Fix other than 4 quants

This commit is contained in:
Henrik Forstén 2023-12-27 15:13:23 +02:00
parent d6313d8385
commit f478136773

View file

@ -1349,7 +1349,7 @@ static void quantize_q_k_1(const float * x, int bits, int scale_bits, int block_
int max_group = (1 << scale_bits) - 1;
// Increasing passes would decrease RMS error by miniscule amount with
// drawback of taking a lot more time.
// drawback of taking more time.
for(int pass = 0; pass < 2; pass++) {
float inv_scale = max_scale == 0.0f ? 0.0f : max_group/max_scale;
float inv_min = max_min == 0.0f ? 0.0f : max_group/max_min;
@ -1399,7 +1399,7 @@ static void quantize_q_k_1(const float * x, int bits, int scale_bits, int block_
float block_d = max_scale/max_group;
float block_dmin = max_min/max_group;
float q_fit[QK_K];
float q_m[QK_K];
float q_m[QK_K/block_size];
// Quantize elements and populate arrays needed for least squares fit.
for (int j = 0; j < QK_K/block_size; ++j) {
@ -1573,102 +1573,15 @@ void quantize_row_q2_K_reference(const float * restrict x, block_q2_K * restrict
const int nb = k / QK_K;
uint8_t L[QK_K];
float mins[QK_K/16];
float scales[QK_K/16];
const float q4scale = 15.f;
for (int i = 0; i < nb; i++) {
float max_scale = 0; // as we are deducting the min, scales are always positive
float max_min = FLT_MAX;
int all_positive = 1;
for (int j = 0; j < QK_K; j++) {
if (x[j] < 0.0f) {
all_positive = 0;
max_min = -FLT_MAX;
break;
}
}
redo_pos2:
for (int j = 0; j < QK_K/16; j++) {
uint8_t q[QK_K/16];
quantize_1(&x[16*j], 16, 2, q, &mins[j], &scales[j]);
mins[j] = -mins[j];
if ((!all_positive) && (mins[j] < 0)) {
mins[j] = 0.0f;
quantize_1_0min(&x[16*j], 16, 2, q, &scales[j]);
}
if (scales[j] > max_scale) {
max_scale = scales[j];
}
if (!all_positive && mins[j] > max_min) {
max_min = mins[j];
} else if (all_positive && mins[j] < max_min) {
max_min = mins[j];
}
}
int all_zero_lm = 1;
if (max_scale != 0) {
float iscale = q4scale/max_scale;
for (int j = 0; j < QK_K/16; ++j) {
int l = MAX(0, MIN(63, nearest_int(iscale*scales[j])));
if (l != 0) all_zero_lm = 0;
y[i].scales[j] = l;
}
y[i].d = GGML_FP32_TO_FP16(max_scale/q4scale);
} else {
for (int j = 0; j < QK_K/16; ++j) y[i].scales[j] = 0;
y[i].d = GGML_FP32_TO_FP16(0.f);
}
if (max_min != 0) {
float iscale = q4scale/max_min;
for (int j = 0; j < QK_K/16; ++j) {
int l = MAX(0, MIN(63, nearest_int(iscale*mins[j])));
y[i].scales[j] |= (l << 4);
}
y[i].dmin = GGML_FP32_TO_FP16(max_min/q4scale);
} else {
y[i].dmin = GGML_FP32_TO_FP16(0.f);
}
if (all_zero_lm && !all_positive) {
all_positive = 1;
//printf("**********red_pos2\n");
goto redo_pos2;
} else if (all_zero_lm) {
//printf("all_zero_lm, all_pos %d, max_scale %f, max_min %f\n", all_positive, max_scale, max_min);
}
float q_fit[QK_K];
float q_m[QK_K/16];
int block_scales[QK_K/16];
int block_mins[QK_K/16];
quantize_q_k_1(x, 2, 4, 16, block_scales, block_mins, L, &y[i].d, &y[i].dmin);
for (int j = 0; j < QK_K/16; ++j) {
uint8_t sc = y[i].scales[j] & 0xF;
uint8_t m = y[i].scales[j] >> 4;
const float d = GGML_FP16_TO_FP32(y[i].d) * sc;
const float dm = GGML_FP16_TO_FP32(y[i].dmin) * m;
q_m[j] = (y[i].scales[j] >> 4);
for (int ii = 0; ii < 16; ++ii) {
int l = 0;
if (d) {
l = nearest_int((x[16*j + ii] + dm)/d);
l = MAX(0, MIN(3, l));
y[i].scales[j] = (block_mins[j] << 4) | (block_scales[j]);
}
L[16*j + ii] = l;
q_fit[16*j + ii] = sc * l;
}
}
float min;
float d;
lstsq_q_k(q_fit, x, q_m, 16, &min, &d);
y[i].d = GGML_FP32_TO_FP16(d);
y[i].dmin = GGML_FP32_TO_FP16(min);
#if QK_K == 256
for (int j = 0; j < QK_K; j += 128) {
@ -2110,53 +2023,13 @@ void quantize_row_q5_K_reference(const float * restrict x, block_q5_K * restrict
for (int i = 0; i < nb; i++) {
#if QK_K == 256
int block_scales[QK_K/32];
int block_mins[QK_K/32];
quantize_q_k_1(x, 5, 6, 32, block_scales, block_mins, L, &y[i].d, &y[i].dmin);
float max_scale = 0; // as we are deducting the min, scales are always positive
float max_min = 0;
int all_positive = 1;
for (int j = 0; j < QK_K; j++) {
if (x[j] < 0.0f) {
all_positive = 0;
break;
}
}
redo_pos:
for (int j = 0; j < QK_K/32; j++) {
uint8_t q[QK_K/32];
quantize_1(&x[32*j], 32, 5, q, &mins[j], &scales[j]);
mins[j] = -mins[j];
if ((!all_positive) && (mins[j] < 0)) {
mins[j] = 0.0f;
quantize_1_0min(&x[32*j], 32, 5, q, &scales[j]);
}
if (j == 0 || scales[j] > max_scale) {
max_scale = scales[j];
}
if (j == 0) {
max_min = mins[j];
}
if (!all_positive && mins[j] > max_min) {
max_min = mins[j];
} else if (all_positive && mins[j] < max_min) {
max_min = mins[j];
}
}
float inv_scale = max_scale == 0.0f ? 0.f : 63.f/max_scale;
float inv_min = max_min == 0.0f ? 0.f : 63.f/max_min;
int all_zero_lm = 1;
for (int j = 0; j < QK_K/32; ++j) {
uint8_t ls = nearest_int(inv_scale*scales[j]);
uint8_t lm = nearest_int(inv_min*mins[j]);
ls = MIN(63, ls);
lm = MIN(63, lm);
if (lm != 0) all_zero_lm = 0;
int ls = block_scales[j];
int lm = block_mins[j];
if (j < 4) {
y[i].scales[j] = ls;
y[i].scales[j+4] = lm;
@ -2167,44 +2040,6 @@ redo_pos:
}
}
if (all_positive) {
//printf("all_pos: %f %f %d\n", max_scale, max_min, all_zero_lm);
}
if (all_zero_lm && !all_positive) {
all_positive = 1;
//printf("**********red_pos\n");
goto redo_pos;
}
y[i].d = GGML_FP32_TO_FP16(max_scale/63.f);
y[i].dmin = GGML_FP32_TO_FP16(max_min/63.f);
float q_fit[QK_K];
float q_m[QK_K/32];
uint8_t sc, m;
for (int j = 0; j < QK_K/32; ++j) {
get_scale_min_k4(j, y[i].scales, &sc, &m);
const float d = GGML_FP16_TO_FP32(y[i].d) * sc;
const float dm = GGML_FP16_TO_FP32(y[i].dmin) * m;
q_m[j] = m;
for (int ii = 0; ii < 32; ++ii) {
int l = 0;
if (d) {
l = nearest_int((x[32*j + ii] + dm)/d);
l = MAX(0, MIN(31, l));
}
L[32*j + ii] = l;
q_fit[32*j + ii] = sc * l;
}
}
float min;
float d;
lstsq_q_k(q_fit, x, q_m, 32, &min, &d);
y[i].d = GGML_FP32_TO_FP16(d);
y[i].dmin = GGML_FP32_TO_FP16(min);
uint8_t * restrict qh = y[i].qh;
uint8_t * restrict ql = y[i].qs;
memset(qh, 0, QK_K/8);