train on multiple examples, generate & print tokens with trained model afterwards

ctx0 for evaluation and optimization is renewed for each sample
This commit is contained in:
xaedes 2023-05-06 14:13:55 +02:00
parent 83ee1cd741
commit f1d51d144b
No known key found for this signature in database
GPG key ID: 30030EDD817EA2B1

View file

@ -534,6 +534,14 @@ void sample_softmax(struct ggml_tensor * logits, struct ggml_tensor * probs, str
}
}
void print_probs1(struct ggml_tensor * probs, int i) {
for (int k = 0; k < probs->ne[0]; ++k) {
float p = ggml_get_f32_1d(probs, i*probs->ne[0] + k);
printf(" %.2f", p);
}
printf("\n");
}
void print_probs(struct ggml_tensor * probs) {
assert(probs->n_dims == 2);
for (int i=0; i<probs->ne[1]; ++i) {
@ -545,9 +553,7 @@ void print_probs(struct ggml_tensor * probs) {
}
}
void print_tokens(struct ggml_tensor * tokens, int n_vocab) {
for (int i=0; i<tokens->ne[0]; ++i) {
int token = ggml_get_i32_1d(tokens, i);
void print_token(int token, int n_vocab) {
for (int k = 0; k < token; ++k) {
printf(" ");
}
@ -556,17 +562,25 @@ void print_tokens(struct ggml_tensor * tokens, int n_vocab) {
printf(" ");
}
printf("\n");
}
void print_tokens(struct ggml_tensor * tokens, int n_vocab) {
for (int i=0; i<tokens->ne[0]; ++i) {
int token = ggml_get_i32_1d(tokens, i);
print_token(token, n_vocab);
}
}
void get_example_targets(int example_id, struct ggml_tensor * tokens_input, struct ggml_tensor * targets) {
int n_tokens = tokens_input->ne[0];
int n_vocab = targets->ne[0];
float randomness = 0.0f;
ggml_set_zero(targets);
for (int i=0; i<n_tokens; ++i) {
float x = example_id + i * 3.14159f * 2.0f * 4.0f / n_tokens;
float y = sinf(x);//*cosf(x*1.1f+1.0f);
float z = (y+1.0f)*0.5f; // scale to [0..1]
z += (frand()-0.5f)*(randomness/n_tokens);
z = (z < 0.0f) ? 0.0f : (z > 1.0f) ? 1.0f : z; // clamp to [0..1]
int token = (int)(z*(float)(n_vocab-1));
ggml_set_f32_1d(targets, i*n_vocab + token, +1.0f);
@ -574,6 +588,17 @@ void get_example_targets(int example_id, struct ggml_tensor * tokens_input, stru
}
}
void lshift_examples(struct ggml_tensor * tokens_input, struct ggml_tensor * targets, int n_shift) {
int n_tokens = tokens_input->ne[0];
int n_vocab = targets->ne[0];
for (int i=0; i<n_tokens-n_shift; ++i) {
ggml_set_i32_1d(tokens_input, i, ggml_get_i32_1d(tokens_input, i + n_shift));
for (int k=0; k<n_vocab; ++k) {
ggml_set_f32_1d(targets, i*n_vocab + k, ggml_get_f32_1d(targets, (i + n_shift)*n_vocab + k));
}
}
}
int main(int argc, char ** argv) {
struct ggml_init_params lcparams;
lcparams.mem_size = 1024*1024*1024;
@ -587,7 +612,7 @@ int main(int argc, char ** argv) {
model.hparams.n_mult = 2;
model.hparams.n_head = 8;
model.hparams.n_layer = 8;
model.hparams.n_rot = 16;
model.hparams.n_rot = model.hparams.n_embd / model.hparams.n_head;
// model.hparams.n_embd = 32;
// model.hparams.n_mult = 2;
@ -608,22 +633,27 @@ int main(int argc, char ** argv) {
kv_self.ctx = model.ctx;
init_kv_cache(&kv_self, &model);
struct ggml_init_params c0params;
c0params.mem_size = 1024*1024*1024;
c0params.mem_buffer = NULL;
c0params.no_alloc = false;
struct ggml_context * ctx0 = model.ctx; // ggml_init(c0params);
size_t compute_size = 1024*1024*1024;
uint8_t * compute_addr = new uint8_t[compute_size];
int n_examples = 2;
int n_examples = 32;
int n_tokens = model.hparams.n_ctx;
for (int ex=0; ex<n_examples; ++ex) {
struct ggml_init_params params = {
/*.mem_size =*/ compute_size,
/*.mem_buffer =*/ compute_addr,
/*.no_alloc =*/ false,
};
struct ggml_tensor * before_opt_best_samples = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens);
struct ggml_tensor * before_opt_probs = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, model.hparams.n_vocab, n_tokens);
struct ggml_tensor * after_opt_best_samples = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens);
struct ggml_tensor * after_opt_probs = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, model.hparams.n_vocab, n_tokens);
struct ggml_context * ctx0 = ggml_init(params);
// struct ggml_tensor * before_opt_best_samples = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens);
// struct ggml_tensor * before_opt_probs = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, model.hparams.n_vocab, n_tokens);
// struct ggml_tensor * after_opt_best_samples = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens);
// struct ggml_tensor * after_opt_probs = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, model.hparams.n_vocab, n_tokens);
struct ggml_tensor * tokens_input = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens);
struct ggml_tensor * targets = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, model.hparams.n_vocab, n_tokens);
@ -634,8 +664,8 @@ int main(int argc, char ** argv) {
get_example_targets(ex, tokens_input, targets);
printf("Example %d\n", (ex+1));
print_probs(targets);
print_tokens(tokens_input, model.hparams.n_vocab);
// print_probs(targets);
// print_tokens(tokens_input, model.hparams.n_vocab);
struct ggml_tensor * logits = forward(&model, &kv_self, ctx0, &gf, tokens_input, n_tokens, n_past);
struct ggml_tensor * e = ggml_sum(ctx0, ggml_sqr(ctx0, ggml_sub(ctx0, targets, logits)));
@ -644,12 +674,12 @@ int main(int argc, char ** argv) {
ggml_graph_compute(ctx0, &gf);
float error_before_opt = ggml_get_f32_1d(e, 0);
sample_softmax(logits, before_opt_probs, before_opt_best_samples);
// sample_softmax(logits, before_opt_probs, before_opt_best_samples);
printf("probabilities before optimization:\n");
print_probs(before_opt_probs);
printf("best samples before optimization:\n");
print_tokens(before_opt_best_samples, model.hparams.n_vocab);
// printf("probabilities before optimization:\n");
// print_probs(before_opt_probs);
// printf("best samples before optimization:\n");
// print_tokens(before_opt_best_samples, model.hparams.n_vocab);
struct ggml_opt_params opt_params_adam = ggml_opt_default_params(GGML_OPT_ADAM);
struct ggml_opt_params opt_params_lbfgs = ggml_opt_default_params(GGML_OPT_LBFGS);
@ -657,6 +687,8 @@ int main(int argc, char ** argv) {
opt_params_adam.print_backward_graph = false;
opt_params_lbfgs.print_forward_graph = false;
opt_params_lbfgs.print_backward_graph = false;
opt_params_adam.adam.n_iter = 16;
opt_params_lbfgs.lbfgs.n_iter = 16;
// ggml_opt(ctx0, opt_params_adam, e);
ggml_opt(ctx0, opt_params_lbfgs, e);
//
@ -664,20 +696,77 @@ int main(int argc, char ** argv) {
ggml_graph_compute(ctx0, &gf);
float error_after_opt = ggml_get_f32_1d(e, 0);
sample_softmax(logits, after_opt_probs, after_opt_best_samples);
// sample_softmax(logits, after_opt_probs, after_opt_best_samples);
printf("error_before_opt: %.2f\n", error_before_opt);
printf("error_after_opt: %.2f\n", error_after_opt);
printf("probabilities after optimization:\n");
print_probs(after_opt_probs);
printf("best samples after optimization:\n");
print_tokens(after_opt_best_samples, model.hparams.n_vocab);
}
// printf("probabilities after optimization:\n");
// print_probs(after_opt_probs);
// printf("best samples after optimization:\n");
// print_tokens(after_opt_best_samples, model.hparams.n_vocab);
ggml_free(ctx0);
}
{
int n_gen = 64;
int sample_ctx = n_tokens/2;
printf("Generating %d tokens.\n", n_gen);
struct ggml_tensor * tokens_input = ggml_new_tensor_1d(model.ctx, GGML_TYPE_I32, n_tokens);
struct ggml_tensor * targets = ggml_new_tensor_2d(model.ctx, GGML_TYPE_F32, model.hparams.n_vocab, n_tokens);
get_example_targets(137, tokens_input, targets);
for (int i=sample_ctx; i<n_tokens; ++i) {
ggml_set_i32_1d(tokens_input, i, model.hparams.n_vocab/2);
}
for (int i=0; i<sample_ctx-1; ++i) {
print_token(ggml_get_i32_1d(tokens_input, i), model.hparams.n_vocab);
}
printf("---\n");
for (int i=0; i<n_gen; ++i) {
struct ggml_init_params params = {
/*.mem_size =*/ compute_size,
/*.mem_buffer =*/ compute_addr,
/*.no_alloc =*/ false,
};
struct ggml_context * ctx0 = ggml_init(params);
ggml_cgraph gf = {};
gf.n_threads = 1;
int n_past = 0;
struct ggml_tensor * logits = forward(&model, &kv_self, ctx0, &gf, tokens_input, sample_ctx, n_past);
ggml_build_forward_expand(&gf, logits);
ggml_graph_compute(ctx0, &gf);
struct ggml_tensor * best_samples = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, sample_ctx);
struct ggml_tensor * probs = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, model.hparams.n_vocab, sample_ctx);
sample_softmax(logits, probs, best_samples);
// int sample_at = n_tokens-1;
int token = ggml_get_i32_1d(best_samples, sample_ctx-1);
// print_probs1(probs, sample_at);
print_token(token, model.hparams.n_vocab);
lshift_examples(tokens_input, targets, 1);
ggml_set_i32_1d(tokens_input, sample_ctx-1, token);
// printf("---\n");
// for (int i=0; i<sample_ctx-1; ++i) {
// print_token(ggml_get_i32_1d(tokens_input, i), model.hparams.n_vocab);
// }
// printf("--\n");
ggml_free(ctx0);
}
}
printf("done\n");
// ggml_free(kv_self.ctx);