->type;
|
||||
if (a_type == GGML_TYPE_IQ2_XXS || a_type == GGML_TYPE_IQ2_XS) {
|
||||
if (a_type == GGML_TYPE_IQ2_XXS || a_type == GGML_TYPE_IQ2_XS || a_type == GGML_TYPE_IQ3_XXS) {
|
||||
if (b->ne[1] == 1 && ggml_nrows(b) > 1) {
|
||||
return false;
|
||||
}
|
||||
|
@ -10978,6 +11190,9 @@ GGML_CALL static bool ggml_backend_cuda_supports_op(ggml_backend_t backend, cons
|
|||
if (src0_type == GGML_TYPE_F16 && src1_type == GGML_TYPE_F16) {
|
||||
return true;
|
||||
}
|
||||
if (src0_type == GGML_TYPE_F16 && src1_type == GGML_TYPE_F32) {
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
} break;
|
||||
case GGML_OP_DUP:
|
||||
|
|
|
@ -57,6 +57,9 @@ GGML_API GGML_CALL ggml_backend_buffer_type_t ggml_backend_metal_buffer_type(voi
|
|||
// ref: https://developer.apple.com/metal/Metal-Feature-Set-Tables.pdf
|
||||
GGML_API bool ggml_backend_metal_supports_family(ggml_backend_t backend, int family);
|
||||
|
||||
// capture all command buffers committed the next time `ggml_backend_graph_compute` is called
|
||||
GGML_API void ggml_backend_metal_capture_next_compute(ggml_backend_t backend);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
|
73
ggml-metal.m
73
ggml-metal.m
|
@ -60,6 +60,7 @@ enum ggml_metal_kernel_type {
|
|||
GGML_METAL_KERNEL_TYPE_GET_ROWS_Q6_K,
|
||||
GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ2_XXS,
|
||||
GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ2_XS,
|
||||
GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ3_XXS,
|
||||
GGML_METAL_KERNEL_TYPE_GET_ROWS_I32,
|
||||
GGML_METAL_KERNEL_TYPE_RMS_NORM,
|
||||
GGML_METAL_KERNEL_TYPE_GROUP_NORM,
|
||||
|
@ -81,6 +82,7 @@ enum ggml_metal_kernel_type {
|
|||
GGML_METAL_KERNEL_TYPE_MUL_MV_Q6_K_F32,
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MV_IQ2_XXS_F32,
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MV_IQ2_XS_F32,
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MV_IQ3_XXS_F32,
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MV_ID_F32_F32,
|
||||
//GGML_METAL_KERNEL_TYPE_MUL_MV_ID_F16_F16,
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MV_ID_F16_F32,
|
||||
|
@ -98,6 +100,7 @@ enum ggml_metal_kernel_type {
|
|||
GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q6_K_F32,
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ2_XXS_F32,
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ2_XS_F32,
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ3_XXS_F32,
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MM_F32_F32,
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MM_F16_F32,
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MM_Q4_0_F32,
|
||||
|
@ -112,6 +115,7 @@ enum ggml_metal_kernel_type {
|
|||
GGML_METAL_KERNEL_TYPE_MUL_MM_Q6_K_F32,
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MM_IQ2_XXS_F32,
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MM_IQ2_XS_F32,
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MM_IQ3_XXS_F32,
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_F32_F32,
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_F16_F32,
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q4_0_F32,
|
||||
|
@ -126,6 +130,7 @@ enum ggml_metal_kernel_type {
|
|||
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q6_K_F32,
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ2_XXS_F32,
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ2_XS_F32,
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ3_XXS_F32,
|
||||
GGML_METAL_KERNEL_TYPE_ROPE_F32,
|
||||
GGML_METAL_KERNEL_TYPE_ROPE_F16,
|
||||
GGML_METAL_KERNEL_TYPE_ALIBI_F32,
|
||||
|
@ -163,6 +168,8 @@ struct ggml_metal_context {
|
|||
|
||||
bool support_simdgroup_reduction;
|
||||
bool support_simdgroup_mm;
|
||||
|
||||
bool should_capture_next_compute;
|
||||
};
|
||||
|
||||
// MSL code
|
||||
|
@ -349,6 +356,8 @@ static struct ggml_metal_context * ggml_metal_init(int n_cb) {
|
|||
GGML_METAL_LOG_INFO("%s: simdgroup matrix mul. support = %s\n", __func__, ctx->support_simdgroup_mm ? "true" : "false");
|
||||
GGML_METAL_LOG_INFO("%s: hasUnifiedMemory = %s\n", __func__, ctx->device.hasUnifiedMemory ? "true" : "false");
|
||||
|
||||
ctx->should_capture_next_compute = false;
|
||||
|
||||
#if TARGET_OS_OSX || (TARGET_OS_IOS && __clang_major__ >= 15)
|
||||
if (@available(macOS 10.12, iOS 16.0, *)) {
|
||||
GGML_METAL_LOG_INFO("%s: recommendedMaxWorkingSetSize = %8.2f MB\n", __func__, ctx->device.recommendedMaxWorkingSetSize / 1e6);
|
||||
|
@ -422,6 +431,7 @@ static struct ggml_metal_context * ggml_metal_init(int n_cb) {
|
|||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_Q6_K, get_rows_q6_K, true);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ2_XXS, get_rows_iq2_xxs, true);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ2_XS, get_rows_iq2_xs, true);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ3_XXS, get_rows_iq3_xxs, true);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_I32, get_rows_i32, true);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_RMS_NORM, rms_norm, ctx->support_simdgroup_reduction);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GROUP_NORM, group_norm, ctx->support_simdgroup_reduction);
|
||||
|
@ -443,6 +453,7 @@ static struct ggml_metal_context * ggml_metal_init(int n_cb) {
|
|||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_Q6_K_F32, mul_mv_q6_K_f32, ctx->support_simdgroup_reduction);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_IQ2_XXS_F32, mul_mv_iq2_xxs_f32, ctx->support_simdgroup_reduction);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_IQ2_XS_F32, mul_mv_iq2_xs_f32, ctx->support_simdgroup_reduction);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_IQ3_XXS_F32, mul_mv_iq3_xxs_f32, ctx->support_simdgroup_reduction);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_F32_F32, mul_mv_id_f32_f32, ctx->support_simdgroup_reduction);
|
||||
//GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_F16_F16, mul_mv_id_f16_f16, ctx->support_simdgroup_reduction);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_F16_F32, mul_mv_id_f16_f32, ctx->support_simdgroup_reduction);
|
||||
|
@ -460,6 +471,7 @@ static struct ggml_metal_context * ggml_metal_init(int n_cb) {
|
|||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q6_K_F32, mul_mv_id_q6_K_f32, ctx->support_simdgroup_reduction);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ2_XXS_F32, mul_mv_id_iq2_xxs_f32, ctx->support_simdgroup_reduction);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ2_XS_F32, mul_mv_id_iq2_xs_f32, ctx->support_simdgroup_reduction);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ3_XXS_F32, mul_mv_id_iq3_xxs_f32, ctx->support_simdgroup_reduction);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_F32_F32, mul_mm_f32_f32, ctx->support_simdgroup_mm);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_F16_F32, mul_mm_f16_f32, ctx->support_simdgroup_mm);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_Q4_0_F32, mul_mm_q4_0_f32, ctx->support_simdgroup_mm);
|
||||
|
@ -474,6 +486,7 @@ static struct ggml_metal_context * ggml_metal_init(int n_cb) {
|
|||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_Q6_K_F32, mul_mm_q6_K_f32, ctx->support_simdgroup_mm);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ2_XXS_F32, mul_mm_iq2_xxs_f32, ctx->support_simdgroup_mm);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ2_XS_F32, mul_mm_iq2_xs_f32, ctx->support_simdgroup_mm);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ3_XXS_F32, mul_mm_iq3_xxs_f32, ctx->support_simdgroup_mm);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_F32_F32, mul_mm_id_f32_f32, ctx->support_simdgroup_mm);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_F16_F32, mul_mm_id_f16_f32, ctx->support_simdgroup_mm);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q4_0_F32, mul_mm_id_q4_0_f32, ctx->support_simdgroup_mm);
|
||||
|
@ -488,6 +501,7 @@ static struct ggml_metal_context * ggml_metal_init(int n_cb) {
|
|||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q6_K_F32, mul_mm_id_q6_K_f32, ctx->support_simdgroup_mm);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ2_XXS_F32, mul_mm_id_iq2_xxs_f32, ctx->support_simdgroup_mm);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ2_XS_F32, mul_mm_id_iq2_xs_f32, ctx->support_simdgroup_mm);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ3_XXS_F32, mul_mm_id_iq3_xxs_f32, ctx->support_simdgroup_mm);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ROPE_F32, rope_f32, true);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ROPE_F16, rope_f16, true);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ALIBI_F32, alibi_f32, true);
|
||||
|
@ -677,6 +691,20 @@ static bool ggml_metal_graph_compute(
|
|||
const int n_cb = ctx->n_cb;
|
||||
const int n_nodes_per_cb = (n_nodes + n_cb - 1) / n_cb;
|
||||
|
||||
const bool should_capture = ctx->should_capture_next_compute;
|
||||
if (should_capture) {
|
||||
ctx->should_capture_next_compute = false;
|
||||
|
||||
MTLCaptureDescriptor * descriptor = [MTLCaptureDescriptor new];
|
||||
descriptor.captureObject = ctx->queue;
|
||||
|
||||
NSError * error = nil;
|
||||
if (![[MTLCaptureManager sharedCaptureManager] startCaptureWithDescriptor:descriptor error:&error]) {
|
||||
GGML_METAL_LOG_ERROR("%s: error: unable to start capture '%s'\n", __func__, [[error localizedDescription] UTF8String]);
|
||||
GGML_ASSERT(!"capture failed");
|
||||
}
|
||||
}
|
||||
|
||||
id<MTLCommandBuffer> command_buffer_builder[n_cb];
|
||||
for (int cb_idx = 0; cb_idx < n_cb; ++cb_idx) {
|
||||
id<MTLCommandBuffer> command_buffer = [ctx->queue commandBufferWithUnretainedReferences];
|
||||
|
@ -685,6 +713,7 @@ static bool ggml_metal_graph_compute(
|
|||
// enqueue the command buffers in order to specify their execution order
|
||||
[command_buffer enqueue];
|
||||
}
|
||||
|
||||
const id<MTLCommandBuffer> *command_buffers = command_buffer_builder;
|
||||
|
||||
dispatch_apply(n_cb, ctx->d_queue, ^(size_t iter) {
|
||||
|
@ -731,9 +760,9 @@ static bool ggml_metal_graph_compute(
|
|||
GGML_ASSERT(!"unsupported op");
|
||||
}
|
||||
|
||||
#ifndef GGML_METAL_NDEBUG
|
||||
if (should_capture) {
|
||||
[encoder pushDebugGroup:[NSString stringWithCString:ggml_op_desc(dst) encoding:NSUTF8StringEncoding]];
|
||||
#endif
|
||||
}
|
||||
|
||||
const int64_t ne00 = src0 ? src0->ne[0] : 0;
|
||||
const int64_t ne01 = src0 ? src0->ne[1] : 0;
|
||||
|
@ -1260,6 +1289,7 @@ static bool ggml_metal_graph_compute(
|
|||
case GGML_TYPE_Q6_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_Q6_K_F32 ].pipeline; break;
|
||||
case GGML_TYPE_IQ2_XXS: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_IQ2_XXS_F32].pipeline; break;
|
||||
case GGML_TYPE_IQ2_XS: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_IQ2_XS_F32 ].pipeline; break;
|
||||
case GGML_TYPE_IQ3_XXS: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_IQ3_XXS_F32].pipeline; break;
|
||||
default: GGML_ASSERT(false && "MUL MAT-MAT not implemented");
|
||||
}
|
||||
|
||||
|
@ -1388,6 +1418,12 @@ static bool ggml_metal_graph_compute(
|
|||
nth1 = 16;
|
||||
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_IQ2_XS_F32].pipeline;
|
||||
} break;
|
||||
case GGML_TYPE_IQ3_XXS:
|
||||
{
|
||||
nth0 = 4;
|
||||
nth1 = 16;
|
||||
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_IQ3_XXS_F32].pipeline;
|
||||
} break;
|
||||
default:
|
||||
{
|
||||
GGML_METAL_LOG_ERROR("Asserting on type %d\n", (int)src0t);
|
||||
|
@ -1430,6 +1466,11 @@ static bool ggml_metal_graph_compute(
|
|||
[encoder setThreadgroupMemoryLength:mem_size atIndex:0];
|
||||
[encoder dispatchThreadgroups:MTLSizeMake((ne01 + 7)/8, ne11, ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
||||
}
|
||||
else if (src0t == GGML_TYPE_IQ3_XXS) {
|
||||
const int mem_size = 256*4+128;
|
||||
[encoder setThreadgroupMemoryLength:mem_size atIndex:0];
|
||||
[encoder dispatchThreadgroups:MTLSizeMake((ne01 + 7)/8, ne11, ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
||||
}
|
||||
else if (src0t == GGML_TYPE_Q4_K) {
|
||||
[encoder dispatchThreadgroups:MTLSizeMake((ne01 + 3)/4, ne11, ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
||||
}
|
||||
|
@ -1524,6 +1565,7 @@ static bool ggml_metal_graph_compute(
|
|||
case GGML_TYPE_Q6_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q6_K_F32 ].pipeline; break;
|
||||
case GGML_TYPE_IQ2_XXS: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ2_XXS_F32].pipeline; break;
|
||||
case GGML_TYPE_IQ2_XS: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ2_XS_F32 ].pipeline; break;
|
||||
case GGML_TYPE_IQ3_XXS: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ3_XXS_F32].pipeline; break;
|
||||
default: GGML_ASSERT(false && "MUL_MAT_ID not implemented");
|
||||
}
|
||||
|
||||
|
@ -1655,6 +1697,12 @@ static bool ggml_metal_graph_compute(
|
|||
nth1 = 16;
|
||||
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ2_XS_F32].pipeline;
|
||||
} break;
|
||||
case GGML_TYPE_IQ3_XXS:
|
||||
{
|
||||
nth0 = 4;
|
||||
nth1 = 16;
|
||||
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ3_XXS_F32].pipeline;
|
||||
} break;
|
||||
default:
|
||||
{
|
||||
GGML_METAL_LOG_ERROR("Asserting on type %d\n", (int)src2t);
|
||||
|
@ -1713,6 +1761,11 @@ static bool ggml_metal_graph_compute(
|
|||
[encoder setThreadgroupMemoryLength:mem_size atIndex:0];
|
||||
[encoder dispatchThreadgroups:MTLSizeMake((ne21 + 7)/8, _ne1, ne01*ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
||||
}
|
||||
else if (src2t == GGML_TYPE_IQ3_XXS) {
|
||||
const int mem_size = 256*4+128;
|
||||
[encoder setThreadgroupMemoryLength:mem_size atIndex:0];
|
||||
[encoder dispatchThreadgroups:MTLSizeMake((ne21 + 7)/8, _ne1, ne01*ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
||||
}
|
||||
else if (src2t == GGML_TYPE_Q4_K) {
|
||||
[encoder dispatchThreadgroups:MTLSizeMake((ne21 + 3)/4, _ne1, ne01*ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
||||
}
|
||||
|
@ -1753,6 +1806,7 @@ static bool ggml_metal_graph_compute(
|
|||
case GGML_TYPE_Q6_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_Q6_K ].pipeline; break;
|
||||
case GGML_TYPE_IQ2_XXS: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ2_XXS].pipeline; break;
|
||||
case GGML_TYPE_IQ2_XS: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ2_XS ].pipeline; break;
|
||||
case GGML_TYPE_IQ3_XXS: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ3_XXS].pipeline; break;
|
||||
case GGML_TYPE_I32: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_I32 ].pipeline; break;
|
||||
default: GGML_ASSERT(false && "not implemented");
|
||||
}
|
||||
|
@ -2183,9 +2237,9 @@ static bool ggml_metal_graph_compute(
|
|||
}
|
||||
}
|
||||
|
||||
#ifndef GGML_METAL_NDEBUG
|
||||
if (should_capture) {
|
||||
[encoder popDebugGroup];
|
||||
#endif
|
||||
}
|
||||
}
|
||||
|
||||
[encoder endEncoding];
|
||||
|
@ -2207,6 +2261,10 @@ static bool ggml_metal_graph_compute(
|
|||
}
|
||||
}
|
||||
|
||||
if (should_capture) {
|
||||
[[MTLCaptureManager sharedCaptureManager] stopCapture];
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
|
@ -2578,6 +2636,13 @@ bool ggml_backend_metal_supports_family(ggml_backend_t backend, int family) {
|
|||
return [ctx->device supportsFamily:(MTLGPUFamilyApple1 + family - 1)];
|
||||
}
|
||||
|
||||
void ggml_backend_metal_capture_next_compute(ggml_backend_t backend) {
|
||||
GGML_ASSERT(ggml_backend_is_metal(backend));
|
||||
|
||||
struct ggml_metal_context * ctx = (struct ggml_metal_context *)backend->context;
|
||||
ctx->should_capture_next_compute = true;
|
||||
}
|
||||
|
||||
GGML_CALL ggml_backend_t ggml_backend_reg_metal_init(const char * params, void * user_data); // silence warning
|
||||
|
||||
GGML_CALL ggml_backend_t ggml_backend_reg_metal_init(const char * params, void * user_data) {
|
||||
|
|
274
ggml-metal.metal
274
ggml-metal.metal
|
@ -2459,6 +2459,12 @@ typedef struct {
|
|||
} block_iq2_xs;
|
||||
// 74 bytes / block for QK_K = 256, so 2.3125 bpw
|
||||
|
||||
typedef struct {
|
||||
half d;
|
||||
uint8_t qs[3*QK_K/8];
|
||||
} block_iq3_xxs;
|
||||
// 98 bytes / block for QK_K = 256, so 3.0625 bpw
|
||||
|
||||
//====================================== dot products =========================
|
||||
|
||||
void kernel_mul_mv_q2_K_f32_impl(
|
||||
|
@ -3681,6 +3687,42 @@ constexpr constant static uint64_t iq2xs_grid[512] = {
|
|||
0x2b2b2b2b082b2b08, 0x2b2b2b2b082b2b2b, 0x2b2b2b2b2b190819, 0x2b2b2b2b2b2b2b2b,
|
||||
};
|
||||
|
||||
constexpr constant static uint32_t iq3xxs_grid[256] = {
|
||||
0x04040404, 0x04040414, 0x04040424, 0x04040c0c, 0x04040c1c, 0x04040c3e, 0x04041404, 0x04041414,
|
||||
0x04041c0c, 0x04042414, 0x04043e1c, 0x04043e2c, 0x040c040c, 0x040c041c, 0x040c0c04, 0x040c0c14,
|
||||
0x040c140c, 0x040c142c, 0x040c1c04, 0x040c1c14, 0x040c240c, 0x040c2c24, 0x040c3e04, 0x04140404,
|
||||
0x04140414, 0x04140424, 0x04140c0c, 0x04141404, 0x04141414, 0x04141c0c, 0x04141c1c, 0x04141c3e,
|
||||
0x04142c0c, 0x04142c3e, 0x04143e2c, 0x041c040c, 0x041c043e, 0x041c0c04, 0x041c0c14, 0x041c142c,
|
||||
0x041c3e04, 0x04240c1c, 0x04241c3e, 0x04242424, 0x04242c3e, 0x04243e1c, 0x04243e2c, 0x042c040c,
|
||||
0x042c043e, 0x042c1c14, 0x042c2c14, 0x04341c2c, 0x04343424, 0x043e0c04, 0x043e0c24, 0x043e0c34,
|
||||
0x043e241c, 0x043e340c, 0x0c04040c, 0x0c04041c, 0x0c040c04, 0x0c040c14, 0x0c04140c, 0x0c04141c,
|
||||
0x0c041c04, 0x0c041c14, 0x0c041c24, 0x0c04243e, 0x0c042c04, 0x0c0c0404, 0x0c0c0414, 0x0c0c0c0c,
|
||||
0x0c0c1404, 0x0c0c1414, 0x0c14040c, 0x0c14041c, 0x0c140c04, 0x0c140c14, 0x0c14140c, 0x0c141c04,
|
||||
0x0c143e14, 0x0c1c0404, 0x0c1c0414, 0x0c1c1404, 0x0c1c1c0c, 0x0c1c2434, 0x0c1c3434, 0x0c24040c,
|
||||
0x0c24042c, 0x0c242c04, 0x0c2c1404, 0x0c2c1424, 0x0c2c2434, 0x0c2c3e0c, 0x0c34042c, 0x0c3e1414,
|
||||
0x0c3e2404, 0x14040404, 0x14040414, 0x14040c0c, 0x14040c1c, 0x14041404, 0x14041414, 0x14041434,
|
||||
0x14041c0c, 0x14042414, 0x140c040c, 0x140c041c, 0x140c042c, 0x140c0c04, 0x140c0c14, 0x140c140c,
|
||||
0x140c1c04, 0x140c341c, 0x140c343e, 0x140c3e04, 0x14140404, 0x14140414, 0x14140c0c, 0x14140c3e,
|
||||
0x14141404, 0x14141414, 0x14141c3e, 0x14142404, 0x14142c2c, 0x141c040c, 0x141c0c04, 0x141c0c24,
|
||||
0x141c3e04, 0x141c3e24, 0x14241c2c, 0x14242c1c, 0x142c041c, 0x142c143e, 0x142c240c, 0x142c3e24,
|
||||
0x143e040c, 0x143e041c, 0x143e0c34, 0x143e242c, 0x1c04040c, 0x1c040c04, 0x1c040c14, 0x1c04140c,
|
||||
0x1c04141c, 0x1c042c04, 0x1c04342c, 0x1c043e14, 0x1c0c0404, 0x1c0c0414, 0x1c0c1404, 0x1c0c1c0c,
|
||||
