metal: use template to reduce size

Revert modifications on block_q4_0 and block_q4_1.
This commit is contained in:
lshzh-ww 2023-07-19 23:16:18 -04:00
parent 4088df14ca
commit f3f2e8eee3

View file

@ -8,14 +8,14 @@ using namespace metal;
#define QR4_0 2 #define QR4_0 2
typedef struct { typedef struct {
half d; // delta half d; // delta
uint16_t qs[QK4_0 / 4]; // nibbles / quants uint8_t qs[QK4_0 / 2]; // nibbles / quants
} block_q4_0; } block_q4_0;
#define QK4_1 32 #define QK4_1 32
typedef struct { typedef struct {
half d; // delta half d; // delta
half m; // min half m; // min
uint16_t qs[QK4_1 / 4]; // nibbles / quants uint8_t qs[QK4_1 / 2]; // nibbles / quants
} block_q4_1; } block_q4_1;
static void dequantize_row_q4_0(device const block_q4_0 * x, device float * y, int k) { static void dequantize_row_q4_0(device const block_q4_0 * x, device float * y, int k) {
@ -28,16 +28,12 @@ static void dequantize_row_q4_0(device const block_q4_0 * x, device float * y, i
for (int i = 0; i < nb; i++) { for (int i = 0; i < nb; i++) {
const half d = x[i].d; const half d = x[i].d;
for (int j = 0; j < qk/4; ++j) { for (int j = 0; j < qk/2; ++j) {
const int x0 = (x[i].qs[j] & 0x000F) - 8; const int x0 = (x[i].qs[j] & 0x0F) - 8;
const int x1 = ((x[i].qs[j] & 0x00F0) >> 4) - 8; const int x1 = (x[i].qs[j] >> 4) - 8;
const int x2 = ((x[i].qs[j] & 0x0F00) >> 8) - 8;
const int x3 = ((x[i].qs[j] & 0xF000) >> 12) - 8;
y[i*qk + 2 * j + 0 ] = x0*d; y[i*qk + j + 0 ] = x0*d;
y[i*qk + 2 * j + qk/2 ] = x1*d; y[i*qk + j + qk/2] = x1*d;
y[i*qk + 2 * j + 1 ] = x2*d;
y[i*qk + 2 * j + 1 + qk/2] = x3*d;
} }
} }
} }
@ -53,16 +49,12 @@ static void dequantize_row_q4_1(device const block_q4_1 * x, device float * y, i
const half d = x[i].d; const half d = x[i].d;
const half m = x[i].m; const half m = x[i].m;
for (int j = 0; j < qk/4; ++j) { for (int j = 0; j < qk/2; ++j) {
const int x0 = (x[i].qs[j] & 0x000F); const int x0 = (x[i].qs[j] & 0x0F);
const int x1 = ((x[i].qs[j] & 0x00F0) >> 4); const int x1 = (x[i].qs[j] >> 4);
const int x2 = ((x[i].qs[j] & 0x0F00) >> 8);
const int x3 = ((x[i].qs[j] & 0xF000) >> 12);
y[i*qk + 2 * j + 0 ] = x0*d + m; y[i*qk + j + 0 ] = x0*d + m;
y[i*qk + 2 * j + qk/2 ] = x1*d + m; y[i*qk + j + qk/2] = x1*d + m;
y[i*qk + 2 * j + 1 ] = x2*d + m;
y[i*qk + 2 * j + 1 + qk/2] = x3*d + m;
} }
} }
} }
@ -384,10 +376,91 @@ kernel void kernel_rms_norm(
} }
} }
// function for calculate inner product between a q4_0 block and 32 floats (yl), sumy is SUM(yl[i])
float block_q_n_dot_y(device const block_q4_0 * qb_curr, float sumy, thread float * yl) {
float d = qb_curr->d;
float4 acc = 0.f;
device uint16_t * qs = ((device uint16_t *)qb_curr + 1);
for (int i = 0; i < 16; i+=2) {
acc[0] += yl[i] * (qs[i / 2] & 0x000F);
acc[1] += yl[i + 16] * (qs[i / 2] & 0x00F0);
acc[2] += yl[i + 1] * (qs[i / 2] & 0x0F00);
acc[3] += yl[i + 17] * (qs[i / 2] & 0xF000);
}
return d * (sumy * -8.f + acc[0] + acc[1]/16.f + acc[2]/256.f + acc[3]/4096.f);
}
// function for calculate inner product between a q4_1 block and 32 floats (yl), sumy is SUM(yl[i])
float block_q_n_dot_y(device const block_q4_1 * qb_curr, float sumy, thread float * yl) {
float d = qb_curr->d;
float m = qb_curr->m;
float4 acc = 0.f;
device uint16_t * qs = ((device uint16_t *)qb_curr + 2);
for (int i = 0; i < 16; i+=2) {
acc[0] += yl[i] * (qs[i / 2] & 0x000F);
acc[1] += yl[i + 16] * (qs[i / 2] & 0x00F0);
acc[2] += yl[i + 1] * (qs[i / 2] & 0x0F00);
acc[3] += yl[i + 17] * (qs[i / 2] & 0xF000);
}
return d * (acc[0] + acc[1]/16.f + acc[2]/256.f + acc[3]/4096.f) + sumy * m;
}
// putting them in the kernel cause a significant performance penalty // putting them in the kernel cause a significant performance penalty
#define N_DST 4 // each SIMD group works on 4 rows #define N_DST 4 // each SIMD group works on 4 rows
#define N_SIMDGROUP 2 // number of SIMD groups in a thread group #define N_SIMDGROUP 2 // number of SIMD groups in a thread group
#define N_SIMDWIDTH 32 // assuming SIMD group size is 32 #define N_SIMDWIDTH 32 // assuming SIMD group size is 32
template<typename block_q_type>
void mul_vec_q_n_f32(device const void * src0, device const float * src1, device float * dst,
int64_t ne00, int64_t ne10, int64_t ne0, int64_t ne01,
uint2 tgpig, uint tiisg, uint sgitg) {
const int nb = ne00/QK4_0;
const int r0 = tgpig.x;
const int r1 = tgpig.y;
device const block_q_type * x = (device const block_q_type *) src0 + (r0 * N_SIMDGROUP + sgitg) * N_DST * nb;
device const float * y = (device const float *) src1 + r1*ne10;
float4 y_curr[8]; // src1 vector cache
float sumf[N_DST]={0.f}, all_sum;
thread float * yl=(thread float *)y_curr;
// each thread in a SIMD group deals with 1 block.
for (int column = 0; column < nb / N_SIMDWIDTH; column++) {
float sumy = 0;
for (int i = 0; i < QK4_0 / 4; i++) {
y_curr[i] = *((device float4 *)(y + N_SIMDWIDTH * (tiisg + column * QK4_0)) + i);
sumy += y_curr[i][0] + y_curr[i][1] + y_curr[i][2] + y_curr[i][3];
}
for (int row = 0; row < N_DST; row++) {
sumf[row] += block_q_n_dot_y(x+(tiisg + row * nb + column * N_SIMDWIDTH), sumy, yl);
}
}
// from now loads two rows every time and 16 blocks per row
int ir = tiisg / (N_SIMDWIDTH / 2);
int ib = tiisg % (N_SIMDWIDTH / 2);
for (int ind = 0; ind < (nb % N_SIMDWIDTH + N_SIMDWIDTH / 2 - 1)/(N_SIMDWIDTH / 2); ind++) {
int nb_start = (nb / N_SIMDWIDTH) * N_SIMDWIDTH + ind * (N_SIMDWIDTH / 2); //where the left blocks start
float sumy = 0;
for (int i = 0; i < QK4_0 / 4; i++) {
y_curr[i] = *((device float4 *)(y + (nb_start + ib) * QK4_0) + i);
sumy += y_curr[i][0] + y_curr[i][1] + y_curr[i][2] + y_curr[i][3];
}
for (int row = 0; row < N_DST; row+=2) {
if (nb_start + ib < nb) {
sumf[row + ir] += block_q_n_dot_y(x + (nb_start + ib + (row + ir) * nb), sumy, yl);
}
}
}
for (int row = 0; row < N_DST; ++row) {
all_sum = simd_sum(sumf[row]);
if (tiisg == 0 && ((r0 * N_SIMDGROUP + sgitg) * N_DST + row) < ne01) {
dst[r1*ne0 + (r0 * N_SIMDGROUP + sgitg) * N_DST + row] = all_sum;
}
}
}
kernel void kernel_mul_mat_q4_0_f32( kernel void kernel_mul_mat_q4_0_f32(
device const void * src0, device const void * src0,
device const float * src1, device const float * src1,
@ -399,89 +472,7 @@ kernel void kernel_mul_mat_q4_0_f32(
uint2 tgpig[[threadgroup_position_in_grid]], uint2 tgpig[[threadgroup_position_in_grid]],
uint tiisg[[thread_index_in_simdgroup]], uint tiisg[[thread_index_in_simdgroup]],
uint sgitg[[simdgroup_index_in_threadgroup]]) { uint sgitg[[simdgroup_index_in_threadgroup]]) {
const int nb = ne00/QK4_0; mul_vec_q_n_f32<block_q4_0>(src0,src1,dst,ne00,ne10,ne0,ne01,tgpig,tiisg,sgitg);
const int r0 = tgpig.x;
const int r1 = tgpig.y;
device const block_q4_0 * x = (device const block_q4_0 *) src0 + (r0 * N_SIMDGROUP + sgitg) * N_DST * nb;
device const float * y = (device const float *) src1 + r1*ne10;
block_q4_0 qb_curr, qb_next;
float4 y_curr[8]; // src1 vector cache
float sumf[N_DST]={0.f}, all_sum;
thread float * yl=(thread float *)y_curr;
// bootstrap
qb_curr = x[tiisg];
// each thread in a SIMD group deals with 1 block.
for (int column = 0; column < nb / N_SIMDWIDTH; column++) {
float sumy = 0;
for (int i = 0; i < QK4_0 / 4; i++) {
y_curr[i] = *((device float4 *)(y + N_SIMDWIDTH * (tiisg + column * QK4_0) + 4 * i));
sumy += y_curr[i][0] + y_curr[i][1] + y_curr[i][2] + y_curr[i][3];
}
sumy *= (-8.f);
// we don't right shift packed 4-bit weights, so we have to devide y by 16/256/4096 to conpensate this.
for (int i = 0; i < 32; i++) {
yl[i] *= pow(1.f/16.f, 2 * (i % 2) + i / 16);
}
for (int row = 0; row < N_DST; row++) {
// prefetch next x block
qb_next = x[tiisg + ((row + 1) % N_DST) * nb + (column + ((row + 1) / N_DST)) * N_SIMDWIDTH];
// calculate
float d = qb_curr.d;
float acc = sumy;
for (int i = 0; i < 16; i+=2) {
acc += yl[i] * (qb_curr.qs[i / 2] & 0x000F) + yl[i + 16] * (qb_curr.qs[i / 2] & 0x00F0);
acc += yl[i + 1] * (qb_curr.qs[i / 2] & 0x0F00) + yl[i + 17] * (qb_curr.qs[i / 2] & 0xF000);
}
sumf[row] += d * acc;
qb_curr = qb_next;
}
}
if (nb % N_SIMDWIDTH == 0) {
for (int row = 0; row < N_DST; ++row) {
all_sum = simd_sum(sumf[row]);
if (tiisg == 0 && ((r0 * N_SIMDGROUP + sgitg) * N_DST + row) < ne01) {
dst[r1*ne0 + (r0 * N_SIMDGROUP + sgitg) * N_DST + row] = all_sum;
}
}
} else {
float sumy = 0;
for (int i = 0; i < QK4_0 / 4; i++) {
y_curr[i] = *((device float4 *)(y + N_SIMDWIDTH * (tiisg + (nb / N_SIMDWIDTH) * QK4_0) + 4 * i));
sumy += y_curr[i][0] + y_curr[i][1] + y_curr[i][2] + y_curr[i][3];
}
sumy *= (-8.f);
for (int i = 0; i < 32; i++) {
yl[i] *= pow(1.f/16.f, 2 * (i % 2) + i / 16);
}
for (int row = 0; row < N_DST; row++) {
// prefetch next x block
qb_next = x[tiisg + ((row + 1) % N_DST) * nb + (nb / N_SIMDWIDTH + ((row + 1) / N_DST)) * N_SIMDWIDTH];
// calculate
float d = qb_curr.d;
float acc = sumy;
for (int i = 0; i < 16; i+=2) {
acc += yl[i] * (qb_curr.qs[i / 2] & 0x000F) + yl[i + 16] * (qb_curr.qs[i / 2] & 0x00F0);
acc += yl[i + 1] * (qb_curr.qs[i / 2] & 0x0F00) + yl[i + 17] * (qb_curr.qs[i / 2] & 0xF000);
}
if (tiisg < nb % N_SIMDWIDTH) {
sumf[row] += d * acc;
}
qb_curr = qb_next;
all_sum = simd_sum(sumf[row]);
if (tiisg == 0 && ((r0 * N_SIMDGROUP + sgitg) * N_DST + row) < ne01) {
dst[r1*ne0 + (r0 * N_SIMDGROUP + sgitg) * N_DST + row] = all_sum;
}
}
}
} }
kernel void kernel_mul_mat_q4_1_f32( kernel void kernel_mul_mat_q4_1_f32(
@ -495,89 +486,7 @@ kernel void kernel_mul_mat_q4_1_f32(
uint2 tgpig[[threadgroup_position_in_grid]], uint2 tgpig[[threadgroup_position_in_grid]],
uint tiisg[[thread_index_in_simdgroup]], uint tiisg[[thread_index_in_simdgroup]],
uint sgitg[[simdgroup_index_in_threadgroup]]) { uint sgitg[[simdgroup_index_in_threadgroup]]) {
const int nb = ne00/QK4_0; mul_vec_q_n_f32<block_q4_1>(src0,src1,dst,ne00,ne10,ne0,ne01,tgpig,tiisg,sgitg);
const int r0 = tgpig.x;
const int r1 = tgpig.y;
device const block_q4_1 * x = (device const block_q4_1 *) src0 + (r0 * N_SIMDGROUP + sgitg) * N_DST * nb;
device const float * y = (device const float *) src1 + r1*ne10;
block_q4_1 qb_curr, qb_next;
float4 y_curr[8]; // src1 vector cache
float sumf[N_DST]={0.f}, all_sum;
thread float * yl=(thread float *)y_curr;
// bootstrap
qb_curr = x[tiisg];
// each thread in a SIMD group deals with 1 block.
for (int column = 0; column < nb / N_SIMDWIDTH; column++) {
float sumy = 0;
for (int i = 0; i < QK4_0 / 4; i++) {
y_curr[i] = *((device float4 *)(y + N_SIMDWIDTH * (tiisg + column * QK4_0) + 4 * i));
sumy += y_curr[i][0] + y_curr[i][1] + y_curr[i][2] + y_curr[i][3];
}
// we don't right shift packed 4-bit weights, so we have to devide y by 16/256/4096 to conpensate this.
for (int i = 0; i < 32; i++) {
yl[i] *= pow(1.f/16.f, 2 * (i % 2) + i / 16);
}
for (int row = 0; row < N_DST; row++) {
// prefetch next x block
qb_next = x[tiisg + ((row + 1) % N_DST) * nb + (column + ((row + 1) / N_DST)) * N_SIMDWIDTH];
// calculate
const float d = qb_curr.d;
const float m = qb_curr.m;
float acc = 0.f;
for (int i = 0; i < 16; i+=2) {
acc += yl[i] * (qb_curr.qs[i / 2] & 0x000F) + yl[i + 16] * (qb_curr.qs[i / 2] & 0x00F0);
acc += yl[i + 1] * (qb_curr.qs[i / 2] & 0x0F00) + yl[i + 17] * (qb_curr.qs[i / 2] & 0xF000);
}
sumf[row] += d * acc + m * sumy;
qb_curr = qb_next;
}
}
if (nb % N_SIMDWIDTH == 0) {
for (int row = 0; row < N_DST; ++row) {
all_sum = simd_sum(sumf[row]);
if (tiisg == 0 && ((r0 * N_SIMDGROUP + sgitg) * N_DST + row) < ne01) {
dst[r1*ne0 + (r0 * N_SIMDGROUP + sgitg) * N_DST + row] = all_sum;
}
}
} else {
float sumy = 0;
for (int i = 0; i < QK4_0 / 4; i++) {
y_curr[i] = *((device float4 *)(y + N_SIMDWIDTH * (tiisg + (nb / N_SIMDWIDTH) * QK4_0) + 4 * i));
sumy += y_curr[i][0] + y_curr[i][1] + y_curr[i][2] + y_curr[i][3];
}
for (int i = 0; i < 32; i++) {
yl[i] *= pow(1.f/16.f, 2 * (i % 2) + i / 16);
}
for (int row = 0; row < N_DST; row++) {
// prefetch next x block
qb_next = x[tiisg + ((row + 1) % N_DST) * nb + (nb / N_SIMDWIDTH + ((row + 1) / N_DST)) * N_SIMDWIDTH];
// calculate
const float d = qb_curr.d;
const float m = qb_curr.m;
float acc = 0.f;
for (int i = 0; i < 16; i+=2) {
acc += yl[i] * (qb_curr.qs[i / 2] & 0x000F) + yl[i + 16] * (qb_curr.qs[i / 2] & 0x00F0);
acc += yl[i + 1] * (qb_curr.qs[i / 2] & 0x0F00) + yl[i + 17] * (qb_curr.qs[i / 2] & 0xF000);
}
if (tiisg < nb % N_SIMDWIDTH) {
sumf[row] += d * acc + m * sumy;
}
qb_curr = qb_next;
all_sum = simd_sum(sumf[row]);
if (tiisg == 0 && ((r0 * N_SIMDGROUP + sgitg) * N_DST + row) < ne01) {
dst[r1*ne0 + (r0 * N_SIMDGROUP + sgitg) * N_DST + row] = all_sum;
}
}
}
} }
kernel void kernel_mul_mat_f16_f32( kernel void kernel_mul_mat_f16_f32(