first crack at lamma2.c model conversion

This commit is contained in:
Aniket 2023-07-24 22:29:30 -04:00
parent 41c674161f
commit f4519830ed
2 changed files with 582 additions and 2 deletions

View file

@ -1,5 +1,5 @@
# Define the default target now so that it is always the first target # Define the default target now so that it is always the first target
BUILD_TARGETS = main quantize quantize-stats perplexity embedding vdot train-text-from-scratch simple server embd-input-test BUILD_TARGETS = main quantize quantize-stats perplexity embedding vdot train-text-from-scratch convert-llama2c simple server embd-input-test
# Binaries only useful for tests # Binaries only useful for tests
TEST_TARGETS = tests/test-double-float tests/test-grad0 tests/test-opt tests/test-quantize-fns tests/test-quantize-perf tests/test-sampling tests/test-tokenizer-0 TEST_TARGETS = tests/test-double-float tests/test-grad0 tests/test-opt tests/test-quantize-fns tests/test-quantize-perf tests/test-sampling tests/test-tokenizer-0
@ -330,7 +330,7 @@ libllama.so: llama.o ggml.o $(OBJS)
$(CXX) $(CXXFLAGS) -shared -fPIC -o $@ $^ $(LDFLAGS) $(CXX) $(CXXFLAGS) -shared -fPIC -o $@ $^ $(LDFLAGS)
clean: clean:
rm -vf *.o *.so *.dll main quantize quantize-stats perplexity embedding benchmark-matmult save-load-state server simple vdot train-text-from-scratch embd-input-test build-info.h $(TEST_TARGETS) rm -vf *.o *.so *.dll main quantize quantize-stats perplexity embedding benchmark-matmult save-load-state server simple vdot train-text-from-scratch convert-llama2c embd-input-test build-info.h $(TEST_TARGETS)
# #
# Examples # Examples
@ -373,6 +373,10 @@ embd-input-test: $(LIB_PRE)embdinput$(DSO_EXT) examples/embd-input/embd-input-te
train-text-from-scratch: examples/train-text-from-scratch/train-text-from-scratch.cpp build-info.h ggml.o llama.o $(OBJS) train-text-from-scratch: examples/train-text-from-scratch/train-text-from-scratch.cpp build-info.h ggml.o llama.o $(OBJS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS) $(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
convert-llama2c: examples/convert-llama2c/convert-lamma-2c.cpp build-info.h ggml.o llama.o $(OBJS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
build-info.h: $(wildcard .git/index) scripts/build-info.sh build-info.h: $(wildcard .git/index) scripts/build-info.sh
@sh scripts/build-info.sh > $@.tmp @sh scripts/build-info.sh > $@.tmp
@if ! cmp -s $@.tmp $@; then \ @if ! cmp -s $@.tmp $@; then \

View file

@ -0,0 +1,576 @@
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include <math.h>
#include <string.h>
#include <sys/time.h>
#include <cstdlib>
#include <cstdio>
#include <stdexcept>
#include <cstring>
#include <string>
#include "llama.h"
#include "ggml.h"
typedef struct {
int dim; // transformer dimension
int hidden_dim; // for ffn layers
int n_layers; // number of layers
int n_heads; // number of query heads
int n_kv_heads; // number of key/value heads (can be < query heads because of multiquery)