0x1c0c2424, 0x1c0c2434, 0x1c14040c, 0x1c14041c, 0x1c140c04, 0x1c14142c, 0x1c142c14, 0x1c143e14,
|
||||
0x1c1c0c0c, 0x1c1c1c1c, 0x1c241c04, 0x1c24243e, 0x1c243e14, 0x1c2c0404, 0x1c2c0434, 0x1c2c1414,
|
||||
0x1c2c2c2c, 0x1c340c24, 0x1c341c34, 0x1c34341c, 0x1c3e1c1c, 0x1c3e3404, 0x24040424, 0x24040c3e,
|
||||
0x24041c2c, 0x24041c3e, 0x24042c1c, 0x24042c3e, 0x240c3e24, 0x24141404, 0x24141c3e, 0x24142404,
|
||||
0x24143404, 0x24143434, 0x241c043e, 0x241c242c, 0x24240424, 0x24242c0c, 0x24243424, 0x242c142c,
|
||||
0x242c241c, 0x242c3e04, 0x243e042c, 0x243e0c04, 0x243e0c14, 0x243e1c04, 0x2c040c14, 0x2c04240c,
|
||||
0x2c043e04, 0x2c0c0404, 0x2c0c0434, 0x2c0c1434, 0x2c0c2c2c, 0x2c140c24, 0x2c141c14, 0x2c143e14,
|
||||
0x2c1c0414, 0x2c1c2c1c, 0x2c240c04, 0x2c24141c, 0x2c24143e, 0x2c243e14, 0x2c2c0414, 0x2c2c1c0c,
|
||||
0x2c342c04, 0x2c3e1424, 0x2c3e2414, 0x34041424, 0x34042424, 0x34042434, 0x34043424, 0x340c140c,
|
||||
0x340c340c, 0x34140c3e, 0x34143424, 0x341c1c04, 0x341c1c34, 0x34242424, 0x342c042c, 0x342c2c14,
|
||||
0x34341c1c, 0x343e041c, 0x343e140c, 0x3e04041c, 0x3e04042c, 0x3e04043e, 0x3e040c04, 0x3e041c14,
|
||||
0x3e042c14, 0x3e0c1434, 0x3e0c2404, 0x3e140c14, 0x3e14242c, 0x3e142c14, 0x3e1c0404, 0x3e1c0c2c,
|
||||
0x3e1c1c1c, 0x3e1c3404, 0x3e24140c, 0x3e24240c, 0x3e2c0404, 0x3e2c0414, 0x3e2c1424, 0x3e341c04,
|
||||
};
|
||||
|
||||
|
||||
constexpr constant static uint8_t ksigns_iq2xs[128] = {
|
||||
0, 129, 130, 3, 132, 5, 6, 135, 136, 9, 10, 139, 12, 141, 142, 15,
|
||||
144, 17, 18, 147, 20, 149, 150, 23, 24, 153, 154, 27, 156, 29, 30, 159,
|
||||
|
@ -3970,6 +4012,143 @@ kernel void kernel_mul_mv_iq2_xs_f32(
|
|||
kernel_mul_mv_iq2_xs_f32_impl(src0, src1, dst, ne00, ne01, ne02, ne10, ne12, ne0, ne1, r2, r3, shared_values, tgpig, tiisg, sgitg);
|
||||
}
|
||||
|
||||
void kernel_mul_mv_iq3_xxs_f32_impl(
|
||||
device const void * src0,
|
||||
device const float * src1,
|
||||
device float * dst,
|
||||
constant int64_t & ne00,
|
||||
constant int64_t & ne01,
|
||||
constant int64_t & ne02,
|
||||
constant int64_t & ne10,
|
||||
constant int64_t & ne12,
|
||||
constant int64_t & ne0,
|
||||
constant int64_t & ne1,
|
||||
constant uint & r2,
|
||||
constant uint & r3,
|
||||
threadgroup int8_t * shared_values [[threadgroup(0)]],
|
||||
uint3 tgpig[[threadgroup_position_in_grid]],
|
||||
uint tiisg[[thread_index_in_simdgroup]],
|
||||
uint sgitg[[simdgroup_index_in_threadgroup]]) {
|
||||
|
||||
const int nb = ne00/QK_K;
|
||||
const int r0 = tgpig.x;
|
||||
const int r1 = tgpig.y;
|
||||
const int im = tgpig.z;
|
||||
|
||||
const int first_row = (r0 * N_SIMDGROUP + sgitg) * N_DST;
|
||||
const int ib_row = first_row * nb;
|
||||
|
||||
const uint i12 = im%ne12;
|
||||
const uint i13 = im/ne12;
|
||||
|
||||
const uint offset0 = (i12/r2)*(nb*ne01) + (i13/r3)*(nb*ne01*ne02);
|
||||
|
||||
device const block_iq3_xxs * x = (device const block_iq3_xxs *) src0 + ib_row + offset0;
|
||||
device const float * y = (device const float *) src1 + r1*ne10 + im*ne00*ne1;
|
||||
|
||||
float yl[32];
|
||||
float sumf[N_DST]={0.f}, all_sum;
|
||||
|
||||
const int nb32 = nb * (QK_K / 32);
|
||||
|
||||
threadgroup uint32_t * values = (threadgroup uint32_t *)shared_values;
|
||||
threadgroup uint8_t * shared_signs = (threadgroup uint8_t *)(values + 256);
|
||||
{
|
||||
int nval = 4;
|
||||
int pos = (32*sgitg + tiisg)*nval;
|
||||
for (int i = 0; i < nval; ++i) values[pos + i] = iq3xxs_grid[pos + i];
|
||||
nval = 2;
|
||||
pos = (32*sgitg + tiisg)*nval;
|
||||
for (int i = 0; i < nval; ++i) shared_signs[pos+i] = ksigns_iq2xs[pos+i];
|
||||
threadgroup_barrier(mem_flags::mem_threadgroup);
|
||||
}
|
||||
|
||||
#if QK_K == 256
|
||||
const int ix = tiisg;
|
||||
|
||||
device const float * y4 = y + 32 * ix;
|
||||
|
||||
for (int ib32 = ix; ib32 < nb32; ib32 += 32) {
|
||||
|
||||
for (int i = 0; i < 32; ++i) {
|
||||
yl[i] = y4[i];
|
||||
}
|
||||
|
||||
const int ibl = ib32 / (QK_K / 32);
|
||||
const int ib = ib32 % (QK_K / 32);
|
||||
|
||||
device const block_iq3_xxs * xr = x + ibl;
|
||||
device const uint8_t * q3 = xr->qs + 8 * ib;
|
||||
device const uint16_t * gas = (device const uint16_t *)(xr->qs + QK_K/4) + 2 * ib;
|
||||
device const half * dh = &xr->d;
|
||||
|
||||
for (int row = 0; row < N_DST; row++) {
|
||||
|
||||
const float db = dh[0];
|
||||
const uint32_t aux32 = gas[0] | (gas[1] << 16);
|
||||
const float d = db * (0.5f + (aux32 >> 28));
|
||||
|
||||
float2 sum = {0};
|
||||
for (int l = 0; l < 4; ++l) {
|
||||
const threadgroup uint8_t * grid1 = (const threadgroup uint8_t *)(values + q3[2*l+0]);
|
||||
const threadgroup uint8_t * grid2 = (const threadgroup uint8_t *)(values + q3[2*l+1]);
|
||||
const uint8_t signs = shared_signs[(aux32 >> 7*l) & 127];
|
||||
for (int j = 0; j < 4; ++j) {
|
||||
sum[0] += yl[8*l + j + 0] * grid1[j] * (signs & kmask_iq2xs[j+0] ? -1.f : 1.f);
|
||||
sum[1] += yl[8*l + j + 4] * grid2[j] * (signs & kmask_iq2xs[j+4] ? -1.f : 1.f);
|
||||
}
|
||||
}
|
||||
sumf[row] += d * (sum[0] + sum[1]);
|
||||
|
||||
dh += nb*sizeof(block_iq3_xxs)/2;
|
||||
q3 += nb*sizeof(block_iq3_xxs);
|
||||
gas += nb*sizeof(block_iq3_xxs)/2;
|
||||
}
|
||||
|
||||
y4 += 32 * 32;
|
||||
}
|
||||
#else
|
||||
// TODO
|
||||
#endif
|
||||
|
||||
for (int row = 0; row < N_DST; ++row) {
|
||||
all_sum = simd_sum(sumf[row]);
|
||||
if (tiisg == 0) {
|
||||
dst[r1*ne0 + im*ne0*ne1 + first_row + row] = all_sum * 0.5f;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
[[host_name("kernel_mul_mv_iq3_xxs_f32")]]
|
||||
kernel void kernel_mul_mv_iq3_xxs_f32(
|
||||
device const void * src0,
|
||||
device const float * src1,
|
||||
device float * dst,
|
||||
constant int64_t & ne00,
|
||||
constant int64_t & ne01,
|
||||
constant int64_t & ne02,
|
||||
constant uint64_t & nb00,
|
||||
constant uint64_t & nb01,
|
||||
constant uint64_t & nb02,
|
||||
constant int64_t & ne10,
|
||||
constant int64_t & ne11,
|
||||
constant int64_t & ne12,
|
||||
constant uint64_t & nb10,
|
||||
constant uint64_t & nb11,
|
||||
constant uint64_t & nb12,
|
||||
constant int64_t & ne0,
|
||||
constant int64_t & ne1,
|
||||
constant uint & r2,
|
||||
constant uint & r3,
|
||||
threadgroup int8_t * shared_values [[threadgroup(0)]],
|
||||
uint3 tgpig[[threadgroup_position_in_grid]],
|
||||
uint tiisg[[thread_index_in_simdgroup]],
|
||||
uint sgitg[[simdgroup_index_in_threadgroup]]) {
|
||||
|
||||
kernel_mul_mv_iq3_xxs_f32_impl(src0, src1, dst, ne00, ne01, ne02, ne10, ne12, ne0, ne1, r2, r3, shared_values, tgpig, tiisg, sgitg);
|
||||
}
|
||||
|
||||
|
||||
//============================= templates and their specializations =============================
|
||||
|
||||
// NOTE: this is not dequantizing - we are simply fitting the template
|
||||
|
@ -4287,6 +4466,33 @@ void dequantize_iq2_xs(device const block_iq2_xs * xb, short il, thread type4x4
|
|||
}
|
||||
}
|
||||
|
||||
template <typename type4x4>
|
||||
void dequantize_iq3_xxs(device const block_iq3_xxs * xb, short il, thread type4x4 & reg) {
|
||||
// il is 0...15 for QK_K = 256 => index of block of 32 is il/2
|
||||
const float d = xb->d;
|
||||
const int ib32 = il/2;
|
||||
il = il%2;
|
||||
// il = 0 or 1. il = 0 processes the first 16 quants in a block of 32, il = 1 the second 16
|
||||
device const uint8_t * q3 = xb->qs + 8*ib32;
|
||||
device const uint16_t * gas = (device const uint16_t *)(xb->qs + QK_K/4) + 2*ib32;
|
||||
const uint32_t aux32 = gas[0] | (gas[1] << 16);
|
||||
const float dl = d * (0.5f + (aux32 >> 28)) * 0.5f;
|
||||
constant uint8_t * grid1 = (constant uint8_t *)(iq3xxs_grid + q3[4*il+0]);
|
||||
constant uint8_t * grid2 = (constant uint8_t *)(iq3xxs_grid + q3[4*il+1]);
|
||||
uint8_t signs = ksigns_iq2xs[(aux32 >> 14*il) & 127];
|
||||
for (int i = 0; i < 4; ++i) {
|
||||
reg[0][i] = dl * grid1[i] * (signs & kmask_iq2xs[i+0] ? -1.f : 1.f);
|
||||
reg[1][i] = dl * grid2[i] * (signs & kmask_iq2xs[i+4] ? -1.f : 1.f);
|
||||
}
|
||||
grid1 = (constant uint8_t *)(iq3xxs_grid + q3[4*il+2]);
|
||||
grid2 = (constant uint8_t *)(iq3xxs_grid + q3[4*il+3]);
|
||||
signs = ksigns_iq2xs[(aux32 >> (14*il+7)) & 127];
|
||||
for (int i = 0; i < 4; ++i) {
|
||||
reg[2][i] = dl * grid1[i] * (signs & kmask_iq2xs[i+0] ? -1.f : 1.f);
|
||||
reg[3][i] = dl * grid2[i] * (signs & kmask_iq2xs[i+4] ? -1.f : 1.f);
|
||||
}
|
||||
}
|
||||
|
||||
template<typename block_q, short nl, void (*dequantize_func)(device const block_q *, short, thread float4x4 &)>
|
||||
kernel void kernel_get_rows(
|
||||
device const void * src0,
|
||||
|
@ -4828,6 +5034,7 @@ template [[host_name("kernel_get_rows_q5_K")]] kernel get_rows_t kernel_get_rows
|
|||
template [[host_name("kernel_get_rows_q6_K")]] kernel get_rows_t kernel_get_rows<block_q6_K, QK_NL, dequantize_q6_K>;
|
||||
template [[host_name("kernel_get_rows_iq2_xxs")]] kernel get_rows_t kernel_get_rows<block_iq2_xxs, QK_NL, dequantize_iq2_xxs>;
|
||||
template [[host_name("kernel_get_rows_iq2_xs")]] kernel get_rows_t kernel_get_rows<block_iq2_xs, QK_NL, dequantize_iq2_xs>;
|
||||
template [[host_name("kernel_get_rows_iq3_xxs")]] kernel get_rows_t kernel_get_rows<block_iq3_xxs, QK_NL, dequantize_iq3_xxs>;
|
||||
|
||||
//
|
||||
// matrix-matrix multiplication
|
||||
|
@ -4866,6 +5073,7 @@ template [[host_name("kernel_mul_mm_q5_K_f32")]] kernel mat_mm_t kernel_mul_mm<b
|
|||
template [[host_name("kernel_mul_mm_q6_K_f32")]] kernel mat_mm_t kernel_mul_mm<block_q6_K, QK_NL, dequantize_q6_K>;
|
||||
template [[host_name("kernel_mul_mm_iq2_xxs_f32")]] kernel mat_mm_t kernel_mul_mm<block_iq2_xxs, QK_NL, dequantize_iq2_xxs>;
|
||||
template [[host_name("kernel_mul_mm_iq2_xs_f32")]] kernel mat_mm_t kernel_mul_mm<block_iq2_xs, QK_NL, dequantize_iq2_xs>;
|
||||
template [[host_name("kernel_mul_mm_iq3_xxs_f32")]] kernel mat_mm_t kernel_mul_mm<block_iq3_xxs, QK_NL, dequantize_iq3_xxs>;
|
||||
|
||||
//
|
||||
// indirect matrix-matrix multiplication
|
||||
|
@ -4916,6 +5124,7 @@ template [[host_name("kernel_mul_mm_id_q5_K_f32")]] kernel mat_mm_id_t kernel_mu
|
|||
template [[host_name("kernel_mul_mm_id_q6_K_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_q6_K, QK_NL, dequantize_q6_K>;
|
||||
template [[host_name("kernel_mul_mm_id_iq2_xxs_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_iq2_xxs, QK_NL, dequantize_iq2_xxs>;
|
||||
template [[host_name("kernel_mul_mm_id_iq2_xs_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_iq2_xs, QK_NL, dequantize_iq2_xs>;
|
||||
template [[host_name("kernel_mul_mm_id_iq3_xxs_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_iq3_xxs, QK_NL, dequantize_iq3_xxs>;
|
||||
|
||||
//
|
||||
// matrix-vector multiplication
|
||||
|
@ -5818,3 +6027,68 @@ kernel void kernel_mul_mv_id_iq2_xs_f32(
|
|||
tiisg,
|
||||
sgitg);
|
||||
}
|
||||
|
||||
[[host_name("kernel_mul_mv_id_iq3_xxs_f32")]]
|
||||
kernel void kernel_mul_mv_id_iq3_xxs_f32(
|
||||
device const char * ids,
|
||||
device const char * src1,
|
||||
device float * dst,
|
||||
constant uint64_t & nbi1,
|
||||
constant int64_t & ne00,
|
||||
constant int64_t & ne01,
|
||||
constant int64_t & ne02,
|
||||
constant uint64_t & nb00,
|
||||
constant uint64_t & nb01,
|
||||
constant uint64_t & nb02,
|
||||
constant int64_t & ne10,
|
||||
constant int64_t & ne11,
|
||||
constant int64_t & ne12,
|
||||
constant int64_t & ne13,
|
||||
constant uint64_t & nb10,
|
||||
constant uint64_t & nb11,
|
||||
constant uint64_t & nb12,
|
||||
constant int64_t & ne0,
|
||||
constant int64_t & ne1,
|
||||
constant uint64_t & nb1,
|
||||
constant uint & r2,
|
||||
constant uint & r3,
|
||||
constant int & idx,
|
||||
device const char * src00,
|
||||
device const char * src01,
|
||||
device const char * src02,
|
||||
device const char * src03,
|
||||
device const char * src04,
|
||||
device const char * src05,
|
||||
device const char * src06,
|
||||
device const char * src07,
|
||||
threadgroup int8_t * shared_values [[threadgroup(0)]],
|
||||
uint3 tgpig[[threadgroup_position_in_grid]],
|
||||
uint tiitg[[thread_index_in_threadgroup]],
|
||||
uint tiisg[[thread_index_in_simdgroup]],
|
||||
uint sgitg[[simdgroup_index_in_threadgroup]]) {
|
||||
device const char * src0[8] = {src00, src01, src02, src03, src04, src05, src06, src07};
|
||||
|
||||
const int64_t bid = tgpig.z/(ne12*ne13);
|
||||
|
||||
tgpig.z = tgpig.z%(ne12*ne13);
|
||||
|
||||
const int32_t id = ((device int32_t *) (ids + bid*nbi1))[idx];
|
||||
|
||||
kernel_mul_mv_iq3_xxs_f32_impl(
|
||||
src0[id],
|
||||
(device const float *) (src1 + bid*nb11),
|
||||
dst + bid*ne0,
|
||||
ne00,
|
||||
ne01,
|
||||
ne02,
|
||||
ne10,
|
||||
ne12,
|
||||
ne0,
|
||||
ne1,
|
||||
r2,
|
||||
r3,
|
||||
shared_values,
|
||||
tgpig,
|
||||
tiisg,
|
||||
sgitg);
|
||||
}
|
||||
|
|
721
ggml-quants.c
721
ggml-quants.c
|
@ -3441,6 +3441,41 @@ static const uint64_t iq2xs_grid[512] = {
|
|||
0x2b2b2b2b082b2b08, 0x2b2b2b2b082b2b2b, 0x2b2b2b2b2b190819, 0x2b2b2b2b2b2b2b2b,
|
||||
};
|
||||
|
||||
static const uint32_t iq3xxs_grid[256] = {
|
||||
0x04040404, 0x04040414, 0x04040424, 0x04040c0c, 0x04040c1c, 0x04040c3e, 0x04041404, 0x04041414,
|
||||
0x04041c0c, 0x04042414, 0x04043e1c, 0x04043e2c, 0x040c040c, 0x040c041c, 0x040c0c04, 0x040c0c14,
|
||||
0x040c140c, 0x040c142c, 0x040c1c04, 0x040c1c14, 0x040c240c, 0x040c2c24, 0x040c3e04, 0x04140404,
|
||||
0x04140414, 0x04140424, 0x04140c0c, 0x04141404, 0x04141414, 0x04141c0c, 0x04141c1c, 0x04141c3e,
|
||||
0x04142c0c, 0x04142c3e, 0x04143e2c, 0x041c040c, 0x041c043e, 0x041c0c04, 0x041c0c14, 0x041c142c,
|
||||
0x041c3e04, 0x04240c1c, 0x04241c3e, 0x04242424, 0x04242c3e, 0x04243e1c, 0x04243e2c, 0x042c040c,
|
||||
0x042c043e, 0x042c1c14, 0x042c2c14, 0x04341c2c, 0x04343424, 0x043e0c04, 0x043e0c24, 0x043e0c34,
|
||||
0x043e241c, 0x043e340c, 0x0c04040c, 0x0c04041c, 0x0c040c04, 0x0c040c14, 0x0c04140c, 0x0c04141c,
|
||||
0x0c041c04, 0x0c041c14, 0x0c041c24, 0x0c04243e, 0x0c042c04, 0x0c0c0404, 0x0c0c0414, 0x0c0c0c0c,
|
||||
0x0c0c1404, 0x0c0c1414, 0x0c14040c, 0x0c14041c, 0x0c140c04, 0x0c140c14, 0x0c14140c, 0x0c141c04,
|
||||
0x0c143e14, 0x0c1c0404, 0x0c1c0414, 0x0c1c1404, 0x0c1c1c0c, 0x0c1c2434, 0x0c1c3434, 0x0c24040c,
|
||||
0x0c24042c, 0x0c242c04, 0x0c2c1404, 0x0c2c1424, 0x0c2c2434, 0x0c2c3e0c, 0x0c34042c, 0x0c3e1414,
|
||||
0x0c3e2404, 0x14040404, 0x14040414, 0x14040c0c, 0x14040c1c, 0x14041404, 0x14041414, 0x14041434,
|
||||
0x14041c0c, 0x14042414, 0x140c040c, 0x140c041c, 0x140c042c, 0x140c0c04, 0x140c0c14, 0x140c140c,
|
||||
0x140c1c04, 0x140c341c, 0x140c343e, 0x140c3e04, 0x14140404, 0x14140414, 0x14140c0c, 0x14140c3e,
|
||||
0x14141404, 0x14141414, 0x14141c3e, 0x14142404, 0x14142c2c, 0x141c040c, 0x141c0c04, 0x141c0c24,
|
||||
0x141c3e04, 0x141c3e24, 0x14241c2c, 0x14242c1c, 0x142c041c, 0x142c143e, 0x142c240c, 0x142c3e24,
|
||||
0x143e040c, 0x143e041c, 0x143e0c34, 0x143e242c, 0x1c04040c, 0x1c040c04, 0x1c040c14, 0x1c04140c,
|
||||
0x1c04141c, 0x1c042c04, 0x1c04342c, 0x1c043e14, 0x1c0c0404, 0x1c0c0414, 0x1c0c1404, 0x1c0c1c0c,
|
||||
0x1c0c2424, 0x1c0c2434, 0x1c14040c, 0x1c14041c, 0x1c140c04, 0x1c14142c, 0x1c142c14, 0x1c143e14,
|
||||
0x1c1c0c0c, 0x1c1c1c1c, 0x1c241c04, 0x1c24243e, 0x1c243e14, 0x1c2c0404, 0x1c2c0434, 0x1c2c1414,
|
||||
0x1c2c2c2c, 0x1c340c24, 0x1c341c34, 0x1c34341c, 0x1c3e1c1c, 0x1c3e3404, 0x24040424, 0x24040c3e,
|
||||
0x24041c2c, 0x24041c3e, 0x24042c1c, 0x24042c3e, 0x240c3e24, 0x24141404, 0x24141c3e, 0x24142404,
|
||||
0x24143404, 0x24143434, 0x241c043e, 0x241c242c, 0x24240424, 0x24242c0c, 0x24243424, 0x242c142c,
|
||||
0x242c241c, 0x242c3e04, 0x243e042c, 0x243e0c04, 0x243e0c14, 0x243e1c04, 0x2c040c14, 0x2c04240c,
|
||||
0x2c043e04, 0x2c0c0404, 0x2c0c0434, 0x2c0c1434, 0x2c0c2c2c, 0x2c140c24, 0x2c141c14, 0x2c143e14,
|
||||
0x2c1c0414, 0x2c1c2c1c, 0x2c240c04, 0x2c24141c, 0x2c24143e, 0x2c243e14, 0x2c2c0414, 0x2c2c1c0c,
|
||||
0x2c342c04, 0x2c3e1424, 0x2c3e2414, 0x34041424, 0x34042424, 0x34042434, 0x34043424, 0x340c140c,
|
||||
0x340c340c, 0x34140c3e, 0x34143424, 0x341c1c04, 0x341c1c34, 0x34242424, 0x342c042c, 0x342c2c14,
|
||||
0x34341c1c, 0x343e041c, 0x343e140c, 0x3e04041c, 0x3e04042c, 0x3e04043e, 0x3e040c04, 0x3e041c14,
|
||||
0x3e042c14, 0x3e0c1434, 0x3e0c2404, 0x3e140c14, 0x3e14242c, 0x3e142c14, 0x3e1c0404, 0x3e1c0c2c,
|
||||
0x3e1c1c1c, 0x3e1c3404, 0x3e24140c, 0x3e24240c, 0x3e2c0404, 0x3e2c0414, 0x3e2c1424, 0x3e341c04,
|
||||
};
|
||||
|
||||
static const uint8_t ksigns_iq2xs[128] = {
|
||||
0, 129, 130, 3, 132, 5, 6, 135, 136, 9, 10, 139, 12, 141, 142, 15,
|
||||
144, 17, 18, 147, 20, 149, 150, 23, 24, 153, 154, 27, 156, 29, 30, 159,
|
||||
|
@ -3507,6 +3542,38 @@ void dequantize_row_iq2_xs(const block_iq2_xs * restrict x, float * restrict y,
|
|||
}
|
||||
}
|
||||
|
||||
// ====================== 3.0625 bpw (de)-quantization
|
||||
|
||||
void dequantize_row_iq3_xxs(const block_iq3_xxs * restrict x, float * restrict y, int k) {
|
||||
assert(k % QK_K == 0);
|
||||
const int nb = k / QK_K;
|
||||
|
||||
uint32_t aux32;
|
||||
|
||||
for (int i = 0; i < nb; i++) {
|
||||
|
||||
const float d = GGML_FP16_TO_FP32(x[i].d);
|
||||
const uint8_t * qs = x[i].qs;
|
||||
const uint8_t * scales_and_signs = qs + QK_K/4;
|
||||
|
||||
for (int ib32 = 0; ib32 < QK_K/32; ++ib32) {
|
||||
memcpy(&aux32, scales_and_signs + 4*ib32, sizeof(uint32_t));
|
||||
const float db = d * (0.5f + (aux32 >> 28)) * 0.5f;
|
||||
for (int l = 0; l < 4; ++l) {
|
||||
const uint8_t signs = ksigns_iq2xs[(aux32 >> 7*l) & 127];
|
||||
const uint8_t * grid1 = (const uint8_t *)(iq3xxs_grid + qs[2*l+0]);
|
||||
const uint8_t * grid2 = (const uint8_t *)(iq3xxs_grid + qs[2*l+1]);
|
||||
for (int j = 0; j < 4; ++j) {
|
||||
y[j+0] = db * grid1[j] * (signs & kmask_iq2xs[j+0] ? -1.f : 1.f);
|
||||
y[j+4] = db * grid2[j] * (signs & kmask_iq2xs[j+4] ? -1.f : 1.f);
|
||||
}
|
||||
y += 8;
|
||||
}
|
||||
qs += 8;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
//===================================== Q8_K ==============================================
|
||||
|
||||
void quantize_row_q8_K_reference(const float * restrict x, block_q8_K * restrict y, int k) {
|
||||
|
@ -8458,17 +8525,36 @@ void ggml_vec_dot_iq2_xs_q8_K(const int n, float * restrict s, const void * rest
|
|||
|
||||
const __m128i m4 = _mm_set1_epi8(0xf);
|
||||
const __m128i m1 = _mm_set1_epi8(1);
|
||||
const __m128i m511 = _mm_set1_epi16(511);
|
||||
const __m128i m127 = _mm_set1_epi16(127);
|
||||
const __m256i m511 = _mm256_set1_epi16(511);
|
||||
const __m256i mone = _mm256_set1_epi8(1);
|
||||
|
||||
const uint64_t * signs64 = (const uint64_t *)keven_signs_q2xs;
|
||||
static const uint8_t k_bit_helper[32] = {
|
||||
