remove uhd_image_embed

This commit is contained in:
caitianchi 2024-07-26 21:15:03 +08:00
parent 72b962925b
commit f3d400dac0
6 changed files with 291 additions and 365 deletions

View file

@ -31,9 +31,6 @@ struct clip_image_grid_shape {
int second;
};
struct uhd_image_embed {
std::vector<std::vector<struct llava_image_embed *>> image_embeds;
};
/**
* Selects the best resolution from a list of possible resolutions based on the original size.
*
@ -205,6 +202,33 @@ static bool clip_llava_handle_patches(clip_ctx * ctx_clip, std::vector<float *>
return true;
}
static clip_image_f32 * only_v2_5_reshape_by_patch(clip_image_f32 * image, int patch_size) {
int width = image->nx;
int height = image->ny;
int num_patches = (height / patch_size) * (width / patch_size);
clip_image_f32 * patch = clip_image_f32_init();
patch->nx = patch_size * num_patches;
patch->ny = patch_size;
patch->buf.resize(3 * patch->nx * patch->ny);
int patch_index = 0;
for (int i = 0; i < height; i += patch_size) {
for (int j = 0; j < width; j += patch_size) {
for (int pi = 0; pi < patch_size; ++pi) {
for (int pj = 0; pj < patch_size; ++pj) {
int input_index = ((i + pi) * width + (j + pj)) * 3;
int output_index = (pi * patch_size * num_patches + patch_index * patch_size + pj) * 3;
patch->buf[output_index] = image->buf[input_index];
patch->buf[output_index+1] = image->buf[input_index+1];
patch->buf[output_index+2] = image->buf[input_index+2];
}
}
patch_index++;
}
}
return patch;
}
static bool encode_image_with_clip(clip_ctx * ctx_clip, int n_threads, const clip_image_u8 * img, float * image_embd, int * n_img_pos) {
// std::vector<clip_image_f32*> img_res_v; // format VectN x H x W x RGB (N x 336 x 336 x 3), so interleaved RGB - different to the python implementation which is N x 3 x 336 x 336
@ -221,7 +245,44 @@ static bool encode_image_with_clip(clip_ctx * ctx_clip, int n_threads, const cli
const char * mm_patch_merge_type = clip_patch_merge_type(ctx_clip);
if (strcmp(mm_patch_merge_type, "spatial_unpad") != 0) {
if (clip_is_minicpmv(ctx_clip)) {
std::vector<float *> image_embd_v;
image_embd_v.resize(img_res_v.size);
struct clip_image_size * load_image_size = clip_image_size_init();
for (size_t i = 0; i < img_res_v.size; i++) {
const int64_t t_img_enc_step_start_us = ggml_time_us();
image_embd_v[i] = (float *)malloc(clip_embd_nbytes(ctx_clip));
int patch_size=14;
load_image_size->width = img_res_v.data[i].nx;
load_image_size->height = img_res_v.data[i].ny;
clip_add_load_image_size(ctx_clip, load_image_size);
const bool encoded = clip_image_encode(ctx_clip, n_threads, only_v2_5_reshape_by_patch(&img_res_v.data[i], patch_size), image_embd_v[i]); // image data is in 3x336x336 format and will be converted to 336x336x3 inside
if (!encoded) {
LOG_TEE("Unable to encode image - spatial_unpad - subimage %d of %d\n", (int) i+1, (int) img_res_v.size);
return false;
}
const int64_t t_img_enc_steop_batch_us = ggml_time_us();
LOG_TEE("%s: step %d of %d encoded in %8.2f ms\n", __func__, (int)i+1, (int)img_res_v.size, (t_img_enc_steop_batch_us - t_img_enc_step_start_us) / 1000.0);
}
const int64_t t_img_enc_batch_us = ggml_time_us();
LOG_TEE("%s: all %d segments encoded in %8.2f ms\n", __func__, (int)img_res_v.size, (t_img_enc_batch_us - t_img_enc_start_us) / 1000.0);
int n_img_pos_out = 0;
for (size_t i = 0; i < image_embd_v.size(); i++) {
std::memcpy(image_embd + n_img_pos_out * clip_n_mmproj_embd(ctx_clip), image_embd_v[i], clip_embd_nbytes(ctx_clip));
n_img_pos_out += clip_n_patches(ctx_clip);
}
*n_img_pos = n_img_pos_out;
for (size_t i = 0; i < image_embd_v.size(); i++) {
free(image_embd_v[i]);
}
image_embd_v.clear();
load_image_size->width = img->nx;
load_image_size->height = img->ny;
clip_add_load_image_size(ctx_clip, load_image_size);
LOG_TEE("%s: load_image_size %d %d\n", __func__, load_image_size->width, load_image_size->height);
}
else if (strcmp(mm_patch_merge_type, "spatial_unpad") != 0) {
// flat / default llava-1.5 type embedding
*n_img_pos = clip_n_patches(ctx_clip);
bool encoded = clip_image_encode(ctx_clip, n_threads, &img_res_v.data[0], image_embd); // image_embd shape is 576 x 4096
@ -231,7 +292,8 @@ static bool encode_image_with_clip(clip_ctx * ctx_clip, int n_threads, const cli
return false;
}
} else {
}
else {
// spatial_unpad llava-1.6 type embedding
// TODO: CLIP needs batching support - in HF the llm projection is separate after encoding, which might be a solution to quickly get batching working
std::vector<float *> image_embd_v;
@ -300,7 +362,11 @@ bool llava_validate_embed_size(const llama_context * ctx_llama, const clip_ctx *
}
bool llava_image_embed_make_with_clip_img(clip_ctx * ctx_clip, int n_threads, const clip_image_u8 * img, float ** image_embd_out, int * n_img_pos_out) {
float * image_embd = (float *)malloc(clip_embd_nbytes(ctx_clip)*6); // TODO: base on gridsize/llava model
int num_max_patches = 6; //
if (clip_is_minicpmv(ctx_clip)) {
num_max_patches = 10;
}
float * image_embd = (float *)malloc(clip_embd_nbytes(ctx_clip)*num_max_patches); // TODO: base on gridsize/llava model
if (!image_embd) {
LOG_TEE("Unable to allocate memory for image embeddings\n");
return false;
@ -412,303 +478,3 @@ void llava_image_embed_free(struct llava_image_embed * embed) {
free(embed->embed);
free(embed);
}
static int ensure_divide(int length, int patch_size) {
return std::max(static_cast<int>(std::round(static_cast<float>(length) / patch_size) * patch_size), patch_size);
}
static std::pair<int, int> uhd_find_best_resize(std::pair<int, int> original_size, int scale_resolution, int patch_size, bool allow_upscale = false) {
int width = original_size.first;
int height = original_size.second;
if ((width * height > scale_resolution * scale_resolution) || allow_upscale) {
float r = static_cast<float>(width) / height;
height = static_cast<int>(scale_resolution / std::sqrt(r));
width = static_cast<int>(height * r);
}
int best_width = ensure_divide(width, patch_size);
int best_height = ensure_divide(height, patch_size);
return std::make_pair(best_width, best_height);
}
static std::pair<int, int> uhd_get_refine_size(std::pair<int, int> original_size, std::pair<int, int> grid, int scale_resolution, int patch_size, bool allow_upscale = false) {
int width, height;
std::tie(width, height) = original_size;
int grid_x, grid_y;
std::tie(grid_x, grid_y) = grid;
int refine_width = ensure_divide(width, grid_x);
int refine_height = ensure_divide(height, grid_y);
int grid_width = refine_width / grid_x;
int grid_height = refine_height / grid_y;
// auto best_grid_size = find_best_resize(std::make_tuple(grid_width, grid_height), scale_resolution, patch_size, allow_upscale); (old line)
auto best_grid_size = uhd_find_best_resize(std::make_pair(grid_width, grid_height), scale_resolution, patch_size, allow_upscale); // (new line) => fixes conversion for make_tuple to make_pair
int best_grid_width, best_grid_height;
std::tie(best_grid_width, best_grid_height) = best_grid_size;
// std::pair<int, int> refine_size = std::make_tuple(best_grid_width * grid_x, best_grid_height * grid_y); (old line)
std::pair<int, int> refine_size = std::make_pair(best_grid_width * grid_x, best_grid_height * grid_y); // (new line)
return refine_size;
}
inline int clip(int x, int lower, int upper) {
return std::max(lower, std::min(x, upper));
}
static bool bicubic_resize(const clip_image_u8 &img, clip_image_u8 &dst, int target_width, int target_height) {
const int nx = img.nx;
const int ny = img.ny;
dst.nx = target_width;
dst.ny = target_height;
dst.buf.resize(3 * target_width * target_height);
float Cc;
float C[5];
float d0, d2, d3, a0, a1, a2, a3;
int i, j, k, jj;
int x, y;
float dx, dy;
float tx, ty;
tx = (float)nx / (float)target_width;
ty = (float)ny / (float)target_height;
// Bicubic interpolation; adapted from ViT.cpp, inspired from :
// -> https://github.com/yglukhov/bicubic-interpolation-image-processing/blob/master/libimage.c#L36
// -> https://en.wikipedia.org/wiki/Bicubic_interpolation
for (i = 0; i < target_height; i++) {
for (j = 0; j < target_width; j++) {
x = (int)(tx * j);
y = (int)(ty * i);
dx = tx * j - x;
dy = ty * i - y;
for (k = 0; k < 3; k++) {
for (jj = 0; jj <= 3; jj++) {
d0 = img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x - 1, 0, nx - 1)) * 3 + k] - img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x, 0, nx - 1)) * 3 + k];
d2 = img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x + 1, 0, nx - 1)) * 3 + k] - img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x, 0, nx - 1)) * 3 + k];
d3 = img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x + 2, 0, nx - 1)) * 3 + k] - img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x, 0, nx - 1)) * 3 + k];
a0 = img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x, 0, nx - 1)) * 3 + k];
a1 = -1.0 / 3 * d0 + d2 - 1.0 / 6 * d3;
a2 = 1.0 / 2 * d0 + 1.0 / 2 * d2;
a3 = -1.0 / 6 * d0 - 1.0 / 2 * d2 + 1.0 / 6 * d3;
C[jj] = a0 + a1 * dx + a2 * dx * dx + a3 * dx * dx * dx;
d0 = C[0] - C[1];
d2 = C[2] - C[1];
d3 = C[3] - C[1];
a0 = C[1];
a1 = -1.0 / 3 * d0 + d2 - 1.0 / 6 * d3;
a2 = 1.0 / 2 * d0 + 1.0 / 2 * d2;
a3 = -1.0 / 6 * d0 - 1.0 / 2 * d2 + 1.0 / 6 * d3;
Cc = a0 + a1 * dy + a2 * dy * dy + a3 * dy * dy * dy;
const uint8_t Cc2 = std::min(std::max(std::round(Cc), 0.0f), 255.0f);
dst.buf[(i * target_width + j) * 3 + k] = float(Cc2);
}
}
}
}
return true;
}
static clip_image_u8 * only_v2_5_reshape_by_patch(clip_image_u8 * image, int patch_size) {
int width = image->nx;
int height = image->ny;
int num_patches = (height / patch_size) * (width / patch_size);
clip_image_u8 * patch = clip_image_u8_init();
patch->nx = patch_size * num_patches;
patch->ny = patch_size;
patch->buf.resize(3 * patch->nx * patch->ny);
int patch_index = 0;
for (int i = 0; i < height; i += patch_size) {
for (int j = 0; j < width; j += patch_size) {
for (int pi = 0; pi < patch_size; ++pi) {
for (int pj = 0; pj < patch_size; ++pj) {
int input_index = ((i + pi) * width + (j + pj)) * 3;
int output_index = (pi * patch_size * num_patches + patch_index * patch_size + pj) * 3;
patch->buf[output_index] = image->buf[input_index];
patch->buf[output_index+1] = image->buf[input_index+1];
patch->buf[output_index+2] = image->buf[input_index+2];
}
}
patch_index++;
}
}
return patch;
}
// inspired from LLaVA-UHD:
// -> https://arxiv.org/pdf/2403.11703
// -> https://github.com/thunlp/LLaVA-UHD
// -> https://github.com/thunlp/LLaVA-UHD/blob/302301bc2175f7e717fb8548516188e89f649753/llava_uhd/train/llava-uhd/slice_logic.py#L118
static std::vector<std::vector<clip_image_u8 *>> uhd_slice_image(const clip_image_u8 * img, const int max_slice_nums=9, const int scale_resolution=448, const int patch_size=14) {
const std::pair<int, int> original_size={img->nx,img->ny};
const int original_width = img->nx;
const int original_height = img->ny;
const float log_ratio = log(1.0*original_width/original_height); //
const float ratio = 1.0 * original_width * original_height/ (scale_resolution * scale_resolution);
const int multiple = fmin(ceil(ratio), max_slice_nums);
std::vector<std::vector<clip_image_u8 *>> images;
LOG_TEE("%s: multiple %d\n", __func__, multiple);
images.push_back(std::vector<clip_image_u8 *>());
if(multiple <= 1){
auto best_size = uhd_find_best_resize(original_size, scale_resolution, patch_size, true);
clip_image_u8 *source_image = clip_image_u8_init();
bicubic_resize(*img, *source_image, best_size.first, best_size.second);
// source_image = image.resize(best_size, Image.Resampling.BICUBIC)
images[images.size()-1].push_back(source_image);
}
else if(multiple > 1){
std::vector<int> candidate_split_grids_nums;
for (int i : {multiple - 1, multiple, multiple + 1}) {
if (i == 1 || i > max_slice_nums) {
continue;
}
candidate_split_grids_nums.push_back(i);
}
auto best_size = uhd_find_best_resize(original_size, scale_resolution, patch_size);
clip_image_u8 *source_image = clip_image_u8_init();
bicubic_resize(*img, *source_image, best_size.first, best_size.second);
// source_image = image.copy().resize(best_resize, Image.Resampling.BICUBIC)
LOG_TEE("%s: image_size: %d %d; source_image size: %d %d\n", __func__, img->nx, img->ny, best_size.first, best_size.second);
images[images.size()-1].push_back(source_image);
std::vector<std::pair<int, int>> candidate_grids;
for (int split_grids_nums : candidate_split_grids_nums) {
int m = 1;
while (m <= split_grids_nums) {
if (split_grids_nums % m == 0) {
candidate_grids.emplace_back(m, split_grids_nums / m);
}
++m;
}
}
std::pair<int, int> best_grid{1, 1};
float min_error = std::numeric_limits<float>::infinity();
for (const auto& grid : candidate_grids) {
float error = std::abs(log_ratio - std::log(1.0 * grid.first / grid.second));
if (error < min_error) {
best_grid = grid;
min_error = error;
}
}
LOG_TEE("%s: image_size: %d %d; best_grid: %d %d\n", __func__, img->nx, img->ny, best_grid.first, best_grid.second);
auto refine_size = uhd_get_refine_size(original_size, best_grid, scale_resolution, patch_size, true);
clip_image_u8 *refine_image = clip_image_u8_init();
bicubic_resize(*img, *refine_image, refine_size.first, refine_size.second);
LOG_TEE("%s: refine_image_size: %d %d; refine_size: %d %d\n", __func__, refine_image->nx, refine_image->ny, refine_size.first, refine_size.second);
// split_to_patches
int width = refine_image->nx;
int height = refine_image->ny;
int grid_x = int(width / best_grid.first);
int grid_y = int(height / best_grid.second);
for (int patches_i = 0, ic = 0; patches_i < height && ic < best_grid.second; patches_i += grid_y, ic += 1){
images.push_back(std::vector<clip_image_u8 *>());
for(int patches_j = 0, jc = 0; patches_j < width && jc < best_grid.first; patches_j += grid_x, jc += 1){
clip_image_u8 * patch = clip_image_u8_init();
patch->nx = grid_x;
patch->ny = grid_y;
patch->buf.resize(3 * patch->nx * patch->ny);
for (int y = patches_i; y < patches_i + grid_y; ++y) {
for (int x = patches_j; x < patches_j + grid_x; ++x) {
const int i = 3 * (y * refine_image->nx + x);
const int j = 3 * ((y-patches_i) * patch->nx + (x-patches_j));
patch->buf[j] = refine_image->buf[i];
patch->buf[j+1] = refine_image->buf[i+1];
patch->buf[j+2] = refine_image->buf[i+2];
}
}
images[images.size()-1].push_back(patch);
}
}
}
return images;
}
struct uhd_image_embed * llava_image_embed_make_with_bytes_uhd(struct clip_ctx * ctx_clip, int n_threads, const clip_image_u8 * img) {
std::vector<std::vector<clip_image_u8 *>> imgs = uhd_slice_image(img);
for (size_t i = 0; i < imgs.size(); ++i){
for (size_t j = 0; j < imgs[i].size(); ++j) {
LOG_TEE("%s: %d %d\n", __func__,imgs[i][j]->nx,imgs[i][j]->ny);
}
}
struct uhd_image_embed * results = new uhd_image_embed();
for (size_t i = 0; i < imgs.size(); ++i){
results->image_embeds.push_back(std::vector<llava_image_embed *>());
for (size_t j = 0; j < imgs[i].size(); ++j) {
float* image_embed = NULL;
int n_image_pos = 0;
int patch_size=14;
struct clip_image_size * load_image_size = clip_image_size_init();
load_image_size->width = imgs[i][j]->nx;
load_image_size->height = imgs[i][j]->ny;
LOG_TEE("%s : %d %d\n", __func__, load_image_size->width, load_image_size->height);
clip_add_load_image_size(ctx_clip, load_image_size);
bool image_embed_result = llava_image_embed_make_with_clip_img(ctx_clip, n_threads, only_v2_5_reshape_by_patch(imgs[i][j], patch_size), &image_embed, &n_image_pos);
if (!image_embed_result) {
LOG_TEE("%s: coulnd't embed the image\n", __func__);
return NULL;
}
auto result = (llava_image_embed*)malloc(sizeof(llava_image_embed));
result->embed = image_embed;
result->n_image_pos = n_image_pos;
results->image_embeds[i].push_back(result);
}
}
return results;
}
struct uhd_image_embed * llava_image_embed_make_with_filename_uhd(struct clip_ctx * ctx_clip, int n_threads, const char * image_path) {
unsigned char* image_bytes;
long image_bytes_length;
auto loaded = load_file_to_bytes(image_path, &image_bytes, &image_bytes_length);
if (!loaded) {
LOG_TEE("%s: failed to load %s\n", __func__, image_path);
return NULL;
}
clip_image_u8 * img = clip_image_u8_init();
if (!clip_image_load_from_bytes(image_bytes, image_bytes_length, img)) {
clip_image_u8_free(img);
LOG_TEE("%s: can't load image from bytes, is it a valid image?", __func__);
return NULL;
}
struct uhd_image_embed * embeds = llava_image_embed_make_with_bytes_uhd(ctx_clip, n_threads, img);
clip_image_u8_free(img);
free(image_bytes);
return embeds;
}
void llava_image_embed_free_uhd(struct uhd_image_embed * embed) {
for (size_t i = 0; i < embed->image_embeds.size(); ++i){
for (size_t j = 0; j < embed->image_embeds[i].size(); ++j){
free(embed->image_embeds[i][j]->embed);
free(embed->image_embeds[i][j]);
}
embed->image_embeds[i] = std::vector<struct llava_image_embed *>();
}
embed->image_embeds = std::vector<std::vector<struct llava_image_embed *>>();
}