int vocab_size; // vocabulary size, usually 256 (byte-level)
int seq_len; // max sequence length
} Config;
typedef struct {
// token embedding table
float* token_embedding_table; // (vocab_size, dim)
// weights for rmsnorms
float* rms_att_weight; // (layer, dim) rmsnorm weights
float* rms_ffn_weight; // (layer, dim)
// weights for matmuls
float* wq; // (layer, dim, dim)
float* wk; // (layer, dim, dim)
float* wv; // (layer, dim, dim)
float* wo; // (layer, dim, dim)
// weights for ffn
float* w1; // (layer, hidden_dim, dim)
float* w2; // (layer, dim, hidden_dim)
float* w3; // (layer, hidden_dim, dim)
// final rmsnorm
float* rms_final_weight; // (dim,)
// freq_cis for RoPE relatively positional embeddings
float* freq_cis_real; // (seq_len, dim/2)
float* freq_cis_imag; // (seq_len, dim/2)
} TransformerWeights;
#ifdef __GNUC__
#ifdef __MINGW32__
__attribute__((format(gnu_printf, 1, 2)))
#else
__attribute__((format(printf, 1, 2)))
#endif
#endif
static std::string format(const char * fmt, ...) {
va_list ap, ap2;
va_start(ap, fmt);
va_copy(ap2, ap);
int size = vsnprintf(NULL, 0, fmt, ap);
GGML_ASSERT(size >= 0 && size < INT_MAX);
std::vector<char> buf(size + 1);
int size2 = vsnprintf(buf.data(), size + 1, fmt, ap2);
GGML_ASSERT(size2 == size);
va_end(ap2);
va_end(ap);
return std::string(buf.data(), size);
}
struct llama_file {
// use FILE * so we don't have to re-open the file to mmap
FILE * fp;
size_t size;
llama_file(const char * fname, const char * mode) {
fp = std::fopen(fname, mode);
if (fp == NULL) {
size = 0;
} else {
seek(0, SEEK_END);
size = tell();
seek(0, SEEK_SET);
}
}
size_t tell() const {
#ifdef _WIN32
__int64 ret = _ftelli64(fp);
#else
long ret = std::ftell(fp);
#endif
GGML_ASSERT(ret != -1); // this really shouldn't fail
return (size_t) ret;
}
void seek(size_t offset, int whence) {
#ifdef _WIN32
int ret = _fseeki64(fp, (__int64) offset, whence);
#else
int ret = std::fseek(fp, (long) offset, whence);
#endif
GGML_ASSERT(ret == 0); // same
}
void read_raw(void * ptr, size_t size) {
if (size == 0) {
return;
}
errno = 0;
std::size_t ret = std::fread(ptr, size, 1, fp);
if (ferror(fp)) {
throw std::runtime_error(format("read error: %s", strerror(errno)));
}
if (ret != 1) {
throw std::runtime_error(std::string("unexpectedly reached end of file"));
}
}
std::uint32_t read_u32() {
std::uint32_t ret;
read_raw(&ret, sizeof(ret));
return ret;
}
std::string read_string(std::uint32_t len) {
std::vector<char> chars(len);
read_raw(chars.data(), len);
return std::string(chars.data(), len);
}
void write_raw(const void * ptr, size_t size) {
if (size == 0) {
return;
}
errno = 0;
size_t ret = std::fwrite(ptr, size, 1, fp);
if (ret != 1) {
throw std::runtime_error(format("write error: %s", strerror(errno)));
}
}
void write_u32(std::uint32_t val) {
write_raw(&val, sizeof(val));
}
~llama_file() {
if (fp) {
std::fclose(fp);
}
}
};
struct my_llama_hparams {
uint32_t n_vocab = 32000;
uint32_t n_ctx = 512; // this is provided as user input?
uint32_t n_embd = 4096;
uint32_t n_mult = 4;
uint32_t n_head = 32;
uint32_t n_layer = 32;
uint32_t n_rot = 64;
bool operator!=(const my_llama_hparams& other) const {
return memcmp(this, &other, sizeof(my_llama_hparams));
}
};
struct my_llama_layer {
// normalization
struct ggml_tensor * attention_norm;
// attention
struct ggml_tensor * wq;
struct ggml_tensor * wk;
struct ggml_tensor * wv;
struct ggml_tensor * wo;
// normalization
struct ggml_tensor * ffn_norm;
// ff
struct ggml_tensor * w1;
struct ggml_tensor * w2;
struct ggml_tensor * w3;
};
struct my_llama_model {
struct ggml_context * ctx = NULL;
my_llama_hparams hparams;
struct ggml_tensor * tok_embeddings;
struct ggml_tensor * norm;
struct ggml_tensor * output;
std::vector<my_llama_layer> layers;
uint32_t train_its = 0;
uint32_t train_samples = 0;
uint32_t train_tokens = 0;
};
struct llama_vocab {
using id = int32_t;
using token = std::string;
struct token_score {
token tok;
float score;
};
std::unordered_map<token, id> token_to_id;
std::vector<token_score> id_to_token;
};
struct train_params {
const char * fn_vocab_model;
const char * fn_train_data;
const char * fn_checkpoint_in;
const char * fn_checkpoint_out;
const char * fn_model_out;
uint32_t seed;
int n_ctx;
int n_embd;
int n_mult;
int n_head;
int n_layer;
int n_rotmax;
int n_threads;
int n_batch;
int n_examples;
int n_predict;
int print_info_interval;
int print_details_interval;
bool samples_start_after_nl;
bool use_adam;
bool use_flash;
bool use_scratch;
// only adam
int warmup;
int cos_decay_steps;
float cos_decay_restart;
float cos_decay_alpha;
int lbfgs_n_iter;
int adam_n_iter;
float adam_alpha;
float adam_decay;
int mem_model_gb;
int mem_compute_gb;
int mem_compute0_gb;
int mem_compute1_gb;
};
struct train_params get_default_train_params() {
struct train_params params;
params.fn_vocab_model = "ggml-vic7b-uncensored-q4_0.bin";
params.fn_train_data = "shakespeare.txt";
params.fn_checkpoint_in = "checkpoint.bin";
params.fn_checkpoint_out = "checkpoint.bin";
params.fn_model_out = "ggml-checkpoint-f32.bin";
params.seed = -1;
params.n_ctx = 128;
params.n_embd = 256;
params.n_mult = 256;
params.n_head = 8;
params.n_layer = 16;
params.n_rotmax = 64;
params.n_threads = 6;
params.n_batch = 8;
params.n_examples = 8;
params.n_predict = 1024;
params.print_info_interval = 1;
params.print_details_interval = 2;
params.samples_start_after_nl = false;
params.use_adam = true;
params.use_flash = true;
params.use_scratch = true;
// only adam
params.warmup = 100;
params.cos_decay_steps = 1000;
params.cos_decay_restart = 1.1f;
params.cos_decay_alpha = 0.0f;
params.lbfgs_n_iter = 16;
params.adam_n_iter = 16;
params.adam_alpha = 1e-3f;
params.adam_decay = 1e-3f;
params.mem_model_gb = 2;
params.mem_compute_gb = 24;
params.mem_compute0_gb = 8;
params.mem_compute1_gb = 2;
return params;
}
void write_tensor(struct llama_file * file, struct ggml_tensor * tensor) {
if (tensor == NULL) {
file->write_u32(0);
file->write_u32(0);
file->write_u32(GGML_TYPE_F32);
file->seek((0-file->tell()) & 31, SEEK_CUR);
return;
}
const char * name = ggml_get_name(tensor);
uint32_t name_len = strlen(name);
uint32_t nd = tensor->n_dims;
uint32_t ne[4] = { (uint32_t)tensor->ne[0],
(uint32_t)tensor->ne[1],
(uint32_t)tensor->ne[2],
(uint32_t)tensor->ne[3] };
file->write_u32(nd);
file->write_u32(name_len);
file->write_u32(tensor->type);
file->write_raw(ne, sizeof(ne[0]) * nd);
file->write_raw(name, name_len);
file->seek((0-file->tell()) & 31, SEEK_CUR);
file->write_raw(tensor->data, ggml_nbytes(tensor));
}
void save_as_llama_model(struct llama_vocab * vocab, struct my_llama_model * model, const char * filename) {
struct llama_file file(filename, "wb");
if (file.fp == NULL) {
return;
}
// write_magic
file.write_u32(LLAMA_FILE_MAGIC); // magic
file.write_u32(LLAMA_FILE_VERSION); // version
// write_hparams
file.write_u32(model->hparams.n_vocab);
file.write_u32(model->hparams.n_embd);
file.write_u32(model->hparams.n_mult);
file.write_u32(model->hparams.n_head);
file.write_u32(model->hparams.n_layer);
file.write_u32(model->hparams.n_rot);
file.write_u32(LLAMA_FTYPE_ALL_F32);
// write_vocab
uint32_t n_vocab = model->hparams.n_vocab;
for (uint32_t i = 0; i < n_vocab; i++) {
const auto & token_score = vocab->id_to_token.at(i);
file.write_u32((uint32_t) token_score.tok.size());
file.write_raw(token_score.tok.data(), token_score.tok.size());
file.write_raw(&token_score.score, sizeof(token_score.score));
}
// write tensors
write_tensor(&file, model->tok_embeddings);
write_tensor(&file, model->norm);
write_tensor(&file, model->output);
for (uint32_t i = 0; i < model->hparams.n_layer; ++i) {
auto & layer = model->layers[i];
write_tensor(&file, layer.attention_norm);
write_tensor(&file, layer.wq);
write_tensor(&file, layer.wk);
write_tensor(&file, layer.wv);
write_tensor(&file, layer.wo);
write_tensor(&file, layer.ffn_norm);
write_tensor(&file, layer.w1);
write_tensor(&file, layer.w2);
write_tensor(&file, layer.w3);
}
}
void print_config(Config* p){
printf("----- Configs extracted from the header -------\n");
printf("config.dim %d\n", p->dim);
printf("config.hidden_dim %d\n", p->hidden_dim);
printf("config.n_layers %d\n", p->n_layers);
printf("config.n_heads %d\n", p->n_heads );
printf("config.n_kv_heads %d\n", p->n_kv_heads);
printf("config.vocab_size %d\n", p->vocab_size);
printf("config.seq_len %d\n", p->seq_len);
printf("----------------------------------------------\n");
}
void print_sample_weights(TransformerWeights *w){
printf("----- Quick print of first of the weight vales of all the variables\n");
printf("%f\n", w->token_embedding_table[0]);
printf("%f\n", w->rms_att_weight[0]);
printf("%f\n", w->rms_ffn_weight[0]);
printf("%f\n", w->wq[0]);
printf("%f\n", w->wk[0]);
printf("%f\n", w->wv[0]);
printf("%f\n", w->wo[0]);
printf("%f\n", w->w1[0]);
printf("%f\n", w->w2[0]);
printf("%f\n", w->w3[0]);
printf("%f\n", w->rms_att_weight[0]);
printf("%f\n", w->freq_cis_real[0]);
printf("%f\n", w->freq_cis_imag[0]);
printf("------------------------------------------------------------------\n");
}
void malloc_weights(TransformerWeights* w, Config* p) {
// we calloc instead of malloc to keep valgrind happy
w->token_embedding_table = new float[p->vocab_size * p->dim]();//calloc(p->vocab_size * p->dim, sizeof(float));
w->rms_att_weight = new float[p->n_layers * p->dim](); //calloc(p->n_layers * p->dim, sizeof(float));
w->rms_ffn_weight = new float[p->n_layers * p->dim](); //calloc(p->n_layers * p->dim, sizeof(float));
w->wq = new float[p->n_layers * p->dim * p->dim](); //calloc(p->n_layers * p->dim * p->dim, sizeof(float));
w->wk = new float[p->n_layers * p->dim * p->dim](); //calloc(p->n_layers * p->dim * p->dim, sizeof(float));
w->wv = new float[p->n_layers * p->dim * p->dim](); //calloc(p->n_layers * p->dim * p->dim, sizeof(float));
w->wo = new float[p->n_layers * p->dim * p->dim](); //calloc(p->n_layers * p->dim * p->dim, sizeof(float));
w->w1 = new float[p->n_layers * p->hidden_dim * p->dim](); //calloc(p->n_layers * p->hidden_dim * p->dim, sizeof(float));
w->w2 = new float[p->n_layers * p->hidden_dim * p->dim](); //calloc(p->n_layers * p->dim * p->hidden_dim, sizeof(float));
w->w3 = new float[p->n_layers * p->hidden_dim * p->dim](); //calloc(p->n_layers * p->hidden_dim * p->dim, sizeof(float));
w->rms_final_weight = new float[p->dim](); //calloc(p->dim, sizeof(float));
w->freq_cis_real = new float[p->seq_len * p->dim / 2](); //calloc(p->seq_len * p->dim / 2, sizeof(float));
w->freq_cis_imag = new float[p->seq_len * p->dim / 2](); //calloc(p->seq_len * p->dim / 2, sizeof(float));
// ensure all mallocs went fine
// if (!w->token_embedding_table || !w->rms_att_weight || !w->rms_ffn_weight
// || !w->wq || !w->wk || !w->wv || !w->wo || !w->w1 || !w->w2 || !w->w3 ||
// !w->rms_final_weight || !w->freq_cis_real || !w->freq_cis_imag) {
// printf("malloc failed!\n");
// exit(1);
// }
}
void free_weights(TransformerWeights* w) {
free(w->token_embedding_table);
free(w->rms_att_weight);
free(w->rms_ffn_weight);
free(w->wq);
free(w->wk);
free(w->wv);
free(w->wo);
free(w->w1);
free(w->w2);
free(w->w3);
free(w->rms_final_weight);
free(w->freq_cis_real);
free(w->freq_cis_imag);
}
int checkpoint_init_weights(TransformerWeights *w, Config* p, FILE* f) {
if (fread(w->token_embedding_table, sizeof(float), p->vocab_size * p->dim, f) != static_cast<size_t>(p->vocab_size * p->dim)) return 1;
if (fread(w->rms_att_weight, sizeof(float), p->n_layers * p->dim, f) != static_cast<size_t>(p->n_layers * p->dim)) return 1;
if (fread(w->wq, sizeof(float), p->n_layers * p->dim * p->dim, f) != static_cast<size_t>(p->n_layers * p->dim * p->dim)) return 1;
if (fread(w->wk, sizeof(float), p->n_layers * p->dim * p->dim, f) != static_cast<size_t>(p->n_layers * p->dim * p->dim)) return 1;
if (fread(w->wv, sizeof(float), p->n_layers * p->dim * p->dim, f) != static_cast<size_t>(p->n_layers * p->dim * p->dim)) return 1;
if (fread(w->wo, sizeof(float), p->n_layers * p->dim * p->dim, f) != static_cast<size_t>(p->n_layers * p->dim * p->dim)) return 1;
if (fread(w->rms_ffn_weight, sizeof(float), p->n_layers * p->dim, f) != static_cast<size_t>(p->n_layers * p->dim)) return 1;
if (fread(w->w1, sizeof(float), p->n_layers * p->dim * p->hidden_dim, f) != static_cast<size_t>(p->n_layers * p->dim * p->hidden_dim)) return 1;
if (fread(w->w2, sizeof(float), p->n_layers * p->hidden_dim * p->dim, f) != static_cast<size_t>(p->n_layers * p->hidden_dim * p->dim)) return 1;
if (fread(w->w3, sizeof(float), p->n_layers * p->dim * p->hidden_dim, f) != static_cast<size_t>(p->n_layers * p->dim * p->hidden_dim)) return 1;
if (fread(w->rms_final_weight, sizeof(float), p->dim, f) != static_cast<size_t>(p->dim)) return 1;
int head_size = p->dim / p->n_heads;
if (fread(w->freq_cis_real, sizeof(float), p->seq_len * head_size / 2, f) != static_cast<size_t>(p->seq_len * head_size / 2)) return 1;
if (fread(w->freq_cis_imag, sizeof(float), p->seq_len * head_size / 2, f) != static_cast<size_t>(p->seq_len * head_size / 2)) return 1;
return 0;
}
int main(int argc, char *argv[]) {
// poor man's C argparse
char *checkpoint = NULL;
char *tokenizer = NULL;
// float temperature = 0.9f;
// 'checkpoint' is necessary arg
if (argc < 3) {
printf("Usage: %s <checkpoint_file> <tokenizer_file>\n", argv[0]);
return 1;
}
checkpoint = argv[1];
tokenizer = argv[2];
// if (argc < 3) {
// printf("Usage: %s <checkpoint_file>\n", argv[0]);
// return 1;
// }
// temperature is optional
// if (argc >= 3) {
// temperature = atof(argv[2]);
// }
// seed is optional
// if (argc >= 4) {
// unsigned int seed = atoi(argv[3]);
// srand(seed);
// } else {
// time_t current_time;
// time(&current_time);
// srand((unsigned int)current_time);
// }
// read in the Karpathy model.bin file
Config config; // Configs are stashed in the bin file as header
TransformerWeights weights;
{
FILE *file = fopen(checkpoint, "rb");
if (!file) {
printf("Unable to open the checkpoint file %s!\n", checkpoint);
return 1;
}
else{
printf("model file opened for reading...\n");
}
// read in the config header
if(fread(&config, sizeof(Config), 1, file) != 1) { return 1; }
printf("config file read..\n");
print_config(&config);
// read in the Transformer weights
malloc_weights(&weights, &config);
printf("reading the opened model file...\n");
if(checkpoint_init_weights(&weights, &config, file)) { return 1; }
print_sample_weights(&weights);
printf("Closing model file..bye...\n");
fclose(file);
}
// read in the tokenizer.bin file
char** vocab_ak = (char**)malloc(config.vocab_size * sizeof(char*));
{
FILE *file = fopen(tokenizer, "rb");
if (!file) {
printf("Unable to open the tokenizer file tokenizer.bin! Run "
"python tokenizer.py to convert tokenizer.model -> tokenizer.bin\n");
return 1;
}
int len;
printf("karpathy vocab size = %d\n", config.vocab_size);
for (int i = 0; i < config.vocab_size; i++) {
if(fread(&len, sizeof(int), 1, file) != 1) { return 1; }
vocab_ak[i] = (char *)malloc(len + 1);
if(fread(vocab_ak[i], len, 1, file) != 1) { return 1; }
vocab_ak[i][len] = '\0'; // add the string terminating token
printf("len = %d, %s\n", len, vocab_ak[i]);
}
fclose(file);
}
//TODO:-------------------------------------------------------------------------------
struct my_llama_model model;
struct train_params params = get_default_train_params();
struct llama_context_params llama_params = llama_context_default_params();
struct llama_model * lmodel = llama_load_model_from_file(params.fn_vocab_model, llama_params);
struct llama_context * lctx = llama_new_context_with_model(lmodel, llama_params);
struct llama_vocab vocab;
{
std::vector<const char *> strings;
std::vector<float> scores;
int n_vocab = llama_n_vocab(lctx);
strings.resize(n_vocab, NULL);
scores.resize(n_vocab, 0);
n_vocab = llama_get_vocab(lctx, strings.data(), scores.data(), n_vocab);
GGML_ASSERT(n_vocab == llama_n_vocab(lctx));
vocab.id_to_token.resize(n_vocab);
for (int i=0; i<n_vocab; ++i) {
std::string tok = std::string(strings[i]);
float score = scores[i];
vocab.id_to_token[i].tok = tok;
vocab.id_to_token[i].score = score;
vocab.token_to_id.emplace(tok, i);
}
}
save_as_llama_model(&vocab, &model, params.fn_model_out);
printf("\n");
free_weights(&weights);
free(vocab_ak);
return 0;
}