0x00, 0x80, 0x80, 0x00, 0x80, 0x00, 0x00, 0x80, 0x80, 0x00, 0x00, 0x80, 0x00, 0x80, 0x80, 0x00,
|
||||
0x00, 0x80, 0x80, 0x00, 0x80, 0x00, 0x00, 0x80, 0x80, 0x00, 0x00, 0x80, 0x00, 0x80, 0x80, 0x00,
|
||||
};
|
||||
static const char block_sign_shuffle_mask_1[32] = {
|
||||
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02,
|
||||
0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06,
|
||||
};
|
||||
static const char block_sign_shuffle_mask_2[32] = {
|
||||
0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x0a, 0x0a, 0x0a, 0x0a, 0x0a, 0x0a, 0x0a, 0x0a,
|
||||
0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0e, 0x0e, 0x0e, 0x0e, 0x0e, 0x0e, 0x0e, 0x0e,
|
||||
};
|
||||
static const uint8_t bit_selector_mask_bytes[32] = {
|
||||
0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
|
||||
0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
|
||||
};
|
||||
|
||||
const __m256i bit_helper = _mm256_loadu_si256((const __m256i*)k_bit_helper);
|
||||
const __m256i bit_selector_mask = _mm256_loadu_si256((const __m256i*)bit_selector_mask_bytes);
|
||||
const __m256i block_sign_shuffle_1 = _mm256_loadu_si256((const __m256i*)block_sign_shuffle_mask_1);
|
||||
const __m256i block_sign_shuffle_2 = _mm256_loadu_si256((const __m256i*)block_sign_shuffle_mask_2);
|
||||
|
||||
uint64_t aux64;
|
||||
|
||||
// somewhat hacky, but gives a significant boost in performance
|
||||
__m128i aux_gindex, aux_sindex;
|
||||
__m256i aux_gindex;
|
||||
const uint16_t * gindex = (const uint16_t *)&aux_gindex;
|
||||
const uint16_t * sindex = (const uint16_t *)&aux_sindex;
|
||||
|
||||
__m256 accumf = _mm256_setzero_ps();
|
||||
for (int i = 0; i < nb; ++i) {
|
||||
|
@ -8483,26 +8569,68 @@ void ggml_vec_dot_iq2_xs_q8_K(const int n, float * restrict s, const void * rest
|
|||
|
||||
__m256i sumi1 = _mm256_setzero_si256();
|
||||
__m256i sumi2 = _mm256_setzero_si256();
|
||||
for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
|
||||
for (int ib32 = 0; ib32 < QK_K/32; ib32 += 4) {
|
||||
|
||||
const __m256i q2_data = _mm256_loadu_si256((const __m256i*)q2); q2 += 16;
|
||||
aux_gindex = _mm256_and_si256(q2_data, m511);
|
||||
|
||||
const __m256i partial_sign_bits = _mm256_srli_epi16(q2_data, 9);
|
||||
const __m256i partial_sign_bits_upper = _mm256_srli_epi16(q2_data, 13);
|
||||
const __m256i partial_sign_bits_for_counting = _mm256_xor_si256(partial_sign_bits, partial_sign_bits_upper);
|
||||
|
||||
const __m256i odd_bits = _mm256_shuffle_epi8(bit_helper, partial_sign_bits_for_counting);
|
||||
const __m256i full_sign_bits = _mm256_or_si256(partial_sign_bits, odd_bits);
|
||||
|
||||
const __m256i q8_1 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
|
||||
const __m256i q8_2 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
|
||||
const __m128i q2_data = _mm_loadu_si128((const __m128i*)q2); q2 += 8;
|
||||
aux_gindex = _mm_and_si128(q2_data, m511);
|
||||
aux_sindex = _mm_and_si128(_mm_srli_epi16(q2_data, 9), m127);
|
||||
const __m256i q2_1 = _mm256_set_epi64x(iq2xs_grid[gindex[3]], iq2xs_grid[gindex[2]], iq2xs_grid[gindex[1]], iq2xs_grid[gindex[0]]);
|
||||
const __m256i q2_2 = _mm256_set_epi64x(iq2xs_grid[gindex[7]], iq2xs_grid[gindex[6]], iq2xs_grid[gindex[5]], iq2xs_grid[gindex[4]]);
|
||||
const __m256i s2_1 = _mm256_set_epi64x(signs64[sindex[3]], signs64[sindex[2]], signs64[sindex[1]], signs64[sindex[0]]);
|
||||
const __m256i s2_2 = _mm256_set_epi64x(signs64[sindex[7]], signs64[sindex[6]], signs64[sindex[5]], signs64[sindex[4]]);
|
||||
const __m256i q8s_1 = _mm256_sign_epi8(q8_1, s2_1);
|
||||
const __m256i q8s_2 = _mm256_sign_epi8(q8_2, s2_2);
|
||||
const __m256i q8_3 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
|
||||
const __m256i q8_4 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
|
||||
|
||||
const __m256i q2_1 = _mm256_set_epi64x(iq2xs_grid[gindex[ 3]], iq2xs_grid[gindex[ 2]],
|
||||
iq2xs_grid[gindex[ 1]], iq2xs_grid[gindex[ 0]]);
|
||||
const __m256i q2_2 = _mm256_set_epi64x(iq2xs_grid[gindex[ 7]], iq2xs_grid[gindex[ 6]],
|
||||
iq2xs_grid[gindex[ 5]], iq2xs_grid[gindex[ 4]]);
|
||||
const __m256i q2_3 = _mm256_set_epi64x(iq2xs_grid[gindex[11]], iq2xs_grid[gindex[10]],
|
||||
iq2xs_grid[gindex[ 9]], iq2xs_grid[gindex[ 8]]);
|
||||
const __m256i q2_4 = _mm256_set_epi64x(iq2xs_grid[gindex[15]], iq2xs_grid[gindex[14]],
|
||||
iq2xs_grid[gindex[13]], iq2xs_grid[gindex[12]]);
|
||||
|
||||
const __m128i full_signs_l = _mm256_castsi256_si128(full_sign_bits);
|
||||
const __m128i full_signs_h = _mm256_extractf128_si256(full_sign_bits, 1);
|
||||
const __m256i full_signs_1 = _mm256_set_m128i(full_signs_l, full_signs_l);
|
||||
const __m256i full_signs_2 = _mm256_set_m128i(full_signs_h, full_signs_h);
|
||||
|
||||
__m256i signs;
|
||||
signs = _mm256_shuffle_epi8(full_signs_1, block_sign_shuffle_1);
|
||||
signs = _mm256_cmpeq_epi8(_mm256_and_si256(signs, bit_selector_mask), bit_selector_mask);
|
||||
const __m256i q8s_1 = _mm256_sign_epi8(q8_1, _mm256_or_si256(signs, mone));
|
||||
|
||||
signs = _mm256_shuffle_epi8(full_signs_1, block_sign_shuffle_2);
|
||||
signs = _mm256_cmpeq_epi8(_mm256_and_si256(signs, bit_selector_mask), bit_selector_mask);
|
||||
const __m256i q8s_2 = _mm256_sign_epi8(q8_2, _mm256_or_si256(signs, mone));
|
||||
|
||||
signs = _mm256_shuffle_epi8(full_signs_2, block_sign_shuffle_1);
|
||||
signs = _mm256_cmpeq_epi8(_mm256_and_si256(signs, bit_selector_mask), bit_selector_mask);
|
||||
const __m256i q8s_3 = _mm256_sign_epi8(q8_3, _mm256_or_si256(signs, mone));
|
||||
|
||||
signs = _mm256_shuffle_epi8(full_signs_2, block_sign_shuffle_2);
|
||||
signs = _mm256_cmpeq_epi8(_mm256_and_si256(signs, bit_selector_mask), bit_selector_mask);
|
||||
const __m256i q8s_4 = _mm256_sign_epi8(q8_4, _mm256_or_si256(signs, mone));
|
||||
|
||||
const __m256i dot1 = _mm256_maddubs_epi16(q2_1, q8s_1);
|
||||
const __m256i dot2 = _mm256_maddubs_epi16(q2_2, q8s_2);
|
||||
const __m256i dot3 = _mm256_maddubs_epi16(q2_3, q8s_3);
|
||||
const __m256i dot4 = _mm256_maddubs_epi16(q2_4, q8s_4);
|
||||
|
||||
const __m256i sc1 = _mm256_cvtepi8_epi16(_mm_shuffle_epi8(scales, get_scale_shuffle(ib32+0)));
|
||||
const __m256i sc2 = _mm256_cvtepi8_epi16(_mm_shuffle_epi8(scales, get_scale_shuffle(ib32+1)));
|
||||
const __m256i sc3 = _mm256_cvtepi8_epi16(_mm_shuffle_epi8(scales, get_scale_shuffle(ib32+2)));
|
||||
const __m256i sc4 = _mm256_cvtepi8_epi16(_mm_shuffle_epi8(scales, get_scale_shuffle(ib32+3)));
|
||||
|
||||
sumi1 = _mm256_add_epi32(sumi1, _mm256_madd_epi16(dot1, sc1));
|
||||
sumi2 = _mm256_add_epi32(sumi2, _mm256_madd_epi16(dot2, sc2));
|
||||
sumi1 = _mm256_add_epi32(sumi1, _mm256_madd_epi16(dot3, sc3));
|
||||
sumi2 = _mm256_add_epi32(sumi2, _mm256_madd_epi16(dot4, sc4));
|
||||
}
|
||||
|
||||
accumf = _mm256_fmadd_ps(_mm256_set1_ps(d), _mm256_cvtepi32_ps(_mm256_add_epi32(sumi1, sumi2)), accumf);
|
||||
|
@ -8551,6 +8679,136 @@ void ggml_vec_dot_iq2_xs_q8_K(const int n, float * restrict s, const void * rest
|
|||
#endif
|
||||
}
|
||||
|
||||
// TODO
|
||||
void ggml_vec_dot_iq3_xxs_q8_K(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
|
||||
assert(n % QK_K == 0);
|
||||
|
||||
const block_iq3_xxs * restrict x = vx;
|
||||
const block_q8_K * restrict y = vy;
|
||||
|
||||
const int nb = n / QK_K;
|
||||
|
||||
#if defined(__ARM_NEON)
|
||||
|
||||
const uint64_t * signs64 = (const uint64_t *)keven_signs_q2xs;
|
||||
|
||||
uint32_t aux32[2];
|
||||
|
||||
ggml_int8x16x4_t q3s;
|
||||
ggml_int8x16x4_t q8b;
|
||||
|
||||
float sumf = 0;
|
||||
for (int i = 0; i < nb; ++i) {
|
||||
const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
|
||||
const uint8_t * restrict q3 = x[i].qs;
|
||||
const uint8_t * restrict gas = x[i].qs + QK_K/4;
|
||||
const int8_t * restrict q8 = y[i].qs;
|
||||
float sumf1 = 0, sumf2 = 0;
|
||||
for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
|
||||
q8b = ggml_vld1q_s8_x4(q8); q8 += 64;
|
||||
memcpy(aux32, gas, 2*sizeof(uint32_t)); gas += 2*sizeof(uint32_t);
|
||||
const uint32x4_t aux32x4_0 = {iq3xxs_grid[q3[ 0]], iq3xxs_grid[q3[ 1]], iq3xxs_grid[q3[ 2]], iq3xxs_grid[q3[ 3]]};
|
||||
const uint32x4_t aux32x4_1 = {iq3xxs_grid[q3[ 4]], iq3xxs_grid[q3[ 5]], iq3xxs_grid[q3[ 6]], iq3xxs_grid[q3[ 7]]};
|
||||
const uint32x4_t aux32x4_2 = {iq3xxs_grid[q3[ 8]], iq3xxs_grid[q3[ 9]], iq3xxs_grid[q3[10]], iq3xxs_grid[q3[11]]};
|
||||
const uint32x4_t aux32x4_3 = {iq3xxs_grid[q3[12]], iq3xxs_grid[q3[13]], iq3xxs_grid[q3[14]], iq3xxs_grid[q3[15]]};
|
||||
q3 += 16;
|
||||
q3s.val[0] = vcombine_s8(vld1_s8((const void *)(signs64 + ((aux32[0] >> 0) & 127))), vld1_s8((const void *)(signs64 + ((aux32[0] >> 7) & 127))));
|
||||
q3s.val[1] = vcombine_s8(vld1_s8((const void *)(signs64 + ((aux32[0] >> 14) & 127))), vld1_s8((const void *)(signs64 + ((aux32[0] >> 21) & 127))));
|
||||
q3s.val[2] = vcombine_s8(vld1_s8((const void *)(signs64 + ((aux32[1] >> 0) & 127))), vld1_s8((const void *)(signs64 + ((aux32[1] >> 7) & 127))));
|
||||
q3s.val[3] = vcombine_s8(vld1_s8((const void *)(signs64 + ((aux32[1] >> 14) & 127))), vld1_s8((const void *)(signs64 + ((aux32[1] >> 21) & 127))));
|
||||
q3s.val[0] = vmulq_s8(q3s.val[0], vreinterpretq_s8_u32(aux32x4_0));
|
||||
q3s.val[1] = vmulq_s8(q3s.val[1], vreinterpretq_s8_u32(aux32x4_1));
|
||||
q3s.val[2] = vmulq_s8(q3s.val[2], vreinterpretq_s8_u32(aux32x4_2));
|
||||
q3s.val[3] = vmulq_s8(q3s.val[3], vreinterpretq_s8_u32(aux32x4_3));
|
||||
const int32x4_t p1 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), q3s.val[0], q8b.val[0]), q3s.val[1], q8b.val[1]);
|
||||
const int32x4_t p2 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), q3s.val[2], q8b.val[2]), q3s.val[3], q8b.val[3]);
|
||||
sumf1 += vaddvq_s32(p1) * (0.5f + (aux32[0] >> 28));
|
||||
sumf2 += vaddvq_s32(p2) * (0.5f + (aux32[1] >> 28));
|
||||
}
|
||||
sumf += d*(sumf1 + sumf2);
|
||||
}
|
||||
*s = 0.5f * sumf;
|
||||
|
||||
#elif defined(__AVX2__)
|
||||
|
||||
const uint64_t * signs64 = (const uint64_t *)keven_signs_q2xs;
|
||||
|
||||
uint32_t aux32[2];
|
||||
|
||||
__m256 accumf = _mm256_setzero_ps();
|
||||
for (int i = 0; i < nb; ++i) {
|
||||
const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
|
||||
const uint8_t * restrict q3 = x[i].qs;
|
||||
const uint8_t * restrict gas = x[i].qs + QK_K/4;
|
||||
const int8_t * restrict q8 = y[i].qs;
|
||||
__m256i sumi1 = _mm256_setzero_si256();
|
||||
__m256i sumi2 = _mm256_setzero_si256();
|
||||
for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
|
||||
const __m256i q8_1 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
|
||||
const __m256i q8_2 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
|
||||
const __m256i q2_1 = _mm256_set_epi32(iq3xxs_grid[q3[7]], iq3xxs_grid[q3[6]], iq3xxs_grid[q3[5]], iq3xxs_grid[q3[4]],
|
||||
iq3xxs_grid[q3[3]], iq3xxs_grid[q3[2]], iq3xxs_grid[q3[1]], iq3xxs_grid[q3[0]]);
|
||||
q3 += 8;
|
||||
const __m256i q2_2 = _mm256_set_epi32(iq3xxs_grid[q3[7]], iq3xxs_grid[q3[6]], iq3xxs_grid[q3[5]], iq3xxs_grid[q3[4]],
|
||||
iq3xxs_grid[q3[3]], iq3xxs_grid[q3[2]], iq3xxs_grid[q3[1]], iq3xxs_grid[q3[0]]);
|
||||
q3 += 8;
|
||||
memcpy(aux32, gas, 8); gas += 8;
|
||||
const __m256i s2_1 = _mm256_set_epi64x(signs64[(aux32[0] >> 21) & 127], signs64[(aux32[0] >> 14) & 127],
|
||||
signs64[(aux32[0] >> 7) & 127], signs64[(aux32[0] >> 0) & 127]);
|
||||
const __m256i s2_2 = _mm256_set_epi64x(signs64[(aux32[1] >> 21) & 127], signs64[(aux32[1] >> 14) & 127],
|
||||
signs64[(aux32[1] >> 7) & 127], signs64[(aux32[1] >> 0) & 127]);
|
||||
const __m256i q8s_1 = _mm256_sign_epi8(q8_1, s2_1);
|
||||
const __m256i q8s_2 = _mm256_sign_epi8(q8_2, s2_2);
|
||||
const __m256i dot1 = _mm256_maddubs_epi16(q2_1, q8s_1);
|
||||
const __m256i dot2 = _mm256_maddubs_epi16(q2_2, q8s_2);
|
||||
const uint16_t ls1 = aux32[0] >> 28;
|
||||
const uint16_t ls2 = aux32[1] >> 28;
|
||||
const __m256i p1 = _mm256_madd_epi16(dot1, _mm256_set1_epi16(2*ls1+1));
|
||||
const __m256i p2 = _mm256_madd_epi16(dot2, _mm256_set1_epi16(2*ls2+1));
|
||||
sumi1 = _mm256_add_epi32(sumi1, p1);
|
||||
sumi2 = _mm256_add_epi32(sumi2, p2);
|
||||
}
|
||||
|
||||
accumf = _mm256_fmadd_ps(_mm256_set1_ps(d), _mm256_cvtepi32_ps(_mm256_add_epi32(sumi1, sumi2)), accumf);
|
||||
|
||||
}
|
||||
|
||||
*s = 0.25f * hsum_float_8(accumf);
|
||||
|
||||
#else
|
||||
|
||||
uint32_t aux32;
|
||||
|
||||
float sumf = 0.f;
|
||||
for (int i = 0; i < nb; ++i) {
|
||||
const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
|
||||
const uint8_t * restrict q3 = x[i].qs;
|
||||
const uint8_t * restrict gas = x[i].qs + QK_K/4;
|
||||
const int8_t * restrict q8 = y[i].qs;
|
||||
int32_t bsum = 0;
|
||||
for (int ib32 = 0; ib32 < QK_K/32; ++ib32) {
|
||||
memcpy(&aux32, gas, sizeof(uint32_t)); gas += sizeof(uint32_t);
|
||||
const uint32_t ls = 2*(aux32 >> 28) + 1;
|
||||
int32_t sumi = 0;
|
||||
for (int l = 0; l < 4; ++l) {
|
||||
const uint8_t * grid1 = (const uint8_t *)(iq3xxs_grid + q3[2*l+0]);
|
||||
const uint8_t * grid2 = (const uint8_t *)(iq3xxs_grid + q3[2*l+1]);
|
||||
const uint8_t signs = ksigns_iq2xs[(aux32 >> 7*l) & 127];
|
||||
for (int j = 0; j < 4; ++j) {
|
||||
sumi += grid1[j] * q8[j+0] * (signs & kmask_iq2xs[j+0] ? -1 : 1);
|
||||
sumi += grid2[j] * q8[j+4] * (signs & kmask_iq2xs[j+4] ? -1 : 1);
|
||||
}
|
||||
q8 += 8;
|
||||
}
|
||||
q3 += 8;
|
||||
bsum += sumi * ls;
|
||||
}
|
||||
sumf += d * bsum;
|
||||
}
|
||||
*s = 0.25f * sumf;
|
||||
#endif
|
||||
}
|
||||
|
||||
// ================================ IQ2 quantization =============================================
|
||||
|
||||
typedef struct {
|
||||
|
@ -9189,3 +9447,436 @@ size_t quantize_iq2_xs(const float * src, void * dst, int nrow, int n_per_row, i
|
|||
return nrow * nblock * sizeof(block_iq2_xs);
|
||||
}
|
||||
|
||||
//
|
||||
// ============================================= 3-bit using D4 lattice
|
||||
//
|
||||
|
||||
typedef struct {
|
||||
uint32_t * grid;
|
||||
int * map;
|
||||
uint16_t * neighbours;
|
||||
} iq3_entry_t;
|
||||
|
||||
static iq3_entry_t iq3_data[1] = {
|
||||
{NULL, NULL, NULL},
|
||||
};
|
||||
|
||||
static inline int iq3_data_index(int grid_size) {
|
||||
(void)grid_size;
|
||||
GGML_ASSERT(grid_size == 256);
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int iq3_compare_func(const void * left, const void * right) {
|
||||
const int * l = (const int *)left;
|
||||
const int * r = (const int *)right;
|
||||
return l[0] < r[0] ? -1 : l[0] > r[0] ? 1 : l[1] < r[1] ? -1 : l[1] > r[1] ? 1 : 0;
|
||||
}
|
||||
|
||||
void iq3xs_init_impl(int grid_size) {
|
||||
const int gindex = iq3_data_index(grid_size);
|
||||
if (iq3_data[gindex].grid) {
|
||||
return;
|
||||
}
|
||||
static const uint16_t kgrid_256[256] = {
|
||||
0, 2, 4, 9, 11, 15, 16, 18, 25, 34, 59, 61, 65, 67, 72, 74,
|
||||
81, 85, 88, 90, 97, 108, 120, 128, 130, 132, 137, 144, 146, 153, 155, 159,
|
||||
169, 175, 189, 193, 199, 200, 202, 213, 248, 267, 287, 292, 303, 315, 317, 321,
|
||||
327, 346, 362, 413, 436, 456, 460, 462, 483, 497, 513, 515, 520, 522, 529, 531,
|
||||
536, 538, 540, 551, 552, 576, 578, 585, 592, 594, 641, 643, 648, 650, 657, 664,
|
||||
698, 704, 706, 720, 729, 742, 758, 769, 773, 808, 848, 852, 870, 889, 901, 978,
|
||||
992, 1024, 1026, 1033, 1035, 1040, 1042, 1046, 1049, 1058, 1089, 1091, 1093, 1096, 1098, 1105,
|
||||
1112, 1139, 1143, 1144, 1152, 1154, 1161, 1167, 1168, 1170, 1183, 1184, 1197, 1217, 1224, 1228,
|
||||
1272, 1276, 1309, 1323, 1347, 1367, 1377, 1404, 1473, 1475, 1486, 1509, 1537, 1544, 1546, 1553,
|
||||
1555, 1576, 1589, 1594, 1600, 1602, 1616, 1625, 1636, 1638, 1665, 1667, 1672, 1685, 1706, 1722,
|
||||
1737, 1755, 1816, 1831, 1850, 1856, 1862, 1874, 1901, 1932, 1950, 1971, 2011, 2032, 2052, 2063,
|
||||
2077, 2079, 2091, 2095, 2172, 2192, 2207, 2208, 2224, 2230, 2247, 2277, 2308, 2345, 2356, 2389,
|
||||
2403, 2424, 2501, 2504, 2506, 2520, 2570, 2593, 2616, 2624, 2630, 2646, 2669, 2700, 2714, 2746,
|
||||
2754, 2795, 2824, 2835, 2839, 2874, 2882, 2905, 2984, 3028, 3042, 3092, 3108, 3110, 3124, 3153,
|
||||
3185, 3215, 3252, 3288, 3294, 3364, 3397, 3434, 3483, 3523, 3537, 3587, 3589, 3591, 3592, 3610,
|
||||
3626, 3670, 3680, 3722, 3749, 3754, 3776, 3789, 3803, 3824, 3857, 3873, 3904, 3906, 3924, 3992,
|
||||
};
|
||||
const int kmap_size = 4096;
|
||||
const int nwant = 2;
|
||||
const uint16_t * kgrid = kgrid_256;
|
||||
uint32_t * kgrid_q3xs;
|
||||
int * kmap_q3xs;
|
||||
uint16_t * kneighbors_q3xs;
|
||||
|
||||
printf("================================================================= %s(grid_size = %d)\n", __func__, grid_size);
|
||||
uint32_t * the_grid = (uint32_t *)malloc(grid_size*sizeof(uint32_t));
|
||||
for (int k = 0; k < grid_size; ++k) {
|
||||
int8_t * pos = (int8_t *)(the_grid + k);
|
||||
for (int i = 0; i < 4; ++i) {
|
||||
int l = (kgrid[k] >> 3*i) & 0x7;
|
||||
pos[i] = 2*l + 1;
|
||||
}
|
||||
}
|
||||
kgrid_q3xs = the_grid;
|
||||
iq3_data[gindex].grid = the_grid;
|
||||
kmap_q3xs = (int *)malloc(kmap_size*sizeof(int));
|
||||
iq3_data[gindex].map = kmap_q3xs;
|
||||
for (int i = 0; i < kmap_size; ++i) kmap_q3xs[i] = -1;
|
||||
uint32_t aux32;
|
||||
uint8_t * aux8 = (uint8_t *)&aux32;
|
||||
for (int i = 0; i < grid_size; ++i) {
|
||||
aux32 = kgrid_q3xs[i];
|
||||
uint16_t index = 0;
|
||||
for (int k=0; k<4; ++k) {
|
||||
uint16_t q = (aux8[k] - 1)/2;
|
||||
index |= (q << 3*k);
|
||||
}
|
||||
kmap_q3xs[index] = i;
|
||||
}
|
||||
int8_t pos[4];
|
||||
int * dist2 = (int *)malloc(2*grid_size*sizeof(int));
|
||||
int num_neighbors = 0, num_not_in_map = 0;
|
||||
for (int i = 0; i < kmap_size; ++i) {
|
||||
if (kmap_q3xs[i] >= 0) continue;
|
||||
++num_not_in_map;
|
||||
for (int k = 0; k < 4; ++k) {
|
||||
int l = (i >> 3*k) & 0x7;
|
||||
pos[k] = 2*l + 1;
|
||||
}
|
||||
for (int j = 0; j < grid_size; ++j) {
|
||||
const int8_t * pg = (const int8_t *)(kgrid_q3xs + j);
|
||||
int d2 = 0;
|
||||
for (int k = 0; k < 4; ++k) d2 += (pg[k] - pos[k])*(pg[k] - pos[k]);
|
||||
dist2[2*j+0] = d2;
|
||||
dist2[2*j+1] = j;
|
||||
}
|
||||
qsort(dist2, grid_size, 2*sizeof(int), iq3_compare_func);
|
||||
int n = 0; int d2 = dist2[0];
|
||||
int nhave = 1;
|
||||
for (int j = 0; j < grid_size; ++j) {
|
||||
if (dist2[2*j] > d2) {
|
||||
if (nhave == nwant) break;
|
||||
d2 = dist2[2*j];
|
||||
++nhave;
|
||||
}
|
||||
++n;
|
||||
}
|
||||
num_neighbors += n;
|
||||
}
|
||||
printf("%s: %d neighbours in total\n", __func__, num_neighbors);
|
||||
kneighbors_q3xs = (uint16_t *)malloc((num_neighbors + num_not_in_map)*sizeof(uint16_t));
