llama: factorize moe graph implementation between grok, mixtral and dbrx
This commit is contained in:
parent
21fb24aa45
commit
f20c04f01f
1 changed files with 63 additions and 171 deletions
234
llama.cpp
234
llama.cpp
|
@ -6457,62 +6457,7 @@ struct llm_build_context {
|
|||
LLM_NORM_RMS, cb, il);
|
||||
cb(cur, "ffn_norm", il);
|
||||
|
||||
ggml_tensor * logits = ggml_mul_mat(ctx0, model.layers[il].ffn_gate_inp, cur); // [n_tokens, num_experts]
|
||||
cb(logits, "ffn_moe_logits", il);
|
||||
|
||||
ggml_tensor * probs = ggml_soft_max(ctx0, logits); // [n_tokens, num_experts]
|
||||
cb(probs, "ffn_moe_probs", il);
|
||||
|
||||
// select experts
|
||||
ggml_tensor * selected_experts = ggml_top_k(ctx0, probs, n_expert_used); // [n_tokens, num_experts_per_tok]
|
||||
cb(selected_experts->src[0], "ffn_moe_argsort", il);
|
||||
|
||||
ggml_tensor * weights = ggml_get_rows(ctx0,
|
||||
ggml_reshape_3d(ctx0, probs, 1, n_expert, n_tokens), selected_experts);
|
||||
cb(weights, "ffn_moe_weights", il);
|
||||
|
||||
weights = ggml_reshape_2d(ctx0, weights, n_expert_used, n_tokens); // [n_tokens, num_experts_per_tok]
|
||||
|
||||
ggml_tensor * weights_sum = ggml_sum_rows(ctx0, weights);
|
||||
cb(weights_sum, "ffn_moe_weights_sum", il);
|
||||
|
||||
weights = ggml_div(ctx0, weights, weights_sum); // [n_tokens, num_experts_per_tok]
|
||||
cb(weights, "ffn_moe_weights_norm", il);
|
||||
|
||||
// compute expert outputs
|
||||
ggml_tensor * moe_out = nullptr;
|
||||
|
||||
for (int i = 0; i < n_expert_used; ++i) {
|
||||
ggml_tensor * cur_expert;
|
||||
|
||||
ggml_tensor * cur_up = ggml_mul_mat_id(ctx0, model.layers[il].ffn_up_exps, selected_experts, i, cur);
|
||||
cb(cur_up, "ffn_moe_up", il);
|
||||
|
||||
ggml_tensor * cur_gate = ggml_mul_mat_id(ctx0, model.layers[il].ffn_gate_exps, selected_experts, i, cur);
|
||||
cb(cur_gate, "ffn_moe_gate", il);
|
||||
|
||||
cur_gate = ggml_silu(ctx0, cur_gate);
|
||||
cb(cur_gate, "ffn_moe_silu", il);
|
||||
|
||||
cur_expert = ggml_mul(ctx0, cur_up, cur_gate);
|
||||
cb(cur_expert, "ffn_moe_gate_par", il);
|
||||
|
||||
cur_expert = ggml_mul_mat_id(ctx0, model.layers[il].ffn_down_exps, selected_experts, i, cur_expert); // [n_tokens, n_embd]
|
||||
cb(cur_expert, "ffn_moe_down", il);
|
||||
|
||||
cur_expert = ggml_mul(ctx0, cur_expert,
|
||||
ggml_view_2d(ctx0, weights, 1, n_tokens, weights->nb[1], i*weights->nb[0]));
|
||||
cb(cur_expert, "ffn_moe_weighted", il);
|
||||
|
||||
if (i == 0) {
|
||||
moe_out = cur_expert;
|
||||
} else {
|
||||
moe_out = ggml_add(ctx0, moe_out, cur_expert);
|
||||
cb(moe_out, "ffn_moe_out", il);
|
||||
}
|
||||
}
|
||||
|
||||
cur = moe_out;
|
||||
cur = build_moe(cur, n_tokens, il);
|
||||
}
|
||||
|
||||
cur = ggml_add(ctx0, cur, ffn_inp);
|
||||
|
@ -6544,6 +6489,65 @@ struct llm_build_context {
|
|||
return gf;
|
||||
}
|
||||
|
||||
ggml_tensor * build_moe(ggml_tensor * cur, int32_t n_tokens, int il) {
|
||||
ggml_tensor * logits = ggml_mul_mat(ctx0, model.layers[il].ffn_gate_inp, cur); // [n_tokens, num_experts]
|
||||
cb(logits, "ffn_moe_logits", il);
|
||||
|
||||
ggml_tensor * probs = ggml_soft_max(ctx0, logits); // [n_tokens, num_experts]
|
||||
cb(probs, "ffn_moe_probs", il);
|
||||
|
||||
// select experts
|
||||
ggml_tensor * selected_experts = ggml_top_k(ctx0, probs, n_expert_used); // [n_tokens, num_experts_per_tok]
|
||||
cb(selected_experts->src[0], "ffn_moe_argsort", il);
|
||||
|
||||
ggml_tensor * weights = ggml_get_rows(ctx0,
|
||||
ggml_reshape_3d(ctx0, probs, 1, n_expert, n_tokens), selected_experts);
|
||||
cb(weights, "ffn_moe_weights", il);
|
||||
|
||||
weights = ggml_reshape_2d(ctx0, weights, n_expert_used, n_tokens); // [n_tokens, num_experts_per_tok]
|
||||
|
||||
ggml_tensor * weights_sum = ggml_sum_rows(ctx0, weights);
|
||||
cb(weights_sum, "ffn_moe_weights_sum", il);
|
||||
|
||||
weights = ggml_div(ctx0, weights, weights_sum); // [n_tokens, num_experts_per_tok]
|
||||
cb(weights, "ffn_moe_weights_norm", il);
|
||||
|
||||
// compute expert outputs
|
||||
ggml_tensor * moe_out = nullptr;
|
||||
|
||||
for (int i = 0; i < n_expert_used; ++i) {
|
||||
ggml_tensor * cur_expert;
|
||||
|
||||
ggml_tensor * cur_up = ggml_mul_mat_id(ctx0, model.layers[il].ffn_up_exps, selected_experts, i, cur);
|
||||
cb(cur_up, "ffn_moe_up", il);
|
||||
|
||||
ggml_tensor * cur_gate = ggml_mul_mat_id(ctx0, model.layers[il].ffn_gate_exps, selected_experts, i, cur);
|
||||
cb(cur_gate, "ffn_moe_gate", il);
|
||||
|
||||
cur_gate = ggml_silu(ctx0, cur_gate);
|
||||
cb(cur_gate, "ffn_moe_silu", il);
|
||||
|
||||
cur_expert = ggml_mul(ctx0, cur_up, cur_gate);
|
||||
cb(cur_expert, "ffn_moe_gate_par", il);
|
||||
|
||||
cur_expert = ggml_mul_mat_id(ctx0, model.layers[il].ffn_down_exps, selected_experts, i, cur_expert); // [n_tokens, n_embd]
|
||||
cb(cur_expert, "ffn_moe_down", il);
|
||||
|
||||
cur_expert = ggml_mul(ctx0, cur_expert,
|
||||
ggml_view_2d(ctx0, weights, 1, n_tokens, weights->nb[1], i*weights->nb[0]));
|
||||
cb(cur_expert, "ffn_moe_weighted", il);
|
||||
|
||||
if (i == 0) {
|
||||
moe_out = cur_expert;
|
||||
} else {
|
||||
moe_out = ggml_add(ctx0, moe_out, cur_expert);
|
||||
cb(moe_out, "ffn_moe_out", il);
|
||||
}
|
||||
}
|
||||
|
||||
return moe_out;
|
||||
}
|
||||
|
||||
struct ggml_cgraph * build_baichuan() {
|
||||
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
|
||||
|
||||
|
@ -6991,63 +6995,7 @@ struct llm_build_context {
|
|||
LLM_NORM_RMS, cb, il);
|
||||
cb(cur, "ffn_norm", il);
|
||||
|
||||
ggml_tensor * logits = ggml_mul_mat(ctx0, model.layers[il].ffn_gate_inp, cur); // [n_tokens, num_experts]
|
||||
cb(logits, "ffn_moe_logits", il);
|
||||
|
||||
ggml_tensor * probs = ggml_soft_max(ctx0, logits); // [n_tokens, num_experts]
|
||||
cb(probs, "ffn_moe_probs", il);
|
||||
|
||||
// select experts
|
||||
ggml_tensor * selected_experts = ggml_top_k(ctx0, probs, n_expert_used); // [n_tokens, num_experts_per_tok]
|
||||
cb(selected_experts->src[0], "ffn_moe_argsort", il);
|
||||
|
||||
ggml_tensor * weights = ggml_get_rows(ctx0,
|
||||
ggml_reshape_3d(ctx0, probs, 1, n_expert, n_tokens), selected_experts);
|
||||
cb(weights, "ffn_moe_weights", il);
|
||||
|
||||
weights = ggml_reshape_2d(ctx0, weights, n_expert_used, n_tokens); // [n_tokens, num_experts_per_tok]
|
||||
|
||||
ggml_tensor * weights_sum = ggml_sum_rows(ctx0, weights);
|
||||
cb(weights_sum, "ffn_moe_weights_sum", il);
|
||||
|
||||
weights = ggml_div(ctx0, weights, weights_sum); // [n_tokens, num_experts_per_tok]
|
||||
cb(weights, "ffn_moe_weights_norm", il);
|
||||
|
||||
// compute expert outputs
|
||||
ggml_tensor * moe_out = nullptr;
|
||||
|
||||
for (int i = 0; i < n_expert_used; ++i) {
|
||||
ggml_tensor * cur_expert;
|
||||
|
||||
ggml_tensor * cur_up = ggml_mul_mat_id(ctx0, model.layers[il].ffn_up_exps, selected_experts, i, cur);
|
||||
cb(cur_up, "ffn_moe_up", il);
|
||||
|
||||
ggml_tensor * cur_gate = ggml_mul_mat_id(ctx0, model.layers[il].ffn_gate_exps, selected_experts, i, cur);
|
||||
cb(cur_gate, "ffn_moe_gate", il);
|
||||
|
||||
//GeLU
|
||||
cur_gate = ggml_gelu(ctx0, cur_gate);
|
||||
cb(cur_gate, "ffn_moe_gelu", il);
|
||||
|
||||
cur_expert = ggml_mul(ctx0, cur_up, cur_gate);
|
||||
cb(cur_expert, "ffn_moe_gate_par", il);
|
||||
|
||||
cur_expert = ggml_mul_mat_id(ctx0, model.layers[il].ffn_down_exps, selected_experts, i, cur_expert); // [n_tokens, n_embd]
|
||||
cb(cur_expert, "ffn_moe_down", il);
|
||||
|
||||
cur_expert = ggml_mul(ctx0, cur_expert,
|
||||
ggml_view_2d(ctx0, weights, 1, n_tokens, weights->nb[1], i*weights->nb[0]));
|
||||
cb(cur_expert, "ffn_moe_weighted", il);
|
||||
|
||||
if (i == 0) {
|
||||
moe_out = cur_expert;
|
||||
} else {
|
||||
moe_out = ggml_add(ctx0, moe_out, cur_expert);
|
||||
cb(moe_out, "ffn_moe_out", il);
|
||||
}
|
||||
}
|
||||
|
||||
cur = moe_out;
|
||||
cur = build_moe(cur, n_tokens, il);
|
||||
|
||||
// Grok
|
||||
// if layer_out_norm is present then apply it before adding the input
|
||||
|
@ -7163,7 +7111,6 @@ struct llm_build_context {
|
|||
cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
|
||||
model.layers[il].wo, NULL,
|
||||
Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
|
||||
|
||||
}
|
||||
|
||||
if (il == n_layer - 1) {
|
||||
|
@ -7179,64 +7126,9 @@ struct llm_build_context {
|
|||
|
||||
// feed-forward network
|
||||
// MoE branch
|
||||
{
|
||||
ggml_tensor * logits = ggml_mul_mat(ctx0, model.layers[il].ffn_gate_inp, cur); // [n_tokens, num_experts]
|
||||
cb(logits, "ffn_moe_logits", il);
|
||||
|
||||
ggml_tensor * probs = ggml_soft_max(ctx0, logits); // [n_tokens, num_experts]
|
||||
cb(probs, "ffn_moe_probs", il);
|
||||
|
||||
// select experts
|
||||
ggml_tensor * selected_experts = ggml_top_k(ctx0, probs, n_expert_used); // [n_tokens, num_experts_per_tok]
|
||||
cb(selected_experts->src[0], "ffn_moe_argsort", il);
|
||||
|
||||
ggml_tensor * weights = ggml_get_rows(ctx0,
|
||||
ggml_reshape_3d(ctx0, probs, 1, n_expert, n_tokens), selected_experts);
|
||||
cb(weights, "ffn_moe_weights", il);
|
||||
|
||||
weights = ggml_reshape_2d(ctx0, weights, n_expert_used, n_tokens); // [n_tokens, num_experts_per_tok]
|
||||
|
||||
ggml_tensor * weights_sum = ggml_sum_rows(ctx0, weights);
|
||||
cb(weights_sum, "ffn_moe_weights_sum", il);
|
||||
|
||||
weights = ggml_div(ctx0, weights, weights_sum); // [n_tokens, num_experts_per_tok]
|
||||
cb(weights, "ffn_moe_weights_norm", il);
|
||||
|
||||
// compute expert outputs
|
||||
ggml_tensor * moe_out = nullptr;
|
||||
for (int i = 0; i < n_expert_used; ++i) {
|
||||
ggml_tensor * cur_expert;
|
||||
|
||||
ggml_tensor * cur_up = ggml_mul_mat_id(ctx0, model.layers[il].ffn_up_exps, selected_experts, i, cur);
|
||||
cb(cur_up, "ffn_moe_up", il);
|
||||
|
||||
ggml_tensor * cur_gate = ggml_mul_mat_id(ctx0, model.layers[il].ffn_gate_exps, selected_experts, i, cur);
|
||||
cb(cur_gate, "ffn_moe_gate", il);
|
||||
|
||||
//GeLU
|
||||
cur_gate = ggml_gelu(ctx0, cur_gate);
|
||||
cb(cur_gate, "ffn_moe_gelu", il);
|
||||
|
||||
cur_expert = ggml_mul(ctx0, cur_up, cur_gate);
|
||||
cb(cur_expert, "ffn_moe_gate_par", il);
|
||||
|
||||
cur_expert = ggml_mul_mat_id(ctx0, model.layers[il].ffn_down_exps, selected_experts, i, cur_expert); // [n_tokens, n_embd]
|
||||
cb(cur_expert, "ffn_moe_down", il);
|
||||
|
||||
cur_expert = ggml_mul(ctx0, cur_expert,
|
||||
ggml_view_2d(ctx0, weights, 1, n_tokens, weights->nb[1], i * weights->nb[0]));
|
||||
cb(cur_expert, "ffn_moe_weighted", il);
|
||||
|
||||
if (i == 0) {
|
||||
moe_out = cur_expert;
|
||||
} else {
|
||||
moe_out = ggml_add(ctx0, moe_out, cur_expert);
|
||||
cb(moe_out, "ffn_moe_out", il);
|
||||
}
|
||||
}
|
||||
cur = moe_out;
|
||||
}
|
||||
cur = build_moe(cur, n_tokens, il);
|
||||
|
||||
// DBRX norm2
|
||||
cur = llm_build_norm(ctx0, cur, hparams,
|
||||
model.layers[il].layer_out_norm, NULL,
|
||||
LLM_NORM, cb, il);
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue