remove uhd_image_embed
This commit is contained in:
parent
72b962925b
commit
f3d400dac0
6 changed files with 291 additions and 365 deletions
2
Makefile
2
Makefile
|
@ -954,7 +954,7 @@ llama-minicpmv-cli: examples/llava/minicpmv-cli.cpp examples/llava/clip.h exampl
|
||||||
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
|
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
|
||||||
$(CXX) $(CXXFLAGS) -c examples/llava/clip.cpp -o $(call GET_OBJ_FILE, examples/llava/clip.cpp) -Wno-cast-qual
|
$(CXX) $(CXXFLAGS) -c examples/llava/clip.cpp -o $(call GET_OBJ_FILE, examples/llava/clip.cpp) -Wno-cast-qual
|
||||||
$(CXX) $(CXXFLAGS) -c examples/llava/llava.cpp -o $(call GET_OBJ_FILE, examples/llava/llava.cpp)
|
$(CXX) $(CXXFLAGS) -c examples/llava/llava.cpp -o $(call GET_OBJ_FILE, examples/llava/llava.cpp)
|
||||||
$(CXX) $(CXXFLAGS) $(filter-out %.h $< examples/llava/clip.cpp examples/llava/llava.cpp $^) $(call GET_OBJ_FILE, $<) $(call GET_OBJ_FILE, examples/llava/clip.cpp) $(call GET_OBJ_FILE, examples/llava/llava.cpp) -o $@ $(LDFLAGS)
|
$(CXX) $(CXXFLAGS) $(filter-out %.h $< examples/llava/clip.cpp examples/llava/llava.cpp,$^) $(call GET_OBJ_FILE, $<) $(call GET_OBJ_FILE, examples/llava/clip.cpp) $(call GET_OBJ_FILE, examples/llava/llava.cpp) -o $@ $(LDFLAGS)
|
||||||
|
|
||||||
llama-baby-llama: examples/baby-llama/baby-llama.cpp ggml.o llama.o $(COMMON_DEPS) train.o $(OBJS)
|
llama-baby-llama: examples/baby-llama/baby-llama.cpp ggml.o llama.o $(COMMON_DEPS) train.o $(OBJS)
|
||||||
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
|
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
|
||||||
|
|
|
@ -570,7 +570,7 @@ static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32
|
||||||
if(load_image_size==nullptr){
|
if(load_image_size==nullptr){
|
||||||
load_image_size= clip_image_size_init();
|
load_image_size= clip_image_size_init();
|
||||||
}
|
}
|
||||||
LOG_TEE("%s : %d %d\n", __func__, load_image_size->width, load_image_size->height);
|
LOG_TEE("%s: %d %d\n", __func__, load_image_size->width, load_image_size->height);
|
||||||
image_size_width = load_image_size->width;
|
image_size_width = load_image_size->width;
|
||||||
image_size_height = load_image_size->height;
|
image_size_height = load_image_size->height;
|
||||||
if (is_inf){
|
if (is_inf){
|
||||||
|
@ -1748,17 +1748,182 @@ static std::vector<clip_image_u8*> divide_to_patches_u8(const clip_image_u8 & im
|
||||||
return patches;
|
return patches;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
static int ensure_divide(int length, int patch_size) {
|
||||||
|
return std::max(static_cast<int>(std::round(static_cast<float>(length) / patch_size) * patch_size), patch_size);
|
||||||
|
}
|
||||||
|
|
||||||
|
static std::pair<int, int> uhd_find_best_resize(std::pair<int, int> original_size, int scale_resolution, int patch_size, bool allow_upscale = false) {
|
||||||
|
int width = original_size.first;
|
||||||
|
int height = original_size.second;
|
||||||
|
if ((width * height > scale_resolution * scale_resolution) || allow_upscale) {
|
||||||
|
float r = static_cast<float>(width) / height;
|
||||||
|
height = static_cast<int>(scale_resolution / std::sqrt(r));
|
||||||
|
width = static_cast<int>(height * r);
|
||||||
|
}
|
||||||
|
int best_width = ensure_divide(width, patch_size);
|
||||||
|
int best_height = ensure_divide(height, patch_size);
|
||||||
|
return std::make_pair(best_width, best_height);
|
||||||
|
}
|
||||||
|
|
||||||
|
static std::pair<int, int> uhd_get_refine_size(std::pair<int, int> original_size, std::pair<int, int> grid, int scale_resolution, int patch_size, bool allow_upscale = false) {
|
||||||
|
int width, height;
|
||||||
|
std::tie(width, height) = original_size;
|
||||||
|
int grid_x, grid_y;
|
||||||
|
std::tie(grid_x, grid_y) = grid;
|
||||||
|
|
||||||
|
int refine_width = ensure_divide(width, grid_x);
|
||||||
|
int refine_height = ensure_divide(height, grid_y);
|
||||||
|
|
||||||
|
int grid_width = refine_width / grid_x;
|
||||||
|
int grid_height = refine_height / grid_y;
|
||||||
|
|
||||||
|
// auto best_grid_size = find_best_resize(std::make_tuple(grid_width, grid_height), scale_resolution, patch_size, allow_upscale); (old line)
|
||||||
|
auto best_grid_size = uhd_find_best_resize(std::make_pair(grid_width, grid_height), scale_resolution, patch_size, allow_upscale); // (new line) => fixes conversion for make_tuple to make_pair
|
||||||
|
int best_grid_width, best_grid_height;
|
||||||
|
std::tie(best_grid_width, best_grid_height) = best_grid_size;
|
||||||
|
|
||||||
|
// std::pair<int, int> refine_size = std::make_tuple(best_grid_width * grid_x, best_grid_height * grid_y); (old line)
|
||||||
|
std::pair<int, int> refine_size = std::make_pair(best_grid_width * grid_x, best_grid_height * grid_y); // (new line)
|
||||||
|
return refine_size;
|
||||||
|
}
|
||||||
|
|
||||||
|
inline int clip(int x, int lower, int upper) {
|
||||||
|
return std::max(lower, std::min(x, upper));
|
||||||
|
}
|
||||||
|
|
||||||
|
static std::pair<int, int> uhd_best_grid(const int max_slice_nums, const int multiple, const float log_ratio) {
|
||||||
|
std::vector<int> candidate_split_grids_nums;
|
||||||
|
for (int i : {multiple - 1, multiple, multiple + 1}) {
|
||||||
|
if (i == 1 || i > max_slice_nums) {
|
||||||
|
continue;
|
||||||
|
}
|
||||||
|
candidate_split_grids_nums.push_back(i);
|
||||||
|
}
|
||||||
|
|
||||||
|
std::vector<std::pair<int, int>> candidate_grids;
|
||||||
|
for (int split_grids_nums : candidate_split_grids_nums) {
|
||||||
|
int m = 1;
|
||||||
|
while (m <= split_grids_nums) {
|
||||||
|
if (split_grids_nums % m == 0) {
|
||||||
|
candidate_grids.emplace_back(m, split_grids_nums / m);
|
||||||
|
}
|
||||||
|
++m;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
std::pair<int, int> best_grid{1, 1};
|
||||||
|
float min_error = std::numeric_limits<float>::infinity();
|
||||||
|
for (const auto& grid : candidate_grids) {
|
||||||
|
float error = std::abs(log_ratio - std::log(1.0 * grid.first / grid.second));
|
||||||
|
if (error < min_error) {
|
||||||
|
best_grid = grid;
|
||||||
|
min_error = error;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
return best_grid;
|
||||||
|
}
|
||||||
|
|
||||||
|
// inspired from LLaVA-UHD:
|
||||||
|
// -> https://arxiv.org/pdf/2403.11703
|
||||||
|
// -> https://github.com/thunlp/LLaVA-UHD
|
||||||
|
// -> https://github.com/thunlp/LLaVA-UHD/blob/302301bc2175f7e717fb8548516188e89f649753/llava_uhd/train/llava-uhd/slice_logic.py#L118
|
||||||
|
static std::vector<std::vector<clip_image_u8 *>> uhd_slice_image(const clip_image_u8 * img, const int max_slice_nums=9, const int scale_resolution=448, const int patch_size=14) {
|
||||||
|
const std::pair<int, int> original_size={img->nx,img->ny};
|
||||||
|
const int original_width = img->nx;
|
||||||
|
const int original_height = img->ny;
|
||||||
|
const float log_ratio = log(1.0*original_width/original_height);
|
||||||
|
const float ratio = 1.0 * original_width * original_height/ (scale_resolution * scale_resolution);
|
||||||
|
const int multiple = fmin(ceil(ratio), max_slice_nums);
|
||||||
|
|
||||||
|
std::vector<std::vector<clip_image_u8 *>> images;
|
||||||
|
LOG_TEE("%s: multiple %d\n", __func__, multiple);
|
||||||
|
images.push_back(std::vector<clip_image_u8 *>());
|
||||||
|
|
||||||
|
if(multiple <= 1){
|
||||||
|
auto best_size = uhd_find_best_resize(original_size, scale_resolution, patch_size, true);
|
||||||
|
clip_image_u8 *source_image = clip_image_u8_init();
|
||||||
|
bicubic_resize(*img, *source_image, best_size.first, best_size.second);
|
||||||
|
// source_image = image.resize(best_size, Image.Resampling.BICUBIC)
|
||||||
|
images[images.size()-1].push_back(source_image);
|
||||||
|
}
|
||||||
|
else if(multiple > 1){
|
||||||
|
auto best_size = uhd_find_best_resize(original_size, scale_resolution, patch_size);
|
||||||
|
clip_image_u8 *source_image = clip_image_u8_init();
|
||||||
|
bicubic_resize(*img, *source_image, best_size.first, best_size.second);
|
||||||
|
// source_image = image.copy().resize(best_resize, Image.Resampling.BICUBIC)
|
||||||
|
LOG_TEE("%s: image_size: %d %d; source_image size: %d %d\n", __func__, img->nx, img->ny, best_size.first, best_size.second);
|
||||||
|
images[images.size()-1].push_back(source_image);
|
||||||
|
|
||||||
|
std::pair<int, int> best_grid = uhd_best_grid(max_slice_nums, multiple, log_ratio);
|
||||||
|
LOG_TEE("%s: image_size: %d %d; best_grid: %d %d\n", __func__, img->nx, img->ny, best_grid.first, best_grid.second);
|
||||||
|
|
||||||
|
auto refine_size = uhd_get_refine_size(original_size, best_grid, scale_resolution, patch_size, true);
|
||||||
|
clip_image_u8 *refine_image = clip_image_u8_init();
|
||||||
|
bicubic_resize(*img, *refine_image, refine_size.first, refine_size.second);
|
||||||
|
|
||||||
|
LOG_TEE("%s: refine_image_size: %d %d; refine_size: %d %d\n", __func__, refine_image->nx, refine_image->ny, refine_size.first, refine_size.second);
|
||||||
|
|
||||||
|
// split_to_patches
|
||||||
|
int width = refine_image->nx;
|
||||||
|
int height = refine_image->ny;
|
||||||
|
int grid_x = int(width / best_grid.first);
|
||||||
|
int grid_y = int(height / best_grid.second);
|
||||||
|
for (int patches_i = 0, ic = 0; patches_i < height && ic < best_grid.second; patches_i += grid_y, ic += 1){
|
||||||
|
images.push_back(std::vector<clip_image_u8 *>());
|
||||||
|
for(int patches_j = 0, jc = 0; patches_j < width && jc < best_grid.first; patches_j += grid_x, jc += 1){
|
||||||
|
clip_image_u8 * patch = clip_image_u8_init();
|
||||||
|
patch->nx = grid_x;
|
||||||
|
patch->ny = grid_y;
|
||||||
|
patch->buf.resize(3 * patch->nx * patch->ny);
|
||||||
|
for (int y = patches_i; y < patches_i + grid_y; ++y) {
|
||||||
|
for (int x = patches_j; x < patches_j + grid_x; ++x) {
|
||||||
|
const int i = 3 * (y * refine_image->nx + x);
|
||||||
|
const int j = 3 * ((y-patches_i) * patch->nx + (x-patches_j));
|
||||||
|
patch->buf[j] = refine_image->buf[i];
|
||||||
|
patch->buf[j+1] = refine_image->buf[i+1];
|
||||||
|
patch->buf[j+2] = refine_image->buf[i+2];
|
||||||
|
}
|
||||||
|
}
|
||||||
|
images[images.size()-1].push_back(patch);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
return images;
|
||||||
|
}
|
||||||
|
|
||||||
|
int clip_uhd_num_image_embeds_col(struct clip_ctx * ctx_clip){
|
||||||
|
const int max_slice_nums=9;
|
||||||
|
const int scale_resolution=448;
|
||||||
|
const int original_width = ctx_clip->load_image_size->width;
|
||||||
|
const int original_height = ctx_clip->load_image_size->height;
|
||||||
|
const float log_ratio = log(1.0*original_width/original_height);
|
||||||
|
const float ratio = 1.0 * original_width * original_height/ (scale_resolution * scale_resolution);
|
||||||
|
const int multiple = fmin(ceil(ratio), max_slice_nums);
|
||||||
|
std::pair<int, int> best_grid = uhd_best_grid(max_slice_nums, multiple, log_ratio);
|
||||||
|
return best_grid.first;
|
||||||
|
}
|
||||||
|
|
||||||
// returns the normalized float tensor for llava-1.5, for spatial_unpad with anyres processing for llava-1.6 it returns the normalized image patch tensors as a vector
|
// returns the normalized float tensor for llava-1.5, for spatial_unpad with anyres processing for llava-1.6 it returns the normalized image patch tensors as a vector
|
||||||
// res_imgs memory is being allocated here, previous allocations will be freed if found
|
// res_imgs memory is being allocated here, previous allocations will be freed if found
|
||||||
bool clip_image_preprocess(struct clip_ctx * ctx, const clip_image_u8 * img, clip_image_f32_batch * res_imgs) {
|
bool clip_image_preprocess(struct clip_ctx * ctx, const clip_image_u8 * img, clip_image_f32_batch * res_imgs) {
|
||||||
|
|
||||||
if(clip_is_minicpmv(ctx)){
|
if(clip_is_minicpmv(ctx)){
|
||||||
clip_image_f32 * res = clip_image_f32_init();
|
std::vector<std::vector<clip_image_u8 *>> imgs = uhd_slice_image(img);
|
||||||
normalize_image_u8_to_f32(img, res, ctx->image_mean, ctx->image_std);
|
res_imgs->size = 0;
|
||||||
res_imgs->size = 1;
|
for (size_t i = 0; i < imgs.size(); ++i){
|
||||||
|
res_imgs->size += imgs[i].size();
|
||||||
|
}
|
||||||
res_imgs->data = new clip_image_f32[res_imgs->size];
|
res_imgs->data = new clip_image_f32[res_imgs->size];
|
||||||
res_imgs->data[0] = *res;
|
int idx = 0;
|
||||||
|
for (size_t i = 0; i < imgs.size(); ++i){
|
||||||
|
for (size_t j = 0; j < imgs[i].size(); ++j) {
|
||||||
|
LOG_TEE("%s: %d %d\n", __func__,imgs[i][j]->nx,imgs[i][j]->ny);
|
||||||
|
clip_image_f32 * res = clip_image_f32_init();
|
||||||
|
normalize_image_u8_to_f32(imgs[i][j], res, ctx->image_mean, ctx->image_std);
|
||||||
|
res_imgs->data[idx++] = *res;
|
||||||
clip_image_f32_free(res);
|
clip_image_f32_free(res);
|
||||||
|
}
|
||||||
|
}
|
||||||
return true;
|
return true;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -2163,7 +2328,6 @@ bool clip_image_batch_encode(clip_ctx * ctx, const int n_threads, const clip_ima
|
||||||
if(ctx->load_image_size==nullptr){
|
if(ctx->load_image_size==nullptr){
|
||||||
ctx->load_image_size= clip_image_size_init();
|
ctx->load_image_size= clip_image_size_init();
|
||||||
}
|
}
|
||||||
LOG_TEE("%s : %d %d\n", __func__, ctx->load_image_size->width, ctx->load_image_size->height);
|
|
||||||
int pos_w = ctx->load_image_size->width/patch_size;
|
int pos_w = ctx->load_image_size->width/patch_size;
|
||||||
int pos_h = ctx->load_image_size->height/patch_size;
|
int pos_h = ctx->load_image_size->height/patch_size;
|
||||||
int embed_dim = 4096;
|
int embed_dim = 4096;
|
||||||
|
|
|
@ -59,7 +59,9 @@ CLIP_API const int32_t * clip_image_grid(const struct clip_ctx * ctx);
|
||||||
CLIP_API int clip_n_patches (const struct clip_ctx * ctx);
|
CLIP_API int clip_n_patches (const struct clip_ctx * ctx);
|
||||||
CLIP_API int clip_n_mmproj_embd(const struct clip_ctx * ctx);
|
CLIP_API int clip_n_mmproj_embd(const struct clip_ctx * ctx);
|
||||||
|
|
||||||
|
CLIP_API int clip_uhd_num_image_embeds_col(struct clip_ctx * ctx_clip);
|
||||||
CLIP_API void clip_add_load_image_size(struct clip_ctx * ctx_clip, struct clip_image_size * load_image_size);
|
CLIP_API void clip_add_load_image_size(struct clip_ctx * ctx_clip, struct clip_image_size * load_image_size);
|
||||||
|
|
||||||
CLIP_API struct clip_image_size * clip_image_size_init();
|
CLIP_API struct clip_image_size * clip_image_size_init();
|
||||||
CLIP_API struct clip_image_u8 * clip_image_u8_init ();
|
CLIP_API struct clip_image_u8 * clip_image_u8_init ();
|
||||||
CLIP_API struct clip_image_f32 * clip_image_f32_init();
|
CLIP_API struct clip_image_f32 * clip_image_f32_init();
|
||||||
|
|
|
@ -31,9 +31,6 @@ struct clip_image_grid_shape {
|
||||||
int second;
|
int second;
|
||||||
};
|
};
|
||||||
|
|
||||||
struct uhd_image_embed {
|
|
||||||
std::vector<std::vector<struct llava_image_embed *>> image_embeds;
|
|
||||||
};
|
|
||||||
/**
|
/**
|
||||||
* Selects the best resolution from a list of possible resolutions based on the original size.
|
* Selects the best resolution from a list of possible resolutions based on the original size.
|
||||||
*
|
*
|
||||||
|
@ -205,6 +202,33 @@ static bool clip_llava_handle_patches(clip_ctx * ctx_clip, std::vector<float *>
|
||||||
return true;
|
return true;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
static clip_image_f32 * only_v2_5_reshape_by_patch(clip_image_f32 * image, int patch_size) {
|
||||||
|
int width = image->nx;
|
||||||
|
int height = image->ny;
|
||||||
|
int num_patches = (height / patch_size) * (width / patch_size);
|
||||||
|
clip_image_f32 * patch = clip_image_f32_init();
|
||||||
|
patch->nx = patch_size * num_patches;
|
||||||
|
patch->ny = patch_size;
|
||||||
|
patch->buf.resize(3 * patch->nx * patch->ny);
|
||||||
|
|
||||||
|
int patch_index = 0;
|
||||||
|
|
||||||
|
for (int i = 0; i < height; i += patch_size) {
|
||||||
|
for (int j = 0; j < width; j += patch_size) {
|
||||||
|
for (int pi = 0; pi < patch_size; ++pi) {
|
||||||
|
for (int pj = 0; pj < patch_size; ++pj) {
|
||||||
|
int input_index = ((i + pi) * width + (j + pj)) * 3;
|
||||||
|
int output_index = (pi * patch_size * num_patches + patch_index * patch_size + pj) * 3;
|
||||||
|
patch->buf[output_index] = image->buf[input_index];
|
||||||
|
patch->buf[output_index+1] = image->buf[input_index+1];
|
||||||
|
patch->buf[output_index+2] = image->buf[input_index+2];
|
||||||
|
}
|
||||||
|
}
|
||||||
|
patch_index++;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
return patch;
|
||||||
|
}
|
||||||
|
|
||||||
static bool encode_image_with_clip(clip_ctx * ctx_clip, int n_threads, const clip_image_u8 * img, float * image_embd, int * n_img_pos) {
|
static bool encode_image_with_clip(clip_ctx * ctx_clip, int n_threads, const clip_image_u8 * img, float * image_embd, int * n_img_pos) {
|
||||||
// std::vector<clip_image_f32*> img_res_v; // format VectN x H x W x RGB (N x 336 x 336 x 3), so interleaved RGB - different to the python implementation which is N x 3 x 336 x 336
|
// std::vector<clip_image_f32*> img_res_v; // format VectN x H x W x RGB (N x 336 x 336 x 3), so interleaved RGB - different to the python implementation which is N x 3 x 336 x 336
|
||||||
|
@ -221,7 +245,44 @@ static bool encode_image_with_clip(clip_ctx * ctx_clip, int n_threads, const cli
|
||||||
|
|
||||||
const char * mm_patch_merge_type = clip_patch_merge_type(ctx_clip);
|
const char * mm_patch_merge_type = clip_patch_merge_type(ctx_clip);
|
||||||
|
|
||||||
if (strcmp(mm_patch_merge_type, "spatial_unpad") != 0) {
|
if (clip_is_minicpmv(ctx_clip)) {
|
||||||
|
std::vector<float *> image_embd_v;
|
||||||
|
image_embd_v.resize(img_res_v.size);
|
||||||
|
struct clip_image_size * load_image_size = clip_image_size_init();
|
||||||
|
for (size_t i = 0; i < img_res_v.size; i++) {
|
||||||
|
const int64_t t_img_enc_step_start_us = ggml_time_us();
|
||||||
|
image_embd_v[i] = (float *)malloc(clip_embd_nbytes(ctx_clip));
|
||||||
|
int patch_size=14;
|
||||||
|
load_image_size->width = img_res_v.data[i].nx;
|
||||||
|
load_image_size->height = img_res_v.data[i].ny;
|
||||||
|
clip_add_load_image_size(ctx_clip, load_image_size);
|
||||||
|
const bool encoded = clip_image_encode(ctx_clip, n_threads, only_v2_5_reshape_by_patch(&img_res_v.data[i], patch_size), image_embd_v[i]); // image data is in 3x336x336 format and will be converted to 336x336x3 inside
|
||||||
|
if (!encoded) {
|
||||||
|
LOG_TEE("Unable to encode image - spatial_unpad - subimage %d of %d\n", (int) i+1, (int) img_res_v.size);
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
const int64_t t_img_enc_steop_batch_us = ggml_time_us();
|
||||||
|
LOG_TEE("%s: step %d of %d encoded in %8.2f ms\n", __func__, (int)i+1, (int)img_res_v.size, (t_img_enc_steop_batch_us - t_img_enc_step_start_us) / 1000.0);
|
||||||
|
}
|
||||||
|
const int64_t t_img_enc_batch_us = ggml_time_us();
|
||||||
|
LOG_TEE("%s: all %d segments encoded in %8.2f ms\n", __func__, (int)img_res_v.size, (t_img_enc_batch_us - t_img_enc_start_us) / 1000.0);
|
||||||
|
|
||||||
|
int n_img_pos_out = 0;
|
||||||
|
for (size_t i = 0; i < image_embd_v.size(); i++) {
|
||||||
|
std::memcpy(image_embd + n_img_pos_out * clip_n_mmproj_embd(ctx_clip), image_embd_v[i], clip_embd_nbytes(ctx_clip));
|
||||||
|
n_img_pos_out += clip_n_patches(ctx_clip);
|
||||||
|
}
|
||||||
|
*n_img_pos = n_img_pos_out;
|
||||||
|
for (size_t i = 0; i < image_embd_v.size(); i++) {
|
||||||
|
free(image_embd_v[i]);
|
||||||
|
}
|
||||||
|
image_embd_v.clear();
|
||||||
|
load_image_size->width = img->nx;
|
||||||
|
load_image_size->height = img->ny;
|
||||||
|
clip_add_load_image_size(ctx_clip, load_image_size);
|
||||||
|
LOG_TEE("%s: load_image_size %d %d\n", __func__, load_image_size->width, load_image_size->height);
|
||||||
|
}
|
||||||
|
else if (strcmp(mm_patch_merge_type, "spatial_unpad") != 0) {
|
||||||
// flat / default llava-1.5 type embedding
|
// flat / default llava-1.5 type embedding
|
||||||
*n_img_pos = clip_n_patches(ctx_clip);
|
*n_img_pos = clip_n_patches(ctx_clip);
|
||||||
bool encoded = clip_image_encode(ctx_clip, n_threads, &img_res_v.data[0], image_embd); // image_embd shape is 576 x 4096
|
bool encoded = clip_image_encode(ctx_clip, n_threads, &img_res_v.data[0], image_embd); // image_embd shape is 576 x 4096
|
||||||
|
@ -231,7 +292,8 @@ static bool encode_image_with_clip(clip_ctx * ctx_clip, int n_threads, const cli
|
||||||
|
|
||||||
return false;
|
return false;
|
||||||
}
|
}
|
||||||
} else {
|
}
|
||||||
|
else {
|
||||||
// spatial_unpad llava-1.6 type embedding
|
// spatial_unpad llava-1.6 type embedding
|
||||||
// TODO: CLIP needs batching support - in HF the llm projection is separate after encoding, which might be a solution to quickly get batching working
|
// TODO: CLIP needs batching support - in HF the llm projection is separate after encoding, which might be a solution to quickly get batching working
|
||||||
std::vector<float *> image_embd_v;
|
std::vector<float *> image_embd_v;
|
||||||
|
@ -300,7 +362,11 @@ bool llava_validate_embed_size(const llama_context * ctx_llama, const clip_ctx *
|
||||||
}
|
}
|
||||||
|
|
||||||
bool llava_image_embed_make_with_clip_img(clip_ctx * ctx_clip, int n_threads, const clip_image_u8 * img, float ** image_embd_out, int * n_img_pos_out) {