|
||||
iq3_data[gindex].neighbours = kneighbors_q3xs;
|
||||
int counter = 0;
|
||||
for (int i = 0; i < kmap_size; ++i) {
|
||||
if (kmap_q3xs[i] >= 0) continue;
|
||||
for (int k = 0; k < 4; ++k) {
|
||||
int l = (i >> 3*k) & 0x7;
|
||||
pos[k] = 2*l + 1;
|
||||
}
|
||||
for (int j = 0; j < grid_size; ++j) {
|
||||
const int8_t * pg = (const int8_t *)(kgrid_q3xs + j);
|
||||
int d2 = 0;
|
||||
for (int k = 0; k < 4; ++k) d2 += (pg[k] - pos[k])*(pg[k] - pos[k]);
|
||||
dist2[2*j+0] = d2;
|
||||
dist2[2*j+1] = j;
|
||||
}
|
||||
qsort(dist2, grid_size, 2*sizeof(int), iq3_compare_func);
|
||||
kmap_q3xs[i] = -(counter + 1);
|
||||
int d2 = dist2[0];
|
||||
uint16_t * start = &kneighbors_q3xs[counter++];
|
||||
int n = 0, nhave = 1;
|
||||
for (int j = 0; j < grid_size; ++j) {
|
||||
if (dist2[2*j] > d2) {
|
||||
if (nhave == nwant) break;
|
||||
d2 = dist2[2*j];
|
||||
++nhave;
|
||||
}
|
||||
kneighbors_q3xs[counter++] = dist2[2*j+1];
|
||||
++n;
|
||||
}
|
||||
*start = n;
|
||||
}
|
||||
free(dist2);
|
||||
}
|
||||
|
||||
void iq3xs_free_impl(int grid_size) {
|
||||
GGML_ASSERT(grid_size == 256);
|
||||
const int gindex = iq3_data_index(grid_size);
|
||||
if (iq3_data[gindex].grid) {
|
||||
free(iq3_data[gindex].grid); iq3_data[gindex].grid = NULL;
|
||||
free(iq3_data[gindex].map); iq3_data[gindex].map = NULL;
|
||||
free(iq3_data[gindex].neighbours); iq3_data[gindex].neighbours = NULL;
|
||||
}
|
||||
}
|
||||
|
||||
static int iq3_find_best_neighbour(const uint16_t * restrict neighbours, const uint32_t * restrict grid,
|
||||
const float * restrict xval, const float * restrict weight, float scale, int8_t * restrict L) {
|
||||
int num_neighbors = neighbours[0];
|
||||
GGML_ASSERT(num_neighbors > 0);
|
||||
float best_d2 = FLT_MAX;
|
||||
int grid_index = -1;
|
||||
for (int j = 1; j <= num_neighbors; ++j) {
|
||||
const int8_t * pg = (const int8_t *)(grid + neighbours[j]);
|
||||
float d2 = 0;
|
||||
for (int i = 0; i < 4; ++i) {
|
||||
float q = pg[i];
|
||||
float diff = scale*q - xval[i];
|
||||
d2 += weight[i]*diff*diff;
|
||||
}
|
||||
if (d2 < best_d2) {
|
||||
best_d2 = d2; grid_index = neighbours[j];
|
||||
}
|
||||
}
|
||||
GGML_ASSERT(grid_index >= 0);
|
||||
const int8_t * pg = (const int8_t *)(grid + grid_index);
|
||||
for (int i = 0; i < 4; ++i) L[i] = (pg[i] - 1)/2;
|
||||
return grid_index;
|
||||
}
|
||||
|
||||
static void quantize_row_iq3_xxs_impl(const float * restrict x, void * restrict vy, int n, const float * restrict quant_weights) {
|
||||
|
||||
const int gindex = iq3_data_index(256);
|
||||
|
||||
const uint32_t * kgrid_q3xs = iq3_data[gindex].grid;
|
||||
const int * kmap_q3xs = iq3_data[gindex].map;
|
||||
const uint16_t * kneighbors_q3xs = iq3_data[gindex].neighbours;
|
||||
|
||||
//GGML_ASSERT(quant_weights && "missing quantization weights");
|
||||
GGML_ASSERT(kgrid_q3xs && "forgot to call ggml_quantize_init()?");
|
||||
GGML_ASSERT(kmap_q3xs && "forgot to call ggml_quantize_init()?");
|
||||
GGML_ASSERT(kneighbors_q3xs && "forgot to call ggml_quantize_init()?");
|
||||
GGML_ASSERT(n%QK_K == 0);
|
||||
|
||||
const int kMaxQ = 8;
|
||||
|
||||
const int nbl = n/256;
|
||||
|
||||
block_iq3_xxs * y = vy;
|
||||
|
||||
float scales[QK_K/32];
|
||||
float weight[32];
|
||||
float xval[32];
|
||||
int8_t L[32];
|
||||
int8_t Laux[32];
|
||||
float waux[32];
|
||||
bool is_on_grid[8];
|
||||
bool is_on_grid_aux[8];
|
||||
uint8_t block_signs[8];
|
||||
uint8_t q3[3*(QK_K/8)];
|
||||
uint32_t * scales_and_signs = (uint32_t *)(q3 + QK_K/4);
|
||||
|
||||
for (int ibl = 0; ibl < nbl; ++ibl) {
|
||||
|
||||
y[ibl].d = GGML_FP32_TO_FP16(0.f);
|
||||
memset(q3, 0, 3*QK_K/8);
|
||||
|
||||
float max_scale = 0;
|
||||
|
||||
const float * xbl = x + QK_K*ibl;
|
||||
float sumx2 = 0;
|
||||
for (int i = 0; i < QK_K; ++i) sumx2 += xbl[i]*xbl[i];
|
||||
float sigma2 = sumx2/QK_K;
|
||||
|
||||
for (int ib = 0; ib < QK_K/32; ++ib) {
|
||||
const float * xb = xbl + 32*ib;
|
||||
if (quant_weights) {
|
||||
const float * qw = quant_weights + QK_K*ibl + 32*ib;
|
||||
for (int i = 0; i < 32; ++i) weight[i] = qw[i] * sqrtf(sigma2 + xb[i]*xb[i]);
|
||||
} else {
|
||||
for (int i = 0; i < 32; ++i) weight[i] = xb[i]*xb[i];
|
||||
}
|
||||
for (int i = 0; i < 32; ++i) waux[i] = sqrtf(weight[i]);
|
||||
for (int k = 0; k < 4; ++k) {
|
||||
int nflip = 0;
|
||||
uint8_t s = 0;
|
||||
for (int i = 0; i < 8; ++i) {
|
||||
if (xb[8*k + i] >= 0) xval[8*k + i] = xb[8*k + i];
|
||||
else {
|
||||
xval[8*k + i] = -xb[8*k + i]; ++nflip; s |= (1 << i);
|
||||
}
|
||||
}
|
||||
if (nflip%2) {
|
||||
int imin = 0; float min = weight[8*k+imin]*xb[8*k+imin]*xb[8*k+imin];
|
||||
for (int i = 1; i < 8; ++i) {
|
||||
float ax = weight[8*k+i]*xb[8*k+i]*xb[8*k+i];
|
||||
if (ax < min) {
|
||||
min = ax; imin = i;
|
||||
}
|
||||
}
|
||||
xval[8*k+imin] = -xval[8*k+imin];
|
||||
s ^= (1 << imin);
|
||||
}
|
||||
block_signs[k] = s & 127;
|
||||
}
|
||||
float max = xval[0];
|
||||
for (int i = 1; i < 32; ++i) max = MAX(max, xval[i]);
|
||||
if (!max) {
|
||||
scales[ib] = 0;
|
||||
memset(L, 0, 32);
|
||||
continue;
|
||||
}
|
||||
float best = 0;
|
||||
float scale = max/(2*kMaxQ-1);
|
||||
for (int is = -15; is <= 15; ++is) {
|
||||
float id = (2*kMaxQ-1+is*0.2f)/max;
|
||||
float this_scale = 1/id;
|
||||
for (int k = 0; k < 8; ++k) {
|
||||
for (int i = 0; i < 4; ++i) {
|
||||
int l = nearest_int(0.5f*(id*xval[4*k+i]-1));
|
||||
Laux[4*k+i] = MAX(0, MIN(kMaxQ-1, l));
|
||||
}
|
||||
uint16_t u = 0;
|
||||
for (int i = 0; i < 4; ++i) u |= (Laux[4*k+i] << 3*i);
|
||||
int grid_index = kmap_q3xs[u];
|
||||
is_on_grid_aux[k] = true;
|
||||
if (grid_index < 0) {
|
||||
is_on_grid_aux[k] = false;
|
||||
const uint16_t * neighbours = kneighbors_q3xs - kmap_q3xs[u] - 1;
|
||||
grid_index = iq3_find_best_neighbour(neighbours, kgrid_q3xs, xval + 4*k, waux + 4*k, this_scale, Laux + 4*k);
|
||||
}
|
||||
}
|
||||
float sumqx = 0, sumq2 = 0;
|
||||
for (int i = 0; i < 32; ++i) {
|
||||
float w = weight[i];
|
||||
float q = 2*Laux[i] + 1;
|
||||
sumqx += w*xval[i]*q;
|
||||
sumq2 += w*q*q;
|
||||
}
|
||||
if (sumq2 > 0 && sumqx*sumqx > best*sumq2) {
|
||||
scale = sumqx/sumq2; best = scale*sumqx;
|
||||
for (int i = 0; i < 32; ++i) L[i] = Laux[i];
|
||||
for (int k = 0; k < 8; ++k) is_on_grid[k] = is_on_grid_aux[k];
|
||||
}
|
||||
}
|
||||
int n_not_ongrid = 0;
|
||||
for (int k = 0; k < 8; ++k) if (!is_on_grid[k]) ++n_not_ongrid;
|
||||
if (n_not_ongrid > 0 && scale > 0) {
|
||||
float id = 1/scale;
|
||||
for (int k = 0; k < 8; ++k) {
|
||||
if (is_on_grid[k]) continue;
|
||||
uint16_t u = 0;
|
||||
for (int i = 0; i < 4; ++i) {
|
||||
int l = nearest_int(0.5f*(id*xval[4*k+i]-1));
|
||||
l = MAX(0, MIN(kMaxQ-1, l));
|
||||
u |= (l << 3*i);
|
||||
}
|
||||
int grid_index = kmap_q3xs[u];
|
||||
if (grid_index < 0) {
|
||||
const uint16_t * neighbours = kneighbors_q3xs - kmap_q3xs[u] - 1;
|
||||
grid_index = iq3_find_best_neighbour(neighbours, kgrid_q3xs, xval + 4*k, waux + 4*k, scale, L + 4*k);
|
||||
}
|
||||
const int8_t * pg = (const int8_t *)(kgrid_q3xs + grid_index);
|
||||
for (int i = 0; i < 4; ++i) L[4*k+i] = (pg[i] - 1)/2;
|
||||
}
|
||||
float sumqx = 0, sumq2 = 0;
|
||||
for (int i = 0; i < 32; ++i) {
|
||||
float w = weight[i];
|
||||
float q = 2*L[i] + 1;
|
||||
sumqx += w*xval[i]*q;
|
||||
sumq2 += w*q*q;
|
||||
}
|
||||
if (sumq2 > 0) scale = sumqx/sumq2;
|
||||
}
|
||||
if (scale < 0) {
|
||||
// This should never happen, but just in case, flip scale so that it is positive (we use uint's to encode the scale)
|
||||
// and correspondingly flip quant signs.
|
||||
scale = -scale;
|
||||
for (int k = 0; k < 4; ++k) block_signs[k] = (~block_signs[k]) & 127;
|
||||
}
|
||||
for (int k = 0; k < 8; ++k) {
|
||||
uint16_t u = 0;
|
||||
for (int i = 0; i < 4; ++i) u |= (L[4*k+i] << 3*i);
|
||||
int grid_index = kmap_q3xs[u];
|
||||
if (grid_index < 0) {
|
||||
printf("Oops: found point %u not on grid:", u);
|
||||
for (int i = 0; i < 4; ++i) printf(" %d", L[4*k+i]);
|
||||
printf("\n");
|
||||
GGML_ASSERT(false);
|
||||
}
|
||||
q3[8*ib+k] = grid_index;
|
||||
}
|
||||
scales_and_signs[ib] = block_signs[0] | (block_signs[1] << 7) | (block_signs[2] << 14) | (block_signs[3] << 21);
|
||||
GGML_ASSERT(scale >= 0);
|
||||
scales[ib] = scale;
|
||||
max_scale = MAX(max_scale, scale);
|
||||
}
|
||||
|
||||
if (!max_scale) {
|
||||
memset(y[ibl].qs, 0, 3*QK_K/8);
|
||||
continue;
|
||||
}
|
||||
|
||||
float d = max_scale/31;
|
||||
y[ibl].d = GGML_FP32_TO_FP16(d);
|
||||
float id = 1/d;
|
||||
float sumqx = 0, sumq2 = 0;
|
||||
for (int ib = 0; ib < QK_K/32; ++ib) {
|
||||
int l = nearest_int(0.5f*(id*scales[ib]-1));
|
||||
l = MAX(0, MIN(15, l));
|
||||
scales_and_signs[ib] |= ((uint32_t)l << 28);
|
||||
if (false) {
|
||||
const float * xb = xbl + 32*ib;
|
||||
if (quant_weights) {
|
||||
const float * qw = quant_weights + QK_K*ibl + 32*ib;
|
||||
for (int i = 0; i < 32; ++i) weight[i] = qw[i] * sqrtf(sigma2 + xb[i]*xb[i]);
|
||||
} else {
|
||||
for (int i = 0; i < 32; ++i) weight[i] = xb[i]*xb[i];
|
||||
}
|
||||
const float db = 0.25f * d * (1 + 2*l);
|
||||
for (int k = 0; k < 8; ++k) {
|
||||
const int8_t * signs = keven_signs_q2xs + 8*((scales_and_signs[ib] >> 7*(k/2)) & 127) + 4*(k%2);
|
||||
const float * xk = xb + 4*k;
|
||||
const float * wk = weight + 4*k;
|
||||
//const uint8_t * grid = (const uint8_t *)(kgrid_q3xs + q3[8*ib+k]);
|
||||
const uint8_t * grid = (const uint8_t *)(iq3xxs_grid + q3[8*ib+k]);
|
||||
float best_mse = 0; int best_index = q3[8*ib+k];
|
||||
for (int j = 0; j < 4; ++j) {
|
||||
float diff = db * grid[j] * signs[j] - xk[j];
|
||||
best_mse += wk[j] * diff * diff;
|
||||
}
|
||||
for (int idx = 0; idx < 256; ++idx) {
|
||||
//grid = (const uint8_t *)(kgrid_q3xs + idx);
|
||||
grid = (const uint8_t *)(iq3xxs_grid + idx);
|
||||
float mse = 0;
|
||||
for (int j = 0; j < 4; ++j) {
|
||||
float diff = db * grid[j] * signs[j] - xk[j];
|
||||
mse += wk[j] * diff * diff;
|
||||
}
|
||||
if (mse < best_mse) {
|
||||
best_mse = mse; best_index = idx;
|
||||
}
|
||||
}
|
||||
q3[8*ib+k] = best_index;
|
||||
//grid = (const uint8_t *)(kgrid_q3xs + best_index);
|
||||
grid = (const uint8_t *)(iq3xxs_grid + best_index);
|
||||
for (int j = 0; j < 4; ++j) {
|
||||
float q = db * grid[j] * signs[j];
|
||||
sumqx += wk[j] * q * xk[j];
|
||||
sumq2 += wk[j] * q * q;
|
||||
}
|
||||
}
|
||||
if (sumq2 > 0) y[ibl].d = GGML_FP32_TO_FP16(d*sumqx/sumq2);
|
||||
}
|
||||
}
|
||||
memcpy(y[ibl].qs, q3, 3*QK_K/8);
|
||||
}
|
||||
}
|
||||
|
||||
size_t quantize_iq3_xxs(const float * src, void * dst, int nrow, int n_per_row, int64_t * hist, const float * quant_weights) {
|
||||
(void)hist;
|
||||
GGML_ASSERT(n_per_row%QK_K == 0);
|
||||
int nblock = n_per_row/QK_K;
|
||||
char * qrow = (char *)dst;
|
||||
for (int row = 0; row < nrow; ++row) {
|
||||
quantize_row_iq3_xxs_impl(src, qrow, n_per_row, quant_weights);
|
||||
src += n_per_row;
|
||||
qrow += nblock*sizeof(block_iq3_xxs);
|
||||
}
|
||||
return nrow * nblock * sizeof(block_iq3_xxs);
|
||||
}
|
||||
|
||||
void quantize_row_iq3_xxs(const float * restrict x, void * restrict vy, int k) {
|
||||
assert(k % QK_K == 0);
|
||||
block_iq3_xxs * restrict y = vy;
|
||||
quantize_row_iq3_xxs_reference(x, y, k);
|
||||
}
|
||||
|
||||
void quantize_row_iq3_xxs_reference(const float * restrict x, block_iq3_xxs * restrict y, int k) {
|
||||
assert(k % QK_K == 0);
|
||||
quantize_row_iq3_xxs_impl(x, y, k, NULL);
|
||||
}
|
||||
|
|
|
@ -166,7 +166,7 @@ typedef struct {
|
|||
static_assert(sizeof(block_q8_K) == sizeof(float) + QK_K + QK_K/16*sizeof(int16_t), "wrong q8_K block size/padding");
|
||||
|
||||
// (Almost) "true" 2-bit quantization.
|
||||
// Due to the need to use blocks as per ggml dsign, it ends up using
|
||||
// Due to the need to use blocks as per ggml design, it ends up using
|
||||
// 2.0625 bpw because of the 16-bit scale for each block of 256.
|
||||
typedef struct {
|
||||
ggml_fp16_t d;
|
||||
|
@ -182,6 +182,15 @@ typedef struct {
|
|||
} block_iq2_xs;
|
||||
static_assert(sizeof(block_iq2_xs) == sizeof(ggml_fp16_t) + QK_K/8*sizeof(uint16_t) + QK_K/32, "wrong iq2_xs block size/padding");
|
||||
|
||||
// (Almost) "true" 3-bit quantization.
|
||||
// Due to the need to use blocks as per ggml design, it ends up using
|
||||
// 3.0625 bpw because of the 16-bit scale for each block of 256.
|
||||
typedef struct {
|
||||
ggml_fp16_t d;
|
||||
uint8_t qs[3*QK_K/8];
|
||||
} block_iq3_xxs;
|
||||
static_assert(sizeof(block_iq3_xxs) == sizeof(ggml_fp16_t) + 3*(QK_K/8), "wrong iq3_xxs block size/padding");
|
||||
|
||||
// Quantization
|
||||
void quantize_row_q4_0_reference(const float * restrict x, block_q4_0 * restrict y, int k);
|
||||
void quantize_row_q4_1_reference(const float * restrict x, block_q4_1 * restrict y, int k);
|
||||
|
@ -196,6 +205,7 @@ void quantize_row_q4_K_reference(const float * restrict x, block_q4_K * restrict
|
|||
void quantize_row_q5_K_reference(const float * restrict x, block_q5_K * restrict y, int k);
|
||||
void quantize_row_q6_K_reference(const float * restrict x, block_q6_K * restrict y, int k);
|
||||
void quantize_row_q8_K_reference(const float * restrict x, block_q8_K * restrict y, int k);
|
||||
void quantize_row_iq3_xxs_reference(const float * restrict x, block_iq3_xxs * restrict y, int k);
|
||||
|
||||
void quantize_row_q4_0(const float * restrict x, void * restrict y, int k);
|
||||
void quantize_row_q4_1(const float * restrict x, void * restrict y, int k);
|
||||
|
@ -210,6 +220,7 @@ void quantize_row_q4_K(const float * restrict x, void * restrict y, int k);
|
|||
void quantize_row_q5_K(const float * restrict x, void * restrict y, int k);
|
||||
void quantize_row_q6_K(const float * restrict x, void * restrict y, int k);
|
||||
void quantize_row_q8_K(const float * restrict x, void * restrict y, int k);
|
||||
void quantize_row_iq3_xxs(const float * restrict x, void * restrict y, int k);
|
||||
|
||||
// Dequantization
|
||||
void dequantize_row_q4_0(const block_q4_0 * restrict x, float * restrict y, int k);
|
||||
|
@ -227,6 +238,7 @@ void dequantize_row_q6_K(const block_q6_K * restrict x, float * restrict y, int
|
|||
void dequantize_row_q8_K(const block_q8_K * restrict x, float * restrict y, int k);
|
||||
void dequantize_row_iq2_xxs(const block_iq2_xxs * restrict x, float * restrict y, int k);
|
||||
void dequantize_row_iq2_xs (const block_iq2_xs * restrict x, float * restrict y, int k);
|
||||
void dequantize_row_iq3_xxs(const block_iq3_xxs * restrict x, float * restrict y, int k);
|
||||
|
||||
// Dot product
|
||||
void ggml_vec_dot_q4_0_q8_0(int n, float * restrict s, const void * restrict vx, const void * restrict vy);
|
||||
|
@ -242,12 +254,14 @@ void ggml_vec_dot_q5_K_q8_K(int n, float * restrict s, const void * restrict vx,
|
|||
void ggml_vec_dot_q6_K_q8_K(int n, float * restrict s, const void * restrict vx, const void * restrict vy);
|
||||
void ggml_vec_dot_iq2_xxs_q8_K(int n, float * restrict s, const void * restrict vx, const void * restrict vy);
|
||||
void ggml_vec_dot_iq2_xs_q8_K (int n, float * restrict s, const void * restrict vx, const void * restrict vy);
|
||||
void ggml_vec_dot_iq3_xxs_q8_K(int n, float * restrict s, const void * restrict vx, const void * restrict vy);
|
||||
|
||||
//
|
||||
// Quantization utilizing an importance matrix (a.k.a. "Activation aWare Quantization")
|
||||
//
|
||||
size_t quantize_iq2_xxs(const float * src, void * dst, int nrows, int n_per_row, int64_t * hist, const float * imatrix);
|
||||
size_t quantize_iq2_xs (const float * src, void * dst, int nrows, int n_per_row, int64_t * hist, const float * imatrix);
|
||||
size_t quantize_iq3_xxs(const float * src, void * dst, int nrows, int n_per_row, int64_t * hist, const float * imatrix);
|
||||
size_t quantize_q2_K (const float * src, void * dst, int nrows, int n_per_row, int64_t * hist, const float * imatrix);
|
||||
size_t quantize_q3_K (const float * src, void * dst, int nrows, int n_per_row, int64_t * hist, const float * imatrix);
|
||||
size_t quantize_q4_K (const float * src, void * dst, int nrows, int n_per_row, int64_t * hist, const float * imatrix);
|
||||
|
@ -260,3 +274,5 @@ size_t quantize_q5_1 (const float * src, void * dst, int nrows, int n_per_row,
|
|||
|
||||
void iq2xs_init_impl(int grid_size);
|
||||
void iq2xs_free_impl(int grid_size);
|
||||
void iq3xs_init_impl(int grid_size);
|
||||
void iq3xs_free_impl(int grid_size);
|
||||
|
|
423
ggml-vulkan.cpp
423
ggml-vulkan.cpp
|
@ -116,7 +116,7 @@ struct vk_device {
|
|||
vk_queue transfer_queue;
|
||||
uint32_t descriptor_set_mode;
|
||||
uint32_t subgroup_size;
|
||||
bool is_igpu;
|
||||
bool uma;
|
||||
};
|
||||
|
||||
struct vk_op_push_constants {
|
||||
|
@ -675,7 +675,7 @@ static vk_buffer ggml_vk_create_buffer(size_t size, vk::MemoryPropertyFlags req_
|
|||
|
||||
vk::PhysicalDeviceMemoryProperties mem_props = vk_device.physical_device.getMemoryProperties();
|
||||
|
||||
uint32_t memory_type_index = uint32_t(~0);
|
||||
uint32_t memory_type_index = UINT32_MAX;
|
||||
|
||||
for (uint32_t i = 0; i < mem_props.memoryTypeCount; ++i) {
|
||||
vk::MemoryType memory_type = mem_props.memoryTypes[i];
|
||||
|
@ -685,7 +685,18 @@ static vk_buffer ggml_vk_create_buffer(size_t size, vk::MemoryPropertyFlags req_
|
|||
}
|
||||
}
|
||||
|
||||
if (memory_type_index >= mem_props.memoryTypeCount) {
|
||||
throw vk::OutOfDeviceMemoryError("No suitable memory type found");
|
||||
}
|
||||
|
||||
try {
|
||||
buf.device_memory = vk_device.device.allocateMemory({ mem_req.size, memory_type_index });
|
||||
} catch (const vk::SystemError& e) {
|
||||
// Out of Host/Device memory, clean up buffer
|
||||
vk_device.device.destroyBuffer(buf.buffer);
|
||||
buf.size = 0;
|
||||
throw e;
|
||||
}
|
||||
buf.memory_property_flags = req_flags;
|
||||
buf.ptr = nullptr;
|
||||
|
||||
|
@ -700,6 +711,47 @@ static vk_buffer ggml_vk_create_buffer(size_t size, vk::MemoryPropertyFlags req_
|
|||
return buf;
|
||||
}
|
||||
|
||||
static vk_buffer ggml_vk_create_buffer_check(size_t size, vk::MemoryPropertyFlags req_flags) {
|
||||
try {
|
||||
return ggml_vk_create_buffer(size, req_flags);
|
||||
} catch (const vk::SystemError& e) {
|
||||
std::cerr << "ggml_vulkan: Memory allocation of size " << size << " failed." << std::endl;
|
||||
std::cerr << "ggml_vulkan: " << e.what() << std::endl;
|
||||
throw e;
|
||||
}
|
||||
}
|
||||
|
||||
static vk_buffer ggml_vk_create_buffer_device(size_t size) {
|
||||
vk_buffer buf;
|
||||
try {
|
||||
buf = ggml_vk_create_buffer(size, vk::MemoryPropertyFlagBits::eDeviceLocal);
|
||||
} catch (const vk::SystemError& e) {
|
||||
if (vk_device.uma) {
|
||||
// Fall back to host memory type
|
||||
buf = ggml_vk_create_buffer_check(size, vk::MemoryPropertyFlagBits::eHostVisible | vk::MemoryPropertyFlagBits::eHostCoherent);
|
||||
} else {
|
||||
std::cerr << "ggml_vulkan: Device memory allocation of size " << size << " failed." << std::endl;
|
||||
std::cerr << "ggml_vulkan: " << e.what() << std::endl;
|
||||
throw e;
|
||||
}
|
||||
}
|
||||
|
||||
return buf;
|
||||
}
|
||||
|
||||
static void ggml_vk_destroy_buffer(vk_buffer& buf) {
|
||||
if (buf.size == 0) {
|
||||
return;
|
||||
}
|
||||
#ifdef VK_DEBUG
|
||||
std::cerr << "ggml_vk_destroy_buffer(" << buf.size << ")" << std::endl;
|
||||
#endif
|
||||
|
||||
buf.size = 0;
|
||||
vk_device.device.freeMemory(buf.device_memory);
|
||||
vk_device.device.destroyBuffer(buf.buffer);
|
||||
}
|
||||
|
||||
static vk_subbuffer ggml_vk_subbuffer(vk_buffer& buf) {
|
||||
return { buf, 0, VK_WHOLE_SIZE };
|
||||
}
|
||||
|
@ -738,19 +790,6 @@ static void ggml_vk_wait_events(vk::CommandBuffer& cmd_buffer, std::vector<vk::E
|
|||
);
|
||||
}
|
||||
|
||||
static void ggml_vk_destroy_buffer(vk_buffer& buf) {
|
||||
if (buf.size == 0) {
|
||||
return;
|
||||
}
|
||||
#ifdef VK_DEBUG
|
||||
std::cerr << "ggml_vk_destroy_buffer(" << buf.size << ")" << std::endl;
|
||||
#endif
|
||||
|
||||
buf.size = 0;
|
||||
vk_device.device.freeMemory(buf.device_memory);
|
||||
vk_device.device.destroyBuffer(buf.buffer);
|
||||
}
|
||||
|
||||
static bool ggml_vk_build_shader(ggml_type type) {
|
||||
switch(type) {
|
||||
case GGML_TYPE_F16:
|
||||
|
@ -1015,7 +1054,7 @@ std::cerr << "ggml_vulkan: Validation layers enabled" << std::endl;
|
|||
|
||||
vk_device.vendor_id = vk_device.properties.vendorID;
|
||||
vk_device.subgroup_size = subgroup_props.subgroupSize;
|
||||
vk_device.is_igpu = vk_device.properties.deviceType == vk::PhysicalDeviceType::eIntegratedGpu;
|
||||
vk_device.uma = vk_device.properties.deviceType == vk::PhysicalDeviceType::eIntegratedGpu;
|
||||
|
||||
bool fp16_storage = false;
|
||||
bool fp16_compute = false;
|
||||
|
@ -1088,7 +1127,7 @@ std::cerr << "ggml_vulkan: Validation layers enabled" << std::endl;
|
|||
if (vk_device.fp16) {
|
||||
device_extensions.push_back("VK_KHR_shader_float16_int8");
|
||||
}
|
||||
std::cerr << "ggml_vulkan: Using " << vk_device.properties.deviceName << " | fp16: " << vk_device.fp16 << " | warp size: " << vk_device.subgroup_size << std::endl;
|
||||
std::cerr << "ggml_vulkan: Using " << vk_device.properties.deviceName << " | uma: " << vk_device.uma << " | fp16: " << vk_device.fp16 << " | warp size: " << vk_device.subgroup_size << std::endl;
|
||||
device_create_info = {
|
||||
vk::DeviceCreateFlags(),
|
||||
device_queue_create_infos,
|
||||
|
@ -1210,7 +1249,7 @@ static vk_buffer ggml_vk_pool_malloc(size_t size) {
|
|||
ggml_vk_destroy_buffer(b);
|
||||
}
|
||||
|
||||
return ggml_vk_create_buffer(size, vk::MemoryPropertyFlagBits::eDeviceLocal);
|
||||
return ggml_vk_create_buffer_check(size, vk::MemoryPropertyFlagBits::eDeviceLocal);
|
||||
}
|
||||
|
||||
static void ggml_vk_pool_free(vk_buffer& buffer) {
|
||||
|
@ -1250,10 +1289,6 @@ static void * ggml_vk_host_malloc(size_t size) {
|
|||
#ifdef VK_DEBUG
|
||||
std::cerr << "ggml_vk_host_malloc(" << size << ")" << std::endl;
|
||||
#endif
|
||||
if (getenv("GGML_VK_NO_PINNED") != nullptr) {
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
vk_buffer buf = ggml_vk_create_buffer(size, vk::MemoryPropertyFlagBits::eHostVisible | vk::MemoryPropertyFlagBits::eHostCoherent | vk::MemoryPropertyFlagBits::eHostCached);
|
||||
|
||||
if(!(buf.memory_property_flags & vk::MemoryPropertyFlagBits::eHostVisible)) {
|
||||
|
@ -1298,6 +1333,20 @@ static void ggml_vk_host_free(void* ptr) {
|
|||
vk_pinned_memory.erase(vk_pinned_memory.begin() + index);
|
||||
}
|
||||
|
||||
static void ggml_vk_host_get(const void * ptr, vk_buffer *& buf, size_t& buf_offset) {
|
||||
buf = nullptr;
|
||||
buf_offset = 0;
|
||||
for (size_t i = 0; i < vk_pinned_memory.size(); i++) {
|
||||
const uint8_t* addr = (const uint8_t*) std::get<0>(vk_pinned_memory[i]);
|
||||
const uint8_t* endr = addr + std::get<1>(vk_pinned_memory[i]);
|
||||
if (ptr >= addr && ptr < endr) {
|
||||
buf = &std::get<2>(vk_pinned_memory[i]);
|
||||
buf_offset = ((const uint8_t *)ptr) - addr;
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
static vk_submission ggml_vk_begin_submission(vk_queue& q, bool one_time = true) {
|
||||
vk_submission s;
|
||||
s.buffer = ggml_vk_create_cmd_buffer(q);
|
||||
|
@ -1384,6 +1433,13 @@ static void deferred_memcpy(void * dst, const void * src, size_t size, std::vect
|
|||
}
|
||||
}
|
||||
|
||||
static void ensure_sync_staging_buffer(size_t size) {
|
||||
if (vk_sync_staging.size < size) {
|
||||
ggml_vk_destroy_buffer(vk_sync_staging);
|
||||
vk_sync_staging = ggml_vk_create_buffer_check(size, vk::MemoryPropertyFlagBits::eHostVisible | vk::MemoryPropertyFlagBits::eHostCoherent | vk::MemoryPropertyFlagBits::eHostCached);
|
||||
}
|
||||
}
|
||||
|
||||
static void ggml_vk_buffer_write_nc_async(vk_context * ctx, vk_buffer* dst, size_t offset, const ggml_tensor * tensor, bool sync_staging = false) {
|
||||
#ifdef VK_DEBUG
|
||||
std::cerr << "ggml_vk_buffer_write_nc_async(" << tensor << ")" << std::endl;
|
||||
|
@ -1391,21 +1447,13 @@ static void ggml_vk_buffer_write_nc_async(vk_context * ctx, vk_buffer* dst, size
|
|||
GGML_ASSERT(!ggml_is_contiguous(tensor));
|
||||
// Buffer is already mapped
|
||||
if(dst->memory_property_flags & vk::MemoryPropertyFlagBits::eHostVisible) {
|
||||
std::cerr << "ggml_vulkan: buffer_write_async dst buffer is host_visible. Use synchronous write." << std::endl;
|
||||
std::cerr << "ggml_vulkan: buffer_write_nc_async dst buffer is host_visible. Use synchronous write." << std::endl;
|
||||
GGML_ASSERT(false);
|
||||
}
|
||||
// Check if src is pinned memory
|
||||
vk_buffer* buf = nullptr;
|
||||
size_t buf_offset = 0;
|
||||
for (size_t i = 0; i < vk_pinned_memory.size(); i++) {
|
||||
const uint8_t* addr = (const uint8_t*) std::get<0>(vk_pinned_memory[i]);
|
||||
const uint8_t* endr = addr + std::get<1>(vk_pinned_memory[i]);
|
||||
if (tensor->data >= addr && tensor->data < endr) {
|
||||
buf = &std::get<2>(vk_pinned_memory[i]);
|
||||
buf_offset = ((const uint8_t *)tensor->data) - addr;
|
||||
break;
|
||||
}
|
||||
}
|
||||
vk_buffer * buf = nullptr;
|
||||
size_t buf_offset;
|
||||
ggml_vk_host_get(tensor->data, buf, buf_offset);
|
||||
|
||||
const uint64_t ne0 = tensor->ne[0];
|
||||
const uint64_t ne1 = tensor->ne[1];
|
||||
|
@ -1463,10 +1511,7 @@ static void ggml_vk_buffer_write_nc_async(vk_context * ctx, vk_buffer* dst, size
|
|||
if (vk_staging.size < vk_staging_offset + copy_size) {
|
||||
if (sync_staging) {
|
||||
// Create temporary larger buffer
|
||||
if (vk_sync_staging.size < copy_size) {
|
||||
ggml_vk_destroy_buffer(vk_sync_staging);
|
||||
vk_sync_staging = ggml_vk_create_buffer(copy_size, vk::MemoryPropertyFlagBits::eHostVisible | vk::MemoryPropertyFlagBits::eHostCoherent | vk::MemoryPropertyFlagBits::eHostCached);
|
||||
}
|
||||
ensure_sync_staging_buffer(copy_size);
|
||||
|
||||
staging = &vk_sync_staging;
|
||||
staging_offset = 0;
|
||||
|
@ -1512,17 +1557,9 @@ static void ggml_vk_buffer_write_2d_async(vk_context * ctx, vk_buffer* dst, size
|
|||
GGML_ASSERT(false);
|
||||
}
|
||||
// Check if src is pinned memory
|
||||
vk_buffer* buf = nullptr;
|
||||
size_t buf_offset = 0;
|
||||
for (size_t i = 0; i < vk_pinned_memory.size(); i++) {
|
||||
const uint8_t* addr = (const uint8_t*) std::get<0>(vk_pinned_memory[i]);
|
||||
const uint8_t* endr = addr + std::get<1>(vk_pinned_memory[i]);
|
||||
if (src >= addr && src < endr) {
|
||||
buf = &std::get<2>(vk_pinned_memory[i]);
|
||||
buf_offset = ((const uint8_t *)src) - addr;
|
||||
break;
|
||||
}
|
||||
}
|
||||
vk_buffer * buf = nullptr;
|
||||
size_t buf_offset;
|
||||
ggml_vk_host_get(src, buf, buf_offset);
|
||||
|
||||
if (buf != nullptr) {
|
||||
// Memory is pinned, use as staging buffer
|
||||
|
@ -1555,10 +1592,7 @@ static void ggml_vk_buffer_write_2d_async(vk_context * ctx, vk_buffer* dst, size
|
|||
const size_t copy_size = width*height;
|
||||
if (vk_staging.size < vk_staging_offset + copy_size) {
|
||||
if (sync_staging) {
|
||||
if (vk_sync_staging.size < copy_size) {
|
||||
ggml_vk_destroy_buffer(vk_sync_staging);
|
||||
vk_sync_staging = ggml_vk_create_buffer(copy_size, vk::MemoryPropertyFlagBits::eHostVisible | vk::MemoryPropertyFlagBits::eHostCoherent | vk::MemoryPropertyFlagBits::eHostCached);
|
||||
}
|
||||
ensure_sync_staging_buffer(copy_size);
|
||||
|
||||
staging = &vk_sync_staging;
|
||||
staging_offset = 0;
|
||||
|
@ -1633,17 +1667,9 @@ static void ggml_vk_buffer_read_2d_async(vk_context * ctx, vk_buffer* src, size_
|
|||
GGML_ASSERT(height > 0);
|
||||
GGML_ASSERT(src->size > 0);
|
||||
// Check if dst is pinned memory
|
||||
vk_buffer* buf = nullptr;
|
||||
size_t buf_offset = 0;
|
||||
for (size_t i = 0; i < vk_pinned_memory.size(); i++) {
|
||||
const uint8_t* addr = (const uint8_t*) std::get<0>(vk_pinned_memory[i]);
|
||||
const uint8_t* endr = addr + std::get<1>(vk_pinned_memory[i]);
|
||||
if (dst >= addr && dst < endr) {
|
||||
buf = &std::get<2>(vk_pinned_memory[i]);
|
||||
buf_offset = ((const uint8_t *)dst) - addr;
|
||||
break;
|
||||
}
|
||||
}
|
||||
vk_buffer * buf = nullptr;
|
||||
size_t buf_offset;
|
||||
ggml_vk_host_get(dst, buf, buf_offset);
|
||||
|
||||
std::vector<vk::BufferCopy> slices(1);
|
||||
if (width == spitch && width == dpitch) {
|
||||
|
@ -1677,10 +1703,7 @@ static void ggml_vk_buffer_read_2d_async(vk_context * ctx, vk_buffer* src, size_
|
|||
if (vk_staging.size < vk_staging_offset + copy_size) {
|
||||
if (sync_staging) {
|
||||
// Create temporary larger buffer
|
||||
if (vk_sync_staging.size < copy_size) {
|
||||
ggml_vk_destroy_buffer(vk_sync_staging);
|
||||
vk_sync_staging = ggml_vk_create_buffer(copy_size, vk::MemoryPropertyFlagBits::eHostVisible | vk::MemoryPropertyFlagBits::eHostCoherent | vk::MemoryPropertyFlagBits::eHostCached);
|
||||
}
|
||||
ensure_sync_staging_buffer(copy_size);
|
||||
|
||||
staging = &vk_sync_staging;
|
||||
} else {
|
||||
|
@ -1819,7 +1842,7 @@ static void ggml_vk_d2h_tensor_2d(vk_context * ctx, vk_buffer * src, size_t offs
|
|||
|
||||
static uint32_t ggml_vk_guess_split_k(int m, int n, int k) {
|
||||
#ifdef VK_DEBUG
|
||||
std::cerr << "ggml_vk_guess_split_k(" << m << ", " << n << ", " << k << ", " << aligned << ")";
|
||||
std::cerr << "ggml_vk_guess_split_k(" << m << ", " << n << ", " << k << ")";
|
||||
#endif
|
||||
if (k > 128 && (m < 128 || n < 128) && m > 2 && n > 2) {
|
||||
#ifdef VK_DEBUG
|
||||
|
@ -2003,8 +2026,27 @@ static void ggml_vk_mul_mat_q_f16(vk_context * ctx, const ggml_tensor * src0, co
|
|||
const uint64_t r2 = ne12 / ne02;
|
||||
const uint64_t r3 = ne13 / ne03;
|
||||
|
||||
const bool load_x = src0->backend != GGML_BACKEND_GPU;
|
||||
const bool load_y = src1->backend != GGML_BACKEND_GPU;
|
||||
ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) dst->extra;
|
||||
ggml_tensor_extra_gpu * extra_src0 = (ggml_tensor_extra_gpu *) src0->extra;
|
||||
ggml_tensor_extra_gpu * extra_src1 = (ggml_tensor_extra_gpu *) src1->extra;
|
||||
|
||||
vk_buffer * d_Qx = nullptr;
|
||||
size_t qx_buf_offset = 0;
|
||||
vk_buffer * d_Qy = nullptr;
|
||||
size_t qy_buf_offset = 0;
|
||||
|
||||
bool src0_uma = false;
|
||||
bool src1_uma = false;
|
||||
|
||||
if (vk_device.uma) {
|
||||
ggml_vk_host_get(src0->data, d_Qx, qx_buf_offset);
|
||||
ggml_vk_host_get(src1->data, d_Qy, qy_buf_offset);
|
||||
src0_uma = d_Qx != nullptr;
|
||||
src1_uma = d_Qy != nullptr;
|
||||
}
|
||||
|
||||
const bool load_x = src0->backend != GGML_BACKEND_GPU && !src0_uma;
|
||||
const bool load_y = src1->backend != GGML_BACKEND_GPU && !src1_uma;
|
||||
|
||||
const bool x_non_contig = !load_x && !ggml_vk_dim01_contiguous(src0);
|
||||
const bool y_non_contig = !load_y && !ggml_vk_dim01_contiguous(src1);
|
||||
|
@ -2034,32 +2076,24 @@ static void ggml_vk_mul_mat_q_f16(vk_context * ctx, const ggml_tensor * src0, co
|
|||
const uint64_t y_sz = f16_f32_kernel ? sizeof(float) * y_ne : sizeof(ggml_fp16_t) * y_ne;
|
||||
const uint64_t d_sz = sizeof(float) * d_ne;
|
||||
|
||||
ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) dst->extra;
|
||||
ggml_tensor_extra_gpu * extra_src0 = (ggml_tensor_extra_gpu *) src0->extra;
|
||||
ggml_tensor_extra_gpu * extra_src1 = (ggml_tensor_extra_gpu *) src1->extra;
|
||||
|
||||
vk_buffer* d_D = &extra->buffer_gpu;
|
||||
const uint64_t d_buf_offset = extra->offset;
|
||||
GGML_ASSERT(d_D != nullptr);
|
||||
GGML_ASSERT(d_D->size >= d_buf_offset + d_sz * ne02 * ne03);
|
||||
vk_buffer * d_Qx;
|
||||
uint64_t qx_buf_offset = 0;
|
||||
vk_buffer * d_Qy;
|
||||
uint64_t qy_buf_offset = 0;
|
||||
vk_buffer* d_X;
|
||||
uint64_t x_buf_offset = 0;
|
||||
vk_buffer* d_Y;
|
||||
uint64_t y_buf_offset = 0;
|
||||
if (load_x) {
|
||||
d_Qx = &vk_prealloc_qx;
|
||||
} else {
|
||||
} else if (!src0_uma) {
|
||||
d_Qx = &extra_src0->buffer_gpu;
|
||||
qx_buf_offset = extra_src0->offset;
|
||||
GGML_ASSERT(d_Qx != nullptr);
|
||||
}
|
||||
if (load_y) {
|
||||
d_Qy = &vk_prealloc_qy;
|
||||
} else {
|
||||
} else if (!src1_uma) {
|
||||
d_Qy = &extra_src1->buffer_gpu;
|
||||
qy_buf_offset = extra_src1->offset;
|
||||
GGML_ASSERT(d_Qy != nullptr);
|
||||
|
@ -2178,8 +2212,27 @@ static void ggml_vk_mul_mat_vec_q_f16(vk_context * ctx, const ggml_tensor * src0
|
|||
const uint64_t r2 = ne12 / ne02;
|
||||
const uint64_t r3 = ne13 / ne03;
|
||||
|
||||
const bool load_x = src0->backend != GGML_BACKEND_GPU;
|
||||
const bool load_y = src1->backend != GGML_BACKEND_GPU;
|
||||
ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) dst->extra;
|
||||
ggml_tensor_extra_gpu * extra_src0 = (ggml_tensor_extra_gpu *) src0->extra;
|
||||
ggml_tensor_extra_gpu * extra_src1 = (ggml_tensor_extra_gpu *) src1->extra;
|
||||
|
||||
vk_buffer * d_Qx = nullptr;
|
||||
size_t qx_buf_offset = 0;
|
||||
vk_buffer * d_Qy = nullptr;
|
||||
size_t qy_buf_offset = 0;
|
||||
|
||||
bool src0_uma = false;
|
||||
bool src1_uma = false;
|
||||
|
||||
if (vk_device.uma) {
|
||||
ggml_vk_host_get(src0->data, d_Qx, qx_buf_offset);
|
||||
ggml_vk_host_get(src1->data, d_Qy, qy_buf_offset);
|
||||
src0_uma = d_Qx != nullptr;
|
||||
src1_uma = d_Qy != nullptr;
|
||||
}
|
||||
|
||||
const bool load_x = src0->backend != GGML_BACKEND_GPU && !src0_uma;
|
||||
const bool load_y = src1->backend != GGML_BACKEND_GPU && !src1_uma;
|
||||
|
||||
const bool x_non_contig = !load_x && !ggml_vk_dim01_contiguous(src0);
|
||||
const bool y_non_contig = !load_y && !ggml_vk_dim01_contiguous(src1);
|
||||
|
@ -2199,31 +2252,23 @@ static void ggml_vk_mul_mat_vec_q_f16(vk_context * ctx, const ggml_tensor * src0
|
|||
const uint64_t y_sz = f16_f32_kernel ? sizeof(float) * y_ne : sizeof(ggml_fp16_t) * y_ne;
|
||||
const uint64_t d_sz = sizeof(float) * d_ne;
|
||||
|
||||
ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) dst->extra;
|
||||
ggml_tensor_extra_gpu * extra_src0 = (ggml_tensor_extra_gpu *) src0->extra;
|
||||
ggml_tensor_extra_gpu * extra_src1 = (ggml_tensor_extra_gpu *) src1->extra;
|
||||
|
||||
vk_buffer* d_D = &extra->buffer_gpu;
|
||||
const uint64_t d_buf_offset = extra->offset;
|
||||
GGML_ASSERT(d_D != nullptr);
|
||||
vk_buffer* d_Qx;
|
||||
uint32_t qx_buf_offset = 0;
|
||||
vk_buffer* d_Qy;
|
||||
uint32_t qy_buf_offset = 0;
|
||||
vk_buffer* d_X;
|
||||
uint64_t x_buf_offset = 0;
|
||||
vk_buffer* d_Y;
|
||||
uint64_t y_buf_offset = 0;
|
||||
if (load_x) {
|
||||
d_Qx = &vk_prealloc_qx;
|
||||
} else {
|
||||
} else if(!src1_uma) {
|
||||
d_Qx = &extra_src0->buffer_gpu;
|
||||
qx_buf_offset = extra_src0->offset;
|
||||
GGML_ASSERT(d_Qx != nullptr);
|
||||
}
|
||||
if (load_y) {
|
||||
d_Qy = &vk_prealloc_qy;
|
||||
} else {
|
||||
} else if(!src1_uma) {
|
||||
d_Qy = &extra_src1->buffer_gpu;
|
||||
qy_buf_offset = extra_src1->offset;
|
||||
GGML_ASSERT(d_Qy != nullptr);
|
||||
|
@ -2345,7 +2390,21 @@ static void ggml_vk_mul_mat_vec_p021_f16_f32(vk_context * ctx, const ggml_tensor
|
|||
|
||||
GGML_ASSERT(ne11 == 1);
|
||||
|
||||
const bool load_y = src1->backend != GGML_BACKEND_GPU;
|
||||
ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) dst->extra;
|
||||
ggml_tensor_extra_gpu * extra_src0 = (ggml_tensor_extra_gpu *) src0->extra;
|
||||
ggml_tensor_extra_gpu * extra_src1 = (ggml_tensor_extra_gpu *) src1->extra;
|
||||
|
||||
vk_buffer * d_Qy = nullptr;
|
||||
size_t qy_buf_offset = 0;
|
||||
|
||||
bool src1_uma = false;
|
||||
|
||||
if (vk_device.uma) {
|
||||
ggml_vk_host_get(src1->data, d_Qy, qy_buf_offset);
|
||||
src1_uma = d_Qy != nullptr;
|
||||
}
|
||||
|
||||
const bool load_y = src1->backend != GGML_BACKEND_GPU && !src1_uma;
|
||||
|
||||
const uint64_t x_ne = ne00 * ne01 * ne02;
|
||||
const uint64_t y_ne = ne10 * ne11 * ne12;
|
||||
|
@ -2355,22 +2414,15 @@ static void ggml_vk_mul_mat_vec_p021_f16_f32(vk_context * ctx, const ggml_tensor
|
|||
const uint64_t qy_sz = ggml_type_size(src1->type) * y_ne / ggml_blck_size(src1->type);
|
||||
const uint64_t d_sz = sizeof(float) * d_ne;
|
||||
|
||||
ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) dst->extra;
|
||||
ggml_tensor_extra_gpu * extra_src0 = (ggml_tensor_extra_gpu *) src0->extra;
|
||||
ggml_tensor_extra_gpu * extra_src1 = (ggml_tensor_extra_gpu *) src1->extra;
|
||||
|
||||
vk_buffer* d_D = &extra->buffer_gpu;
|
||||
const uint64_t d_buf_offset = extra->offset;
|
||||
GGML_ASSERT(d_D != nullptr);
|
||||
vk_buffer* d_Qx;
|
||||
vk_buffer* d_Qx = &extra_src0->buffer_gpu;
|
||||
const uint64_t qx_buf_offset = extra_src0->offset;
|
||||
vk_buffer* d_Qy;
|
||||
uint64_t qy_buf_offset = 0;
|
||||
d_Qx = &extra_src0->buffer_gpu;
|
||||
GGML_ASSERT(d_Qx != nullptr);
|
||||
if (load_y) {
|
||||
d_Qy = &vk_prealloc_qy;
|
||||
} else {
|
||||
} else if (!src1_uma) {
|
||||
d_Qy = &extra_src1->buffer_gpu;
|
||||
qy_buf_offset = extra_src1->offset;
|
||||
GGML_ASSERT(d_Qx != nullptr);
|
||||
|
@ -2430,7 +2482,21 @@ static void ggml_vk_mul_mat_vec_nc_f16_f32(vk_context * ctx, const ggml_tensor *
|
|||
|
||||
GGML_ASSERT(ne11 == 1);
|
||||
|
||||
const bool load_y = src1->backend != GGML_BACKEND_GPU;
|
||||
ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) dst->extra;
|
||||
ggml_tensor_extra_gpu * extra_src0 = (ggml_tensor_extra_gpu *) src0->extra;
|
||||
ggml_tensor_extra_gpu * extra_src1 = (ggml_tensor_extra_gpu *) src1->extra;
|
||||
|
||||
vk_buffer * d_Qy = nullptr;
|
||||
size_t qy_buf_offset = 0;
|
||||
|
||||
bool src1_uma = false;
|
||||
|
||||
if (vk_device.uma) {
|
||||
ggml_vk_host_get(src1->data, d_Qy, qy_buf_offset);
|
||||
src1_uma = d_Qy != nullptr;
|
||||
}
|
||||
|
||||
const bool load_y = src1->backend != GGML_BACKEND_GPU && !src1_uma;
|
||||
|
||||
const uint64_t d_ne = ne01 * ne11 * ne12;
|
||||
|
||||
|
@ -2441,18 +2507,11 @@ static void ggml_vk_mul_mat_vec_nc_f16_f32(vk_context * ctx, const ggml_tensor *
|
|||
const uint64_t qy_sz = ggml_nbytes(src1);
|
||||
const uint64_t d_sz = sizeof(float) * d_ne;
|
||||
|
||||
ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) dst->extra;
|
||||
ggml_tensor_extra_gpu * extra_src0 = (ggml_tensor_extra_gpu *) src0->extra;
|
||||
ggml_tensor_extra_gpu * extra_src1 = (ggml_tensor_extra_gpu *) src1->extra;
|
||||
|
||||
vk_buffer* d_D = &extra->buffer_gpu;
|
||||
const uint64_t d_buf_offset = extra->offset;
|
||||
GGML_ASSERT(d_D != nullptr);
|
||||
vk_buffer* d_Qx;
|
||||
vk_buffer* d_Qx = &extra_src0->buffer_gpu;
|
||||
const uint64_t qx_buf_offset = extra_src0->offset;
|
||||
vk_buffer* d_Qy;
|
||||
uint64_t qy_buf_offset = 0;
|
||||
d_Qx = &extra_src0->buffer_gpu;
|
||||
GGML_ASSERT(d_Qx != nullptr);
|
||||
if (load_y) {
|
||||
d_Qy = &vk_prealloc_qy;
|
||||
|
@ -2709,7 +2768,8 @@ static ggml_vk_func_t ggml_vk_op_get_func(ggml_op op) {
|
|||
}
|
||||
|
||||
#ifdef GGML_VULKAN_CHECK_RESULTS
|
||||
void ggml_vk_print_tensor(const ggml_tensor * tensor, const char * name);
|
||||
static void ggml_vk_print_tensor(const ggml_tensor * tensor, const char * name);
|
||||
static void ggml_vk_check_results_0(ggml_compute_params * params, ggml_tensor * tensor);
|
||||
#endif
|
||||
|
||||
template<typename PC>
|
||||
|
@ -2758,17 +2818,34 @@ static void ggml_vk_op_f32(vk_context * ctx, const ggml_tensor * src0, const ggm
|
|||
return;
|
||||
}
|
||||
|
||||
const bool transfer_src0 = src0->backend != GGML_BACKEND_GPU;
|
||||
const bool transfer_src1 = use_src1 && src1->backend != GGML_BACKEND_GPU;
|
||||
ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) dst->extra;
|
||||
ggml_tensor_extra_gpu * extra_src0 = (ggml_tensor_extra_gpu *) src0->extra;
|
||||
ggml_tensor_extra_gpu * extra_src1 = use_src1 ? (ggml_tensor_extra_gpu *) src1->extra : nullptr;
|
||||
|
||||
vk_buffer * d_X = nullptr;
|
||||
size_t x_buf_offset = 0;
|
||||
vk_buffer * d_Y = nullptr;
|
||||
size_t y_buf_offset = 0;
|
||||
|
||||
bool src0_uma = false;
|
||||
bool src1_uma = false;
|
||||
|
||||
if (vk_device.uma) {
|
||||
ggml_vk_host_get(src0->data, d_X, x_buf_offset);
|
||||
src0_uma = d_X != nullptr;
|
||||
if (use_src1) {
|
||||
ggml_vk_host_get(src1->data, d_Y, y_buf_offset);
|
||||
src1_uma = d_Y != nullptr;
|
||||
}
|
||||
}
|
||||
|
||||
const bool transfer_src0 = src0->backend != GGML_BACKEND_GPU && !src0_uma;
|
||||
const bool transfer_src1 = use_src1 && src1->backend != GGML_BACKEND_GPU && !src1_uma;
|
||||
|
||||
uint64_t x_sz = ggml_vk_align_size(ggml_type_size(src0->type) * ne0, vk_device.properties.limits.minStorageBufferOffsetAlignment);
|
||||
uint64_t y_sz = use_src1 ? ggml_vk_align_size(ggml_type_size(src1->type) * ne1, vk_device.properties.limits.minStorageBufferOffsetAlignment) : 0;
|
||||
uint64_t d_sz = ggml_type_size(dst->type) * ne0;
|
||||
|
||||
ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) dst->extra;
|
||||
ggml_tensor_extra_gpu * extra_src0 = (ggml_tensor_extra_gpu *) src0->extra;
|
||||
ggml_tensor_extra_gpu * extra_src1 = use_src1 ? (ggml_tensor_extra_gpu *) src1->extra : nullptr;
|
||||
|
||||
// Workaround for tiny tensor inputs on ROPE
|
||||
if (use_src1 && src1->backend == GGML_BACKEND_GPU && y_sz > extra_src1->buffer_gpu.size) {
|
||||
y_sz = VK_WHOLE_SIZE;
|
||||
|
@ -2778,20 +2855,16 @@ static void ggml_vk_op_f32(vk_context * ctx, const ggml_tensor * src0, const ggm
|
|||
GGML_ASSERT(d_D != nullptr);
|
||||
uint64_t d_buf_offset = (extra->offset / vk_device.properties.limits.minStorageBufferOffsetAlignment) * vk_device.properties.limits.minStorageBufferOffsetAlignment;
|
||||
GGML_ASSERT(d_buf_offset == extra->offset || op == GGML_OP_CPY); // NOLINT
|
||||
vk_buffer* d_X = nullptr;
|
||||
uint64_t x_buf_offset = 0;
|
||||
vk_buffer* d_Y = nullptr;
|
||||
uint64_t y_buf_offset = 0;
|
||||
if (transfer_src0) {
|
||||
d_X = &vk_prealloc_qx;
|
||||
} else {
|
||||
} else if(!src0_uma) {
|
||||
d_X = &extra_src0->buffer_gpu;
|
||||
x_buf_offset = extra_src0->offset;
|
||||
GGML_ASSERT(d_X != nullptr);
|
||||
}
|
||||
if (transfer_src1) {
|
||||
d_Y = &vk_prealloc_qy;
|
||||
} else if (use_src1) {
|
||||
} else if (use_src1 && !src1_uma) {
|
||||
d_Y = &extra_src1->buffer_gpu;
|
||||
y_buf_offset = extra_src1->offset;
|
||||
GGML_ASSERT(d_Y != nullptr);
|
||||
|
@ -3148,13 +3221,13 @@ static void ggml_vk_test_matmul(size_t m, size_t n, size_t k, size_t batch, size
|
|||
if (vk_prealloc_split_k.size > 0) {
|
||||
ggml_vk_destroy_buffer(vk_prealloc_split_k);
|
||||
}
|
||||
vk_prealloc_split_k = ggml_vk_create_buffer(sizeof(float) * d_ne * split_k, vk::MemoryPropertyFlagBits::eDeviceLocal);
|
||||
vk_prealloc_split_k = ggml_vk_create_buffer_check(sizeof(float) * d_ne * split_k, vk::MemoryPropertyFlagBits::eDeviceLocal);
|
||||
}
|
||||
}
|
||||
|
||||
vk_buffer d_X = ggml_vk_create_buffer(sizeof(X_TYPE) * x_ne, vk::MemoryPropertyFlagBits::eDeviceLocal);
|
||||
vk_buffer d_Y = ggml_vk_create_buffer(sizeof(Y_TYPE) * y_ne, vk::MemoryPropertyFlagBits::eDeviceLocal);
|
||||
vk_buffer d_D = ggml_vk_create_buffer(sizeof(float) * d_ne, vk::MemoryPropertyFlagBits::eDeviceLocal);
|
||||
vk_buffer d_X = ggml_vk_create_buffer_check(sizeof(X_TYPE) * x_ne, vk::MemoryPropertyFlagBits::eDeviceLocal);
|
||||
vk_buffer d_Y = ggml_vk_create_buffer_check(sizeof(Y_TYPE) * y_ne, vk::MemoryPropertyFlagBits::eDeviceLocal);
|
||||
vk_buffer d_D = ggml_vk_create_buffer_check(sizeof(float) * d_ne, vk::MemoryPropertyFlagBits::eDeviceLocal);
|
||||
|
||||
X_TYPE* x = (X_TYPE *) malloc(sizeof(X_TYPE) * x_ne);
|
||||
Y_TYPE* y = (Y_TYPE *) malloc(sizeof(Y_TYPE) * y_ne);
|
||||
|
@ -3315,6 +3388,10 @@ static void ggml_vk_print_tensor_area(const ggml_tensor * tensor, int i0, int i1
|
|||
if (tensor->type != GGML_TYPE_F32 && tensor->type != GGML_TYPE_F16) {
|
||||
return;
|
||||
}
|
||||
i0 = std::max(i0, 5);
|
||||
i1 = std::max(i1, 5);
|
||||
i2 = std::max(i2, 0);
|
||||
i3 = std::max(i3, 0);
|
||||
fprintf(stderr, " ");
|
||||
for (int idx1 = i1 - 5; idx1 < i1 + 5; idx1++) {
|
||||
fprintf(stderr, "%7d ", idx1);
|
||||
|
@ -3376,7 +3453,7 @@ static void ggml_vk_test_h2d_nc(size_t ne0, size_t ne1, size_t ne2, size_t ne3)
|
|||
vk_context * ctx = ggml_vk_create_context(vk_device.compute_queue);
|
||||
ggml_vk_ctx_begin(ctx);
|
||||
|
||||
vk_buffer buffer = ggml_vk_create_buffer(ggml_nbytes(tensor), vk::MemoryPropertyFlagBits::eDeviceLocal);
|
||||
vk_buffer buffer = ggml_vk_create_buffer_check(ggml_nbytes(tensor), vk::MemoryPropertyFlagBits::eDeviceLocal);
|
||||
|
||||
ggml_vk_h2d_tensor_2d(ctx, &buffer, 0, tensor, 0, 0, ggml_nrows(tensor));
|
||||
|
||||
|
@ -3439,7 +3516,7 @@ static void ggml_vk_test_transfer(size_t ne, bool pinned) {
|
|||
std::cerr << "ggml_vk_test_transfer(" << ne << ")" << std::endl;
|
||||
#endif
|
||||
// Check transfers are correct
|
||||
vk_buffer buffer = ggml_vk_create_buffer(sizeof(float) * ne, vk::MemoryPropertyFlagBits::eDeviceLocal);
|
||||
vk_buffer buffer = ggml_vk_create_buffer_check(sizeof(float) * ne, vk::MemoryPropertyFlagBits::eDeviceLocal);
|
||||
|
||||
float * x;
|
||||
float * y;
|
||||
|
@ -3666,7 +3743,7 @@ void ggml_vk_preallocate_buffers() {
|
|||
std::cerr << "qx_size: " << vk_prealloc_size_qx << " qy_size: " << vk_prealloc_size_qy << " x_size: " << vk_prealloc_size_x << " y_size: " << vk_prealloc_size_y << " split_k_size: " << vk_prealloc_size_split_k << std::endl;
|
||||
#endif
|
||||
#if defined(VK_RUN_TESTS)
|
||||
vk_staging = ggml_vk_create_buffer(100ul * 1024ul * 1024ul, vk::MemoryPropertyFlagBits::eHostVisible | vk::MemoryPropertyFlagBits::eHostCoherent | vk::MemoryPropertyFlagBits::eHostCached);
|
||||
vk_staging = ggml_vk_create_buffer_check(100ul * 1024ul * 1024ul, vk::MemoryPropertyFlagBits::eHostVisible | vk::MemoryPropertyFlagBits::eHostCoherent | vk::MemoryPropertyFlagBits::eHostCached);
|
||||
ggml_vk_test_transfer(8192 * 1000, false);
|
||||
ggml_vk_test_transfer(8192 * 1000, true);
|
||||
|
||||
|
@ -3712,42 +3789,42 @@ void ggml_vk_preallocate_buffers() {
|
|||
if (vk_prealloc_qx.size > 0) {
|
||||
ggml_vk_destroy_buffer(vk_prealloc_qx);
|
||||
}
|
||||
vk_prealloc_qx = ggml_vk_create_buffer(vk_prealloc_size_qx, vk::MemoryPropertyFlagBits::eDeviceLocal);
|
||||
vk_prealloc_qx = ggml_vk_create_buffer_device(vk_prealloc_size_qx);
|
||||
}
|
||||
if (vk_prealloc_size_qy > 0 && vk_prealloc_qy.size < vk_prealloc_size_qy) {
|
||||
// Resize buffer
|
||||
if (vk_prealloc_qy.size > 0) {
|
||||
ggml_vk_destroy_buffer(vk_prealloc_qy);
|
||||
}
|
||||
vk_prealloc_qy = ggml_vk_create_buffer(vk_prealloc_size_qy, vk::MemoryPropertyFlagBits::eDeviceLocal);
|
||||
vk_prealloc_qy = ggml_vk_create_buffer_device(vk_prealloc_size_qy);
|
||||
}
|
||||
if (vk_prealloc_size_x > 0 && vk_prealloc_x.size < vk_prealloc_size_x) {
|
||||
// Resize buffer
|
||||
if (vk_prealloc_x.size > 0) {
|
||||
ggml_vk_destroy_buffer(vk_prealloc_x);
|
||||
}
|
||||
vk_prealloc_x = ggml_vk_create_buffer(vk_prealloc_size_x, vk::MemoryPropertyFlagBits::eDeviceLocal);
|
||||
vk_prealloc_x = ggml_vk_create_buffer_device(vk_prealloc_size_x);
|
||||
}
|
||||
if (vk_prealloc_size_y > 0 && vk_prealloc_y.size < vk_prealloc_size_y) {
|
||||
// Resize buffer
|
||||
if (vk_prealloc_y.size > 0) {
|
||||
ggml_vk_destroy_buffer(vk_prealloc_y);
|
||||
}
|
||||
vk_prealloc_y = ggml_vk_create_buffer(vk_prealloc_size_y, vk::MemoryPropertyFlagBits::eDeviceLocal);
|
||||
vk_prealloc_y = ggml_vk_create_buffer_device(vk_prealloc_size_y);
|
||||
}
|
||||
if (vk_prealloc_size_split_k > 0 && vk_prealloc_split_k.size < vk_prealloc_size_split_k) {
|
||||
// Resize buffer
|
||||
if (vk_prealloc_split_k.size > 0) {
|
||||
ggml_vk_destroy_buffer(vk_prealloc_split_k);
|
||||
}
|
||||
vk_prealloc_split_k = ggml_vk_create_buffer(vk_prealloc_size_split_k, vk::MemoryPropertyFlagBits::eDeviceLocal);
|
||||
vk_prealloc_split_k = ggml_vk_create_buffer_device(vk_prealloc_size_split_k);
|
||||
}
|
||||
if (vk_staging_size > 0 && vk_staging.size < vk_staging_size) {
|
||||
// Resize buffer
|
||||
if (vk_staging.size > 0) {
|
||||
ggml_vk_destroy_buffer(vk_staging);
|
||||
}
|
||||
vk_staging = ggml_vk_create_buffer(vk_staging_size, vk::MemoryPropertyFlagBits::eHostVisible | vk::MemoryPropertyFlagBits::eHostCoherent | vk::MemoryPropertyFlagBits::eHostCached);
|
||||
vk_staging = ggml_vk_create_buffer_check(vk_staging_size, vk::MemoryPropertyFlagBits::eHostVisible | vk::MemoryPropertyFlagBits::eHostCoherent | vk::MemoryPropertyFlagBits::eHostCached);
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -4138,6 +4215,7 @@ GGML_CALL static bool ggml_backend_buffer_is_vk(ggml_backend_buffer_t buffer) {
|
|||
|
||||
GGML_CALL static void ggml_backend_vk_buffer_free_buffer(ggml_backend_buffer_t buffer) {
|
||||
ggml_backend_vk_buffer_context * ctx = (ggml_backend_vk_buffer_context *)buffer->context;
|
||||
ggml_vk_destroy_buffer(ctx->dev_buffer);
|
||||
delete ctx;
|
||||
}
|
||||
|
||||
|
@ -4163,14 +4241,6 @@ GGML_CALL static void ggml_backend_vk_buffer_init_tensor(ggml_backend_buffer_t b
|
|||
extra->offset = (uint8_t *) tensor->data - (uint8_t *) vk_ptr_base;
|
||||
}
|
||||
|
||||
if (extra->offset + ggml_nbytes(tensor) > extra->buffer_gpu.size) {
|
||||
std::cerr << "ERROR: Trying to assign tensor " << tensor << " outside of buffer size " << ctx->dev_buffer.size << " requested offset: " << extra->offset << " tensor size: " << ggml_nbytes(tensor) << std::endl;
|
||||
if (tensor->view_src != nullptr) {
|
||||
std::cerr << "view_src: " << tensor->view_src << " extra: " << tensor->view_src->extra << std::endl;
|
||||
}
|
||||
GGML_ASSERT(false);
|
||||
}
|
||||
|
||||
tensor->backend = GGML_BACKEND_GPU;
|
||||
tensor->extra = extra;
|
||||
}
|
||||
|
@ -4248,7 +4318,7 @@ GGML_CALL static ggml_backend_buffer_t ggml_backend_vk_buffer_type_alloc_buffer(
|
|||
#ifdef VK_DEBUG
|
||||
std::cerr << "ggml_backend_vk_buffer_type_alloc_buffer(" << size << ")" << std::endl;
|
||||
#endif
|
||||
vk_buffer dev_buffer = ggml_vk_create_buffer(size, vk::MemoryPropertyFlagBits::eDeviceLocal);
|
||||
vk_buffer dev_buffer = ggml_vk_create_buffer_device(size);
|
||||
|
||||
ggml_backend_vk_buffer_context * ctx = new ggml_backend_vk_buffer_context(dev_buffer);
|
||||
|
||||
|
@ -4326,9 +4396,12 @@ GGML_CALL static void ggml_backend_vk_host_buffer_free_buffer(ggml_backend_buffe
|
|||
}
|
||||
|
||||
GGML_CALL static ggml_backend_buffer_t ggml_backend_vk_host_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
|
||||
void * ptr = ggml_vk_host_malloc(size);
|
||||
|
||||
if (ptr == nullptr) {
|
||||
void * ptr = nullptr;
|
||||
try {
|
||||
ptr = ggml_vk_host_malloc(size);
|
||||
} catch (vk::SystemError& e) {
|
||||
std::cerr << "ggml_vulkan: Failed to allocate pinned memory." << std::endl;
|
||||
std::cerr << "ggml_vulkan: " << e.what() << std::endl;
|
||||
// fallback to cpu buffer
|
||||
return ggml_backend_buft_alloc_buffer(ggml_backend_cpu_buffer_type(), size);
|
||||
}
|
||||
|
@ -4389,7 +4462,7 @@ GGML_CALL static void ggml_backend_vk_set_tensor_async(ggml_backend_t backend, g
|
|||
#ifdef VK_DEBUG
|
||||
std::cerr << "ggml_backend_vk_set_tensor_async(" << size << ")" << std::endl;
|
||||
#endif
|
||||
GGML_ASSERT(tensor->buffer->buft == ggml_backend_vk_buffer_type() && "unsupported buffer type");
|
||||
GGML_ASSERT((tensor->buffer->buft == ggml_backend_vk_buffer_type() || tensor->buffer->buft == ggml_backend_vk_host_buffer_type()) && "unsupported buffer type");
|
||||
GGML_ASSERT(tensor->backend == GGML_BACKEND_GPU);
|
||||
|
||||
ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) tensor->extra;
|
||||
|
@ -4409,7 +4482,7 @@ GGML_CALL static void ggml_backend_vk_get_tensor_async(ggml_backend_t backend, c
|
|||
#ifdef VK_DEBUG
|
||||
std::cerr << "ggml_backend_vk_get_tensor_async(" << size << ")" << std::endl;
|
||||
#endif
|
||||
GGML_ASSERT(tensor->buffer->buft == ggml_backend_vk_buffer_type() && "unsupported buffer type");
|
||||
GGML_ASSERT((tensor->buffer->buft == ggml_backend_vk_buffer_type() || tensor->buffer->buft == ggml_backend_vk_host_buffer_type()) && "unsupported buffer type");
|
||||
GGML_ASSERT(tensor->backend == GGML_BACKEND_GPU);
|
||||
|
||||
ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) tensor->extra;
|
||||
|
@ -4429,7 +4502,7 @@ GGML_CALL static bool ggml_backend_vk_cpy_tensor_async(ggml_backend_t backend, c
|
|||
#ifdef VK_DEBUG
|
||||
std::cerr << "ggml_backend_vk_cpy_tensor_async()" << std::endl;
|
||||
#endif
|
||||
if (dst->buffer->buft == ggml_backend_vk_buffer_type() && ggml_backend_buffer_is_vk(src->buffer)) {
|
||||
if ((dst->buffer->buft == ggml_backend_vk_buffer_type() || dst->buffer->buft == ggml_backend_vk_host_buffer_type()) && ggml_backend_buffer_is_vk(src->buffer)) {
|
||||
ggml_tensor_extra_gpu * src_extra = (ggml_tensor_extra_gpu *) src->extra;
|
||||
ggml_tensor_extra_gpu * dst_extra = (ggml_tensor_extra_gpu *) dst->extra;
|
||||
|
||||
|
@ -4499,7 +4572,6 @@ GGML_CALL static bool ggml_backend_vk_graph_compute(ggml_backend_t backend, ggml
|
|||
|
||||
bool ok = ggml_vk_compute_forward(¶ms, node);
|
||||
if (!ok) {
|
||||
std::cerr << "Vulkan disable: " << vk_disable << std::endl;
|
||||
fprintf(stderr, "%s: error: op not supported %s (%s)\n", __func__, node->name, ggml_op_name(node->op));
|
||||
}
|
||||
#ifdef GGML_VULKAN_CHECK_RESULTS
|
||||
|
@ -4665,7 +4737,7 @@ GGML_CALL int ggml_backend_vk_reg_devices() {
|
|||
// checks
|
||||
|
||||
#ifdef GGML_VULKAN_CHECK_RESULTS
|
||||
void ggml_vk_print_graph_origin(const ggml_tensor * tensor, std::vector<const ggml_tensor *>& done, int level = 0) {
|
||||
static void ggml_vk_print_graph_origin(const ggml_tensor * tensor, std::vector<const ggml_tensor *>& done, int level = 0) {
|
||||
if (std::find(done.begin(), done.end(), tensor) != done.end() || level > 10) {
|
||||
return;
|
||||
}
|
||||
|
@ -4683,10 +4755,14 @@ void ggml_vk_print_graph_origin(const ggml_tensor * tensor, std::vector<const gg
|
|||
}
|
||||
}
|
||||
|
||||
void ggml_vk_print_tensor_area(const ggml_tensor * tensor, const void * data, int i0, int i1, int i2, int i3) {
|
||||
static void ggml_vk_print_tensor_area(const ggml_tensor * tensor, const void * data, int i0, int i1, int i2, int i3) {
|
||||
if (tensor->type != GGML_TYPE_F32 && tensor->type != GGML_TYPE_F16) {
|
||||
return;
|
||||
}
|
||||
i0 = std::max(i0, 5);
|
||||
i1 = std::max(i1, 5);
|
||||
i2 = std::max(i2, 0);
|
||||
i3 = std::max(i3, 0);
|
||||
fprintf(stderr, " ");
|
||||
for (int idx1 = i1 - 5; idx1 < i1 + 5; idx1++) {
|
||||
fprintf(stderr, "%7d ", idx1);
|
||||
|
@ -4698,9 +4774,9 @@ void ggml_vk_print_tensor_area(const ggml_tensor * tensor, const void * data, in
|
|||
if (idx0 >= 0 && idx0 < tensor->ne[0] && idx1 >= 0 && idx1 < tensor->ne[1] && i2 >= 0 && i2 < tensor->ne[2] && i3 >= 0 && i3 < tensor->ne[3]) {
|
||||
float val;
|
||||
if (tensor->type == GGML_TYPE_F32) {
|
||||
val = *(float *) ((char *) data + i3*tensor->nb[3] + i2*tensor->nb[2] + idx1*tensor->nb[1] + idx0*tensor->nb[0]);
|
||||
val = *(const float *) ((const char *) data + i3*tensor->nb[3] + i2*tensor->nb[2] + idx1*tensor->nb[1] + idx0*tensor->nb[0]);
|
||||
} else if (tensor->type == GGML_TYPE_F16) {
|
||||
val = ggml_fp16_to_fp32(*(ggml_fp16_t *) ((char *) data + i3*tensor->nb[3] + i2*tensor->nb[2] + idx1*tensor->nb[1] + idx0*tensor->nb[0]));
|
||||
val = ggml_fp16_to_fp32(*(const ggml_fp16_t *) ((const char *) data + i3*tensor->nb[3] + i2*tensor->nb[2] + idx1*tensor->nb[1] + idx0*tensor->nb[0]));
|
||||
}
|
||||
fprintf(stderr, "% 7.2f ", val);
|
||||
} else {
|
||||
|
@ -4711,14 +4787,16 @@ void ggml_vk_print_tensor_area(const ggml_tensor * tensor, const void * data, in
|
|||
}
|
||||
}
|
||||
|
||||
void ggml_vk_print_tensor(const ggml_tensor * tensor, const char * name) {
|
||||
static void ggml_vk_print_tensor(const ggml_tensor * tensor, const char * name) {
|
||||
void * tensor_data = tensor->data;
|
||||
|
||||
if (tensor->backend == GGML_BACKEND_GPU) {
|
||||
const size_t tensor_size = ggml_nbytes(tensor);
|
||||
tensor_data = malloc(tensor_size);
|
||||
|
||||
ggml_vk_buffer_read((vk_buffer *)tensor->data, 0, tensor_data, tensor_size, vk_device.transfer_queue);
|
||||
ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) tensor->extra;
|
||||
|
||||
ggml_vk_buffer_read(&extra->buffer_gpu, extra->offset, tensor_data, tensor_size);
|
||||
}
|
||||
|
||||
std::cerr << "TENSOR CHECK " << name << " (" << tensor->name << "): " << ggml_op_name(tensor->op) << std::endl;
|
||||
|
@ -4730,10 +4808,10 @@ void ggml_vk_print_tensor(const ggml_tensor * tensor, const char * name) {
|
|||
std::cerr << "tensor->src[1]=" << tensor->src[1] << " name=" << tensor->src[1]->name << " op=" << ggml_op_name(tensor->src[1]->op) << " type=" << ggml_type_name(tensor->src[1]->type) << " backend=" << tensor->src[1]->backend << " ne0=" << tensor->src[1]->ne[0] << " nb0=" << tensor->src[1]->nb[0] << " ne1=" << tensor->src[1]->ne[1] << " nb1=" << tensor->src[1]->nb[1] << " ne2=" << tensor->src[1]->ne[2] << " nb2=" << tensor->src[1]->nb[2] << " ne3=" << tensor->src[1]->ne[3] << " nb3=" << tensor->src[1]->nb[3] << std::endl;
|
||||
}
|
||||
std::cerr << std::endl << "Result:" << std::endl;
|
||||
ggml_vk_print_tensor_area(tensor, tensor->data, 5, 5, 0, 0);
|
||||
ggml_vk_print_tensor_area(tensor, tensor_data, 5, 5, 0, 0);
|
||||
std::cerr << std::endl;
|
||||
std::cerr << std::endl << "Result:" << std::endl;
|
||||
ggml_vk_print_tensor_area(tensor, tensor->data, 5, 5, 1, 0);
|
||||
ggml_vk_print_tensor_area(tensor, tensor_data, 5, 5, 1, 0);
|
||||
std::cerr << std::endl;
|
||||
std::vector<const ggml_tensor *> done;
|
||||
ggml_vk_print_graph_origin(tensor, done);
|
||||
|
@ -4743,7 +4821,7 @@ void ggml_vk_print_tensor(const ggml_tensor * tensor, const char * name) {
|
|||
}
|
||||
}
|
||||
|
||||
void ggml_vk_check_tensor(const std::string& name, const ggml_tensor * tensor) {
|
||||
static void ggml_vk_check_tensor(const std::string& name, const ggml_tensor * tensor) {
|
||||
return;
|
||||
GGML_ASSERT(tensor->backend == GGML_BACKEND_CPU);
|
||||
if (tensor->type != GGML_TYPE_F32 && tensor->type != GGML_TYPE_F16) {
|
||||
|
@ -4779,7 +4857,7 @@ void * comp_result;
|
|||
size_t comp_size;
|
||||
size_t comp_nb[GGML_MAX_DIMS];
|
||||
size_t check_counter = 0;
|
||||
void ggml_vk_check_results_0(ggml_compute_params * params, ggml_tensor * tensor) {
|
||||
static void ggml_vk_check_results_0(ggml_compute_params * params, ggml_tensor * tensor) {
|
||||
if (params->ith != 0) {
|
||||
return;
|
||||
}
|
||||
|
@ -4796,8 +4874,9 @@ void ggml_vk_check_results_0(ggml_compute_params * params, ggml_tensor * tensor)
|
|||
ggml_tensor * src1 = tensor->src[1];
|
||||
|
||||
struct ggml_init_params iparams = {
|
||||
.mem_size = 1024*1024*1024,
|
||||
.mem_buffer = NULL,
|
||||
/*.mem_size =*/ 1024*1024*1024,
|
||||
/*.mem_buffer =*/ NULL,
|
||||
/*.no_alloc =*/ false,
|
||||
};
|
||||
|
||||
struct ggml_context * ctx = ggml_init(iparams);
|
||||
|
@ -4829,7 +4908,7 @@ void ggml_vk_check_results_0(ggml_compute_params * params, ggml_tensor * tensor)
|
|||
for (int i3 = 0; i3 < src0->ne[3]; i3++) {
|
||||
for (int i2 = 0; i2 < src0->ne[2]; i2++) {
|
||||
const int idx = i3*src0->ne[2] + i2;
|
||||
ggml_vk_buffer_read(&extra->buffer_gpu, offset + idx * src0->nb[2], ((char *)src0_clone->data + idx * src0_clone->nb[2]), src0->ne[1] * src0->nb[1], vk_device.transfer_queue);
|
||||
ggml_vk_buffer_read(&extra->buffer_gpu, offset + idx * src0->nb[2], ((char *)src0_clone->data + idx * src0_clone->nb[2]), src0->ne[1] * src0->nb[1]);
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -4842,7 +4921,7 @@ void ggml_vk_check_results_0(ggml_compute_params * params, ggml_tensor * tensor)
|
|||
if (offset + src0_size >= extra->buffer_gpu.size) {
|
||||
src0_size = extra->buffer_gpu.size - offset;
|
||||
}
|
||||
ggml_vk_buffer_read(&extra->buffer_gpu, offset, src0_clone->data, src0_size, vk_device.transfer_queue);
|
||||
ggml_vk_buffer_read(&extra->buffer_gpu, offset, src0_clone->data, src0_size);
|
||||
memcpy(src0_clone->nb, src0->nb, sizeof(size_t) * GGML_MAX_DIMS);
|
||||
}
|
||||
} else {
|
||||
|
@ -4872,7 +4951,7 @@ void ggml_vk_check_results_0(ggml_compute_params * params, ggml_tensor * tensor)
|
|||
for (int i3 = 0; i3 < src1->ne[3]; i3++) {
|
||||
for (int i2 = 0; i2 < src1->ne[2]; i2++) {
|
||||
const int idx = i3*src1->ne[2] + i2;
|
||||
ggml_vk_buffer_read(&extra->buffer_gpu, offset + idx * src1->nb[2], ((char *)src1_clone->data + idx * src1_clone->nb[2]), src1->ne[1] * src1->nb[1], vk_device.transfer_queue);
|
||||
ggml_vk_buffer_read(&extra->buffer_gpu, offset + idx * src1->nb[2], ((char *)src1_clone->data + idx * src1_clone->nb[2]), src1->ne[1] * src1->nb[1]);
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -4885,7 +4964,7 @@ void ggml_vk_check_results_0(ggml_compute_params * params, ggml_tensor * tensor)
|
|||
if (offset + src1_size >= extra->buffer_gpu.size) {
|
||||
src1_size = extra->buffer_gpu.size - offset;
|
||||
}
|
||||
ggml_vk_buffer_read(&extra->buffer_gpu, offset, src1_clone->data, src1_size, vk_device.transfer_queue);
|
||||
ggml_vk_buffer_read(&extra->buffer_gpu, offset, src1_clone->data, src1_size);
|
||||
memcpy(src1_clone->nb, src1->nb, sizeof(size_t) * GGML_MAX_DIMS);
|
||||
}
|
||||
} else {
|
||||
|
@ -4969,7 +5048,7 @@ void ggml_vk_check_results_0(ggml_compute_params * params, ggml_tensor * tensor)
|
|||
} else if (tensor->op == GGML_OP_CPY || tensor->op == GGML_OP_DUP) {
|
||||
if (src1 == nullptr) {
|
||||
tensor_clone = ggml_dup(ctx, src0_clone);
|
||||
tensor_clone->type == tensor->type;
|
||||
tensor_clone->type = tensor->type;
|
||||
} else {
|
||||
tensor_clone = ggml_cpy(ctx, src0_clone, src1_clone);
|
||||
}
|
||||
|
@ -5046,7 +5125,7 @@ void ggml_vk_check_results_1(ggml_compute_params * params, ggml_tensor * tensor)
|
|||
tensor_size = extra->buffer_gpu.size - (extra->offset);
|
||||
}
|
||||
|
||||
ggml_vk_buffer_read(&extra->buffer_gpu, extra->offset, tensor_data, tensor_size, vk_device.transfer_queue);
|
||||
ggml_vk_buffer_read(&extra->buffer_gpu, extra->offset, tensor_data, tensor_size);
|
||||
}
|
||||
|
||||
float first_error_result = -1.0f;
|
||||
|
|
196
ggml.c
196
ggml.c
|
@ -218,6 +218,7 @@ inline static void * ggml_aligned_malloc(size_t size) {
|
|||
break;
|
||||
}
|
||||
GGML_PRINT("%s: %s (attempted to allocate %6.2f MB)\n", __func__, error_desc, size/(1024.0*1024.0));
|
||||
GGML_ASSERT(false);
|
||||
return NULL;
|
||||
}
|
||||
return aligned_memory;
|
||||
|
@ -230,6 +231,38 @@ inline static void * ggml_aligned_malloc(size_t size) {
|
|||
#endif
|
||||
#endif
|
||||
|
||||
inline static void * ggml_malloc(size_t size) {
|
||||
if (size == 0) {
|
||||
GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_malloc!\n");
|
||||
return NULL;
|
||||
}
|
||||
void * result = malloc(size);
|
||||
if (result == NULL) {
|
||||
GGML_PRINT("%s: failed to allocate %6.2f MB\n", __func__, size/(1024.0*1024.0));
|
||||
GGML_ASSERT(false);
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
// calloc
|
||||
inline static void * ggml_calloc(size_t num, size_t size) {
|
||||
if (num == 0 || size == 0) {
|
||||
GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_calloc!\n");
|
||||
return NULL;
|
||||
}
|
||||
void * result = calloc(num, size);
|
||||
if (result == NULL) {
|
||||
GGML_PRINT("%s: failed to allocate %6.2f MB\n", __func__, size/(1024.0*1024.0));
|
||||
GGML_ASSERT(false);
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
#define GGML_MALLOC(size) ggml_malloc(size)
|
||||
#define GGML_CALLOC(num, size) ggml_calloc(num, size)
|
||||
|
||||
#define GGML_FREE(ptr) free(ptr)
|
||||
|
||||
#define UNUSED GGML_UNUSED
|
||||
#define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
|
||||
|
||||
|
@ -599,6 +632,17 @@ static const ggml_type_traits_t type_traits[GGML_TYPE_COUNT] = {
|
|||
.vec_dot = ggml_vec_dot_iq2_xs_q8_K,
|
||||
.vec_dot_type = GGML_TYPE_Q8_K,
|
||||
},
|
||||
[GGML_TYPE_IQ3_XXS] = {
|
||||
.type_name = "iq3_xxs",
|
||||
.blck_size = QK_K,
|
||||
.type_size = sizeof(block_iq3_xxs),
|
||||
.is_quantized = true,
|
||||
.to_float = (ggml_to_float_t) dequantize_row_iq3_xxs,
|
||||
.from_float = quantize_row_iq3_xxs,
|
||||
.from_float_reference = (ggml_from_float_t)quantize_row_iq3_xxs_reference,
|
||||
.vec_dot = ggml_vec_dot_iq3_xxs_q8_K,
|
||||
.vec_dot_type = GGML_TYPE_Q8_K,
|
||||
},
|
||||
[GGML_TYPE_Q8_K] = {
|
||||
.type_name = "q8_K",
|
||||
.blck_size = QK_K,
|
||||
|
@ -2144,6 +2188,7 @@ enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype) {
|
|||
case GGML_FTYPE_MOSTLY_Q6_K: wtype = GGML_TYPE_Q6_K; break;
|
||||
case GGML_FTYPE_MOSTLY_IQ2_XXS: wtype = GGML_TYPE_IQ2_XXS; break;
|
||||
case GGML_FTYPE_MOSTLY_IQ2_XS: wtype = GGML_TYPE_IQ2_XS; break;
|
||||
case GGML_FTYPE_MOSTLY_IQ3_XXS: wtype = GGML_TYPE_IQ3_XXS; break;
|
||||
case GGML_FTYPE_UNKNOWN: wtype = GGML_TYPE_COUNT; break;
|
||||
case GGML_FTYPE_MOSTLY_Q4_1_SOME_F16: wtype = GGML_TYPE_COUNT; break;
|
||||
}
|
||||
|
@ -7537,6 +7582,7 @@ static void ggml_compute_forward_add(
|
|||
case GGML_TYPE_Q6_K:
|
||||
case GGML_TYPE_IQ2_XXS:
|
||||
case GGML_TYPE_IQ2_XS:
|
||||
case GGML_TYPE_IQ3_XXS:
|
||||
{
|
||||
ggml_compute_forward_add_q_f32(params, src0, src1, dst);
|
||||
} break;
|
||||
|
@ -7803,6 +7849,7 @@ static void ggml_compute_forward_add1(
|
|||
case GGML_TYPE_Q6_K:
|
||||
case GGML_TYPE_IQ2_XXS:
|
||||
case GGML_TYPE_IQ2_XS:
|
||||
case GGML_TYPE_IQ3_XXS:
|
||||
{
|
||||
ggml_compute_forward_add1_q_f32(params, src0, src1, dst);
|
||||
} break;
|
||||
|
@ -7922,6 +7969,7 @@ static void ggml_compute_forward_acc(
|
|||
case GGML_TYPE_Q6_K:
|
||||
case GGML_TYPE_IQ2_XXS:
|
||||
case GGML_TYPE_IQ2_XS:
|
||||
case GGML_TYPE_IQ3_XXS:
|
||||
default:
|
||||
{
|
||||
GGML_ASSERT(false);
|
||||
|
@ -10673,6 +10721,7 @@ static void ggml_compute_forward_out_prod(
|
|||
case GGML_TYPE_Q6_K:
|
||||
case GGML_TYPE_IQ2_XXS:
|
||||
case GGML_TYPE_IQ2_XS:
|
||||
case GGML_TYPE_IQ3_XXS:
|
||||
{
|
||||
ggml_compute_forward_out_prod_q_f32(params, src0, src1, dst);
|
||||
} break;
|
||||
|
@ -10852,6 +10901,7 @@ static void ggml_compute_forward_set(
|
|||
case GGML_TYPE_Q6_K:
|
||||
case GGML_TYPE_IQ2_XXS:
|
||||
case GGML_TYPE_IQ2_XS:
|
||||
case GGML_TYPE_IQ3_XXS:
|
||||
default:
|
||||
{
|
||||
GGML_ASSERT(false);
|
||||
|
@ -11048,6 +11098,7 @@ static void ggml_compute_forward_get_rows(
|
|||
case GGML_TYPE_Q6_K:
|
||||
case GGML_TYPE_IQ2_XXS:
|
||||
case GGML_TYPE_IQ2_XS:
|
||||
case GGML_TYPE_IQ3_XXS:
|
||||
{
|
||||
ggml_compute_forward_get_rows_q(params, src0, src1, dst);
|
||||
} break;
|
||||
|
@ -11695,6 +11746,7 @@ static void ggml_compute_forward_alibi(
|
|||
case GGML_TYPE_Q6_K:
|
||||
case GGML_TYPE_IQ2_XXS:
|
||||
case GGML_TYPE_IQ2_XS:
|
||||
case GGML_TYPE_IQ3_XXS:
|
||||
case GGML_TYPE_Q8_K:
|
||||
case GGML_TYPE_I8:
|
||||
case GGML_TYPE_I16:
|
||||
|
@ -11771,6 +11823,7 @@ static void ggml_compute_forward_clamp(
|
|||
case GGML_TYPE_Q6_K:
|
||||
case GGML_TYPE_IQ2_XXS:
|
||||
case GGML_TYPE_IQ2_XS:
|
||||
case GGML_TYPE_IQ3_XXS:
|
||||
case GGML_TYPE_Q8_K:
|
||||
case GGML_TYPE_I8:
|
||||
case GGML_TYPE_I16:
|
||||
|
@ -15129,13 +15182,13 @@ struct ggml_hash_set ggml_hash_set_new(size_t size) {
|
|||
size = ggml_hash_size(size);
|
||||
struct ggml_hash_set result;
|
||||
result.size = size;
|
||||
result.keys = malloc(sizeof(struct ggml_tensor *) * size);
|
||||
result.keys = GGML_MALLOC(sizeof(struct ggml_tensor *) * size);
|
||||
memset(result.keys, 0, sizeof(struct ggml_tensor *) * size);
|
||||
return result;
|
||||
}
|
||||
|
||||
static void ggml_hash_set_free(struct ggml_hash_set hash_set) {
|
||||
free(hash_set.keys);
|
||||
GGML_FREE(hash_set.keys);
|
||||
}
|
||||
|
||||
struct hash_map {
|
||||
|
@ -15144,17 +15197,17 @@ struct hash_map {
|
|||
};
|
||||
|
||||
static struct hash_map * ggml_new_hash_map(size_t size) {
|
||||
struct hash_map * result = malloc(sizeof(struct hash_map));
|
||||
struct hash_map * result = GGML_MALLOC(sizeof(struct hash_map));
|
||||
result->set = ggml_hash_set_new(size);
|
||||
result->vals = malloc(sizeof(struct ggml_tensor *) * result->set.size);
|
||||
result->vals = GGML_MALLOC(sizeof(struct ggml_tensor *) * result->set.size);
|
||||
memset(result->vals, 0, sizeof(struct ggml_tensor *) * result->set.size);
|
||||
return result;
|
||||
}
|
||||
|
||||
static void ggml_hash_map_free(struct hash_map * map) {
|
||||
ggml_hash_set_free(map->set);
|
||||
free(map->vals);
|
||||
free(map);
|
||||
GGML_FREE(map->vals);
|
||||
GGML_FREE(map);
|
||||
}
|
||||
|
||||
// gradient checkpointing
|
||||
|
@ -18827,6 +18880,7 @@ void ggml_quantize_init(enum ggml_type type) {
|
|||
switch (type) {
|
||||
case GGML_TYPE_IQ2_XXS: iq2xs_init_impl(256); break;
|
||||
case GGML_TYPE_IQ2_XS: iq2xs_init_impl(512); break;
|
||||
case GGML_TYPE_IQ3_XXS: iq3xs_init_impl(256); break;
|
||||
default: // nothing
|
||||
break;
|
||||
}
|
||||
|
@ -19089,6 +19143,15 @@ size_t ggml_quantize_chunk(enum ggml_type type, const float * src, void * dst, i
|
|||
result = quantize_iq2_xs(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
|
||||
GGML_ASSERT(result == row_size * nrows);
|
||||
} break;
|
||||
case GGML_TYPE_IQ3_XXS:
|
||||
{
|
||||
GGML_ASSERT(start % QK_K == 0);
|
||||
GGML_ASSERT(start % n_per_row == 0);
|
||||
size_t start_row = start / n_per_row;
|
||||
size_t row_size = ggml_row_size(type, n_per_row);
|
||||
result = quantize_iq3_xxs(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
|
||||
GGML_ASSERT(result == row_size * nrows);
|
||||
} break;
|
||||
case GGML_TYPE_F16:
|
||||
{
|
||||
size_t elemsize = sizeof(ggml_fp16_t);
|
||||
|
@ -19215,6 +19278,25 @@ struct gguf_context {
|
|||
void * data;
|
||||
};
|
||||
|
||||
static size_t gguf_type_size(enum gguf_type type) {
|
||||
GGML_ASSERT(0 <= type && type < GGUF_TYPE_COUNT);
|
||||
return GGUF_TYPE_SIZE[type];
|
||||
}
|
||||
|
||||
static void gguf_tensor_info_sanitize(struct gguf_tensor_info * info) {
|
||||
GGML_ASSERT(info->n_dims <= GGML_MAX_DIMS);
|
||||
GGML_ASSERT(0 <= info->type && info->type < GGML_TYPE_COUNT);
|
||||
|
||||
for (uint32_t i = 0; i < info->n_dims; ++i) {
|
||||
GGML_ASSERT(info->ne[i] > 0);
|
||||
}
|
||||
|
||||
// prevent overflow for total number of elements
|
||||
GGML_ASSERT(INT64_MAX/info->ne[1] > info->ne[0]);
|
||||
GGML_ASSERT(INT64_MAX/info->ne[2] > info->ne[0]*info->ne[1]);
|
||||
GGML_ASSERT(INT64_MAX/info->ne[3] > info->ne[0]*info->ne[1]*info->ne[2]);
|
||||
}
|
||||
|
||||
static bool gguf_fread_el(FILE * file, void * dst, size_t size, size_t * offset) {
|
||||
const size_t n = fread(dst, 1, size, file);
|
||||
*offset += n;
|
||||
|
@ -19227,7 +19309,16 @@ static bool gguf_fread_str(FILE * file, struct gguf_str * p, size_t * offset) {
|
|||
|
||||
bool ok = true;
|
||||
|
||||
ok = ok && gguf_fread_el(file, &p->n, sizeof(p->n), offset); p->data = calloc(p->n + 1, 1);
|
||||
ok = ok && gguf_fread_el(file, &p->n, sizeof(p->n), offset);
|
||||
|
||||
// early exit if string length is invalid, prevents from integer overflow
|
||||
if (p->n == SIZE_MAX) {
|
||||
fprintf(stderr, "%s: invalid string length (%" PRIu64 ")\n", __func__, p->n);
|
||||
return false;
|
||||
}
|
||||
|
||||
p->data = GGML_CALLOC(p->n + 1, 1);
|
||||
|
||||
ok = ok && gguf_fread_el(file, p->data, p->n, offset);
|
||||
|
||||
return ok;
|
||||
|
@ -19300,6 +19391,12 @@ struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_p
|
|||
return NULL;
|
||||
}
|
||||
|
||||
// sanity-checks to prevent from integer/buffer overflows
|
||||
|
||||
ok = ok && (ctx->header.n_tensors < (SIZE_MAX/2)/sizeof(struct gguf_tensor_info));
|
||||
ok = ok && (ctx->header.n_tensors < (SIZE_MAX/2)/ggml_tensor_overhead());
|
||||
ok = ok && (ctx->header.n_kv < (SIZE_MAX/2)/sizeof(struct gguf_kv));
|
||||
|
||||
if (!ok) {
|
||||
fprintf(stderr, "%s: failed to read header\n", __func__);
|
||||
fclose(file);
|
||||
|
@ -19310,7 +19407,7 @@ struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_p
|
|||
|
||||
// read the kv pairs
|
||||
{
|
||||
ctx->kv = malloc(ctx->header.n_kv * sizeof(struct gguf_kv));
|
||||
ctx->kv = GGML_MALLOC(ctx->header.n_kv * sizeof(struct gguf_kv));
|
||||
|
||||
for (uint64_t i = 0; i < ctx->header.n_kv; ++i) {
|
||||
struct gguf_kv * kv = &ctx->kv[i];
|
||||
|
@ -19353,21 +19450,39 @@ struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_p
|
|||
case GGUF_TYPE_FLOAT64:
|
||||
case GGUF_TYPE_BOOL:
|
||||
{
|
||||
kv->value.arr.data = malloc(kv->value.arr.n * GGUF_TYPE_SIZE[kv->value.arr.type]);
|
||||
ok = ok && gguf_fread_el(file, kv->value.arr.data, kv->value.arr.n * GGUF_TYPE_SIZE[kv->value.arr.type], &offset);
|
||||
// prevent from integer overflow in the malloc below
|
||||
if (kv->value.arr.n >= SIZE_MAX/gguf_type_size(kv->value.arr.type)) {
|
||||
fprintf(stderr, "%s: array size is too large (%" PRIu64 ")\n", __func__, kv->value.arr.n);
|
||||
fclose(file);
|
||||
gguf_free(ctx);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
kv->value.arr.data = GGML_MALLOC(kv->value.arr.n * gguf_type_size(kv->value.arr.type));
|
||||
|
||||
ok = ok && gguf_fread_el(file, kv->value.arr.data, kv->value.arr.n * gguf_type_size(kv->value.arr.type), &offset);
|
||||
} break;
|
||||
case GGUF_TYPE_STRING:
|
||||
{
|
||||
kv->value.arr.data = malloc(kv->value.arr.n * sizeof(struct gguf_str));
|
||||
// prevent from integer overflow in the malloc below
|
||||
if (kv->value.arr.n >= SIZE_MAX/sizeof(struct gguf_str)) {
|
||||
fprintf(stderr, "%s: array size is too large (%" PRIu64 ")\n", __func__, kv->value.arr.n);
|
||||
fclose(file);
|
||||
gguf_free(ctx);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
kv->value.arr.data = GGML_MALLOC(kv->value.arr.n * sizeof(struct gguf_str));
|
||||
|
||||
for (uint64_t j = 0; j < kv->value.arr.n; ++j) {
|
||||
ok = ok && gguf_fread_str(file, &((struct gguf_str *) kv->value.arr.data)[j], &offset);
|
||||
}
|
||||
} break;
|
||||
case GGUF_TYPE_ARRAY:
|
||||
case GGUF_TYPE_COUNT: GGML_ASSERT(false && "invalid type"); break;
|
||||
default: GGML_ASSERT(false && "invalid type"); break;
|
||||
}
|
||||
} break;
|
||||
case GGUF_TYPE_COUNT: GGML_ASSERT(false && "invalid type");
|
||||
default: GGML_ASSERT(false && "invalid type");
|
||||
}
|
||||
|
||||
if (!ok) {
|
||||
|
@ -19385,7 +19500,7 @@ struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_p
|
|||
|
||||
// read the tensor infos
|
||||
{
|
||||
ctx->infos = malloc(ctx->header.n_tensors * sizeof(struct gguf_tensor_info));
|
||||
ctx->infos = GGML_MALLOC(ctx->header.n_tensors * sizeof(struct gguf_tensor_info));
|
||||
|
||||
for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
|
||||
struct gguf_tensor_info * info = &ctx->infos[i];
|
||||
|
@ -19396,12 +19511,18 @@ struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_p
|
|||
|
||||
ok = ok && gguf_fread_str(file, &info->name, &offset);
|
||||
ok = ok && gguf_fread_el (file, &info->n_dims, sizeof(info->n_dims), &offset);
|
||||
|
||||
ok = ok && (info->n_dims <= GGML_MAX_DIMS);
|
||||
|
||||
for (uint32_t j = 0; j < info->n_dims; ++j) {
|
||||
ok = ok && gguf_fread_el(file, &info->ne[j], sizeof(info->ne[j]), &offset);
|
||||
}
|
||||
|
||||
ok = ok && gguf_fread_el (file, &info->type, sizeof(info->type), &offset);
|
||||
ok = ok && gguf_fread_el (file, &info->offset, sizeof(info->offset), &offset);
|
||||
|
||||
gguf_tensor_info_sanitize(info);
|
||||
|
||||
if (!ok) {
|
||||
fprintf(stderr, "%s: failed to read tensor info\n", __func__);
|
||||
fclose(file);
|
||||
|
@ -19555,12 +19676,12 @@ void gguf_free(struct gguf_context * ctx) {
|
|||
struct gguf_kv * kv = &ctx->kv[i];
|
||||
|
||||
if (kv->key.data) {
|
||||
free(kv->key.data);
|
||||
GGML_FREE(kv->key.data);
|
||||
}
|
||||
|
||||
if (kv->type == GGUF_TYPE_STRING) {
|
||||
if (kv->value.str.data) {
|
||||
free(kv->value.str.data);
|
||||
GGML_FREE(kv->value.str.data);
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -19570,16 +19691,16 @@ void gguf_free(struct gguf_context * ctx) {
|
|||
for (uint64_t j = 0; j < kv->value.arr.n; ++j) {
|
||||
struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[j];
|
||||
if (str->data) {
|
||||
free(str->data);
|
||||
GGML_FREE(str->data);
|
||||
}
|
||||
}
|
||||
}
|
||||
free(kv->value.arr.data);
|
||||
GGML_FREE(kv->value.arr.data);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
free(ctx->kv);
|
||||
GGML_FREE(ctx->kv);
|
||||
}
|
||||
|
||||
if (ctx->infos) {
|
||||
|
@ -19587,11 +19708,11 @@ void gguf_free(struct gguf_context * ctx) {
|
|||
struct gguf_tensor_info * info = &ctx->infos[i];
|
||||
|
||||
if (info->name.data) {
|
||||
free(info->name.data);
|
||||
GGML_FREE(info->name.data);
|
||||
}
|
||||
}
|
||||
|
||||
free(ctx->infos);
|
||||
GGML_FREE(ctx->infos);
|
||||
}
|
||||
|
||||
GGML_ALIGNED_FREE(ctx);
|
||||
|
@ -19892,8 +20013,8 @@ void gguf_set_arr_data(struct gguf_context * ctx, const char * key, enum gguf_ty
|
|||
ctx->kv[idx].type = GGUF_TYPE_ARRAY;
|
||||
ctx->kv[idx].value.arr.type = type;
|
||||
ctx->kv[idx].value.arr.n = n;
|
||||
ctx->kv[idx].value.arr.data = malloc(n*GGUF_TYPE_SIZE[type]);
|
||||
memcpy(ctx->kv[idx].value.arr.data, data, n*GGUF_TYPE_SIZE[type]);
|
||||
ctx->kv[idx].value.arr.data = GGML_MALLOC(n*gguf_type_size(type));
|
||||
memcpy(ctx->kv[idx].value.arr.data, data, n*gguf_type_size(type));
|
||||
}
|
||||
|
||||
void gguf_set_arr_str(struct gguf_context * ctx, const char * key, const char ** data, int n) {
|
||||
|
@ -19902,7 +20023,7 @@ void gguf_set_arr_str(struct gguf_context * ctx, const char * key, const char **
|
|||
ctx->kv[idx].type = GGUF_TYPE_ARRAY;
|
||||
ctx->kv[idx].value.arr.type = GGUF_TYPE_STRING;
|
||||
ctx->kv[idx].value.arr.n = n;
|
||||
ctx->kv[idx].value.arr.data = malloc(n*sizeof(struct gguf_str));
|
||||
ctx->kv[idx].value.arr.data = GGML_MALLOC(n*sizeof(struct gguf_str));
|
||||
for (int i = 0; i < n; i++) {
|
||||
struct gguf_str * str = &((struct gguf_str *)ctx->kv[idx].value.arr.data)[i];
|
||||
str->n = strlen(data[i]);
|
||||
|
@ -19929,19 +20050,19 @@ void gguf_set_kv(struct gguf_context * ctx, struct gguf_context * src) {
|
|||
case GGUF_TYPE_ARRAY:
|
||||
{
|
||||
if (src->kv[i].value.arr.type == GGUF_TYPE_STRING) {
|
||||
const char ** data = malloc(src->kv[i].value.arr.n*sizeof(char *));
|
||||
const char ** data = GGML_MALLOC(src->kv[i].value.arr.n*sizeof(char *));
|
||||
for (uint32_t j = 0; j < src->kv[i].value.arr.n; j++) {
|
||||
data[j] = ((struct gguf_str *)src->kv[i].value.arr.data)[j].data;
|
||||
}
|
||||
gguf_set_arr_str(ctx, src->kv[i].key.data, data, src->kv[i].value.arr.n);
|
||||
free((void *)data);
|
||||
GGML_FREE((void *)data);
|
||||
} else if (src->kv[i].value.arr.type == GGUF_TYPE_ARRAY) {
|
||||
GGML_ASSERT(false && "nested arrays not supported");
|
||||
} else {
|
||||
gguf_set_arr_data(ctx, src->kv[i].key.data, src->kv[i].value.arr.type, src->kv[i].value.arr.data, src->kv[i].value.arr.n);
|
||||
}
|
||||
} break;
|
||||
case GGUF_TYPE_COUNT: GGML_ASSERT(false && "invalid type"); break;
|
||||
default: GGML_ASSERT(false && "invalid type"); break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -20017,7 +20138,7 @@ struct gguf_buf {
|
|||
|
||||
static struct gguf_buf gguf_buf_init(size_t size) {
|
||||
struct gguf_buf buf = {
|
||||
/*buf.data =*/ size == 0 ? NULL : malloc(size),
|
||||
/*buf.data =*/ size == 0 ? NULL : GGML_MALLOC(size),
|
||||
/*buf.size =*/ size,
|
||||
/*buf.offset =*/ 0,
|
||||
};
|
||||
|
@ -20027,7 +20148,7 @@ static struct gguf_buf gguf_buf_init(size_t size) {
|
|||
|
||||
static void gguf_buf_free(struct gguf_buf buf) {
|
||||
if (buf.data) {
|
||||
free(buf.data);
|
||||
GGML_FREE(buf.data);
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -20108,7 +20229,7 @@ static void gguf_write_to_buf(const struct gguf_context * ctx, struct gguf_buf *
|
|||
case GGUF_TYPE_FLOAT64:
|
||||
case GGUF_TYPE_BOOL:
|
||||
{
|
||||
gguf_bwrite_el(buf, kv->value.arr.data, kv->value.arr.n * GGUF_TYPE_SIZE[kv->value.arr.type]);
|
||||
gguf_bwrite_el(buf, kv->value.arr.data, kv->value.arr.n * gguf_type_size(kv->value.arr.type));
|
||||
} break;
|
||||
case GGUF_TYPE_STRING:
|
||||
{
|
||||
|
@ -20117,10 +20238,10 @@ static void gguf_write_to_buf(const struct gguf_context * ctx, struct gguf_buf *
|
|||
}
|
||||
} break;
|
||||
case GGUF_TYPE_ARRAY:
|
||||
case GGUF_TYPE_COUNT: GGML_ASSERT(false && "invalid type"); break;
|
||||
default: GGML_ASSERT(false && "invalid type"); break;
|
||||
}
|
||||
} break;
|
||||
case GGUF_TYPE_COUNT: GGML_ASSERT(false && "invalid type");
|
||||
default: GGML_ASSERT(false && "invalid type");
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -20352,6 +20473,14 @@ int ggml_cpu_has_vulkan(void) {
|
|||
#endif
|
||||
}
|
||||
|
||||
int ggml_cpu_has_kompute(void) {
|
||||
#if defined(GGML_USE_KOMPUTE)
|
||||
return 1;
|
||||
#else
|
||||
return 0;
|
||||
#endif
|
||||
}
|
||||
|
||||
int ggml_cpu_has_sycl(void) {
|
||||
#if defined(GGML_USE_SYCL)
|
||||
return 1;
|
||||
|
@ -20361,7 +20490,8 @@ int ggml_cpu_has_sycl(void) {
|
|||
}
|
||||
|
||||
int ggml_cpu_has_gpublas(void) {
|
||||
return ggml_cpu_has_cublas() || ggml_cpu_has_clblast() || ggml_cpu_has_vulkan() || ggml_cpu_has_sycl();
|
||||
return ggml_cpu_has_cublas() || ggml_cpu_has_clblast() || ggml_cpu_has_vulkan() || ggml_cpu_has_kompute() ||
|
||||
ggml_cpu_has_sycl();
|
||||
}
|
||||
|
||||
int ggml_cpu_has_sse3(void) {
|
||||
|
|
3
ggml.h
3
ggml.h
|
@ -353,6 +353,7 @@ extern "C" {
|
|||
GGML_TYPE_Q8_K = 15,
|
||||
GGML_TYPE_IQ2_XXS = 16,
|
||||
GGML_TYPE_IQ2_XS = 17,
|
||||
GGML_TYPE_IQ3_XXS = 18,
|
||||
GGML_TYPE_I8,
|
||||
GGML_TYPE_I16,
|
||||
GGML_TYPE_I32,
|
||||
|
@ -389,6 +390,7 @@ extern "C" {
|
|||
GGML_FTYPE_MOSTLY_Q6_K = 14, // except 1d tensors
|
||||
GGML_FTYPE_MOSTLY_IQ2_XXS = 15, // except 1d tensors
|
||||
GGML_FTYPE_MOSTLY_IQ2_XS = 16, // except 1d tensors
|
||||
GGML_FTYPE_MOSTLY_IQ3_XXS = 17, // except 1d tensors
|
||||
};
|
||||
|
||||
// available tensor operations:
|
||||
|
@ -2264,6 +2266,7 @@ extern "C" {
|
|||
GGML_API int ggml_cpu_has_cublas (void);
|
||||
GGML_API int ggml_cpu_has_clblast (void);
|
||||
GGML_API int ggml_cpu_has_vulkan (void);
|
||||
GGML_API int ggml_cpu_has_kompute (void);
|
||||
GGML_API int ggml_cpu_has_gpublas (void);
|
||||
GGML_API int ggml_cpu_has_sse3 (void);
|
||||
GGML_API int ggml_cpu_has_ssse3 (void);
|
||||
|
|
29
llama.cpp
29
llama.cpp
|
@ -2367,6 +2367,7 @@ struct llama_model_loader {
|
|||
case GGML_TYPE_Q6_K: ftype = LLAMA_FTYPE_MOSTLY_Q6_K; break;
|
||||
case GGML_TYPE_IQ2_XXS: ftype = LLAMA_FTYPE_MOSTLY_IQ2_XXS; break;
|
||||
case GGML_TYPE_IQ2_XS: ftype = LLAMA_FTYPE_MOSTLY_IQ2_XS; break;
|
||||
case GGML_TYPE_IQ3_XXS: ftype = LLAMA_FTYPE_MOSTLY_IQ3_XXS; break;
|
||||
default:
|
||||
{
|
||||
LLAMA_LOG_WARN("%s: unknown type %s\n", __func__, ggml_type_name(type_max));
|
||||
|
@ -2715,6 +2716,7 @@ static std::string llama_model_ftype_name(llama_ftype ftype) {
|
|||
case LLAMA_FTYPE_MOSTLY_IQ2_XXS:return "IQ2_XSS - 2.0625 bpw";
|
||||
case LLAMA_FTYPE_MOSTLY_IQ2_XS: return "IQ2_XS - 2.3125 bpw";
|
||||
case LLAMA_FTYPE_MOSTLY_Q3_K_XS:return "Q3_K - Extra small";
|
||||
case LLAMA_FTYPE_MOSTLY_IQ3_XXS:return "IQ3_XSS - 3.0625 bpw";
|
||||
|
||||
default: return "unknown, may not work";
|
||||
}
|
||||
|
@ -6876,11 +6878,6 @@ static int llama_decode_internal(
|
|||
n_threads = std::min(4, n_threads);
|
||||
}
|
||||
|
||||
const bool fully_offloaded = model.n_gpu_layers >= (int) hparams.n_layer + 1;
|
||||
if ((ggml_cpu_has_cublas() || ggml_cpu_has_vulkan()) && fully_offloaded) {
|
||||
n_threads = 1;
|
||||
}
|
||||
|
||||
#ifdef GGML_USE_MPI
|
||||
const int64_t n_layer = hparams.n_layer;
|
||||
ggml_mpi_graph_compute_pre(lctx.ctx_mpi, gf, n_layer);
|
||||
|
@ -9237,6 +9234,13 @@ static ggml_type get_k_quant_type(quantize_state_internal & qs, ggml_type new_ty
|
|||
else if (new_type != GGML_TYPE_Q8_0) {
|
||||
new_type = GGML_TYPE_Q6_K;
|
||||
}
|
||||
} else if (name == "token_embd.weight") {
|
||||
if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS) {
|
||||
new_type = GGML_TYPE_Q2_K;
|
||||
}
|
||||
else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) {
|
||||
new_type = GGML_TYPE_Q4_K;
|
||||
}
|
||||
} else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS) {
|
||||
if (name.find("attn_v.weight") != std::string::npos) {
|
||||
if (qs.model.hparams.n_gqa() >= 4 || qs.model.hparams.n_expert >= 4) new_type = GGML_TYPE_Q4_K;
|
||||
|
@ -9247,7 +9251,6 @@ static ggml_type get_k_quant_type(quantize_state_internal & qs, ggml_type new_ty
|
|||
if (qs.i_ffn_down < qs.n_ffn_down/8) new_type = GGML_TYPE_Q2_K;
|
||||
++qs.i_ffn_down;
|
||||
}
|
||||
else if (name == "token_embd.weight") new_type = GGML_TYPE_Q2_K;
|
||||
} else if (name.find("attn_v.weight") != std::string::npos) {
|
||||
if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) {
|
||||
new_type = qs.model.hparams.n_gqa() >= 4 ? GGML_TYPE_Q4_K : GGML_TYPE_Q3_K;
|
||||
|
@ -9255,6 +9258,9 @@ static ggml_type get_k_quant_type(quantize_state_internal & qs, ggml_type new_ty
|
|||
else if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K_S && qs.model.hparams.n_gqa() >= 4) {
|
||||
new_type = GGML_TYPE_Q4_K;
|
||||
}
|
||||
else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS && qs.model.hparams.n_gqa() >= 4) {
|
||||
new_type = GGML_TYPE_Q4_K;
|
||||
}
|
||||
else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M) {
|
||||
new_type = qs.i_attention_wv < 2 ? GGML_TYPE_Q5_K : GGML_TYPE_Q4_K;
|
||||
}
|
||||
|
@ -9292,6 +9298,9 @@ static ggml_type get_k_quant_type(quantize_state_internal & qs, ggml_type new_ty
|
|||
else if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K_S || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_XS) {
|
||||
if (i_layer < n_layer/8) new_type = GGML_TYPE_Q4_K;
|
||||
}
|
||||
//else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) {
|
||||
// if (i_layer < n_layer/8) new_type = GGML_TYPE_Q5_K;
|
||||
//}
|
||||
else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M) {
|
||||
new_type = i_layer < n_layer/16 ? GGML_TYPE_Q5_K
|
||||
: arch != LLM_ARCH_FALCON || use_more_bits(i_layer, n_layer) ? GGML_TYPE_Q4_K
|
||||
|
@ -9323,13 +9332,14 @@ static ggml_type get_k_quant_type(quantize_state_internal & qs, ggml_type new_ty
|
|||
} else if (name.find("attn_output.weight") != std::string::npos) {
|
||||
if (arch != LLM_ARCH_FALCON) {
|
||||
if (qs.model.hparams.n_expert == 8) {
|
||||
if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_XS ||
|
||||
if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS ||
|
||||
ftype == LLAMA_FTYPE_MOSTLY_Q3_K_S || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M ||
|
||||
ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S || ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M) {
|
||||
new_type = GGML_TYPE_Q5_K;
|
||||
}
|
||||
} else {
|
||||
if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K ) new_type = GGML_TYPE_Q3_K;
|
||||
else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) new_type = GGML_TYPE_Q3_K;
|
||||
else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M) new_type = GGML_TYPE_Q4_K;
|
||||
else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q5_K;
|
||||
}
|
||||
|
@ -9372,7 +9382,8 @@ static ggml_type get_k_quant_type(quantize_state_internal & qs, ggml_type new_ty
|
|||
bool convert_incompatible_tensor = false;
|
||||
if (new_type == GGML_TYPE_Q2_K || new_type == GGML_TYPE_Q3_K || new_type == GGML_TYPE_Q4_K ||
|
||||
new_type == GGML_TYPE_Q5_K || new_type == GGML_TYPE_Q6_K ||
|
||||
new_type == GGML_TYPE_IQ2_XS || new_type == GGML_TYPE_IQ2_XXS) {
|
||||
new_type == GGML_TYPE_IQ2_XS || new_type == GGML_TYPE_IQ2_XXS ||
|
||||
new_type == GGML_TYPE_IQ3_XXS) {
|
||||
int nx = tensor->ne[0];
|
||||
int ny = tensor->ne[1];
|
||||
if (nx % QK_K != 0) {
|
||||
|
@ -9386,6 +9397,7 @@ static ggml_type get_k_quant_type(quantize_state_internal & qs, ggml_type new_ty
|
|||
switch (new_type) {
|
||||
case GGML_TYPE_IQ2_XXS:
|
||||
case GGML_TYPE_IQ2_XS:
|
||||
case GGML_TYPE_IQ3_XXS:
|
||||
case GGML_TYPE_Q2_K: new_type = GGML_TYPE_Q4_0; break;
|
||||
case GGML_TYPE_Q3_K: new_type = GGML_TYPE_Q4_1; break;
|
||||
case GGML_TYPE_Q4_K: new_type = GGML_TYPE_Q5_0; break;
|
||||
|
@ -9427,6 +9439,7 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
|
|||
case LLAMA_FTYPE_MOSTLY_Q6_K: quantized_type = GGML_TYPE_Q6_K; break;
|
||||
case LLAMA_FTYPE_MOSTLY_IQ2_XXS:quantized_type = GGML_TYPE_IQ2_XXS; break;
|
||||
case LLAMA_FTYPE_MOSTLY_IQ2_XS :quantized_type = GGML_TYPE_IQ2_XS; break;
|
||||
case LLAMA_FTYPE_MOSTLY_IQ3_XXS:quantized_type = GGML_TYPE_IQ3_XXS; break;
|
||||
|
||||
default: throw std::runtime_error(format("invalid output file type %d\n", ftype));
|
||||
}
|
||||
|
|
1
llama.h
1
llama.h
|
@ -112,6 +112,7 @@ extern "C" {
|
|||
LLAMA_FTYPE_MOSTLY_IQ2_XS = 20, // except 1d tensors
|
||||
LLAMA_FTYPE_MOSTLY_Q2_K_S = 21, // except 1d tensors
|
||||
LLAMA_FTYPE_MOSTLY_Q3_K_XS = 22, // except 1d tensors
|
||||
LLAMA_FTYPE_MOSTLY_IQ3_XXS = 23, // except 1d tensors
|
||||
|
||||
LLAMA_FTYPE_GUESSED = 1024, // not specified in the model file
|
||||
};
|
||||
|
|
|
@ -1 +1 @@
|
|||
f2a9472b23cf27e672ed70a2a6eb078f7b060f18
|
||||
475cbad5c1c834e31e26a2283bc1413181644360
|
||||
|
|
|
@ -1890,6 +1890,7 @@ static bool test_backend(ggml_backend_t backend, test_mode mode, const char * op
|
|||
GGML_TYPE_Q4_K, GGML_TYPE_Q5_K,
|
||||
GGML_TYPE_Q6_K,
|
||||
GGML_TYPE_IQ2_XXS, GGML_TYPE_IQ2_XS,
|
||||
GGML_TYPE_IQ3_XXS,
|
||||
};
|
||||
|
||||
// unary ops
|
||||
|
@ -1926,8 +1927,10 @@ static bool test_backend(ggml_backend_t backend, test_mode mode, const char * op
|
|||
test_cases.emplace_back(new test_dup(GGML_TYPE_I16, {10, 8, 3, 1}, {0, 2, 1, 3}));
|
||||
test_cases.emplace_back(new test_dup(GGML_TYPE_I16, {10, 8, 3, 1}, {1, 2, 0, 3}));
|
||||
|
||||
for (ggml_type type : all_types) {
|
||||
test_cases.emplace_back(new test_cpy(GGML_TYPE_F32, type, {256, 10, 10, 1}));
|
||||
for (ggml_type type_src : {GGML_TYPE_F16, GGML_TYPE_F32}) {
|
||||
for (ggml_type type_dst : all_types) {
|
||||
test_cases.emplace_back(new test_cpy(type_src, type_dst, {256, 4, 4, 4}));
|
||||
}
|
||||
}
|
||||
|
||||
test_cases.emplace_back(new test_cont());
|
||||
|
|
|
@ -17,7 +17,9 @@ constexpr float MAX_QUANTIZATION_REFERENCE_ERROR = 0.0001f;
|
|||
constexpr float MAX_QUANTIZATION_TOTAL_ERROR = 0.002f;
|
||||
constexpr float MAX_QUANTIZATION_TOTAL_ERROR_2BITS = 0.0075f;
|
||||
constexpr float MAX_QUANTIZATION_TOTAL_ERROR_3BITS = 0.0040f;
|
||||
constexpr float MAX_QUANTIZATION_TOTAL_ERROR_3BITS_XXS = 0.0050f;
|
||||
constexpr float MAX_DOT_PRODUCT_ERROR = 0.02f;
|
||||
constexpr float MAX_DOT_PRODUCT_ERROR_LOWBIT = 0.04f;
|
||||
|
||||
static const char* RESULT_STR[] = {"ok", "FAILED"};
|
||||
|
||||
|
@ -135,18 +137,21 @@ int main(int argc, char * argv[]) {
|
|||
}
|
||||
|
||||
const ggml_type ei = (ggml_type)i;
|
||||
|
||||
if (ei == GGML_TYPE_IQ2_XXS || ei == GGML_TYPE_IQ2_XS) {
|
||||
printf("Skip %s due to missing quantization functionality\n", ggml_type_name(ei));
|
||||
continue;
|
||||
}
|
||||
|
||||
printf("Testing %s\n", ggml_type_name((ggml_type) i));
|
||||
ggml_quantize_init(ei);
|
||||
|
||||
if (qfns.from_float && qfns.to_float) {
|
||||
const float total_error = total_quantization_error(qfns, test_size, test_data.data());
|
||||
const float max_quantization_error =
|
||||
type == GGML_TYPE_Q2_K ? MAX_QUANTIZATION_TOTAL_ERROR_2BITS :
|
||||
type == GGML_TYPE_Q3_K ? MAX_QUANTIZATION_TOTAL_ERROR_3BITS : MAX_QUANTIZATION_TOTAL_ERROR;
|
||||
type == GGML_TYPE_Q3_K ? MAX_QUANTIZATION_TOTAL_ERROR_3BITS :
|
||||
type == GGML_TYPE_IQ3_XXS ? MAX_QUANTIZATION_TOTAL_ERROR_3BITS_XXS : MAX_QUANTIZATION_TOTAL_ERROR;
|
||||
failed = !(total_error < max_quantization_error);
|
||||
num_failed += failed;
|
||||
if (failed || verbose) {
|
||||
|
@ -161,7 +166,9 @@ int main(int argc, char * argv[]) {
|
|||
}
|
||||
|
||||
const float vec_dot_error = dot_product_error(qfns, test_size, test_data.data(), test_data2.data());
|
||||
failed = !(vec_dot_error < MAX_DOT_PRODUCT_ERROR);
|
||||
const float max_allowed_error = type == GGML_TYPE_Q2_K || type == GGML_TYPE_IQ2_XS || type == GGML_TYPE_IQ2_XXS ||
|
||||
type == GGML_TYPE_IQ3_XXS ? MAX_DOT_PRODUCT_ERROR_LOWBIT : MAX_DOT_PRODUCT_ERROR;
|
||||
failed = !(vec_dot_error < max_allowed_error);
|
||||
num_failed += failed;
|
||||
if (failed || verbose) {
|
||||
printf("%5s dot product error: %s (%f)\n", ggml_type_name(type), RESULT_STR[failed], vec_dot_error);
|
||||
|
|
|
@ -278,6 +278,8 @@ int main(int argc, char * argv[]) {
|
|||
if (qfns.from_float && qfns.to_float) {
|
||||
printf("%s\n", ggml_type_name(type));
|
||||
|
||||
ggml_quantize_init(type);
|
||||
|
||||
if (params.op_quantize_row_q_reference) {
|
||||
printf(" quantize_row_q_reference\n");
|
||||
for (size_t size : params.test_sizes) {
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue