llama : add pipeline parallelism support (#6017)

* llama : add pipeline parallelism support for batch processing with multiple CUDA GPUs

ggml-ci

* server : add -ub, --ubatch-size parameter

* fix server embedding test

* llama : fix Mamba inference for pipeline parallelism

Tested to work correctly with both `main` and `parallel` examples.

* llama : limit max batch size to n_batch

* add LLAMA_SCHED_MAX_COPIES to configure the number of input copies for pipeline parallelism
default increase to 4 (from 2)

changing this value may improve performance for some systems, but increases memory usage

* fix hip build

* fix sycl build (disable cpy_tensor_async)

* fix hip build

* llama : limit n_batch and n_ubatch to n_ctx during context creation

* llama : fix norm backend

* batched-bench : sync after decode

* swiftui : sync after decode

* ggml : allow ggml_get_rows to use multiple threads if they are available

* check n_ubatch >= n_tokens with non-casual attention

* llama : do not limit n_batch to n_ctx with non-casual attn

* server : construct batch with size of llama_n_batch

* ggml_backend_cpu_graph_compute : fix return value when alloc fails

* llama : better n_batch and n_ubatch comment

* fix merge

* small fix

* reduce default n_batch to 2048

---------

Co-authored-by: Francis Couture-Harpin <git@compilade.net>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
This commit is contained in:
slaren 2024-03-13 18:54:21 +01:00 committed by GitHub
parent d8fd0ccf6a
commit f30ea47a87
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
25 changed files with 1467 additions and 887 deletions

View file

@ -221,29 +221,29 @@ void ggml_backend_tensor_get_async(ggml_backend_t backend, const struct ggml_ten
GGML_CALL void ggml_backend_tensor_set(struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
ggml_backend_buffer_t buf = tensor->view_src ? tensor->view_src->buffer : tensor->buffer;
GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
GGML_ASSERT(buf != NULL && "tensor buffer not set");
GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor write out of bounds");
if (!size) {
return;
}
tensor->buffer->iface.set_tensor(buf, tensor, data, offset, size);
buf->iface.set_tensor(buf, tensor, data, offset, size);
}
GGML_CALL void ggml_backend_tensor_get(const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) {
ggml_backend_buffer_t buf = tensor->view_src ? tensor->view_src->buffer : tensor->buffer;
GGML_ASSERT(buf != NULL && "tensor buffer not set");
GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
GGML_ASSERT(tensor->buffer != NULL && "tensor buffer not set");
GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor read out of bounds");
if (!size) {
return;
}
tensor->buffer->iface.get_tensor(buf, tensor, data, offset, size);
buf->iface.get_tensor(buf, tensor, data, offset, size);
}
void ggml_backend_synchronize(ggml_backend_t backend) {
@ -255,18 +255,30 @@ void ggml_backend_synchronize(ggml_backend_t backend) {
}
ggml_backend_graph_plan_t ggml_backend_graph_plan_create(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
GGML_ASSERT(backend->iface.graph_plan_create != NULL);
return backend->iface.graph_plan_create(backend, cgraph);
}
void ggml_backend_graph_plan_free(ggml_backend_t backend, ggml_backend_graph_plan_t plan) {
GGML_ASSERT(backend->iface.graph_plan_free != NULL);
backend->iface.graph_plan_free(backend, plan);
}
enum ggml_status ggml_backend_graph_plan_compute(ggml_backend_t backend, ggml_backend_graph_plan_t plan) {
GGML_ASSERT(backend->iface.graph_plan_compute != NULL);
return backend->iface.graph_plan_compute(backend, plan);
}
enum ggml_status ggml_backend_graph_compute(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
enum ggml_status err = ggml_backend_graph_compute_async(backend, cgraph);
ggml_backend_synchronize(backend);
return err;
}
bool ggml_backend_graph_compute_async(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
return backend->iface.graph_compute(backend, cgraph);
}
@ -314,34 +326,68 @@ void ggml_backend_tensor_copy(struct ggml_tensor * src, struct ggml_tensor * dst
}
}
void ggml_backend_tensor_copy_async(ggml_backend_t backend, struct ggml_tensor * src, struct ggml_tensor * dst) {
void ggml_backend_tensor_copy_async(ggml_backend_t backend_src, ggml_backend_t backend_dst, struct ggml_tensor * src, struct ggml_tensor * dst) {
GGML_ASSERT(ggml_are_same_layout(src, dst) && "cannot copy tensors with different layouts");
if (src == dst) {
return;
}
if (ggml_backend_buft_supports_backend(src->buffer->buft, backend) && ggml_backend_buft_supports_backend(dst->buffer->buft, backend)) {
if (backend->iface.cpy_tensor_async != NULL) {
if (backend->iface.cpy_tensor_async(backend, src, dst)) {
return;
}
if (backend_dst->iface.cpy_tensor_async != NULL) {
if (backend_dst->iface.cpy_tensor_async(backend_src, backend_dst, src, dst)) {
return;
}
}
size_t nbytes = ggml_nbytes(src);
// an async copy would normally happen after all the queued operations on both backends are completed
// sync src, set_async dst
if (ggml_backend_buffer_is_host(src->buffer)) {
ggml_backend_tensor_set_async(backend, dst, src->data, 0, nbytes);
}
else {
ggml_backend_synchronize(backend_src);
ggml_backend_tensor_set_async(backend_dst, dst, src->data, 0, ggml_nbytes(src));
} else {
ggml_backend_synchronize(backend_src);
ggml_backend_tensor_copy(src, dst);
ggml_backend_synchronize(backend_dst);
}
}
// events
ggml_backend_event_t ggml_backend_event_new(ggml_backend_t backend) {
if (backend->iface.event_new == NULL) {
return NULL;
}
return backend->iface.event_new(backend);
}
void ggml_backend_event_free(ggml_backend_event_t event) {
if (event == NULL) {
return;
}
event->backend->iface.event_free(event);
}
void ggml_backend_event_record(ggml_backend_event_t event) {
GGML_ASSERT(event->backend->iface.event_record != NULL);
event->backend->iface.event_record(event);
}
void ggml_backend_event_synchronize(ggml_backend_event_t event) {
GGML_ASSERT(event->backend->iface.event_synchronize != NULL);
event->backend->iface.event_synchronize(event);
}
void ggml_backend_event_wait(ggml_backend_t backend, ggml_backend_event_t event) {
GGML_ASSERT(backend->iface.event_wait != NULL);
backend->iface.event_wait(backend, event);
}
// backend registry
#define GGML_MAX_BACKENDS_REG 16
#define GGML_REG_MAX_BACKENDS 16
struct ggml_backend_reg {
char name[128];
@ -350,7 +396,7 @@ struct ggml_backend_reg {
void * user_data;
};
static struct ggml_backend_reg ggml_backend_registry[GGML_MAX_BACKENDS_REG];
static struct ggml_backend_reg ggml_backend_registry[GGML_REG_MAX_BACKENDS];
static size_t ggml_backend_registry_count = 0;
GGML_CALL static ggml_backend_t ggml_backend_reg_cpu_init(const char * params, void * user_data);
@ -395,7 +441,7 @@ GGML_CALL static void ggml_backend_registry_init(void) {
}
GGML_CALL void ggml_backend_register(const char * name, ggml_backend_init_fn init_fn, ggml_backend_buffer_type_t default_buffer_type, void * user_data) {
GGML_ASSERT(ggml_backend_registry_count < GGML_MAX_BACKENDS_REG);
GGML_ASSERT(ggml_backend_registry_count < GGML_REG_MAX_BACKENDS);
size_t id = ggml_backend_registry_count;
@ -746,8 +792,12 @@ GGML_CALL static enum ggml_status ggml_backend_cpu_graph_compute(ggml_backend_t
struct ggml_cplan cplan = ggml_graph_plan(cgraph, cpu_ctx->n_threads);
if (cpu_ctx->work_size < cplan.work_size) {
// TODO: may be faster to free and use malloc to avoid the copy
cpu_ctx->work_data = realloc(cpu_ctx->work_data, cplan.work_size);
free(cpu_ctx->work_data);
cpu_ctx->work_data = malloc(cplan.work_size);
if (cpu_ctx->work_data == NULL) {
cpu_ctx->work_size = 0;
return GGML_STATUS_ALLOC_FAILED;
}
cpu_ctx->work_size = cplan.work_size;
}
cplan.work_data = cpu_ctx->work_data;
@ -784,6 +834,11 @@ static struct ggml_backend_i cpu_backend_i = {
/* .graph_plan_compute = */ ggml_backend_cpu_graph_plan_compute,
/* .graph_compute = */ ggml_backend_cpu_graph_compute,
/* .supports_op = */ ggml_backend_cpu_supports_op,
/* .event_new = */ NULL,
/* .event_free = */ NULL,
/* .event_record = */ NULL,
/* .event_wait = */ NULL,
/* .event_synchronize = */ NULL,
};
static ggml_guid_t ggml_backend_cpu_guid(void) {
@ -939,15 +994,27 @@ static bool ggml_is_view_op(enum ggml_op op) {
// scheduler
#define GGML_MAX_BACKENDS 16
#define GGML_MAX_SPLITS 256
#define GGML_MAX_SPLIT_INPUTS 16
#ifndef GGML_SCHED_MAX_BACKENDS
#define GGML_SCHED_MAX_BACKENDS 16
#endif
#ifndef GGML_SCHED_MAX_SPLITS
#define GGML_SCHED_MAX_SPLITS 256
#endif
#ifndef GGML_SCHED_MAX_SPLIT_INPUTS
#define GGML_SCHED_MAX_SPLIT_INPUTS 16
#endif
#ifndef GGML_SCHED_MAX_COPIES
#define GGML_SCHED_MAX_COPIES 4
#endif
struct ggml_backend_sched_split {
int backend_id;
int i_start;
int i_end;
struct ggml_tensor * inputs[GGML_MAX_SPLIT_INPUTS];
struct ggml_tensor * inputs[GGML_SCHED_MAX_SPLIT_INPUTS];
int n_inputs;
// graph view of this split
struct ggml_cgraph graph;
@ -955,45 +1022,53 @@ struct ggml_backend_sched_split {
struct ggml_backend_sched {
bool is_reset; // true if the scheduler has been reset since the last graph split
bool is_alloc;
int n_backends;
ggml_backend_t backends[GGML_MAX_BACKENDS];
ggml_backend_buffer_type_t bufts[GGML_MAX_BACKENDS];
ggml_backend_t backends[GGML_SCHED_MAX_BACKENDS];
ggml_backend_buffer_type_t bufts[GGML_SCHED_MAX_BACKENDS];
ggml_gallocr_t galloc;
// hash keys of the nodes in the graph
struct ggml_hash_set hash_set;
// hash values
int * tensor_backend_id;
struct ggml_tensor * (* tensor_copies)[GGML_MAX_BACKENDS];
struct ggml_tensor * (* tensor_copies)[GGML_SCHED_MAX_BACKENDS][GGML_SCHED_MAX_COPIES];
int * node_backend_ids; // [n_nodes]
int n_nodes;
int * node_backend_ids; // [graph_size]
int * leaf_backend_ids; // [graph_size]
// copy of the graph with modified inputs
struct ggml_cgraph * graph;
struct ggml_backend_sched_split splits[GGML_MAX_SPLITS];
// graph splits
struct ggml_backend_sched_split splits[GGML_SCHED_MAX_SPLITS];
int n_splits;
// pipeline parallelism support
int n_copies;
int cur_copy;
ggml_backend_event_t events[GGML_SCHED_MAX_BACKENDS][GGML_SCHED_MAX_COPIES];
struct ggml_tensor * graph_inputs[GGML_SCHED_MAX_SPLIT_INPUTS];
int n_graph_inputs;
struct ggml_context * ctx;
ggml_backend_sched_eval_callback callback_eval;
void * callback_eval_user_data;
// align context_buffer to GGML_MEM_ALIGN
#ifdef _MSC_VER
#ifdef _MSC_VER
__declspec(align(GGML_MEM_ALIGN))
#else
#else
__attribute__((aligned(GGML_MEM_ALIGN)))
#endif
char context_buffer[GGML_MAX_SPLITS*GGML_MAX_SPLIT_INPUTS*2*sizeof(struct ggml_tensor) + sizeof(struct ggml_cgraph)];
#endif
char context_buffer[GGML_SCHED_MAX_SPLITS*GGML_SCHED_MAX_SPLIT_INPUTS*2*sizeof(struct ggml_tensor) + sizeof(struct ggml_cgraph)];
};
#define hash_id(node) ggml_hash_find_or_insert(sched->hash_set, node)
#define tensor_backend_id(node) sched->tensor_backend_id[hash_id(node)]
#define tensor_backend(node) (tensor_backend_id(node) == -1 ? NULL : sched->backends[tensor_backend_id(node)])
#define hash_id(tensor) ggml_hash_find_or_insert(sched->hash_set, tensor)
#define tensor_backend_id(tensor) sched->tensor_backend_id[hash_id(tensor)]
// returns the priority of the backend, lower id is higher priority
static int ggml_backend_sched_backend_id(ggml_backend_sched_t sched, ggml_backend_t backend) {
@ -1005,7 +1080,8 @@ static int ggml_backend_sched_backend_id(ggml_backend_sched_t sched, ggml_backen
return -1;
}
static int ggml_backend_sched_backend_from_buffer(ggml_backend_sched_t sched, ggml_backend_buffer_t buffer) {
static int ggml_backend_sched_backend_from_buffer(ggml_backend_sched_t sched, const struct ggml_tensor * tensor) {
ggml_backend_buffer_t buffer = tensor->buffer;
if (buffer == NULL) {
return -1;
}
@ -1016,12 +1092,16 @@ static int ggml_backend_sched_backend_from_buffer(ggml_backend_sched_t sched, gg
return i;
}
}
GGML_ASSERT(false && "tensor buffer type not supported by any backend");
return -1; // silence warning
fprintf(stderr, "%s: error: no backend supports buffer type %s used in tensor %s\n",
__func__, ggml_backend_buffer_name(buffer), tensor->name);
GGML_ASSERT(false);
return -1;
}
#if 0
static char causes[GGML_DEFAULT_GRAPH_SIZE*16 + GGML_MAX_SPLITS*GGML_MAX_SPLIT_INPUTS][128]; // debug only
static char causes[GGML_DEFAULT_GRAPH_SIZE*16 + GGML_SCHED_MAX_SPLITS*GGML_SCHED_MAX_SPLIT_INPUTS][128]; // debug only
#define SET_CAUSE(node, ...) sprintf(causes[hash_id(node)], __VA_ARGS__)
#define GET_CAUSE(node) causes[hash_id(node)]
#else
@ -1035,19 +1115,28 @@ static int ggml_backend_sched_backend_id_from_cur(ggml_backend_sched_t sched, st
// assign pre-allocated nodes to their backend
// dst
int cur_backend = ggml_backend_sched_backend_from_buffer(sched, tensor->buffer);
int cur_backend = ggml_backend_sched_backend_from_buffer(sched, tensor);
if (cur_backend != -1) {
SET_CAUSE(node, "1.dst");
SET_CAUSE(tensor, "1.dst");
return cur_backend;
}
// view_src
if (tensor->view_src != NULL) {
cur_backend = ggml_backend_sched_backend_from_buffer(sched, tensor->view_src->buffer);
cur_backend = ggml_backend_sched_backend_from_buffer(sched, tensor->view_src);
if (cur_backend != -1) {
SET_CAUSE(node, "1.vsrc");
SET_CAUSE(tensor, "1.vsrc");
return cur_backend;
}
}
// input
if (tensor->flags & GGML_TENSOR_FLAG_INPUT) {
cur_backend = sched->n_backends - 1; // last backend (assumed CPU)
SET_CAUSE(tensor, "1.inp");
return cur_backend;
}
// assign nodes that use weights to the backend of the weights
for (int i = 0; i < GGML_MAX_SRC; i++) {
const struct ggml_tensor * src = tensor->src[i];
@ -1055,9 +1144,9 @@ static int ggml_backend_sched_backend_id_from_cur(ggml_backend_sched_t sched, st
continue;
}
if (src->buffer != NULL && src->buffer->usage == GGML_BACKEND_BUFFER_USAGE_WEIGHTS) {
int src_backend = ggml_backend_sched_backend_from_buffer(sched, src->buffer);
int src_backend = ggml_backend_sched_backend_from_buffer(sched, src);
// operations with weights are always run on the same backend as the weights
SET_CAUSE(node, "1.wgt%d", i);
SET_CAUSE(tensor, "1.wgt%d", i);
return src_backend;
}
}
@ -1093,7 +1182,7 @@ static void ggml_backend_sched_print_assignments(ggml_backend_sched_t sched, str
if (ggml_is_view_op(node->op)) {
continue;
}
ggml_backend_t tensor_backend = tensor_backend(node);
ggml_backend_t tensor_backend = ggml_backend_sched_get_tensor_backend(sched, node);
fprintf(stderr, "node #%3d (%10.10s): %20.20s (%5.5s) [%5.5s %8.8s]:", i, ggml_op_name(node->op), node->name,
fmt_size(ggml_nbytes(node)), tensor_backend ? ggml_backend_name(tensor_backend) : "NULL", GET_CAUSE(node));
for (int j = 0; j < GGML_MAX_SRC; j++) {
@ -1101,7 +1190,7 @@ static void ggml_backend_sched_print_assignments(ggml_backend_sched_t sched, str
if (src == NULL) {
continue;
}
ggml_backend_t src_backend = tensor_backend(src);
ggml_backend_t src_backend = ggml_backend_sched_get_tensor_backend(sched, src);
fprintf(stderr, " %20.20s (%5.5s) [%5.5s %8.8s]", src->name,
fmt_size(ggml_nbytes(src)), src_backend ? ggml_backend_name(src_backend) : "NULL", GET_CAUSE(src));
}
@ -1118,6 +1207,7 @@ static void ggml_backend_sched_print_assignments(ggml_backend_sched_t sched, str
static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct ggml_cgraph * graph) {
// reset splits
sched->n_splits = 0;
sched->n_graph_inputs = 0;
sched->is_reset = false;
struct ggml_init_params params = {
@ -1163,7 +1253,7 @@ static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct gg
}
}
#ifdef DEBUG_PASS1
fprintf(stderr, "PASS 1 ASSIGNMENTS\n"); sched_print_assignments(sched, graph);
fprintf(stderr, "PASS 1 ASSIGNMENTS\n"); ggml_backend_sched_print_assignments(sched, graph);
#endif
// pass 2: expand current backend assignments
@ -1171,28 +1261,6 @@ static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct gg
// expand gpu backends (i.e. non last prio) up and down, ignoring cpu (the lowest priority backend)
// thus, cpu will never be used unless weights are on cpu, or there are no gpu ops between cpu ops
// pass 2.1 expand gpu up
{
int cur_backend_id = -1;
for (int i = graph->n_nodes - 1; i >= 0; i--) {
struct ggml_tensor * node = graph->nodes[i];
if (ggml_is_view_op(node->op)) {
continue;
}
int tensor_backend_id = tensor_backend_id(node);
if (tensor_backend_id != -1) {
if (tensor_backend_id == sched->n_backends - 1) {
// skip cpu (lowest prio backend)
cur_backend_id = -1;
} else {
cur_backend_id = tensor_backend_id;
}
} else {
tensor_backend_id(node) = cur_backend_id;
SET_CAUSE(node, "2.1");
}
}
}
// pass 2.2 expand gpu down
{
@ -1217,7 +1285,7 @@ static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct gg
}
}
// pass 2.3 expand rest up
// pass 2.1 expand gpu up
{
int cur_backend_id = -1;
for (int i = graph->n_nodes - 1; i >= 0; i--) {
@ -1227,14 +1295,20 @@ static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct gg
}
int tensor_backend_id = tensor_backend_id(node);
if (tensor_backend_id != -1) {
cur_backend_id = tensor_backend_id;
if (tensor_backend_id == sched->n_backends - 1) {
// skip cpu (lowest prio backend)
cur_backend_id = -1;
} else {
cur_backend_id = tensor_backend_id;
}
} else {
tensor_backend_id(node) = cur_backend_id;
SET_CAUSE(node, "2.3");
SET_CAUSE(node, "2.1");
}
}
}
// pass 2.4 expand rest down
{
int cur_backend_id = -1;
@ -1252,8 +1326,26 @@ static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct gg
}
}
}
// pass 2.3 expand rest up
{
int cur_backend_id = -1;
for (int i = graph->n_nodes - 1; i >= 0; i--) {
struct ggml_tensor * node = graph->nodes[i];
if (ggml_is_view_op(node->op)) {
continue;
}
int tensor_backend_id = tensor_backend_id(node);
if (tensor_backend_id != -1) {
cur_backend_id = tensor_backend_id;
} else {
tensor_backend_id(node) = cur_backend_id;
SET_CAUSE(node, "2.3");
}
}
}
#ifdef DEBUG_PASS2
fprintf(stderr, "PASS 2 ASSIGNMENTS\n"); sched_print_assignments(sched, graph);
fprintf(stderr, "PASS 2 ASSIGNMENTS\n"); ggml_backend_sched_print_assignments(sched, graph);
#endif
// pass 3: assign backends to remaining src from dst and view_src
@ -1283,7 +1375,7 @@ static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct gg
}
}
#ifdef DEBUG_PASS3
fprintf(stderr, "PASS 3 ASSIGNMENTS\n"); sched_print_assignments(sched, graph);
fprintf(stderr, "PASS 3 ASSIGNMENTS\n"); ggml_backend_sched_print_assignments(sched, graph);
#endif
// pass 4: split graph, find tensors that need to be copied
@ -1315,7 +1407,7 @@ static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct gg
if (tensor_backend_id != cur_backend_id) {
sched->splits[cur_split].i_end = i;
cur_split++;
GGML_ASSERT(cur_split < GGML_MAX_SPLITS);
GGML_ASSERT(cur_split < GGML_SCHED_MAX_SPLITS);
sched->splits[cur_split].backend_id = tensor_backend_id;
sched->splits[cur_split].i_start = i;
sched->splits[cur_split].n_inputs = 0;
@ -1328,25 +1420,57 @@ static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct gg
if (src == NULL) {
continue;
}
int src_backend_id = tensor_backend_id(src);
assert(src_backend_id != -1); // all inputs should be assigned by now
if (src->flags & GGML_TENSOR_FLAG_INPUT) {
size_t id = hash_id(src);
if (sched->tensor_copies[id][src_backend_id][0] == NULL) {
ggml_backend_t backend = sched->backends[src_backend_id];
for (int c = 0; c < sched->n_copies; c++) {
struct ggml_tensor * tensor_copy;
if (c == sched->cur_copy) {
tensor_copy = src; // use the original tensor as the current copy
} else {
tensor_copy = ggml_dup_tensor_layout(sched->ctx, src);
ggml_format_name(tensor_copy, "%s#%s#%d", ggml_backend_name(backend), src->name, c);
}
if (sched->n_copies > 1) {
ggml_set_input(tensor_copy);
ggml_set_output(tensor_copy); // prevent ggml-alloc from overwriting the tensor
}
sched->tensor_copies[id][src_backend_id][c] = tensor_copy;
tensor_backend_id(tensor_copy) = src_backend_id;
SET_CAUSE(tensor_copy, "4.cpy");
}
int n_graph_inputs = sched->n_graph_inputs++;
GGML_ASSERT(n_graph_inputs < GGML_SCHED_MAX_SPLIT_INPUTS);
sched->graph_inputs[n_graph_inputs] = src;
}
}
if (src_backend_id != tensor_backend_id) {
// create a copy of the input in the split's backend
size_t id = hash_id(src);
if (sched->tensor_copies[id][cur_backend_id] == NULL) {
if (sched->tensor_copies[id][cur_backend_id][0] == NULL) {
ggml_backend_t backend = sched->backends[cur_backend_id];
struct ggml_tensor * tensor_copy = ggml_dup_tensor_layout(sched->ctx, src);
ggml_format_name(tensor_copy, "%s#%s", ggml_backend_name(backend), src->name);
sched->tensor_copies[id][cur_backend_id] = tensor_copy;
tensor_backend_id(tensor_copy) = cur_backend_id;
SET_CAUSE(tensor_copy, "4.cpy");
for (int c = 0; c < sched->n_copies; c++) {
struct ggml_tensor * tensor_copy = ggml_dup_tensor_layout(sched->ctx, src);
ggml_format_name(tensor_copy, "%s#%s#%d", ggml_backend_name(backend), src->name, c);
if (sched->n_copies > 1) {
ggml_set_input(tensor_copy);
ggml_set_output(tensor_copy); // prevent ggml-alloc from overwriting the tensor
}
sched->tensor_copies[id][cur_backend_id][c] = tensor_copy;
tensor_backend_id(tensor_copy) = cur_backend_id;
SET_CAUSE(tensor_copy, "4.cpy");
}
int n_inputs = sched->splits[cur_split].n_inputs++;
GGML_ASSERT(n_inputs < GGML_MAX_SPLIT_INPUTS);
GGML_ASSERT(n_inputs < GGML_SCHED_MAX_SPLIT_INPUTS);
sched->splits[cur_split].inputs[n_inputs] = src;
}
node->src[j] = sched->tensor_copies[id][cur_backend_id];
node->src[j] = sched->tensor_copies[id][cur_backend_id][sched->cur_copy];
}
}
}
@ -1354,37 +1478,39 @@ static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct gg
sched->n_splits = cur_split + 1;
}
#ifdef DEBUG_PASS4
fprintf(stderr, "PASS 4 ASSIGNMENTS\n"); sched_print_assignments(sched, graph);
fprintf(stderr, "PASS 4 ASSIGNMENTS\n"); ggml_backend_sched_print_assignments(sched, graph);
#endif
#ifndef NDEBUG
// sanity check: all sources should have the same backend as the node
for (int i = 0; i < graph->n_nodes; i++) {
struct ggml_tensor * node = graph->nodes[i];
ggml_backend_t tensor_backend = tensor_backend(node);
ggml_backend_t tensor_backend = ggml_backend_sched_get_tensor_backend(sched, node);
if (tensor_backend == NULL) {
fprintf(stderr, "!!!!!!! %s has no backend\n", node->name);
}
if (node->view_src != NULL && tensor_backend != tensor_backend(node->view_src)) {
if (node->view_src != NULL && tensor_backend != ggml_backend_sched_get_tensor_backend(sched, node->view_src)) {
fprintf(stderr, "!!!!!!! %s has backend %s, view_src %s has backend %s\n",
node->name, tensor_backend ? ggml_backend_name(tensor_backend) : "NULL",
node->view_src->name, tensor_backend(node->view_src) ? ggml_backend_name(tensor_backend(node->view_src)) : "NULL");
node->view_src->name, ggml_backend_sched_get_tensor_backend(sched, node->view_src) ?
ggml_backend_name(ggml_backend_sched_get_tensor_backend(sched, node->view_src)) : "NULL");
}
for (int j = 0; j < GGML_MAX_SRC; j++) {
struct ggml_tensor * src = node->src[j];
if (src == NULL) {
continue;
}
ggml_backend_t src_backend = tensor_backend(src);
ggml_backend_t src_backend = ggml_backend_sched_get_tensor_backend(sched, src);
if (src_backend != tensor_backend /* && src_backend != NULL */) {
fprintf(stderr, "!!!! %s has backend %s, src %d (%s) has backend %s\n",
node->name, tensor_backend ? ggml_backend_name(tensor_backend) : "NULL",
j, src->name, src_backend ? ggml_backend_name(src_backend) : "NULL");
}
if (src->view_src != NULL && src_backend != tensor_backend(src->view_src)) {
if (src->view_src != NULL && src_backend != ggml_backend_sched_get_tensor_backend(sched, src->view_src)) {
fprintf(stderr, "!!!!!!! [src] %s has backend %s, view_src %s has backend %s\n",
src->name, src_backend ? ggml_backend_name(src_backend) : "NULL",
src->view_src->name, tensor_backend(src->view_src) ? ggml_backend_name(tensor_backend(src->view_src)) : "NULL");
src->view_src->name, ggml_backend_sched_get_tensor_backend(sched, src->view_src) ?
ggml_backend_name(ggml_backend_sched_get_tensor_backend(sched, src->view_src)) : "NULL");
}
}
}
@ -1392,18 +1518,20 @@ static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct gg
#endif
// create copies of the graph for each split
// FIXME: avoid this copy, pass split inputs to ggml_gallocr_alloc_graph_n in some other way
struct ggml_cgraph * graph_copy = ggml_new_graph_custom(sched->ctx, graph->n_nodes + sched->n_splits*GGML_MAX_SPLIT_INPUTS, false);
// TODO: avoid this copy
struct ggml_cgraph * graph_copy = ggml_new_graph_custom(sched->ctx, graph->n_nodes + sched->n_splits*GGML_SCHED_MAX_SPLIT_INPUTS, false);
for (int i = 0; i < sched->n_splits; i++) {
struct ggml_backend_sched_split * split = &sched->splits[i];
split->graph = ggml_graph_view(graph, split->i_start, split->i_end);
// add inputs to the graph copy so that they are allocated by ggml-alloc at the start of the split
for (int j = 0; j < split->n_inputs; j++) {
struct ggml_tensor * input = split->inputs[j];
struct ggml_tensor * input_cpy = sched->tensor_copies[hash_id(input)][split->backend_id];
struct ggml_tensor * input_cpy = sched->tensor_copies[hash_id(input)][split->backend_id][sched->cur_copy];
// add a dependency to the input source so that it is not freed before the copy is done
struct ggml_tensor * input_dep = ggml_view_tensor(sched->ctx, input);
input_dep->src[0] = input;
sched->node_backend_ids[graph_copy->n_nodes] = tensor_backend_id(input);
graph_copy->nodes[graph_copy->n_nodes++] = input_dep;
@ -1417,18 +1545,56 @@ static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct gg
graph_copy->nodes[graph_copy->n_nodes++] = graph->nodes[j];
}
}
if (sched->n_copies > 1) {
// add input copies as leafs so that they are allocated first
for (int i = 0; i < sched->n_graph_inputs; i++) {
struct ggml_tensor * input = sched->graph_inputs[i];
size_t id = hash_id(input);
int backend_id = tensor_backend_id(input);
for (int c = 0; c < sched->n_copies; c++) {
struct ggml_tensor * input_cpy = sched->tensor_copies[id][backend_id][c];
sched->leaf_backend_ids[graph_copy->n_leafs] = backend_id;
graph_copy->leafs[graph_copy->n_leafs++] = input_cpy;
}
}
for (int i = 0; i < sched->n_splits; i++) {
struct ggml_backend_sched_split * split = &sched->splits[i];
int backend_id = split->backend_id;
for (int j = 0; j < split->n_inputs; j++) {
struct ggml_tensor * input = split->inputs[j];
size_t id = hash_id(input);
for (int c = 0; c < sched->n_copies; c++) {
struct ggml_tensor * input_cpy = sched->tensor_copies[id][backend_id][c];
sched->leaf_backend_ids[graph_copy->n_leafs] = backend_id;
graph_copy->leafs[graph_copy->n_leafs++] = input_cpy;
}
}
}
}
// add leafs from the original graph
for (int i = 0; i < graph->n_leafs; i++) {
struct ggml_tensor * leaf = graph->leafs[i];
sched->leaf_backend_ids[graph_copy->n_leafs] = tensor_backend_id(leaf);
graph_copy->leafs[graph_copy->n_leafs++] = leaf;
}
sched->graph = graph_copy;
}
static bool ggml_backend_sched_alloc_splits(ggml_backend_sched_t sched) {
// ggml_gallocr_reserve_n(sched->galloc, sched->graph, sched->node_backend_ids);
// allocate graph
if (!ggml_gallocr_alloc_graph(sched->galloc, sched->graph)) {
// the re-allocation may cause the split inputs to be moved to a different address
ggml_backend_sched_synchronize(sched);
#ifndef NDEBUG
fprintf(stderr, "ggml_backend_sched: failed to allocate graph, reserving\n");
fprintf(stderr, "%s: failed to allocate graph, reserving\n", __func__);
#endif
ggml_gallocr_reserve_n(sched->galloc, sched->graph, sched->node_backend_ids);
ggml_gallocr_reserve_n(sched->galloc, sched->graph, sched->node_backend_ids, sched->leaf_backend_ids);
if (!ggml_gallocr_alloc_graph(sched->galloc, sched->graph)) {
fprintf(stderr, "ggml_backend_sched: failed to allocate graph\n");
fprintf(stderr, "%s: failed to allocate graph\n", __func__);
return false;
}
}
@ -1437,9 +1603,6 @@ static bool ggml_backend_sched_alloc_splits(ggml_backend_sched_t sched) {
}
static enum ggml_status ggml_backend_sched_compute_splits(ggml_backend_sched_t sched) {
uint64_t copy_us[GGML_MAX_BACKENDS] = {0};
uint64_t compute_us[GGML_MAX_BACKENDS] = {0};
struct ggml_backend_sched_split * splits = sched->splits;
for (int i = 0; i < sched->n_splits; i++) {
@ -1448,34 +1611,36 @@ static enum ggml_status ggml_backend_sched_compute_splits(ggml_backend_sched_t s
ggml_backend_t split_backend = sched->backends[split_backend_id];
// copy the input tensors to the split backend
uint64_t copy_start_us = ggml_time_us();
for (int j = 0; j < split->n_inputs; j++) {
ggml_backend_t input_backend = ggml_backend_sched_get_tensor_backend(sched, split->inputs[j]);
struct ggml_tensor * input = split->inputs[j];
struct ggml_tensor * input_cpy = sched->tensor_copies[hash_id(input)][split_backend_id];
struct ggml_tensor * input_cpy = sched->tensor_copies[hash_id(input)][split_backend_id][sched->cur_copy];
GGML_ASSERT(input->buffer != NULL);
GGML_ASSERT(input_cpy->buffer != NULL);
if (input->flags & GGML_TENSOR_FLAG_INPUT) {
// inputs from the user must be copied immediately to prevent the user overwriting the data before the copy is done
if (sched->events[split_backend_id][sched->cur_copy] != NULL) {
ggml_backend_event_synchronize(sched->events[split_backend_id][sched->cur_copy]);
} else {
ggml_backend_synchronize(split_backend);
}
ggml_backend_tensor_copy(input, input_cpy);
} else {
if (sched->events[split_backend_id][sched->cur_copy] != NULL) {
ggml_backend_event_wait(split_backend, sched->events[split_backend_id][sched->cur_copy]);
} else {
ggml_backend_synchronize(split_backend);
ggml_backend_synchronize(input_backend);
}
ggml_backend_tensor_copy_async(split_backend, input, input_cpy);
ggml_backend_tensor_copy_async(input_backend, split_backend, input, input_cpy);
}
}
//ggml_backend_synchronize(split_backend); // necessary to measure copy time
int64_t copy_end_us = ggml_time_us();
copy_us[split_backend_id] += copy_end_us - copy_start_us;
#if 0
char split_filename[GGML_MAX_NAME];
snprintf(split_filename, GGML_MAX_NAME, "split_%i_%s.dot", i, ggml_backend_name(split_backend));
ggml_graph_dump_dot(split->graph, NULL, split_filename);
#endif
uint64_t compute_start_us = ggml_time_us();
if (!sched->callback_eval) {
enum ggml_status ec = ggml_backend_graph_compute(split_backend, &split->graph);
enum ggml_status ec = ggml_backend_graph_compute_async(split_backend, &split->graph);
if (ec != GGML_STATUS_SUCCESS) {
return ec;
}
//ggml_backend_synchronize(split_backend); // necessary to measure compute time
} else {
// similar to ggml_backend_compare_graph_backend
for (int j0 = 0; j0 < split->graph.n_nodes; j0++) {
@ -1494,11 +1659,14 @@ static enum ggml_status ggml_backend_sched_compute_splits(ggml_backend_sched_t s
struct ggml_cgraph gv = ggml_graph_view(&split->graph, j0, j1 + 1);
enum ggml_status ec = ggml_backend_graph_compute(split_backend, &gv);
enum ggml_status ec = ggml_backend_graph_compute_async(split_backend, &gv);
if (ec != GGML_STATUS_SUCCESS) {
return ec;
}
// TODO: pass backend to the callback, then the user can decide if they want to synchronize
ggml_backend_synchronize(split_backend);
if (need && !sched->callback_eval(t, false, sched->callback_eval_user_data)) {
break;
}
@ -1506,39 +1674,54 @@ static enum ggml_status ggml_backend_sched_compute_splits(ggml_backend_sched_t s
j0 = j1;
}
}
uint64_t compute_end_us = ggml_time_us();
compute_us[split_backend_id] += compute_end_us - compute_start_us;
}
#if 0
// per-backend timings
fprintf(stderr, "sched_compute_splits times (%d splits):\n", sched->n_splits);
for (int i = 0; i < sched->n_backends; i++) {
if (copy_us[i] > 0 || compute_us[i] > 0) {
fprintf(stderr, "\t%5.5s: %lu us copy, %lu us compute\n", ggml_backend_name(sched->backends[i]), copy_us[i], compute_us[i]);
// record the event of this copy
if (split->n_inputs > 0) {
if (sched->events[split_backend_id][sched->cur_copy] != NULL) {
ggml_backend_event_record(sched->events[split_backend_id][sched->cur_copy]);
}
}
}
#endif
sched->cur_copy = (sched->cur_copy + 1) % sched->n_copies;
return GGML_STATUS_SUCCESS;
}
ggml_backend_sched_t ggml_backend_sched_new(ggml_backend_t * backends, ggml_backend_buffer_type_t * bufts, int n_backends, size_t graph_size) {
ggml_backend_sched_t ggml_backend_sched_new(
ggml_backend_t * backends,
ggml_backend_buffer_type_t * bufts,
int n_backends,
size_t graph_size,
bool parallel) {
GGML_ASSERT(n_backends > 0);
GGML_ASSERT(n_backends <= GGML_MAX_BACKENDS);
GGML_ASSERT(n_backends <= GGML_SCHED_MAX_BACKENDS);
GGML_ASSERT(ggml_backend_is_cpu(backends[n_backends - 1])); // last backend must be CPU
struct ggml_backend_sched * sched = calloc(sizeof(struct ggml_backend_sched), 1);
// initialize hash table
sched->hash_set = ggml_hash_set_new(graph_size + GGML_MAX_SPLITS*GGML_MAX_SPLIT_INPUTS);
sched->hash_set = ggml_hash_set_new(graph_size + GGML_SCHED_MAX_SPLITS*GGML_SCHED_MAX_SPLIT_INPUTS);
sched->tensor_backend_id = calloc(sizeof(sched->tensor_backend_id[0]), sched->hash_set.size);
sched->tensor_copies = calloc(sizeof(sched->tensor_copies[0]), sched->hash_set.size);
sched->node_backend_ids = calloc(sizeof(sched->node_backend_ids[0]), graph_size);
sched->leaf_backend_ids = calloc(sizeof(sched->leaf_backend_ids[0]), graph_size);
sched->n_backends = n_backends;
for (int i = 0; i < n_backends; i++) {
sched->backends[i] = backends[i];
sched->bufts[i] = bufts ? bufts[i] : ggml_backend_get_default_buffer_type(backends[i]);
sched->n_copies = parallel ? GGML_SCHED_MAX_COPIES : 1;
GGML_ASSERT(sched->n_copies <= GGML_SCHED_MAX_COPIES);
for (int b = 0; b < n_backends; b++) {
sched->backends[b] = backends[b];
sched->bufts[b] = bufts ? bufts[b] : ggml_backend_get_default_buffer_type(backends[b]);
GGML_ASSERT(ggml_backend_buft_supports_backend(sched->bufts[b], backends[b]));
if (sched->n_copies > 1) {
for (int c = 0; c < sched->n_copies; c++) {
sched->events[b][c] = ggml_backend_event_new(backends[b]);
}
}
}
sched->galloc = ggml_gallocr_new_n(sched->bufts, n_backends);
@ -1552,12 +1735,18 @@ void ggml_backend_sched_free(ggml_backend_sched_t sched) {
if (sched == NULL) {
return;
}
for (int b = 0; b < sched->n_backends; b++) {
for (int c = 0; c < sched->n_copies; c++) {
ggml_backend_event_free(sched->events[b][c]);
}
}
ggml_gallocr_free(sched->galloc);
ggml_free(sched->ctx);
free(sched->hash_set.keys);
free(sched->tensor_backend_id);
free(sched->tensor_copies);
free(sched->node_backend_ids);
free(sched->leaf_backend_ids);
free(sched);
}
@ -1569,34 +1758,63 @@ void ggml_backend_sched_reset(ggml_backend_sched_t sched) {
memset(sched->tensor_copies, 0, sizeof(sched->tensor_copies[0]) * hash_size);
sched->is_reset = true;
sched->is_alloc = false;
}
bool ggml_backend_sched_reserve(ggml_backend_sched_t sched, struct ggml_cgraph * measure_graph) {
ggml_backend_sched_split_graph(sched, measure_graph);
if (!ggml_gallocr_reserve_n(sched->galloc, sched->graph, sched->node_backend_ids)) {
// TODO: extract this to a separate function
if (!ggml_gallocr_reserve_n(sched->galloc, sched->graph, sched->node_backend_ids, sched->leaf_backend_ids)) {
return false;
}
ggml_backend_sched_reset(sched);
ggml_backend_sched_synchronize(sched);
return true;
}
bool ggml_backend_sched_alloc_graph(ggml_backend_sched_t sched, struct ggml_cgraph * graph) {
GGML_ASSERT((int)sched->hash_set.size >= graph->n_nodes + GGML_SCHED_MAX_SPLITS*GGML_SCHED_MAX_SPLIT_INPUTS);
ggml_backend_sched_split_graph(sched, graph);
if (!ggml_backend_sched_alloc_splits(sched)) {
return false;
}
sched->is_alloc = true;
return true;
}
enum ggml_status ggml_backend_sched_graph_compute(ggml_backend_sched_t sched, struct ggml_cgraph * graph) {
GGML_ASSERT((int)sched->hash_set.size >= graph->n_nodes + GGML_MAX_SPLITS*GGML_MAX_SPLIT_INPUTS);
enum ggml_status err = ggml_backend_sched_graph_compute_async(sched, graph);
ggml_backend_sched_synchronize(sched);
return err;
}
if (!sched->is_reset) {
enum ggml_status ggml_backend_sched_graph_compute_async(ggml_backend_sched_t sched, struct ggml_cgraph * graph) {
if (!sched->is_reset && !sched->is_alloc) {
ggml_backend_sched_reset(sched);
}
ggml_backend_sched_split_graph(sched, graph);
if (!ggml_backend_sched_alloc_splits(sched)) {
return GGML_STATUS_ALLOC_FAILED;
if (!sched->is_alloc) {
if (!ggml_backend_sched_alloc_graph(sched, graph)) {
return GGML_STATUS_ALLOC_FAILED;
}
}
return ggml_backend_sched_compute_splits(sched);
}
void ggml_backend_sched_synchronize(ggml_backend_sched_t sched) {
for (int i = 0; i < sched->n_backends; i++) {
ggml_backend_synchronize(sched->backends[i]);
}
}
void ggml_backend_sched_set_eval_callback(ggml_backend_sched_t sched, ggml_backend_sched_eval_callback callback, void * user_data) {
sched->callback_eval = callback;
sched->callback_eval_user_data = user_data;
@ -1606,19 +1824,24 @@ int ggml_backend_sched_get_n_splits(ggml_backend_sched_t sched) {
return sched->n_splits;
}
int ggml_backend_sched_get_n_copies(ggml_backend_sched_t sched) {
return sched->n_copies;
}
size_t ggml_backend_sched_get_buffer_size(ggml_backend_sched_t sched, ggml_backend_t backend) {
int backend_index = ggml_backend_sched_backend_id(sched, backend);
GGML_ASSERT(backend_index >= 0 && backend_index < sched->n_backends);
return ggml_gallocr_get_buffer_size(sched->galloc, backend_index);
}
void ggml_backend_sched_set_node_backend(ggml_backend_sched_t sched, struct ggml_tensor * node, ggml_backend_t backend) {
void ggml_backend_sched_set_tensor_backend(ggml_backend_sched_t sched, struct ggml_tensor * node, ggml_backend_t backend) {
int backend_index = ggml_backend_sched_backend_id(sched, backend);
GGML_ASSERT(backend_index >= 0 && backend_index < sched->n_backends);
tensor_backend_id(node) = backend_index;
}
ggml_backend_t ggml_backend_sched_get_node_backend(ggml_backend_sched_t sched, struct ggml_tensor * node) {
ggml_backend_t ggml_backend_sched_get_tensor_backend(ggml_backend_sched_t sched, struct ggml_tensor * node) {
int backend_index = tensor_backend_id(node);
if (backend_index == -1) {
return NULL;