|
bool llava_image_embed_make_with_clip_img(clip_ctx * ctx_clip, int n_threads, const clip_image_u8 * img, float ** image_embd_out, int * n_img_pos_out) {
|
||||||
float * image_embd = (float *)malloc(clip_embd_nbytes(ctx_clip)*6); // TODO: base on gridsize/llava model
|
int num_max_patches = 6; //
|
||||||
|
if (clip_is_minicpmv(ctx_clip)) {
|
||||||
|
num_max_patches = 10;
|
||||||
|
}
|
||||||
|
float * image_embd = (float *)malloc(clip_embd_nbytes(ctx_clip)*num_max_patches); // TODO: base on gridsize/llava model
|
||||||
if (!image_embd) {
|
if (!image_embd) {
|
||||||
LOG_TEE("Unable to allocate memory for image embeddings\n");
|
LOG_TEE("Unable to allocate memory for image embeddings\n");
|
||||||
return false;
|
return false;
|
||||||
|
@ -412,303 +478,3 @@ void llava_image_embed_free(struct llava_image_embed * embed) {
|
||||||
free(embed->embed);
|
free(embed->embed);
|
||||||
free(embed);
|
free(embed);
|
||||||
}
|
}
|
||||||
|
|
||||||
static int ensure_divide(int length, int patch_size) {
|
|
||||||
return std::max(static_cast<int>(std::round(static_cast<float>(length) / patch_size) * patch_size), patch_size);
|
|
||||||
}
|
|
||||||
|
|
||||||
static std::pair<int, int> uhd_find_best_resize(std::pair<int, int> original_size, int scale_resolution, int patch_size, bool allow_upscale = false) {
|
|
||||||
int width = original_size.first;
|
|
||||||
int height = original_size.second;
|
|
||||||
if ((width * height > scale_resolution * scale_resolution) || allow_upscale) {
|
|
||||||
float r = static_cast<float>(width) / height;
|
|
||||||
height = static_cast<int>(scale_resolution / std::sqrt(r));
|
|
||||||
width = static_cast<int>(height * r);
|
|
||||||
}
|
|
||||||
int best_width = ensure_divide(width, patch_size);
|
|
||||||
int best_height = ensure_divide(height, patch_size);
|
|
||||||
return std::make_pair(best_width, best_height);
|
|
||||||
}
|
|
||||||
|
|
||||||
static std::pair<int, int> uhd_get_refine_size(std::pair<int, int> original_size, std::pair<int, int> grid, int scale_resolution, int patch_size, bool allow_upscale = false) {
|
|
||||||
int width, height;
|
|
||||||
std::tie(width, height) = original_size;
|
|
||||||
int grid_x, grid_y;
|
|
||||||
std::tie(grid_x, grid_y) = grid;
|
|
||||||
|
|
||||||
int refine_width = ensure_divide(width, grid_x);
|
|
||||||
int refine_height = ensure_divide(height, grid_y);
|
|
||||||
|
|
||||||
int grid_width = refine_width / grid_x;
|
|
||||||
int grid_height = refine_height / grid_y;
|
|
||||||
|
|
||||||
// auto best_grid_size = find_best_resize(std::make_tuple(grid_width, grid_height), scale_resolution, patch_size, allow_upscale); (old line)
|
|
||||||
auto best_grid_size = uhd_find_best_resize(std::make_pair(grid_width, grid_height), scale_resolution, patch_size, allow_upscale); // (new line) => fixes conversion for make_tuple to make_pair
|
|
||||||
int best_grid_width, best_grid_height;
|
|
||||||
std::tie(best_grid_width, best_grid_height) = best_grid_size;
|
|
||||||
|
|
||||||
// std::pair<int, int> refine_size = std::make_tuple(best_grid_width * grid_x, best_grid_height * grid_y); (old line)
|
|
||||||
std::pair<int, int> refine_size = std::make_pair(best_grid_width * grid_x, best_grid_height * grid_y); // (new line)
|
|
||||||
return refine_size;
|
|
||||||
}
|
|
||||||
|
|
||||||
inline int clip(int x, int lower, int upper) {
|
|
||||||
return std::max(lower, std::min(x, upper));
|
|
||||||
}
|
|
||||||
|
|
||||||
static bool bicubic_resize(const clip_image_u8 &img, clip_image_u8 &dst, int target_width, int target_height) {
|
|
||||||
const int nx = img.nx;
|
|
||||||
const int ny = img.ny;
|
|
||||||
|
|
||||||
dst.nx = target_width;
|
|
||||||
dst.ny = target_height;
|
|
||||||
dst.buf.resize(3 * target_width * target_height);
|
|
||||||
|
|
||||||
float Cc;
|
|
||||||
float C[5];
|
|
||||||
float d0, d2, d3, a0, a1, a2, a3;
|
|
||||||
int i, j, k, jj;
|
|
||||||
int x, y;
|
|
||||||
float dx, dy;
|
|
||||||
float tx, ty;
|
|
||||||
|
|
||||||
tx = (float)nx / (float)target_width;
|
|
||||||
ty = (float)ny / (float)target_height;
|
|
||||||
|
|
||||||
// Bicubic interpolation; adapted from ViT.cpp, inspired from :
|
|
||||||
// -> https://github.com/yglukhov/bicubic-interpolation-image-processing/blob/master/libimage.c#L36
|
|
||||||
// -> https://en.wikipedia.org/wiki/Bicubic_interpolation
|
|
||||||
|
|
||||||
for (i = 0; i < target_height; i++) {
|
|
||||||
for (j = 0; j < target_width; j++) {
|
|
||||||
x = (int)(tx * j);
|
|
||||||
y = (int)(ty * i);
|
|
||||||
|
|
||||||
dx = tx * j - x;
|
|
||||||
dy = ty * i - y;
|
|
||||||
|
|
||||||
for (k = 0; k < 3; k++) {
|
|
||||||
for (jj = 0; jj <= 3; jj++) {
|
|
||||||
d0 = img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x - 1, 0, nx - 1)) * 3 + k] - img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x, 0, nx - 1)) * 3 + k];
|
|
||||||
d2 = img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x + 1, 0, nx - 1)) * 3 + k] - img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x, 0, nx - 1)) * 3 + k];
|
|
||||||
d3 = img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x + 2, 0, nx - 1)) * 3 + k] - img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x, 0, nx - 1)) * 3 + k];
|
|
||||||
a0 = img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x, 0, nx - 1)) * 3 + k];
|
|
||||||
|
|
||||||
a1 = -1.0 / 3 * d0 + d2 - 1.0 / 6 * d3;
|
|
||||||
a2 = 1.0 / 2 * d0 + 1.0 / 2 * d2;
|
|
||||||
a3 = -1.0 / 6 * d0 - 1.0 / 2 * d2 + 1.0 / 6 * d3;
|
|
||||||
|
|
||||||
C[jj] = a0 + a1 * dx + a2 * dx * dx + a3 * dx * dx * dx;
|
|
||||||
|
|
||||||
d0 = C[0] - C[1];
|
|
||||||
d2 = C[2] - C[1];
|
|
||||||
d3 = C[3] - C[1];
|
|
||||||
a0 = C[1];
|
|
||||||
a1 = -1.0 / 3 * d0 + d2 - 1.0 / 6 * d3;
|
|
||||||
a2 = 1.0 / 2 * d0 + 1.0 / 2 * d2;
|
|
||||||
a3 = -1.0 / 6 * d0 - 1.0 / 2 * d2 + 1.0 / 6 * d3;
|
|
||||||
Cc = a0 + a1 * dy + a2 * dy * dy + a3 * dy * dy * dy;
|
|
||||||
|
|
||||||
const uint8_t Cc2 = std::min(std::max(std::round(Cc), 0.0f), 255.0f);
|
|
||||||
dst.buf[(i * target_width + j) * 3 + k] = float(Cc2);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
return true;
|
|
||||||
}
|
|
||||||
|
|
||||||
static clip_image_u8 * only_v2_5_reshape_by_patch(clip_image_u8 * image, int patch_size) {
|
|
||||||
int width = image->nx;
|
|
||||||
int height = image->ny;
|
|
||||||
int num_patches = (height / patch_size) * (width / patch_size);
|
|
||||||
clip_image_u8 * patch = clip_image_u8_init();
|
|
||||||
patch->nx = patch_size * num_patches;
|
|
||||||
patch->ny = patch_size;
|
|
||||||
patch->buf.resize(3 * patch->nx * patch->ny);
|
|
||||||
|
|
||||||
int patch_index = 0;
|
|
||||||
|
|
||||||
for (int i = 0; i < height; i += patch_size) {
|
|
||||||
for (int j = 0; j < width; j += patch_size) {
|
|
||||||
for (int pi = 0; pi < patch_size; ++pi) {
|
|
||||||
for (int pj = 0; pj < patch_size; ++pj) {
|
|
||||||
int input_index = ((i + pi) * width + (j + pj)) * 3;
|
|
||||||
int output_index = (pi * patch_size * num_patches + patch_index * patch_size + pj) * 3;
|
|
||||||
patch->buf[output_index] = image->buf[input_index];
|
|
||||||
patch->buf[output_index+1] = image->buf[input_index+1];
|
|
||||||
patch->buf[output_index+2] = image->buf[input_index+2];
|
|
||||||
}
|
|
||||||
}
|
|
||||||
patch_index++;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
return patch;
|
|
||||||
}
|
|
||||||
|
|
||||||
// inspired from LLaVA-UHD:
|
|
||||||
// -> https://arxiv.org/pdf/2403.11703
|
|
||||||
// -> https://github.com/thunlp/LLaVA-UHD
|
|
||||||
// -> https://github.com/thunlp/LLaVA-UHD/blob/302301bc2175f7e717fb8548516188e89f649753/llava_uhd/train/llava-uhd/slice_logic.py#L118
|
|
||||||
static std::vector<std::vector<clip_image_u8 *>> uhd_slice_image(const clip_image_u8 * img, const int max_slice_nums=9, const int scale_resolution=448, const int patch_size=14) {
|
|
||||||
const std::pair<int, int> original_size={img->nx,img->ny};
|
|
||||||
const int original_width = img->nx;
|
|
||||||
const int original_height = img->ny;
|
|
||||||
const float log_ratio = log(1.0*original_width/original_height); //
|
|
||||||
const float ratio = 1.0 * original_width * original_height/ (scale_resolution * scale_resolution);
|
|
||||||
const int multiple = fmin(ceil(ratio), max_slice_nums);
|
|
||||||
|
|
||||||
std::vector<std::vector<clip_image_u8 *>> images;
|
|
||||||
LOG_TEE("%s: multiple %d\n", __func__, multiple);
|
|
||||||
images.push_back(std::vector<clip_image_u8 *>());
|
|
||||||
|
|
||||||
if(multiple <= 1){
|
|
||||||
auto best_size = uhd_find_best_resize(original_size, scale_resolution, patch_size, true);
|
|
||||||
clip_image_u8 *source_image = clip_image_u8_init();
|
|
||||||
bicubic_resize(*img, *source_image, best_size.first, best_size.second);
|
|
||||||
// source_image = image.resize(best_size, Image.Resampling.BICUBIC)
|
|
||||||
images[images.size()-1].push_back(source_image);
|
|
||||||
}
|
|
||||||
else if(multiple > 1){
|
|
||||||
|
|
||||||
std::vector<int> candidate_split_grids_nums;
|
|
||||||
for (int i : {multiple - 1, multiple, multiple + 1}) {
|
|
||||||
if (i == 1 || i > max_slice_nums) {
|
|
||||||
continue;
|
|
||||||
}
|
|
||||||
candidate_split_grids_nums.push_back(i);
|
|
||||||
}
|
|
||||||
|
|
||||||
auto best_size = uhd_find_best_resize(original_size, scale_resolution, patch_size);
|
|
||||||
clip_image_u8 *source_image = clip_image_u8_init();
|
|
||||||
bicubic_resize(*img, *source_image, best_size.first, best_size.second);
|
|
||||||
// source_image = image.copy().resize(best_resize, Image.Resampling.BICUBIC)
|
|
||||||
LOG_TEE("%s: image_size: %d %d; source_image size: %d %d\n", __func__, img->nx, img->ny, best_size.first, best_size.second);
|
|
||||||
images[images.size()-1].push_back(source_image);
|
|
||||||
|
|
||||||
std::vector<std::pair<int, int>> candidate_grids;
|
|
||||||
|
|
||||||
for (int split_grids_nums : candidate_split_grids_nums) {
|
|
||||||
int m = 1;
|
|
||||||
while (m <= split_grids_nums) {
|
|
||||||
if (split_grids_nums % m == 0) {
|
|
||||||
candidate_grids.emplace_back(m, split_grids_nums / m);
|
|
||||||
}
|
|
||||||
++m;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
std::pair<int, int> best_grid{1, 1};
|
|
||||||
float min_error = std::numeric_limits<float>::infinity();
|
|
||||||
|
|
||||||
for (const auto& grid : candidate_grids) {
|
|
||||||
float error = std::abs(log_ratio - std::log(1.0 * grid.first / grid.second));
|
|
||||||
if (error < min_error) {
|
|
||||||
best_grid = grid;
|
|
||||||
min_error = error;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
LOG_TEE("%s: image_size: %d %d; best_grid: %d %d\n", __func__, img->nx, img->ny, best_grid.first, best_grid.second);
|
|
||||||
|
|
||||||
auto refine_size = uhd_get_refine_size(original_size, best_grid, scale_resolution, patch_size, true);
|
|
||||||
clip_image_u8 *refine_image = clip_image_u8_init();
|
|
||||||
bicubic_resize(*img, *refine_image, refine_size.first, refine_size.second);
|
|
||||||
|
|
||||||
LOG_TEE("%s: refine_image_size: %d %d; refine_size: %d %d\n", __func__, refine_image->nx, refine_image->ny, refine_size.first, refine_size.second);
|
|
||||||
|
|
||||||
// split_to_patches
|
|
||||||
int width = refine_image->nx;
|
|
||||||
int height = refine_image->ny;
|
|
||||||
int grid_x = int(width / best_grid.first);
|
|
||||||
int grid_y = int(height / best_grid.second);
|
|
||||||
for (int patches_i = 0, ic = 0; patches_i < height && ic < best_grid.second; patches_i += grid_y, ic += 1){
|
|
||||||
images.push_back(std::vector<clip_image_u8 *>());
|
|
||||||
for(int patches_j = 0, jc = 0; patches_j < width && jc < best_grid.first; patches_j += grid_x, jc += 1){
|
|
||||||
clip_image_u8 * patch = clip_image_u8_init();
|
|
||||||
patch->nx = grid_x;
|
|
||||||
patch->ny = grid_y;
|
|
||||||
patch->buf.resize(3 * patch->nx * patch->ny);
|
|
||||||
for (int y = patches_i; y < patches_i + grid_y; ++y) {
|
|
||||||
for (int x = patches_j; x < patches_j + grid_x; ++x) {
|
|
||||||
const int i = 3 * (y * refine_image->nx + x);
|
|
||||||
const int j = 3 * ((y-patches_i) * patch->nx + (x-patches_j));
|
|
||||||
patch->buf[j] = refine_image->buf[i];
|
|
||||||
patch->buf[j+1] = refine_image->buf[i+1];
|
|
||||||
patch->buf[j+2] = refine_image->buf[i+2];
|
|
||||||
}
|
|
||||||
}
|
|
||||||
images[images.size()-1].push_back(patch);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
return images;
|
|
||||||
}
|
|
||||||
|
|
||||||
struct uhd_image_embed * llava_image_embed_make_with_bytes_uhd(struct clip_ctx * ctx_clip, int n_threads, const clip_image_u8 * img) {
|
|
||||||
std::vector<std::vector<clip_image_u8 *>> imgs = uhd_slice_image(img);
|
|
||||||
for (size_t i = 0; i < imgs.size(); ++i){
|
|
||||||
for (size_t j = 0; j < imgs[i].size(); ++j) {
|
|
||||||
LOG_TEE("%s: %d %d\n", __func__,imgs[i][j]->nx,imgs[i][j]->ny);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
struct uhd_image_embed * results = new uhd_image_embed();
|
|
||||||
|
|
||||||
for (size_t i = 0; i < imgs.size(); ++i){
|
|
||||||
results->image_embeds.push_back(std::vector<llava_image_embed *>());
|
|
||||||
for (size_t j = 0; j < imgs[i].size(); ++j) {
|
|
||||||
float* image_embed = NULL;
|
|
||||||
int n_image_pos = 0;
|
|
||||||
int patch_size=14;
|
|
||||||
struct clip_image_size * load_image_size = clip_image_size_init();
|
|
||||||
load_image_size->width = imgs[i][j]->nx;
|
|
||||||
load_image_size->height = imgs[i][j]->ny;
|
|
||||||
LOG_TEE("%s : %d %d\n", __func__, load_image_size->width, load_image_size->height);
|
|
||||||
clip_add_load_image_size(ctx_clip, load_image_size);
|
|
||||||
bool image_embed_result = llava_image_embed_make_with_clip_img(ctx_clip, n_threads, only_v2_5_reshape_by_patch(imgs[i][j], patch_size), &image_embed, &n_image_pos);
|
|
||||||
if (!image_embed_result) {
|
|
||||||
LOG_TEE("%s: coulnd't embed the image\n", __func__);
|
|
||||||
return NULL;
|
|
||||||
}
|
|
||||||
|
|
||||||
auto result = (llava_image_embed*)malloc(sizeof(llava_image_embed));
|
|
||||||
result->embed = image_embed;
|
|
||||||
result->n_image_pos = n_image_pos;
|
|
||||||
results->image_embeds[i].push_back(result);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
return results;
|
|
||||||
}
|
|
||||||
|
|
||||||
struct uhd_image_embed * llava_image_embed_make_with_filename_uhd(struct clip_ctx * ctx_clip, int n_threads, const char * image_path) {
|
|
||||||
unsigned char* image_bytes;
|
|
||||||
long image_bytes_length;
|
|
||||||
auto loaded = load_file_to_bytes(image_path, &image_bytes, &image_bytes_length);
|
|
||||||
if (!loaded) {
|
|
||||||
LOG_TEE("%s: failed to load %s\n", __func__, image_path);
|
|
||||||
return NULL;
|
|
||||||
}
|
|
||||||
clip_image_u8 * img = clip_image_u8_init();
|
|
||||||
if (!clip_image_load_from_bytes(image_bytes, image_bytes_length, img)) {
|
|
||||||
clip_image_u8_free(img);
|
|
||||||
LOG_TEE("%s: can't load image from bytes, is it a valid image?", __func__);
|
|
||||||
return NULL;
|
|
||||||
}
|
|
||||||
|
|
||||||
struct uhd_image_embed * embeds = llava_image_embed_make_with_bytes_uhd(ctx_clip, n_threads, img);
|
|
||||||
|
|
||||||
clip_image_u8_free(img);
|
|
||||||
free(image_bytes);
|
|
||||||
return embeds;
|
|
||||||
}
|
|
||||||
|
|
||||||
void llava_image_embed_free_uhd(struct uhd_image_embed * embed) {
|
|
||||||
for (size_t i = 0; i < embed->image_embeds.size(); ++i){
|
|
||||||
for (size_t j = 0; j < embed->image_embeds[i].size(); ++j){
|
|
||||||
free(embed->image_embeds[i][j]->embed);
|
|
||||||
free(embed->image_embeds[i][j]);
|
|
||||||
}
|
|
||||||
embed->image_embeds[i] = std::vector<struct llava_image_embed *>();
|
|
||||||
}
|
|
||||||
embed->image_embeds = std::vector<std::vector<struct llava_image_embed *>>();
|
|
||||||
}
|
|
|
@ -18,13 +18,11 @@
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
struct clip_ctx;
|
struct clip_ctx;
|
||||||
struct uhd_image_embed;
|
|
||||||
|
|
||||||
#ifdef __cplusplus
|
#ifdef __cplusplus
|
||||||
extern "C" {
|
extern "C" {
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
struct uhd_image_embed;
|
|
||||||
struct llava_image_embed {
|
struct llava_image_embed {
|
||||||
float * embed;
|
float * embed;
|
||||||
int n_image_pos;
|
int n_image_pos;
|
||||||
|
@ -39,14 +37,8 @@ LLAVA_API bool llava_image_embed_make_with_clip_img(struct clip_ctx * ctx_clip,
|
||||||
LLAVA_API struct llava_image_embed * llava_image_embed_make_with_bytes(struct clip_ctx * ctx_clip, int n_threads, const unsigned char * image_bytes, int image_bytes_length);
|
LLAVA_API struct llava_image_embed * llava_image_embed_make_with_bytes(struct clip_ctx * ctx_clip, int n_threads, const unsigned char * image_bytes, int image_bytes_length);
|
||||||
/** build an image embed from a path to an image filename */
|
/** build an image embed from a path to an image filename */
|
||||||
LLAVA_API struct llava_image_embed * llava_image_embed_make_with_filename(struct clip_ctx * ctx_clip, int n_threads, const char * image_path);
|
LLAVA_API struct llava_image_embed * llava_image_embed_make_with_filename(struct clip_ctx * ctx_clip, int n_threads, const char * image_path);
|
||||||
LLAVA_API void llava_image_embed_free(struct llava_image_embed * embed);
|
|
||||||
/** free an embedding made with llava_image_embed_make_* */
|
/** free an embedding made with llava_image_embed_make_* */
|
||||||
|
LLAVA_API void llava_image_embed_free(struct llava_image_embed * embed);
|
||||||
/** build an image embed from image file bytes */
|
|
||||||
LLAVA_API struct uhd_image_embed * llava_image_embed_make_with_bytes_uhd(struct clip_ctx * ctx_clip, int n_threads, const clip_image_u8 * img);
|
|
||||||
/** build an image embed from a path to an image filename */
|
|
||||||
LLAVA_API struct uhd_image_embed * llava_image_embed_make_with_filename_uhd(struct clip_ctx * ctx_clip, int n_threads, const char * image_path);
|
|
||||||
LLAVA_API void llava_image_embed_free_uhd(struct uhd_image_embed * embed);
|
|
||||||
|
|
||||||
/** write the image represented by embed into the llama context with batch size n_batch, starting at context pos n_past. on completion, n_past points to the next position in the context after the image embed. */
|
/** write the image represented by embed into the llama context with batch size n_batch, starting at context pos n_past. on completion, n_past points to the next position in the context after the image embed. */
|
||||||
LLAVA_API bool llava_eval_image_embed(struct llama_context * ctx_llama, const struct llava_image_embed * embed, int n_batch, int * n_past);
|
LLAVA_API bool llava_eval_image_embed(struct llama_context * ctx_llama, const struct llava_image_embed * embed, int n_batch, int * n_past);
|
||||||
|
|
|
@ -9,10 +9,6 @@
|
||||||
#include <cstdlib>
|
#include <cstdlib>
|
||||||
#include <vector>
|
#include <vector>
|
||||||
|
|
||||||
struct uhd_image_embed {
|
|
||||||
std::vector<std::vector<struct llava_image_embed *>> image_embeds;
|
|
||||||
};
|
|
||||||
|
|
||||||
struct llava_context {
|
struct llava_context {
|
||||||
struct clip_ctx * ctx_clip = NULL;
|
struct clip_ctx * ctx_clip = NULL;
|
||||||
struct llama_context * ctx_llama = NULL;
|
struct llama_context * ctx_llama = NULL;
|
||||||
|
@ -30,7 +26,7 @@ static void llama_log_callback_logTee(ggml_log_level level, const char * text, v
|
||||||
LOG_TEE("%s", text);
|
LOG_TEE("%s", text);
|
||||||
}
|
}
|
||||||
|
|
||||||
struct llama_model * llava_init(gpt_params * params) {
|
static struct llama_model * llava_init(gpt_params * params) {
|
||||||
llama_backend_init();
|
llama_backend_init();
|
||||||
llama_numa_init(params->numa);
|
llama_numa_init(params->numa);
|
||||||
|
|
||||||
|
@ -44,7 +40,7 @@ struct llama_model * llava_init(gpt_params * params) {
|
||||||
return model;
|
return model;
|
||||||
}
|
}
|
||||||
|
|
||||||
struct llava_context * llava_init_context(gpt_params * params, llama_model * model) {
|
static struct llava_context * llava_init_context(gpt_params * params, llama_model * model) {
|
||||||
auto prompt = params->prompt;
|
auto prompt = params->prompt;
|
||||||
if (prompt.empty()) {
|
if (prompt.empty()) {
|
||||||
prompt = "describe the image in detail.";
|
prompt = "describe the image in detail.";
|
||||||
|
@ -73,13 +69,18 @@ struct llava_context * llava_init_context(gpt_params * params, llama_model * mod
|
||||||
return ctx_llava;
|
return ctx_llava;
|
||||||
}
|
}
|
||||||
|
|
||||||
void llava_free(struct llava_context * ctx_llava) {
|
static void llava_free(struct llava_context * ctx_llava) {
|
||||||
|
if (ctx_llava->ctx_clip) {
|
||||||
|
clip_free(ctx_llava->ctx_clip);
|
||||||
|
ctx_llava->ctx_clip = NULL;
|
||||||
|
}
|
||||||
|
|
||||||
llama_free(ctx_llava->ctx_llama);
|
llama_free(ctx_llava->ctx_llama);
|
||||||
llama_free_model(ctx_llava->model);
|
llama_free_model(ctx_llava->model);
|
||||||
llama_backend_free();
|
llama_backend_free();
|
||||||
}
|
}
|
||||||
|
|
||||||
struct clip_ctx * clip_init_context(gpt_params * params) {
|
static struct clip_ctx * clip_init_context(gpt_params * params) {
|
||||||
const char * clip_path = params->mmproj.c_str();
|
const char * clip_path = params->mmproj.c_str();
|
||||||
|
|
||||||
auto prompt = params->prompt;
|
auto prompt = params->prompt;
|
||||||
|
@ -90,18 +91,7 @@ struct clip_ctx * clip_init_context(gpt_params * params) {
|
||||||
return ctx_clip;
|
return ctx_clip;
|
||||||
}
|
}
|
||||||
|
|
||||||
struct uhd_image_embed * minicpmv_image_embed(gpt_params * params, const std::string & fname){
|
static bool eval_tokens(struct llama_context * ctx_llama, std::vector<llama_token> tokens, int n_batch, int * n_past) {
|
||||||
auto ctx_clip = clip_init_context(params);
|
|
||||||
auto image_embed_and_slices = llava_image_embed_make_with_filename_uhd(ctx_clip, params->n_threads, fname.c_str());
|
|
||||||
if (ctx_clip) {
|
|
||||||
clip_free(ctx_clip);
|
|
||||||
ctx_clip = NULL;
|
|
||||||
}
|
|
||||||
return image_embed_and_slices;
|
|
||||||
}
|
|
||||||
|
|
||||||
|
|
||||||
bool eval_tokens(struct llama_context * ctx_llama, std::vector<llama_token> tokens, int n_batch, int * n_past) {
|
|
||||||
int N = (int) tokens.size();
|
int N = (int) tokens.size();
|
||||||
for (int i = 0; i < N; i += n_batch) {
|
for (int i = 0; i < N; i += n_batch) {
|
||||||
int n_eval = (int) tokens.size() - i;
|
int n_eval = (int) tokens.size() - i;
|
||||||
|
@ -117,45 +107,57 @@ bool eval_tokens(struct llama_context * ctx_llama, std::vector<llama_token> toke
|
||||||
return true;
|
return true;
|
||||||
}
|
}
|
||||||
|
|
||||||
bool eval_id(struct llama_context * ctx_llama, int id, int * n_past) {
|
static bool eval_id(struct llama_context * ctx_llama, int id, int * n_past) {
|
||||||
std::vector<llama_token> tokens;
|
std::vector<llama_token> tokens;
|
||||||
tokens.push_back(id);
|
tokens.push_back(id);
|
||||||
return eval_tokens(ctx_llama, tokens, 1, n_past);
|
return eval_tokens(ctx_llama, tokens, 1, n_past);
|
||||||
}
|
}
|
||||||
|
|
||||||
bool eval_string(struct llama_context * ctx_llama, const char* str, int n_batch, int * n_past, bool add_bos){
|
static bool eval_string(struct llama_context * ctx_llama, const char* str, int n_batch, int * n_past, bool add_bos){
|
||||||
std::string str2 = str;
|
std::string str2 = str;
|
||||||
std::vector<llama_token> embd_inp = ::llama_tokenize(ctx_llama, str2, add_bos, true);
|
std::vector<llama_token> embd_inp = ::llama_tokenize(ctx_llama, str2, add_bos, true);
|
||||||
return eval_tokens(ctx_llama, embd_inp, n_batch, n_past);
|
return eval_tokens(ctx_llama, embd_inp, n_batch, n_past);
|
||||||
}
|
}
|
||||||
|
|
||||||
void process_image(struct llava_context * ctx_llava, struct uhd_image_embed * image_embed_slices, gpt_params * params, int &n_past) {
|
static void process_eval_image_embed(struct llava_context * ctx_llava, const struct llava_image_embed * embeds, int n_batch, int * n_past, int idx) {
|
||||||
std::string system_prompt;
|
float * image_embed = (float *)malloc(clip_embd_nbytes(ctx_llava->ctx_clip));
|
||||||
|
std::memcpy(image_embed, embeds->embed + idx * clip_n_patches(ctx_llava->ctx_clip) * clip_n_mmproj_embd(ctx_llava->ctx_clip), clip_embd_nbytes(ctx_llava->ctx_clip));
|
||||||
|
|
||||||
|
auto slice_embed = (llava_image_embed*)malloc(sizeof(llava_image_embed));
|
||||||
|
slice_embed->embed = image_embed;
|
||||||
|
slice_embed->n_image_pos = clip_n_patches(ctx_llava->ctx_clip);
|
||||||
|
llava_eval_image_embed(ctx_llava->ctx_llama, slice_embed, n_batch, n_past);
|
||||||
|
llava_image_embed_free(slice_embed);
|
||||||
|
}
|
||||||
|
|
||||||
|
static void process_image(struct llava_context * ctx_llava, struct llava_image_embed * embeds, gpt_params * params, int &n_past) {
|
||||||
|
std::string system_prompt;
|
||||||
|
int idx = 0;
|
||||||
|
int num_image_embeds = embeds->n_image_pos / clip_n_patches(ctx_llava->ctx_clip);
|
||||||
system_prompt = "<|begin_of_text|><|start_header_id|>user<|end_header_id|>\n\n";
|
system_prompt = "<|begin_of_text|><|start_header_id|>user<|end_header_id|>\n\n";
|
||||||
LOG_TEE("%s: image token past: %d\n", __func__, n_past);
|
LOG_TEE("%s: image token past: %d\n", __func__, n_past);
|
||||||
eval_string(ctx_llava->ctx_llama, (system_prompt+"<image>").c_str(), params->n_batch, &n_past, false);
|
eval_string(ctx_llava->ctx_llama, (system_prompt+"<image>").c_str(), params->n_batch, &n_past, false);
|
||||||
llava_eval_image_embed(ctx_llava->ctx_llama, image_embed_slices->image_embeds[0][0], params->n_batch, &n_past);
|
process_eval_image_embed(ctx_llava, embeds, params->n_batch, &n_past, idx++);
|
||||||
eval_string(ctx_llava->ctx_llama, std::string("</image>").c_str(), params->n_batch, &n_past, false);
|
eval_string(ctx_llava->ctx_llama, std::string("</image>").c_str(), params->n_batch, &n_past, false);
|
||||||
if (image_embed_slices->image_embeds.size() > 1) {
|
if (num_image_embeds > 1) {
|
||||||
|
size_t num_image_embeds_col = clip_uhd_num_image_embeds_col(ctx_llava->ctx_clip);
|
||||||
eval_string(ctx_llava->ctx_llama, std::string("<slice>").c_str(), params->n_batch, &n_past, false);
|
eval_string(ctx_llava->ctx_llama, std::string("<slice>").c_str(), params->n_batch, &n_past, false);
|
||||||
for (size_t i = 1; i < image_embed_slices->image_embeds.size(); ++i) {
|
for (size_t i = 0; i < (num_image_embeds-1)/num_image_embeds_col; ++i) {
|
||||||
for (size_t j = 0; j < image_embed_slices->image_embeds[i].size(); ++j) {
|
for (size_t j = 0; j < num_image_embeds_col; ++j) {
|
||||||
eval_string(ctx_llava->ctx_llama, std::string("<image>").c_str(), params->n_batch, &n_past, false);
|
eval_string(ctx_llava->ctx_llama, std::string("<image>").c_str(), params->n_batch, &n_past, false);
|
||||||
llava_eval_image_embed(ctx_llava->ctx_llama, image_embed_slices->image_embeds[i][j], params->n_batch, &n_past);
|
process_eval_image_embed(ctx_llava, embeds, params->n_batch, &n_past, idx++);
|
||||||
eval_string(ctx_llava->ctx_llama, std::string("</image>").c_str(), params->n_batch, &n_past, false);
|
eval_string(ctx_llava->ctx_llama, std::string("</image>").c_str(), params->n_batch, &n_past, false);
|
||||||
if (j == image_embed_slices->image_embeds[i].size() - 1) {
|
if (j == num_image_embeds_col - 1) {
|
||||||
eval_string(ctx_llava->ctx_llama, std::string("\n").c_str(), params->n_batch, &n_past, false);
|
eval_string(ctx_llava->ctx_llama, std::string("\n").c_str(), params->n_batch, &n_past, false);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
eval_string(ctx_llava->ctx_llama, std::string("</slice>").c_str(), params->n_batch, &n_past, false);
|
eval_string(ctx_llava->ctx_llama, std::string("</slice>").c_str(), params->n_batch, &n_past, false);
|
||||||
|
|
||||||
}
|
}
|
||||||
LOG_TEE("%s: image token past: %d\n", __func__, n_past);
|
LOG_TEE("%s: image token past: %d\n", __func__, n_past);
|
||||||
}
|
}
|
||||||
|
|
||||||
const char * sample(struct llama_sampling_context * ctx_sampling,
|
static const char * sample(struct llama_sampling_context * ctx_sampling,
|
||||||
struct llama_context * ctx_llama,
|
struct llama_context * ctx_llama,
|
||||||
int * n_past) {
|
int * n_past) {
|
||||||
const llama_token id = llama_sampling_sample(ctx_sampling, ctx_llama, NULL);
|
const llama_token id = llama_sampling_sample(ctx_sampling, ctx_llama, NULL);
|
||||||
|
@ -171,9 +173,9 @@ const char * sample(struct llama_sampling_context * ctx_sampling,
|
||||||
}
|
}
|
||||||
|
|
||||||
static struct llava_context * minicpmv_init(gpt_params * params, const std::string & fname, int &n_past){
|
static struct llava_context * minicpmv_init(gpt_params * params, const std::string & fname, int &n_past){
|
||||||
auto embeds = minicpmv_image_embed(params, fname);
|
auto ctx_clip = clip_init_context(params);
|
||||||
auto image_embed_slices = embeds->image_embeds;
|
auto embeds = llava_image_embed_make_with_filename(ctx_clip, params->n_threads, fname.c_str());
|
||||||
if (!image_embed_slices[0][0]) {
|
if (!embeds) {
|
||||||
std::cerr << "error: failed to load image " << fname << ". Terminating\n\n";
|
std::cerr << "error: failed to load image " << fname << ". Terminating\n\n";
|
||||||
return NULL;
|
return NULL;
|
||||||
}
|
}
|
||||||
|
@ -191,7 +193,7 @@ static struct llava_context * minicpmv_init(gpt_params * params, const std::stri
|
||||||
}
|
}
|
||||||
const int64_t t_llava_init_start_us = ggml_time_us();
|
const int64_t t_llava_init_start_us = ggml_time_us();
|
||||||
auto ctx_llava = llava_init_context(params, model);
|
auto ctx_llava = llava_init_context(params, model);
|
||||||
|
ctx_llava->ctx_clip = ctx_clip;
|
||||||
const int64_t t_llava_init_end_us = ggml_time_us();
|
const int64_t t_llava_init_end_us = ggml_time_us();
|
||||||
float t_llava_init_ms = (t_llava_init_end_us - t_llava_init_start_us) / 1000.0;
|
float t_llava_init_ms = (t_llava_init_end_us - t_llava_init_start_us) / 1000.0;
|
||||||
LOG_TEE("\n%s: llava init in %8.2f ms.\n", __func__, t_llava_init_ms);
|
LOG_TEE("\n%s: llava init in %8.2f ms.\n", __func__, t_llava_init_ms);
|
||||||
|
@ -202,7 +204,7 @@ static struct llava_context * minicpmv_init(gpt_params * params, const std::stri
|
||||||
float t_process_image_ms = (t_process_image_end_us - t_process_image_start_us) / 1000.0;
|
float t_process_image_ms = (t_process_image_end_us - t_process_image_start_us) / 1000.0;
|
||||||
LOG_TEE("\n%s: llama process image in %8.2f ms.\n", __func__, t_process_image_ms);
|
LOG_TEE("\n%s: llama process image in %8.2f ms.\n", __func__, t_process_image_ms);
|
||||||
|
|
||||||
llava_image_embed_free_uhd(embeds);
|
llava_image_embed_free(embeds);
|
||||||
return ctx_llava;
|
return ctx_llava;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -220,7 +222,7 @@ static struct llama_sampling_context * llama_init(struct llava_context * ctx_lla
|
||||||
return ctx_sampling;
|
return ctx_sampling;
|
||||||
}
|
}
|
||||||
|
|
||||||
static const char * llama_loop(struct minicpmv_context * ctx_llava,struct llama_sampling_context * ctx_sampling, int &n_past){
|
static const char * llama_loop(struct llava_context * ctx_llava,struct llama_sampling_context * ctx_sampling, int &n_past){
|
||||||
|
|
||||||
const char * tmp = sample(ctx_sampling, ctx_llava->ctx_llama, &n_past);
|
const char * tmp = sample(ctx_sampling, ctx_llava->ctx_llama, &n_past);
|
||||||
return tmp;
|
return tmp;
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue