Merge upstream changes, fix conflicts
This commit is contained in:
commit
f4ec9a06ea
61 changed files with 7087 additions and 3319 deletions
25
.github/workflows/build.yml
vendored
25
.github/workflows/build.yml
vendored
|
@ -145,6 +145,28 @@ jobs:
|
|||
cd build
|
||||
ctest -L main --verbose
|
||||
|
||||
ubuntu-22-cmake-vulkan:
|
||||
runs-on: ubuntu-22.04
|
||||
|
||||
steps:
|
||||
- name: Clone
|
||||
id: checkout
|
||||
uses: actions/checkout@v3
|
||||
|
||||
- name: Dependencies
|
||||
id: depends
|
||||
run: |
|
||||
sudo apt-get update
|
||||
sudo apt-get install build-essential libvulkan-dev
|
||||
|
||||
- name: Build
|
||||
id: cmake_build
|
||||
run: |
|
||||
mkdir build
|
||||
cd build
|
||||
cmake -DLLAMA_VULKAN=ON ..
|
||||
cmake --build . --config Release -j $(nproc)
|
||||
|
||||
ubuntu-22-cmake-sycl:
|
||||
runs-on: ubuntu-22.04
|
||||
|
||||
|
@ -669,8 +691,7 @@ jobs:
|
|||
run: |
|
||||
cd examples/llama.android
|
||||
|
||||
# Skip armeabi-v7a for now (https://github.com/llvm/llvm-project/issues/65820).
|
||||
./gradlew build --no-daemon -Pskip-armeabi-v7a
|
||||
./gradlew build --no-daemon
|
||||
|
||||
# freeBSD-latest:
|
||||
# runs-on: macos-12
|
||||
|
|
|
@ -3,12 +3,14 @@ name: Python check requirements.txt
|
|||
on:
|
||||
push:
|
||||
paths:
|
||||
- '.github/workflows/python-check-requirements.yml'
|
||||
- 'scripts/check-requirements.sh'
|
||||
- 'convert*.py'
|
||||
- 'requirements.txt'
|
||||
- 'requirements/*.txt'
|
||||
pull_request:
|
||||
paths:
|
||||
- '.github/workflows/python-check-requirements.yml'
|
||||
- 'scripts/check-requirements.sh'
|
||||
- 'convert*.py'
|
||||
- 'requirements.txt'
|
||||
|
@ -26,4 +28,4 @@ jobs:
|
|||
with:
|
||||
python-version: "3.11"
|
||||
- name: Run check-requirements.sh script
|
||||
run: bash scripts/check-requirements.sh nocleanup
|
||||
run: bash scripts/check-requirements.sh
|
||||
|
|
78
.github/workflows/server.yml
vendored
78
.github/workflows/server.yml
vendored
|
@ -6,11 +6,10 @@ on:
|
|||
push:
|
||||
branches:
|
||||
- master
|
||||
- test/server-add-ci-test # FIXME remove
|
||||
paths: ['.github/workflows/**', '**/CMakeLists.txt', '**/Makefile', '**/*.h', '**/*.hpp', '**/*.c', '**/*.cpp', '**/*.cu', '**/*.swift', '**/*.m', 'examples/server/**.*']
|
||||
paths: ['.github/workflows/server.yml', '**/CMakeLists.txt', '**/Makefile', '**/*.h', '**/*.hpp', '**/*.c', '**/*.cpp', '**/*.cu', '**/*.swift', '**/*.m', 'examples/server/tests/**.*']
|
||||
pull_request:
|
||||
types: [opened, synchronize, reopened]
|
||||
paths: ['**/CMakeLists.txt', '**/Makefile', '**/*.h', '**/*.hpp', '**/*.c', '**/*.cpp', '**/*.cu', '**/*.swift', '**/*.m', 'examples/server/**.*']
|
||||
paths: ['.github/workflows/server.yml', '**/CMakeLists.txt', '**/Makefile', '**/*.h', '**/*.hpp', '**/*.c', '**/*.cpp', '**/*.cu', '**/*.swift', '**/*.m', 'examples/server/tests/**.*']
|
||||
|
||||
jobs:
|
||||
server:
|
||||
|
@ -18,45 +17,21 @@ jobs:
|
|||
|
||||
strategy:
|
||||
matrix:
|
||||
build: [noavx, avx2, avx, avx512, cublas, clblast, openblas, kompute, vulkan]
|
||||
sanitizer: [ADDRESS, THREAD, UNDEFINED]
|
||||
build_type: [Debug, Release]
|
||||
include:
|
||||
- build: 'noavx'
|
||||
defines: '-DLLAMA_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DLLAMA_AVX=OFF -DLLAMA_AVX2=OFF -DLLAMA_FMA=OFF'
|
||||
image: ubuntu:latest
|
||||
- build: 'avx2'
|
||||
defines: '-DLLAMA_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON'
|
||||
image: ubuntu:latest
|
||||
- build: 'avx'
|
||||
defines: '-DLLAMA_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DLLAMA_AVX2=OFF'
|
||||
image: ubuntu:latest
|
||||
- build: 'avx512'
|
||||
defines: '-DLLAMA_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DLLAMA_AVX512=ON'
|
||||
image: ubuntu:latest
|
||||
experimental: true
|
||||
- build: 'cublas'
|
||||
defines: '-DLLAMA_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DLLAMA_CUBLAS=ON'
|
||||
image: nvidia/cuda:12.3.1-devel-ubuntu22.04
|
||||
arch_not_available: true # require nvidia docker engine
|
||||
- build: 'clblast'
|
||||
defines: '-DLLAMA_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DLLAMA_CLBLAST=ON'
|
||||
image: ubuntu:latest
|
||||
arch_not_available: true
|
||||
- build: 'openblas'
|
||||
defines: '-DLLAMA_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DLLAMA_BLAS=ON -DLLAMA_BLAS_VENDOR=OpenBLAS'
|
||||
image: ubuntu:latest
|
||||
- build: 'kompute'
|
||||
defines: '-DLLAMA_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DLLAMA_KOMPUTE=ON -DKOMPUTE_OPT_DISABLE_VULKAN_VERSION_CHECK=ON'
|
||||
image: ubuntu:latest
|
||||
arch_not_available: true
|
||||
- build: 'vulkan'
|
||||
defines: '-DLLAMA_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DLLAMA_VULKAN=ON'
|
||||
image: ubuntu:latest
|
||||
arch_not_available: true
|
||||
- build_type: Release
|
||||
sanitizer: ""
|
||||
exclude:
|
||||
- build_type: Release
|
||||
sanitizer: ADDRESS
|
||||
- build_type: Release
|
||||
sanitizer: THREAD
|
||||
- build_type: Release
|
||||
sanitizer: UNDEFINED
|
||||
|
||||
container:
|
||||
image: ${{ matrix.image }}
|
||||
image: ubuntu:latest
|
||||
ports:
|
||||
- 8888
|
||||
options: --cpus 4
|
||||
|
@ -72,40 +47,22 @@ jobs:
|
|||
apt-get update
|
||||
apt-get -y install \
|
||||
build-essential \
|
||||
pkg-config \
|
||||
git \
|
||||
cmake \
|
||||
python3-pip \
|
||||
wget \
|
||||
psmisc
|
||||
|
||||
- name: Download CLBlast
|
||||
id: get_clblast
|
||||
if: ${{ matrix.build == 'clblast' }}
|
||||
run: |
|
||||
apt install -y libclblast-dev
|
||||
|
||||
- name: Download OpenBLAS
|
||||
id: get_openblas
|
||||
if: ${{ matrix.build == 'openblas' }}
|
||||
run: |
|
||||
apt-get -y install libopenblas-dev
|
||||
|
||||
- name: Install Vulkan SDK
|
||||
id: get_vulkan
|
||||
if: ${{ matrix.build == 'kompute' || matrix.build == 'vulkan' }}
|
||||
run: |
|
||||
wget -qO- https://packages.lunarg.com/lunarg-signing-key-pub.asc | tee /etc/apt/trusted.gpg.d/lunarg.asc
|
||||
wget -qO /etc/apt/sources.list.d/lunarg-vulkan-jammy.list http://packages.lunarg.com/vulkan/lunarg-vulkan-jammy.list
|
||||
apt-get update
|
||||
apt-get -y install vulkan-sdk
|
||||
|
||||
- name: Build
|
||||
id: cmake_build
|
||||
run: |
|
||||
mkdir build
|
||||
cd build
|
||||
cmake .. -DLLAMA_SANITIZE_${{ matrix.sanitizer }}=ON -DCMAKE_BUILD_TYPE=${{ matrix.build_type }} ${{ matrix.defines }}
|
||||
cmake .. \
|
||||
-DLLAMA_NATIVE=OFF \
|
||||
-DLLAMA_BUILD_SERVER=ON \
|
||||
-DCMAKE_BUILD_TYPE=${{ matrix.build_type }} \
|
||||
-DLLAMA_SANITIZE_${{ matrix.sanitizer }}=ON ;
|
||||
cmake --build . --config ${{ matrix.build_type }} -j $(nproc) --target server
|
||||
|
||||
- name: Tests dependencies
|
||||
|
@ -121,7 +78,6 @@ jobs:
|
|||
|
||||
- name: Tests
|
||||
id: server_integration_test
|
||||
continue-on-error: ${{ matrix.experimental || matrix.arch_not_available }}
|
||||
run: |
|
||||
cd examples/server/tests
|
||||
PORT=8888 ./tests.sh
|
||||
|
|
11
Makefile
11
Makefile
|
@ -381,8 +381,13 @@ ifdef LLAMA_BLIS
|
|||
endif # LLAMA_BLIS
|
||||
|
||||
ifdef LLAMA_CUBLAS
|
||||
MK_CPPFLAGS += -DGGML_USE_CUBLAS -I/usr/local/cuda/include -I/opt/cuda/include -I$(CUDA_PATH)/targets/x86_64-linux/include -I/usr/local/cuda/targets/aarch64-linux/include
|
||||
MK_LDFLAGS += -lcuda -lcublas -lculibos -lcudart -lcublasLt -lpthread -ldl -lrt -L/usr/local/cuda/lib64 -L/opt/cuda/lib64 -L$(CUDA_PATH)/targets/x86_64-linux/lib -L/usr/local/cuda/targets/aarch64-linux/lib -L/usr/lib/wsl/lib
|
||||
ifneq ('', '$(wildcard /opt/cuda)')
|
||||
CUDA_PATH ?= /opt/cuda
|
||||
else
|
||||
CUDA_PATH ?= /usr/local/cuda
|
||||
endif
|
||||
MK_CPPFLAGS += -DGGML_USE_CUBLAS -I$(CUDA_PATH)/include -I$(CUDA_PATH)/targets/$(UNAME_M)-linux/include
|
||||
MK_LDFLAGS += -lcuda -lcublas -lculibos -lcudart -lcublasLt -lpthread -ldl -lrt -L$(CUDA_PATH)/lib64 -L/usr/lib64 -L$(CUDA_PATH)/targets/$(UNAME_M)-linux/lib -L/usr/lib/wsl/lib
|
||||
OBJS += ggml-cuda.o
|
||||
MK_NVCCFLAGS += -use_fast_math
|
||||
ifdef LLAMA_FATAL_WARNINGS
|
||||
|
@ -597,7 +602,7 @@ $(info I CC: $(shell $(CC) --version | head -n 1))
|
|||
$(info I CXX: $(shell $(CXX) --version | head -n 1))
|
||||
ifdef LLAMA_CUBLAS
|
||||
$(info I NVCC: $(shell $(NVCC) --version | tail -n 1))
|
||||
CUDA_VERSION := $(shell nvcc --version | grep -oP 'release (\K[0-9]+\.[0-9])')
|
||||
CUDA_VERSION := $(shell $(NVCC) --version | grep -oP 'release (\K[0-9]+\.[0-9])')
|
||||
ifeq ($(shell awk -v "v=$(CUDA_VERSION)" 'BEGIN { print (v < 11.7) }'),1)
|
||||
ifndef CUDA_DOCKER_ARCH
|
||||
ifndef CUDA_POWER_ARCH
|
||||
|
|
|
@ -1,6 +1,7 @@
|
|||
# llama.cpp for SYCL
|
||||
|
||||
- [Background](#background)
|
||||
- [News](#news)
|
||||
- [OS](#os)
|
||||
- [Intel GPU](#intel-gpu)
|
||||
- [Docker](#docker)
|
||||
|
@ -25,6 +26,21 @@ The llama.cpp for SYCL is used to support Intel GPUs.
|
|||
|
||||
For Intel CPU, recommend to use llama.cpp for X86 (Intel MKL building).
|
||||
|
||||
## News
|
||||
|
||||
- 2024.3
|
||||
- Support multiple cards: **--split-mode**: [none|layer]; not support [row], it's on developing.
|
||||
- Support to assign main GPU by **--main-gpu**, replace $GGML_SYCL_DEVICE.
|
||||
- Support detecting all GPUs with level-zero and same top **Max compute units**.
|
||||
- Support OPs
|
||||
- hardsigmoid
|
||||
- hardswish
|
||||
- pool2d
|
||||
|
||||
- 2024.1
|
||||
- Create SYCL backend for Intel GPU.
|
||||
- Support Windows build
|
||||
|
||||
## OS
|
||||
|
||||
|OS|Status|Verified|
|
||||
|
@ -449,6 +465,7 @@ Using device **0** (Intel(R) Arc(TM) A770 Graphics) as main device
|
|||
|-|-|-|
|
||||
|GGML_SYCL_DEVICE|0 (default) or 1|Set the device id used. Check the device ids by default running output|
|
||||
|GGML_SYCL_DEBUG|0 (default) or 1|Enable log function by macro: GGML_SYCL_DEBUG|
|
||||
|ZES_ENABLE_SYSMAN| 0 (default) or 1|Support to get free memory of GPU by sycl::aspect::ext_intel_free_memory.<br>Recommended to use when --split-mode = layer|
|
||||
|
||||
## Known Issue
|
||||
|
||||
|
@ -458,6 +475,10 @@ Using device **0** (Intel(R) Arc(TM) A770 Graphics) as main device
|
|||
|
||||
Solution: add **--no-mmap** or **--mmap 0**.
|
||||
|
||||
- Split-mode: [row] is not supported
|
||||
|
||||
It's on developing.
|
||||
|
||||
## Q&A
|
||||
|
||||
- Error: `error while loading shared libraries: libsycl.so.7: cannot open shared object file: No such file or directory`.
|
||||
|
|
11
README.md
11
README.md
|
@ -10,6 +10,7 @@ Inference of Meta's [LLaMA](https://arxiv.org/abs/2302.13971) model (and others)
|
|||
|
||||
### Hot topics
|
||||
|
||||
- The `api_like_OAI.py` script has been removed - use `server` instead ([#5766](https://github.com/ggerganov/llama.cpp/issues/5766#issuecomment-1969037761))
|
||||
- Support for chat templates: [Wiki (contributions welcome)](https://github.com/ggerganov/llama.cpp/wiki/Templates-supported-by-llama_chat_apply_template)
|
||||
- Support for Gemma models: https://github.com/ggerganov/llama.cpp/pull/5631
|
||||
- Non-linear quantization IQ4_NL: https://github.com/ggerganov/llama.cpp/pull/5590
|
||||
|
@ -107,13 +108,16 @@ Typically finetunes of the base models below are supported as well.
|
|||
|
||||
**Multimodal models:**
|
||||
|
||||
- [x] [LLaVA 1.5 models](https://huggingface.co/collections/liuhaotian/llava-15-653aac15d994e992e2677a7e)
|
||||
- [x] [LLaVA 1.5 models](https://huggingface.co/collections/liuhaotian/llava-15-653aac15d994e992e2677a7e), [LLaVA 1.6 models](https://huggingface.co/collections/liuhaotian/llava-16-65b9e40155f60fd046a5ccf2)
|
||||
- [x] [BakLLaVA](https://huggingface.co/models?search=SkunkworksAI/Bakllava)
|
||||
- [x] [Obsidian](https://huggingface.co/NousResearch/Obsidian-3B-V0.5)
|
||||
- [x] [ShareGPT4V](https://huggingface.co/models?search=Lin-Chen/ShareGPT4V)
|
||||
- [x] [MobileVLM 1.7B/3B models](https://huggingface.co/models?search=mobileVLM)
|
||||
- [x] [Yi-VL](https://huggingface.co/models?search=Yi-VL)
|
||||
|
||||
**HTTP server**
|
||||
|
||||
[llama.cpp web server](./examples/server) is a lightweight [OpenAI API](https://github.com/openai/openai-openapi) compatible HTTP server that can be used to serve local models and easily connect them to existing clients.
|
||||
|
||||
**Bindings:**
|
||||
|
||||
|
@ -156,6 +160,7 @@ Unless otherwise noted these projects are open-source with permissive licensing:
|
|||
- [withcatai/catai](https://github.com/withcatai/catai)
|
||||
- [Mobile-Artificial-Intelligence/maid](https://github.com/Mobile-Artificial-Intelligence/maid) (MIT)
|
||||
- [Msty](https://msty.app) (proprietary)
|
||||
- [LLMFarm](https://github.com/guinmoon/LLMFarm?tab=readme-ov-file) (MIT)
|
||||
|
||||
---
|
||||
|
||||
|
@ -781,7 +786,7 @@ And after 4.45 hours, you will have the final perplexity.
|
|||
### Interactive mode
|
||||
|
||||
If you want a more ChatGPT-like experience, you can run in interactive mode by passing `-i` as a parameter.
|
||||
In this mode, you can always interrupt generation by pressing Ctrl+C and entering one or more lines of text, which will be converted into tokens and appended to the current context. You can also specify a *reverse prompt* with the parameter `-r "reverse prompt string"`. This will result in user input being prompted whenever the exact tokens of the reverse prompt string are encountered in the generation. A typical use is to use a prompt that makes LLaMa emulate a chat between multiple users, say Alice and Bob, and pass `-r "Alice:"`.
|
||||
In this mode, you can always interrupt generation by pressing Ctrl+C and entering one or more lines of text, which will be converted into tokens and appended to the current context. You can also specify a *reverse prompt* with the parameter `-r "reverse prompt string"`. This will result in user input being prompted whenever the exact tokens of the reverse prompt string are encountered in the generation. A typical use is to use a prompt that makes LLaMA emulate a chat between multiple users, say Alice and Bob, and pass `-r "Alice:"`.
|
||||
|
||||
Here is an example of a few-shot interaction, invoked with the command
|
||||
|
||||
|
@ -845,7 +850,7 @@ Sample run:
|
|||
```
|
||||
== Running in interactive mode. ==
|
||||
- Press Ctrl+C to interject at any time.
|
||||
- Press Return to return control to LLaMa.
|
||||
- Press Return to return control to LLaMA.
|
||||
- If you want to submit another line, end your input in '\'.
|
||||
|
||||
Below is an instruction that describes a task. Write a response that appropriately completes the request.
|
||||
|
|
116
awq-py/README.md
116
awq-py/README.md
|
@ -1,116 +0,0 @@
|
|||
# AWQ: Activation-aware Weight Quantization for LLM - version apply to llamacpp
|
||||
[[Paper](https://arxiv.org/abs/2306.00978)][[Original Repo](https://github.com/mit-han-lab/llm-awq)][[Easy-to-use Repo](https://github.com/casper-hansen/AutoAWQ)]
|
||||
|
||||
**Supported models:**
|
||||
|
||||
- [X] LLaMA
|
||||
- [x] LLaMA 2
|
||||
- [X] MPT
|
||||
- [X] Mistral AI v0.1
|
||||
- [ ] Bloom
|
||||
- [ ] Mixtral MoE
|
||||
|
||||
**TODO:**
|
||||
- [x] Update version work with both MPT and MPT-AWQ model
|
||||
- [ ] Add OPT model
|
||||
- [ ] Add Bloom model
|
||||
- [ ] Add Mixtral MoE
|
||||
- [ ] Support w3, w2
|
||||
|
||||
|
||||
## Contents
|
||||
|
||||
- [Install](##Install)
|
||||
- [Convert](##Convert)
|
||||
- [Quantize](##Quantize)
|
||||
- [Test](##Test)
|
||||
- [Benchmark](##Benchmark)
|
||||
- [Results](##Results)
|
||||
|
||||
## Install
|
||||
Install requirements
|
||||
```bash
|
||||
pip install -r requirements.txt
|
||||
```
|
||||
Get the pre-computed AWQ search results for multiple model families, including LLaMA, LLaMA2, MPT, OPT
|
||||
```bash
|
||||
git clone https://huggingface.co/datasets/mit-han-lab/awq-model-zoo awq_cache
|
||||
```
|
||||
|
||||
## Convert
|
||||
Example for llama model
|
||||
```bash
|
||||
# For llama7b and llama2 models
|
||||
python convert.py models/llama-7b/ --awq-path awq_cache/llama-7b-w4-g128.pt --outfile models/llama_7b_fp16.gguf
|
||||
# For mistral and mpt models
|
||||
python convert-hf-to-gguf.py models/mpt-7b/ --awq-path awq_cache/mpt-7b-w4-g128.pt --outfile models/mpt_7b_fp16.gguf
|
||||
```
|
||||
|
||||
## Quantize
|
||||
```bash
|
||||
# We only benchmark and confirm the results on q4_0, q4_1, and q2_k types.
|
||||
./quantize models/llama_7b_fp16.gguf models/llama_7b_q4_0.gguf q4_0
|
||||
```
|
||||
|
||||
## Test
|
||||
```bash
|
||||
# For all models.
|
||||
./build/bin/main -m models/llama_7b_q4_0.gguf -n 128 --prompt "Once upon a time"
|
||||
```
|
||||
|
||||
## Benchmark
|
||||
The perplexity measurements in table above are done against the `wikitext2` test dataset (https://paperswithcode.com/dataset/wikitext-2), with context length of 512.
|
||||
```bash
|
||||
# For llama and llama2, and mistral models.
|
||||
./perplexity -m models/llama_7b_q4_0.gguf -f datasets/wikitext-2-raw/wiki.test.raw
|
||||
```
|
||||
|
||||
## Results
|
||||
Results are run on OpenBLAS (CPU) and CuBLAS (GPU) for fair comparison
|
||||
We use three types of llamacpp quantization methods to work with our version, including q4_0, q4_1, and q2_k
|
||||
|
||||
### Llama 7B (Build with OpenBLAS)
|
||||
|
||||
| Model | Measure | F16 | Q4_0 | Q4_1 | Q2_K |
|
||||
|-----------:|--------------|-------:|-------:|-------:|-------:|
|
||||
|Llama 7B | perplexity | 5.9066 | 6.1214 | 6.0643 | 6.5808 |
|
||||
|Llama 7B | file size | 12.9G | 3.5G | 3.9G | 2.7G |
|
||||
|Llama 7B | bits/weight | 16.0 | 4.5 | 5.0 | 2.6 |
|
||||
|AWQ-LLama 7B| perplexity | 5.9175 | 6.0252 | 5.9987 | 6.3692 |
|
||||
|AWQ-LLama 7B| file size | 12.9G | 3.5G | 3.9G | 2.7G |
|
||||
|AWQ-LLama 7B| bits/weight | 16.0 | 4.5 | 5.0 | 2.6 |
|
||||
|
||||
|
||||
### Llama2 7B (Build with CuBLAS)
|
||||
|
||||
| Model | Measure | F16 | Q4_0 | Q4_1 | Q2_K |
|
||||
|------------:|--------------|-------:|-------:|-------:|-------:|
|
||||
|Llama2 7B | perplexity | 5.8664 | 6.0260 | 6.0656 | 6.4496 |
|
||||
|Llama2 7B | file size | 12.9G | 3.5G | 3.9G | 2.7G |
|
||||
|Llama2 7B | bits/weight | 16.0 | 4.5 | 5.0 | 2.6 |
|
||||
|AWQ-LLama2 7B| perplexity | 5.8801 | 6.0054 | 5.9849 | 6.3650 |
|
||||
|AWQ-LLama2 7B| file size | 12.9G | 3.5G | 3.9G | 2.7G |
|
||||
|AWQ-LLama2 7B| bits/weight | 16.0 | 4.5 | 5.0 | 2.6 |
|
||||
|
||||
|
||||
### Mistral 7B v0.1 (Build with CuBLAS)
|
||||
|
||||
| Model | Measure | F16 | Q4_0 | Q4_1 | Q2_K |
|
||||
|-------------:|--------------|-------:|-------:|-------:|-------:|
|
||||
|Mistral 7B | perplexity | 5.6931 | 5.8202 | 5.8268 | 6.1645 |
|
||||
|Mistral 7B | file size | 14.5G | 4.1G | 4.5G | 3.1G |
|
||||
|Mistral 7B | bits/weight | 16.0 | 4.5 | 5.0 | 2.6 |
|
||||
|AWQ-Mistral 7B| perplexity | 5.6934 | 5.8020 | 5.7691 | 6.0426 |
|
||||
|AWQ-Mistral 7B| file size | 14.5G | 4.1G | 4.5G | 3.1G |
|
||||
|AWQ-Mistral 7B| bits/weight | 16.0 | 4.5 | 5.0 | 2.6 |
|
||||
|
||||
### MPT 7B (Build with OpenBLAS)
|
||||
|
||||
| Model | Measure | F16 | Q4_0 | Q4_1 | Q2_K |
|
||||
|---------:|--------------|-------:|-------:|-------:|--------:|
|
||||
|MPT 7B | perplexity | 8.4369 | 8.7956 | 8.6265 | 11.4913 |
|
||||
|MPT 7B | file size | 13.7G | 3.9G | 4.3G | 2.8G |
|
||||
|MPT 7B | bits/weight | 16.0 | 4.5 | 5.0 | 2.6 |
|
||||
|AWQ-MPT 7B| perplexity | 8.4944 | 8.7053 | 8.6750 | 10.2873|
|
||||
|AWQ-MPT 7B| file size | 13.7G | 3.9G | 4.3G | 2.8G |
|
||||
|AWQ-MPT 7B| bits/weight | 16.0 | 4.5 | 5.0 | 2.6 |
|
|
@ -1,254 +0,0 @@
|
|||
"""
|
||||
Implements the AWQ for llama.cpp use cases.
|
||||
Original paper: https://arxiv.org/abs/2306.00978
|
||||
|
||||
This code is based on versions of the AWQ implementation found in the following repositories:
|
||||
* https://github.com/mit-han-lab/llm-awq
|
||||
* https://github.com/casper-hansen/AutoAWQ
|
||||
"""
|
||||
|
||||
import os
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
from transformers import AutoModelForCausalLM, AutoConfig
|
||||
from transformers.models.bloom.modeling_bloom import BloomGelu
|
||||
from transformers.models.llama.modeling_llama import LlamaRMSNorm
|
||||
from transformers.activations import GELUActivation
|
||||
|
||||
|
||||
class ScaledActivation(nn.Module):
|
||||
"""
|
||||
ScaledActivation module wraps an existing activation function and applies a
|
||||
scale factor to its output.
|
||||
|
||||
Args:
|
||||
module (nn.Module): The activation function to be scaled.
|
||||
scales (torch.Tensor): A tensor of size (num_features,) containing the initial
|
||||
scale factors for each feature.
|
||||
|
||||
Returns:
|
||||
torch.Tensor: The scaled output of the activation function.
|
||||
"""
|
||||
|
||||
def __init__(self, module, scales):
|
||||
super().__init__()
|
||||
self.act = module
|
||||
self.scales = nn.Parameter(scales.data)
|
||||
|
||||
def forward(self, x):
|
||||
return self.act(x) / self.scales.view(1, 1, -1).to(x.device)
|
||||
|
||||
|
||||
def set_op_by_name(layer, name, new_module):
|
||||
"""
|
||||
Set the new module for given module's name.
|
||||
|
||||
Args:
|
||||
layer (nn.Module): The layer in which to replace the submodule.
|
||||
name (str): The path to the submodule to be replaced, using dot notation
|
||||
to access nested modules.
|
||||
new_module (nn.Module): The new module to replace the existing one.
|
||||
"""
|
||||
levels = name.split(".")
|
||||
if len(levels) > 1:
|
||||
mod_ = layer
|
||||
for l_idx in range(len(levels) - 1):
|
||||
if levels[l_idx].isdigit():
|
||||
mod_ = mod_[int(levels[l_idx])]
|
||||
else:
|
||||
mod_ = getattr(mod_, levels[l_idx])
|
||||
setattr(mod_, levels[-1], new_module)
|
||||
else:
|
||||
setattr(layer, name, new_module)
|
||||
|
||||
|
||||
def get_op_by_name(module, op_name):
|
||||
"""
|
||||
Retrieves a submodule within a given layer based on its name.
|
||||
|
||||
Args:
|
||||
module (nn.Module): The layer containing the submodule to find.
|
||||
op_name (str): The name of the submodule.
|
||||
|
||||
Returns:
|
||||
nn.Module: The requested submodule found within the given layer.
|
||||
|
||||
Raises:
|
||||
ValueError: If the specified submodule cannot be found within the layer.
|
||||
"""
|
||||
for name, m in module.named_modules():
|
||||
if name == op_name:
|
||||
return m
|
||||
raise ValueError(f"Cannot find op {op_name} in module {module}")
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def scale_ln_fcs(ln, fcs, scales):
|
||||
"""
|
||||
Scales the weights of a LayerNorm and a list of fully-connected layers proportionally.
|
||||
|
||||
Args:
|
||||
ln (nn.LayerNorm): The LayerNorm module to be scaled.
|
||||
fcs (List[nn.Linear]): A list of fully-connected layers to be scaled.
|
||||
scales (torch.Tensor): A 1D tensor of size (num_features,).
|
||||
"""
|
||||
|
||||
if not isinstance(fcs, list):
|
||||
fcs = [fcs]
|
||||
|
||||
scales = scales.to(ln.weight.device)
|
||||
|
||||
ln.weight.div_(scales)
|
||||
if hasattr(ln, "bias") and ln.bias is not None:
|
||||
ln.bias.div_(scales)
|
||||
|
||||
for fc in fcs:
|
||||
fc.weight.mul_(scales.view(1, -1))
|
||||
|
||||
for p in ln.parameters():
|
||||
assert torch.isnan(p).sum() == 0
|
||||
for fc in fcs:
|
||||
for p in fc.parameters():
|
||||
assert torch.isnan(p).sum() == 0
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def scale_fc_fc(fc1, fc2, scales):
|
||||
"""
|
||||
Scales the weights of two fully-connected layers in a specific pattern.
|
||||
|
||||
Args:
|
||||
fc1 (nn.Linear): The first fully-connected layer to be scaled.
|
||||
fc2 (nn.Linear): The second fully-connected layer to be scaled.
|
||||
scales (torch.Tensor): A 1D tensor of size (num_features,).
|
||||
"""
|
||||
assert isinstance(fc1, nn.Linear)
|
||||
assert isinstance(fc2, nn.Linear)
|
||||
|
||||
scales = scales.to(fc1.weight.device)
|
||||
|
||||
fc1.weight[-scales.size(0):].div_(scales.view(-1, 1))
|
||||
if fc1.bias is not None:
|
||||
fc1.bias.div_(scales.view(-1))
|
||||
|
||||
fc2.weight.mul_(scales.view(1, -1))
|
||||
|
||||
for p in fc1.parameters():
|
||||
assert torch.isnan(p).sum() == 0
|
||||
for p in fc2.parameters():
|
||||
assert torch.isnan(p).sum() == 0
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def scale_gelu_fc(gelu, fc, scales):
|
||||
"""
|
||||
Scales the weight of a GELU activation and a fully-connected layer proportionally.
|
||||
|
||||
Args:
|
||||
gelu (Union[nn.GELU, BloomGelu, GELUActivation]): The GELU activation module to be scaled.
|
||||
fc (nn.Linear): The fully-connected layer to be scaled.
|
||||
scales (torch.Tensor): A 1D tensor of size (num_features,).
|
||||
|
||||
Raises:
|
||||
TypeError: If the `gelu` module is not of type `nn.GELU`, `BloomGelu`, or `GELUActivation`.
|
||||
TypeError: If the `fc` module is not of type `nn.Linear`.
|
||||
"""
|
||||
assert isinstance(gelu, (nn.GELU, BloomGelu, GELUActivation))
|
||||
assert isinstance(fc, nn.Linear)
|
||||
|
||||
fc.weight.mul_(scales.view(1, -1).to(fc.weight.device))
|
||||
|
||||
for p in fc.parameters():
|
||||
assert torch.isnan(p).sum() == 0
|
||||
|
||||
|
||||
def apply_scale(module, scales_list, input_feat_dict=None):
|
||||
"""
|
||||
Applies different scaling strategies to layers based on their type and hierarchy within a given module.
|
||||
|
||||
Args:
|
||||
module (nn.Module): The module containing the layers to be scaled.
|
||||
scales_list (List[Tuple[str, List[str], torch.Tensor]]): A list of tuples containing:
|
||||
* prev_op_name (str): The name of the preceding operation or module,
|
||||
relative to which the layers to be scaled are located.
|
||||
* layer_names (List[str]): A list of names of the layers to be scaled, relative to the preceding operation.
|
||||
* scales (torch.Tensor): A 1D tensor of size (num_features,) containing the scaling factors for each feature.
|
||||
input_feat_dict (Optional[Dict[str, torch.Tensor]]): A dictionary mapping layer names to their corresponding
|
||||
input features (optional).
|
||||
"""
|
||||
for prev_op_name, layer_names, scales in scales_list:
|
||||
prev_op = get_op_by_name(module, prev_op_name)
|
||||
layers = [get_op_by_name(module, name) for name in layer_names]
|
||||
|
||||
prev_op.cuda()
|
||||
for layer in layers:
|
||||
layer.cuda()
|
||||
scales.cuda()
|
||||
|
||||
if isinstance(prev_op, nn.Linear):
|
||||
assert len(layers) == 1
|
||||
scale_fc_fc(prev_op, layers[0], scales)
|
||||
elif isinstance(prev_op, (nn.LayerNorm, LlamaRMSNorm)) or "rmsnorm" in str(prev_op.__class__).lower():
|
||||
scale_ln_fcs(prev_op, layers, scales)
|
||||
elif isinstance(prev_op, (nn.GELU, BloomGelu, GELUActivation)):
|
||||
new_module = ScaledActivation(prev_op, scales)
|
||||
set_op_by_name(module, prev_op_name, new_module)
|
||||
scale_gelu_fc(prev_op, layers[0], scales)
|
||||
else:
|
||||
raise NotImplementedError(f"prev_op {type(prev_op)} not supported yet!")
|
||||
|
||||
# apply the scaling to input feat if given; prepare it for clipping
|
||||
if input_feat_dict is not None:
|
||||
for layer_name in layer_names:
|
||||
inp = input_feat_dict[layer_name]
|
||||
inp.div_(scales.view(1, -1).to(inp.device))
|
||||
|
||||
prev_op.cpu()
|
||||
for layer in layers:
|
||||
layer.cpu()
|
||||
scales.cpu()
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def apply_clip(module, clip_list):
|
||||
"""
|
||||
Applies element-wise clipping to the weight of a specific layer within a given module.
|
||||
|
||||
Args:
|
||||
module (nn.Module): The module containing the layer to be clipped.
|
||||
clip_list (List[Tuple[str, torch.Tensor]]): A list of tuples containing:
|
||||
* name (str): The name of the layer to be clipped, relative to the root of the module.
|
||||
* max_val (torch.Tensor): A 1D or 2D tensor defining the upper bound for each element of the layer's weight.
|
||||
"""
|
||||
for name, max_val in clip_list:
|
||||
layer = get_op_by_name(module, name)
|
||||
layer.cuda()
|
||||
max_val = max_val.to(layer.weight.device)
|
||||
org_shape = layer.weight.shape
|
||||
layer.weight.data = layer.weight.data.reshape(*max_val.shape[:2], -1)
|
||||
layer.weight.data = torch.clamp(layer.weight.data, -max_val, max_val)
|
||||
layer.weight.data = layer.weight.data.reshape(org_shape)
|
||||
layer.cpu()
|
||||
|
||||
|
||||
def add_scale_weights(model_path, scale_path, tmp_path):
|
||||
"""
|
||||
Adds pre-computed Activation Weight Quantization (AWQ) results to a model,
|
||||
including scaling factors and clipping bounds.
|
||||
|
||||
Args:
|
||||
model_path (str): Path to the pre-trained model to be equipped with AWQ.
|
||||
scale_path (str): Path to the AWQ scale factors (.pt file).
|
||||
tmp_path (str): Path to the temporary directory where the equipped model will be saved.
|
||||
"""
|
||||
config = AutoConfig.from_pretrained(model_path, trust_remote_code=True)
|
||||
model = AutoModelForCausalLM.from_pretrained(
|
||||
model_path, config=config, trust_remote_code=True
|
||||
)
|
||||
model.eval()
|
||||
awq_results = torch.load(str(scale_path), map_location="cpu")
|
||||
apply_scale(model, awq_results["scale"])
|
||||
apply_clip(model, awq_results["clip"])
|
||||
model.save_pretrained(str(tmp_path))
|
||||
os.system(f"cp {str(model_path)}/tokenizer* {str(tmp_path)}")
|
|
@ -1,2 +0,0 @@
|
|||
torch>=2.1.1
|
||||
transformers>=4.32.0
|
34
ci/run.sh
34
ci/run.sh
|
@ -272,19 +272,19 @@ function gg_run_open_llama_3b_v2 {
|
|||
(time ./bin/main --model ${model_q5_k} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_k.log
|
||||
(time ./bin/main --model ${model_q6_k} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q6_k.log
|
||||
|
||||
(time ./bin/perplexity --model ${model_f16} -f ${wiki_test_60} -c 128 -b 128 --chunks 2 ) 2>&1 | tee -a $OUT/${ci}-tg-f16.log
|
||||
(time ./bin/perplexity --model ${model_q8_0} -f ${wiki_test_60} -c 128 -b 128 --chunks 2 ) 2>&1 | tee -a $OUT/${ci}-tg-q8_0.log
|
||||
(time ./bin/perplexity --model ${model_q4_0} -f ${wiki_test_60} -c 128 -b 128 --chunks 2 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_0.log
|
||||
(time ./bin/perplexity --model ${model_q4_1} -f ${wiki_test_60} -c 128 -b 128 --chunks 2 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_1.log
|
||||
(time ./bin/perplexity --model ${model_q5_0} -f ${wiki_test_60} -c 128 -b 128 --chunks 2 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_0.log
|
||||
(time ./bin/perplexity --model ${model_q5_1} -f ${wiki_test_60} -c 128 -b 128 --chunks 2 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_1.log
|
||||
(time ./bin/perplexity --model ${model_q2_k} -f ${wiki_test_60} -c 128 -b 128 --chunks 2 ) 2>&1 | tee -a $OUT/${ci}-tg-q2_k.log
|
||||
(time ./bin/perplexity --model ${model_q3_k} -f ${wiki_test_60} -c 128 -b 128 --chunks 2 ) 2>&1 | tee -a $OUT/${ci}-tg-q3_k.log
|
||||
(time ./bin/perplexity --model ${model_q4_k} -f ${wiki_test_60} -c 128 -b 128 --chunks 2 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_k.log
|
||||
(time ./bin/perplexity --model ${model_q5_k} -f ${wiki_test_60} -c 128 -b 128 --chunks 2 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_k.log
|
||||
(time ./bin/perplexity --model ${model_q6_k} -f ${wiki_test_60} -c 128 -b 128 --chunks 2 ) 2>&1 | tee -a $OUT/${ci}-tg-q6_k.log
|
||||
(time ./bin/perplexity --model ${model_f16} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-f16.log
|
||||
(time ./bin/perplexity --model ${model_q8_0} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q8_0.log
|
||||
(time ./bin/perplexity --model ${model_q4_0} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_0.log
|
||||
(time ./bin/perplexity --model ${model_q4_1} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_1.log
|
||||
(time ./bin/perplexity --model ${model_q5_0} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_0.log
|
||||
(time ./bin/perplexity --model ${model_q5_1} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_1.log
|
||||
(time ./bin/perplexity --model ${model_q2_k} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q2_k.log
|
||||
(time ./bin/perplexity --model ${model_q3_k} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q3_k.log
|
||||
(time ./bin/perplexity --model ${model_q4_k} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_k.log
|
||||
(time ./bin/perplexity --model ${model_q5_k} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_k.log
|
||||
(time ./bin/perplexity --model ${model_q6_k} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q6_k.log
|
||||
|
||||
(time ./bin/imatrix --model ${model_f16} -f ${wiki_test_60} -c 128 -b 128 --chunks 2 ) 2>&1 | tee -a $OUT/${ci}-imatrix.log
|
||||
(time ./bin/imatrix --model ${model_f16} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-imatrix.log
|
||||
|
||||
(time ./bin/save-load-state --model ${model_q4_0} ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
|
||||
|
||||
|
@ -343,17 +343,17 @@ function gg_run_open_llama_3b_v2 {
|
|||
python3 ../convert-lora-to-ggml.py ${path_lora}
|
||||
|
||||
# f16
|
||||
(time ./bin/perplexity --model ${model_f16} -f ${shakespeare} -c 128 -b 128 --chunks 2 ) 2>&1 | tee -a $OUT/${ci}-ppl-shakespeare-f16.log
|
||||
(time ./bin/perplexity --model ${model_f16} -f ${shakespeare} --lora ${lora_shakespeare} -c 128 -b 128 --chunks 2 ) 2>&1 | tee -a $OUT/${ci}-ppl-shakespeare-lora-f16.log
|
||||
(time ./bin/perplexity --model ${model_f16} -f ${shakespeare} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-ppl-shakespeare-f16.log
|
||||
(time ./bin/perplexity --model ${model_f16} -f ${shakespeare} --lora ${lora_shakespeare} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-ppl-shakespeare-lora-f16.log
|
||||
compare_ppl "f16 shakespeare" "$(cat $OUT/${ci}-ppl-shakespeare-f16.log | grep "^\[1\]")" "$(cat $OUT/${ci}-ppl-shakespeare-lora-f16.log | grep "^\[1\]")" | tee -a $OUT/${ci}-lora-ppl.log
|
||||
|
||||
# q8_0
|
||||
(time ./bin/perplexity --model ${model_q8_0} -f ${shakespeare} -c 128 -b 128 --chunks 2 ) 2>&1 | tee -a $OUT/${ci}-ppl-shakespeare-q8_0.log
|
||||
(time ./bin/perplexity --model ${model_q8_0} -f ${shakespeare} --lora ${lora_shakespeare} -c 128 -b 128 --chunks 2 ) 2>&1 | tee -a $OUT/${ci}-ppl-shakespeare-lora-q8_0.log
|
||||
(time ./bin/perplexity --model ${model_q8_0} -f ${shakespeare} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-ppl-shakespeare-q8_0.log
|
||||
(time ./bin/perplexity --model ${model_q8_0} -f ${shakespeare} --lora ${lora_shakespeare} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-ppl-shakespeare-lora-q8_0.log
|
||||
compare_ppl "q8_0 shakespeare" "$(cat $OUT/${ci}-ppl-shakespeare-q8_0.log | grep "^\[1\]")" "$(cat $OUT/${ci}-ppl-shakespeare-lora-q8_0.log | grep "^\[1\]")" | tee -a $OUT/${ci}-lora-ppl.log
|
||||
|
||||
# q8_0 + f16 lora-base
|
||||
(time ./bin/perplexity --model ${model_q8_0} -f ${shakespeare} --lora ${lora_shakespeare} --lora-base ${model_f16} -c 128 -b 128 --chunks 2 ) 2>&1 | tee -a $OUT/${ci}-ppl-shakespeare-lora-q8_0-f16.log
|
||||
(time ./bin/perplexity --model ${model_q8_0} -f ${shakespeare} --lora ${lora_shakespeare} --lora-base ${model_f16} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-ppl-shakespeare-lora-q8_0-f16.log
|
||||
compare_ppl "q8_0 / f16 base shakespeare" "$(cat $OUT/${ci}-ppl-shakespeare-q8_0.log | grep "^\[1\]")" "$(cat $OUT/${ci}-ppl-shakespeare-lora-q8_0-f16.log | grep "^\[1\]")" | tee -a $OUT/${ci}-lora-ppl.log
|
||||
|
||||
set +e
|
||||
|
|
|
@ -335,6 +335,12 @@ bool gpt_params_parse_ex(int argc, char ** argv, gpt_params & params) {
|
|||
break;
|
||||
}
|
||||
params.yarn_beta_slow = std::stof(argv[i]);
|
||||
} else if (arg == "--defrag-thold" || arg == "-dt") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
params.defrag_thold = std::stof(argv[i]);
|
||||
} else if (arg == "--samplers") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
|
@ -634,6 +640,10 @@ bool gpt_params_parse_ex(int argc, char ** argv, gpt_params & params) {
|
|||
} else if (arg_next == "layer") {
|
||||
params.split_mode = LLAMA_SPLIT_MODE_LAYER;
|
||||
} else if (arg_next == "row") {
|
||||
#ifdef GGML_USE_SYCL
|
||||
fprintf(stderr, "warning: The split mode value:[row] is not supported by llama.cpp with SYCL. It's developing.\nExit!\n");
|
||||
exit(1);
|
||||
#endif // GGML_USE_SYCL
|
||||
params.split_mode = LLAMA_SPLIT_MODE_ROW;
|
||||
} else {
|
||||
invalid_param = true;
|
||||
|
@ -1004,10 +1014,12 @@ void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) {
|
|||
printf(" --yarn-attn-factor N YaRN: scale sqrt(t) or attention magnitude (default: 1.0)\n");
|
||||
printf(" --yarn-beta-slow N YaRN: high correction dim or alpha (default: %.1f)\n", params.yarn_beta_slow);
|
||||
printf(" --yarn-beta-fast N YaRN: low correction dim or beta (default: %.1f)\n", params.yarn_beta_fast);
|
||||
printf(" -dt N, --defrag-thold N\n");
|
||||
printf(" KV cache defragmentation threshold (default: %.1f, < 0 - disabled)\n", params.defrag_thold);
|
||||
printf(" --ignore-eos ignore end of stream token and continue generating (implies --logit-bias 2-inf)\n");
|
||||
printf(" --no-penalize-nl do not penalize newline token\n");
|
||||
printf(" --temp N temperature (default: %.1f)\n", (double)sparams.temp);
|
||||
printf(" --logits-all return logits for all tokens in the batch (default: disabled)\n");
|
||||
printf(" --all-logits return logits for all tokens in the batch (default: disabled)\n");
|
||||
printf(" --hellaswag compute HellaSwag score over random tasks from datafile supplied with -f\n");
|
||||
printf(" --hellaswag-tasks N number of tasks to use when computing the HellaSwag score (default: %zu)\n", params.hellaswag_tasks);
|
||||
printf(" --winogrande compute Winogrande score over random tasks from datafile supplied with -f\n");
|
||||
|
@ -1273,7 +1285,6 @@ struct llama_context_params llama_context_params_from_gpt_params(const gpt_param
|
|||
cparams.n_batch = params.n_batch;
|
||||
cparams.n_threads = params.n_threads;
|
||||
cparams.n_threads_batch = params.n_threads_batch == -1 ? params.n_threads : params.n_threads_batch;
|
||||
cparams.mul_mat_q = params.mul_mat_q;
|
||||
cparams.seed = params.seed;
|
||||
cparams.logits_all = params.logits_all;
|
||||
cparams.embedding = params.embedding;
|
||||
|
@ -1285,6 +1296,7 @@ struct llama_context_params llama_context_params_from_gpt_params(const gpt_param
|
|||
cparams.yarn_beta_fast = params.yarn_beta_fast;
|
||||
cparams.yarn_beta_slow = params.yarn_beta_slow;
|
||||
cparams.yarn_orig_ctx = params.yarn_orig_ctx;
|
||||
cparams.defrag_thold = params.defrag_thold;
|
||||
cparams.offload_kqv = !params.no_kv_offload;
|
||||
|
||||
cparams.type_k = kv_cache_type_from_str(params.cache_type_k);
|
||||
|
@ -1716,7 +1728,6 @@ void dump_non_result_info_yaml(FILE * stream, const gpt_params & params, const l
|
|||
fprintf(stream, "n_predict: %d # default: -1 (unlimited)\n", params.n_predict);
|
||||
fprintf(stream, "n_probs: %d # only used by server binary, default: 0\n", sparams.n_probs);
|
||||
fprintf(stream, "no_mmap: %s # default: false\n", !params.use_mmap ? "true" : "false");
|
||||
fprintf(stream, "no_mul_mat_q: %s # default: false\n", !params.mul_mat_q ? "true" : "false");
|
||||
fprintf(stream, "no_penalize_nl: %s # default: false\n", !sparams.penalize_nl ? "true" : "false");
|
||||
fprintf(stream, "ppl_output_type: %d # default: 0\n", params.ppl_output_type);
|
||||
fprintf(stream, "ppl_stride: %d # default: 0\n", params.ppl_stride);
|
||||
|
|
|
@ -75,6 +75,7 @@ struct gpt_params {
|
|||
float yarn_beta_fast = 32.0f; // YaRN low correction dim
|
||||
float yarn_beta_slow = 1.0f; // YaRN high correction dim
|
||||
int32_t yarn_orig_ctx = 0; // YaRN original context length
|
||||
float defrag_thold = -1.0f; // KV cache defragmentation threshold
|
||||
int32_t rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED;
|
||||
ggml_numa_strategy numa = GGML_NUMA_STRATEGY_DISABLED;
|
||||
|
||||
|
@ -114,7 +115,6 @@ struct gpt_params {
|
|||
|
||||
bool kl_divergence = false; // compute KL-divergence
|
||||
|
||||
bool mul_mat_q = true; // if true, use mul_mat_q kernels instead of cuBLAS
|
||||
bool random_prompt = false; // do not randomize prompt if none provided
|
||||
bool use_color = false; // use color to distinguish generations and inputs
|
||||
bool interactive = false; // interactive mode
|
||||
|
|
|
@ -266,7 +266,7 @@ static llama_token llama_sampling_sample_impl(
|
|||
// }
|
||||
//}
|
||||
|
||||
LOG("sampled token: %5d: '%s'\n", id, llama_token_to_piece(ctx_main, id).c_str());
|
||||
//LOG("sampled token: %5d: '%s'\n", id, llama_token_to_piece(ctx_main, id).c_str());
|
||||
}
|
||||
}
|
||||
|
||||
|
|
|
@ -8,9 +8,10 @@ import json
|
|||
import os
|
||||
import re
|
||||
import sys
|
||||
from abc import ABC, abstractmethod
|
||||
from enum import IntEnum
|
||||
from pathlib import Path
|
||||
from typing import TYPE_CHECKING, Any, ContextManager, Iterator, Sequence, cast
|
||||
from typing import TYPE_CHECKING, Any, Callable, ContextManager, Iterator, Sequence, TypeVar, cast
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
|
@ -35,8 +36,11 @@ class SentencePieceTokenTypes(IntEnum):
|
|||
UNUSED = 5
|
||||
BYTE = 6
|
||||
|
||||
AnyModel = TypeVar("AnyModel", bound="type[Model]")
|
||||
|
||||
class Model(ABC):
|
||||
_model_classes: dict[str, type[Model]] = {}
|
||||
|
||||
class Model:
|
||||
def __init__(self, dir_model: Path, ftype: int, fname_out: Path, is_big_endian: bool):
|
||||
self.dir_model = dir_model
|
||||
self.ftype = ftype
|
||||
|
@ -47,10 +51,14 @@ class Model:
|
|||
self.num_parts = Model.count_model_parts(self.dir_model, ".safetensors" if self.is_safetensors else ".bin")
|
||||
self.part_names = self._get_part_names()
|
||||
self.hparams = Model.load_hparams(self.dir_model)
|
||||
self.model_arch = self._get_model_architecture()
|
||||
self.gguf_writer = gguf.GGUFWriter(fname_out, gguf.MODEL_ARCH_NAMES[self.model_arch], endianess=self.endianess, use_temp_file=False)
|
||||
self.block_count = self.find_hparam(["n_layers", "num_hidden_layers", "n_layer"])
|
||||
|
||||
@property
|
||||
@abstractmethod
|
||||
def model_arch(self) -> gguf.MODEL_ARCH:
|
||||
pass
|
||||
|
||||
def find_hparam(self, keys: Sequence[str], optional: bool = False) -> Any:
|
||||
key = next((k for k in keys if k in self.hparams), None)
|
||||
if key is not None:
|
||||
|
@ -96,9 +104,11 @@ class Model:
|
|||
if (n_head_kv := self.hparams.get("num_key_value_heads")) is not None:
|
||||
self.gguf_writer.add_head_count_kv(n_head_kv)
|
||||
|
||||
if (rope_theta := self.hparams.get("rope_theta")) is not None:
|
||||
self.gguf_writer.add_rope_freq_base(rope_theta)
|
||||
if (f_rms_eps := self.hparams.get("rms_norm_eps")) is not None:
|
||||
self.gguf_writer.add_layer_norm_rms_eps(f_rms_eps)
|
||||
if (f_norm_eps := self.find_hparam(["layer_norm_eps", "layer_norm_epsilon"], optional=True)) is not None:
|
||||
if (f_norm_eps := self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon"], optional=True)) is not None:
|
||||
self.gguf_writer.add_layer_norm_eps(f_norm_eps)
|
||||
if (n_experts := self.hparams.get("num_local_experts")) is not None:
|
||||
self.gguf_writer.add_expert_count(n_experts)
|
||||
|
@ -174,53 +184,21 @@ class Model:
|
|||
with open(dir_model / "config.json", "r", encoding="utf-8") as f:
|
||||
return json.load(f)
|
||||
|
||||
@staticmethod
|
||||
def from_model_architecture(model_architecture):
|
||||
if model_architecture == "GPTNeoXForCausalLM":
|
||||
return GPTNeoXModel
|
||||
if model_architecture == "BloomForCausalLM":
|
||||
return BloomModel
|
||||
if model_architecture == "MPTForCausalLM":
|
||||
return MPTModel
|
||||
if model_architecture in ("BaichuanForCausalLM", "BaiChuanForCausalLM"):
|
||||
return BaichuanModel
|
||||
if model_architecture in ("FalconForCausalLM", "RWForCausalLM"):
|
||||
return FalconModel
|
||||
if model_architecture == "GPTBigCodeForCausalLM":
|
||||
return StarCoderModel
|
||||
if model_architecture == "GPTRefactForCausalLM":
|
||||
return RefactModel
|
||||
if model_architecture == "PersimmonForCausalLM":
|
||||
return PersimmonModel
|
||||
if model_architecture in ("StableLmForCausalLM", "StableLMEpochForCausalLM", "LlavaStableLMEpochForCausalLM"):
|
||||
return StableLMModel
|
||||
if model_architecture == "QWenLMHeadModel":
|
||||
return QwenModel
|
||||
if model_architecture == "Qwen2ForCausalLM":
|
||||
return Model
|
||||
if model_architecture == "MixtralForCausalLM":
|
||||
return MixtralModel
|
||||
if model_architecture == "GPT2LMHeadModel":
|
||||
return GPT2Model
|
||||
if model_architecture == "PhiForCausalLM":
|
||||
return Phi2Model
|
||||
if model_architecture == "PlamoForCausalLM":
|
||||
return PlamoModel
|
||||
if model_architecture == "CodeShellForCausalLM":
|
||||
return CodeShellModel
|
||||
if model_architecture == "OrionForCausalLM":
|
||||
return OrionModel
|
||||
if model_architecture == "InternLM2ForCausalLM":
|
||||
return InternLM2Model
|
||||
if model_architecture == "MiniCPMForCausalLM":
|
||||
return MiniCPMModel
|
||||
if model_architecture == "BertModel":
|
||||
return BertModel
|
||||
if model_architecture == "NomicBertModel":
|
||||
return NomicBertModel
|
||||
if model_architecture == "GemmaForCausalLM":
|
||||
return GemmaModel
|
||||
return Model
|
||||
@classmethod
|
||||
def register(cls, *names: str) -> Callable[[AnyModel], AnyModel]:
|
||||
assert names
|
||||
def func(modelcls: type[Model]):
|
||||
for name in names:
|
||||
cls._model_classes[name] = modelcls
|
||||
return modelcls
|
||||
return func
|
||||
|
||||
@classmethod
|
||||
def from_model_architecture(cls, arch):
|
||||
try:
|
||||
return cls._model_classes[arch]
|
||||
except KeyError:
|
||||
raise NotImplementedError(f'Architecture {arch!r} not supported!') from None
|
||||
|
||||
def _is_model_safetensors(self) -> bool:
|
||||
return Model.count_model_parts(self.dir_model, ".safetensors") > 0
|
||||
|
@ -235,55 +213,6 @@ class Model:
|
|||
return ("pytorch_model.bin",)
|
||||
return (f"pytorch_model-{n:05}-of-{self.num_parts:05}.bin" for n in range(1, self.num_parts + 1))
|
||||
|
||||
def _get_model_architecture(self) -> gguf.MODEL_ARCH:
|
||||
arch = self.hparams["architectures"][0]
|
||||
if arch == "GPTNeoXForCausalLM":
|
||||
return gguf.MODEL_ARCH.GPTNEOX
|
||||
if arch == "BloomForCausalLM":
|
||||
return gguf.MODEL_ARCH.BLOOM
|
||||
if arch == "MPTForCausalLM":
|
||||
return gguf.MODEL_ARCH.MPT
|
||||
if arch in ("BaichuanForCausalLM", "BaiChuanForCausalLM"):
|
||||
return gguf.MODEL_ARCH.BAICHUAN
|
||||
if arch in ("FalconForCausalLM", "RWForCausalLM"):
|
||||
return gguf.MODEL_ARCH.FALCON
|
||||
if arch == "GPTBigCodeForCausalLM":
|
||||
return gguf.MODEL_ARCH.STARCODER
|
||||
if arch == "GPTRefactForCausalLM":
|
||||
return gguf.MODEL_ARCH.REFACT
|
||||
if arch == "PersimmonForCausalLM":
|
||||
return gguf.MODEL_ARCH.PERSIMMON
|
||||
if arch in ("StableLmForCausalLM", "StableLMEpochForCausalLM", "LlavaStableLMEpochForCausalLM"):
|
||||
return gguf.MODEL_ARCH.STABLELM
|
||||
if arch == "QWenLMHeadModel":
|
||||
return gguf.MODEL_ARCH.QWEN
|
||||
if arch == "Qwen2ForCausalLM":
|
||||
return gguf.MODEL_ARCH.QWEN2
|
||||
if arch == "MixtralForCausalLM":
|
||||
return gguf.MODEL_ARCH.LLAMA
|
||||
if arch == "GPT2LMHeadModel":
|
||||
return gguf.MODEL_ARCH.GPT2
|
||||
if arch == "PhiForCausalLM":
|
||||
return gguf.MODEL_ARCH.PHI2
|
||||
if arch == "PlamoForCausalLM":
|
||||
return gguf.MODEL_ARCH.PLAMO
|
||||
if arch == "CodeShellForCausalLM":
|
||||
return gguf.MODEL_ARCH.CODESHELL
|
||||
if arch == "OrionForCausalLM":
|
||||
return gguf.MODEL_ARCH.ORION
|
||||
if arch == "InternLM2ForCausalLM":
|
||||
return gguf.MODEL_ARCH.INTERNLM2
|
||||
if arch == "MiniCPMForCausalLM":
|
||||
return gguf.MODEL_ARCH.MINICPM
|
||||
if arch == "BertModel":
|
||||
return gguf.MODEL_ARCH.BERT
|
||||
if arch == "NomicBertModel":
|
||||
return gguf.MODEL_ARCH.NOMIC_BERT
|
||||
if arch == "GemmaForCausalLM":
|
||||
return gguf.MODEL_ARCH.GEMMA
|
||||
|
||||
raise NotImplementedError(f'Architecture "{arch}" not supported!')
|
||||
|
||||
def _set_vocab_gpt2(self):
|
||||
dir_model = self.dir_model
|
||||
hparams = self.hparams
|
||||
|
@ -451,7 +380,10 @@ class Model:
|
|||
special_vocab.add_to_gguf(self.gguf_writer)
|
||||
|
||||
|
||||
@Model.register("GPTNeoXForCausalLM")
|
||||
class GPTNeoXModel(Model):
|
||||
model_arch = gguf.MODEL_ARCH.GPTNEOX
|
||||
|
||||
def set_gguf_parameters(self):
|
||||
block_count = self.hparams["num_hidden_layers"]
|
||||
|
||||
|
@ -468,7 +400,10 @@ class GPTNeoXModel(Model):
|
|||
self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_eps"])
|
||||
|
||||
|
||||
@Model.register("BloomForCausalLM")
|
||||
class BloomModel(Model):
|
||||
model_arch = gguf.MODEL_ARCH.BLOOM
|
||||
|
||||
def set_gguf_parameters(self):
|
||||
self.gguf_writer.add_name("Bloom")
|
||||
n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
|
||||
|
@ -560,7 +495,10 @@ class BloomModel(Model):
|
|||
print(name, f"=> output.weight, shape = {data.shape}, {old_dtype} --> {data.dtype}")
|
||||
|
||||
|
||||
@Model.register("MPTForCausalLM")
|
||||
class MPTModel(Model):
|
||||
model_arch = gguf.MODEL_ARCH.MPT
|
||||
|
||||
def set_gguf_parameters(self):
|
||||
block_count = self.hparams["n_layers"]
|
||||
self.gguf_writer.add_name(self.dir_model.name)
|
||||
|
@ -623,7 +561,10 @@ class MPTModel(Model):
|
|||
self.gguf_writer.add_tensor(new_name, data)
|
||||
|
||||
|
||||
@Model.register("OrionForCausalLM")
|
||||
class OrionModel(Model):
|
||||
model_arch = gguf.MODEL_ARCH.ORION
|
||||
|
||||
def set_vocab(self):
|
||||
self._set_vocab_sentencepiece()
|
||||
|
||||
|
@ -702,7 +643,10 @@ class OrionModel(Model):
|
|||
self.gguf_writer.add_tensor(new_name, data)
|
||||
|
||||
|
||||
@Model.register("BaichuanForCausalLM", "BaiChuanForCausalLM")
|
||||
class BaichuanModel(Model):
|
||||
model_arch = gguf.MODEL_ARCH.BAICHUAN
|
||||
|
||||
def set_vocab(self):
|
||||
self._set_vocab_sentencepiece()
|
||||
|
||||
|
@ -817,7 +761,10 @@ class BaichuanModel(Model):
|
|||
return weights[r * n_part:r * n_part + r, ...]
|
||||
|
||||
|
||||
@Model.register("FalconForCausalLM", "RWForCausalLM")
|
||||
class FalconModel(Model):
|
||||
model_arch = gguf.MODEL_ARCH.FALCON
|
||||
|
||||
def set_gguf_parameters(self):
|
||||
block_count = self.hparams.get("num_hidden_layers")
|
||||
if block_count is None:
|
||||
|
@ -910,7 +857,10 @@ class FalconModel(Model):
|
|||
self.gguf_writer.add_tensor(new_name, data)
|
||||
|
||||
|
||||
@Model.register("GPTBigCodeForCausalLM")
|
||||
class StarCoderModel(Model):
|
||||
model_arch = gguf.MODEL_ARCH.STARCODER
|
||||
|
||||
def set_gguf_parameters(self):
|
||||
block_count = self.hparams["n_layer"]
|
||||
|
||||
|
@ -925,7 +875,10 @@ class StarCoderModel(Model):
|
|||
self.gguf_writer.add_file_type(self.ftype)
|
||||
|
||||
|
||||
@Model.register("GPTRefactForCausalLM")
|
||||
class RefactModel(Model):
|
||||
model_arch = gguf.MODEL_ARCH.REFACT
|
||||
|
||||
def set_gguf_parameters(self):
|
||||
hidden_dim = self.hparams["n_embd"]
|
||||
inner_dim = 4 * hidden_dim
|
||||
|
@ -1009,7 +962,10 @@ class RefactModel(Model):
|
|||
self.gguf_writer.add_tensor(new_name, data)
|
||||
|
||||
|
||||
@Model.register("PersimmonForCausalLM")
|
||||
class PersimmonModel(Model):
|
||||
model_arch = gguf.MODEL_ARCH.PERSIMMON
|
||||
|
||||
def set_gguf_parameters(self):
|
||||
block_count = self.hparams.get("num_layers", self.hparams.get("num_hidden_layers"))
|
||||
head_count = self.hparams["num_attention_heads"]
|
||||
|
@ -1057,7 +1013,10 @@ class PersimmonModel(Model):
|
|||
self.gguf_writer.add_tensor(new_name, data)
|
||||
|
||||
|
||||
@Model.register("StableLmForCausalLM", "StableLMEpochForCausalLM", "LlavaStableLMEpochForCausalLM")
|
||||
class StableLMModel(Model):
|
||||
model_arch = gguf.MODEL_ARCH.STABLELM
|
||||
|
||||
def set_vocab(self):
|
||||
if (self.dir_model / "tokenizer.json").is_file():
|
||||
self._set_vocab_gpt2()
|
||||
|
@ -1081,12 +1040,18 @@ class StableLMModel(Model):
|
|||
self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_eps", "norm_eps"]))
|
||||
|
||||
|
||||
@Model.register("MixtralForCausalLM")
|
||||
class MixtralModel(Model):
|
||||
model_arch = gguf.MODEL_ARCH.LLAMA
|
||||
|
||||
def set_vocab(self):
|
||||
self._set_vocab_sentencepiece()
|
||||
|
||||
|
||||
@Model.register("MiniCPMForCausalLM")
|
||||
class MiniCPMModel(Model):
|
||||
model_arch = gguf.MODEL_ARCH.MINICPM
|
||||
|
||||
def set_gguf_parameters(self):
|
||||
block_count = self.hparams["num_hidden_layers"]
|
||||
self.gguf_writer.add_name("MiniCPM")
|
||||
|
@ -1163,7 +1128,10 @@ class MiniCPMModel(Model):
|
|||
self.gguf_writer.add_tensor(new_name, data)
|
||||
|
||||
|
||||
@Model.register("QWenLMHeadModel")
|
||||
class QwenModel(Model):
|
||||
model_arch = gguf.MODEL_ARCH.QWEN
|
||||
|
||||
@staticmethod
|
||||
def token_bytes_to_string(b):
|
||||
from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
|
||||
|
@ -1243,7 +1211,15 @@ class QwenModel(Model):
|
|||
self.gguf_writer.add_tensor(new_name, data)
|
||||
|
||||
|
||||
@Model.register("Qwen2ForCausalLM")
|
||||
class Qwen2Model(Model):
|
||||
model_arch = gguf.MODEL_ARCH.QWEN2
|
||||
|
||||
|
||||
@Model.register("GPT2LMHeadModel")
|
||||
class GPT2Model(Model):
|
||||
model_arch = gguf.MODEL_ARCH.GPT2
|
||||
|
||||
def set_gguf_parameters(self):
|
||||
self.gguf_writer.add_name(self.dir_model.name)
|
||||
self.gguf_writer.add_block_count(self.hparams["n_layer"])
|
||||
|
@ -1305,7 +1281,10 @@ class GPT2Model(Model):
|
|||
self.gguf_writer.add_tensor("output.weight", data)
|
||||
|
||||
|
||||
@Model.register("PhiForCausalLM")
|
||||
class Phi2Model(Model):
|
||||
model_arch = gguf.MODEL_ARCH.PHI2
|
||||
|
||||
def set_gguf_parameters(self):
|
||||
block_count = self.find_hparam(["num_hidden_layers", "n_layer"])
|
||||
|
||||
|
@ -1327,7 +1306,10 @@ class Phi2Model(Model):
|
|||
self.gguf_writer.add_add_bos_token(False)
|
||||
|
||||
|
||||
@Model.register("PlamoForCausalLM")
|
||||
class PlamoModel(Model):
|
||||
model_arch = gguf.MODEL_ARCH.PLAMO
|
||||
|
||||
def set_vocab(self):
|
||||
self._set_vocab_sentencepiece()
|
||||
|
||||
|
@ -1406,7 +1388,10 @@ class PlamoModel(Model):
|
|||
self.gguf_writer.add_tensor(new_name, data)
|
||||
|
||||
|
||||
@Model.register("CodeShellForCausalLM")
|
||||
class CodeShellModel(Model):
|
||||
model_arch = gguf.MODEL_ARCH.CODESHELL
|
||||
|
||||
def set_gguf_parameters(self):
|
||||
block_count = self.hparams["n_layer"]
|
||||
|
||||
|
@ -1471,7 +1456,10 @@ class CodeShellModel(Model):
|
|||
print(name, f"=> output.weight, shape = {data.shape}, {old_dtype} --> {data.dtype}")
|
||||
|
||||
|
||||
@Model.register("InternLM2ForCausalLM")
|
||||
class InternLM2Model(Model):
|
||||
model_arch = gguf.MODEL_ARCH.INTERNLM2
|
||||
|
||||
def set_vocab(self):
|
||||
# (TODO): Is there a better way?
|
||||
# Copy from _set_vocab_sentencepiece, The only difference is that we will treat the character
|
||||
|
@ -1643,7 +1631,10 @@ in chat mode so that the conversation can end normally.")
|
|||
self.post_write_tensors(tensor_map, name, data_torch)
|
||||
|
||||
|
||||
@Model.register("BertModel")
|
||||
class BertModel(Model):
|
||||
model_arch = gguf.MODEL_ARCH.BERT
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
super().__init__(*args, **kwargs)
|
||||
self.vocab_size = None
|
||||
|
@ -1673,7 +1664,7 @@ class BertModel(Model):
|
|||
else:
|
||||
raise NotImplementedError("Only MEAN and CLS pooling types supported")
|
||||
|
||||
self.gguf_writer.add_pooling_type(pooling_type.value)
|
||||
self.gguf_writer.add_pooling_type(pooling_type)
|
||||
|
||||
def set_vocab(self):
|
||||
path = self.dir_model
|
||||
|
@ -1749,7 +1740,10 @@ class BertModel(Model):
|
|||
self.gguf_writer.add_tensor(new_name, data)
|
||||
|
||||
|
||||
@Model.register("NomicBertModel")
|
||||
class NomicBertModel(BertModel):
|
||||
model_arch = gguf.MODEL_ARCH.NOMIC_BERT
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
super().__init__(*args, **kwargs)
|
||||
|
||||
|
@ -1786,7 +1780,10 @@ class NomicBertModel(BertModel):
|
|||
yield name, data
|
||||
|
||||
|
||||
@Model.register("GemmaForCausalLM")
|
||||
class GemmaModel(Model):
|
||||
model_arch = gguf.MODEL_ARCH.GEMMA
|
||||
|
||||
def set_vocab(self):
|
||||
self._set_vocab_sentencepiece()
|
||||
|
||||
|
@ -1811,16 +1808,15 @@ class GemmaModel(Model):
|
|||
tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
|
||||
|
||||
for name, data_torch in self.get_tensors():
|
||||
# ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
|
||||
if name.endswith("norm.weight"):
|
||||
data_torch = data_torch + 1
|
||||
|
||||
old_dtype = data_torch.dtype
|
||||
|
||||
# convert any unsupported data types to float32
|
||||
if data_torch.dtype not in (torch.float16, torch.float32):
|
||||
data_torch = data_torch.to(torch.float32)
|
||||
|
||||
# ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
|
||||
if name.endswith("norm.weight"):
|
||||
data_torch = data_torch + 1
|
||||
data = data_torch.squeeze().numpy()
|
||||
|
||||
# map tensor names
|
||||
|
@ -1843,6 +1839,11 @@ class GemmaModel(Model):
|
|||
self.gguf_writer.add_tensor(new_name, data)
|
||||
|
||||
|
||||
@Model.register("Starcoder2ForCausalLM")
|
||||
class StarCoder2Model(Model):
|
||||
model_arch = gguf.MODEL_ARCH.STARCODER2
|
||||
|
||||
|
||||
###### CONVERSION LOGIC ######
|
||||
|
||||
|
||||
|
|
|
@ -373,7 +373,7 @@ def handle_metadata(cfg, hp):
|
|||
raise ValueError('Unable to load metadata')
|
||||
vocab_path = Path(cfg.vocab_dir if cfg.vocab_dir is not None else cfg.model_metadata_dir)
|
||||
vocab_factory = convert.VocabFactory(vocab_path)
|
||||
vocab, special_vocab = vocab_factory.load_vocab(cfg.vocabtype, cfg.model_metadata_dir)
|
||||
vocab, special_vocab = vocab_factory.load_vocab(cfg.vocabtype.split(","), cfg.model_metadata_dir)
|
||||
convert.check_vocab_size(params, vocab)
|
||||
return params, vocab, special_vocab
|
||||
|
||||
|
@ -398,8 +398,8 @@ def handle_args():
|
|||
help ='Load HuggingFace/.pth vocab and metadata from the specified directory')
|
||||
parser.add_argument("--vocab-dir", type=Path,
|
||||
help="directory containing tokenizer.model, if separate from model file - only meaningful with --model-metadata-dir")
|
||||
parser.add_argument("--vocabtype", choices=["spm", "bpe"], default="spm",
|
||||
help="vocab format - only meaningful with --model-metadata-dir and/or --vocab-dir (default: spm)")
|
||||
parser.add_argument("--vocabtype", default="spm,hfft",
|
||||
help="vocab format - only meaningful with --model-metadata-dir and/or --vocab-dir (default: spm,hfft)")
|
||||
return parser.parse_args()
|
||||
|
||||
|
||||
|
|
72
convert.py
72
convert.py
|
@ -1282,35 +1282,32 @@ def load_some_model(path: Path) -> ModelPlus:
|
|||
|
||||
|
||||
class VocabFactory:
|
||||
_FILES = {"spm": "tokenizer.model", "bpe": "vocab.json", "hfft": "tokenizer.json"}
|
||||
|
||||
def __init__(self, path: Path):
|
||||
self.path = path
|
||||
self.files: dict[str, Path | None] = {
|
||||
"tokenizer.model": None,
|
||||
"vocab.json": None,
|
||||
"tokenizer.json": None,
|
||||
}
|
||||
self._detect_files()
|
||||
self.file_paths = self._detect_files()
|
||||
print(f"Found vocab files: {self.file_paths}")
|
||||
|
||||
def _detect_files(self):
|
||||
for file in self.files.keys():
|
||||
file_path = self.path / file
|
||||
parent_file_path = self.path.parent / file
|
||||
if file_path.exists():
|
||||
self.files[file] = file_path
|
||||
elif parent_file_path.exists():
|
||||
self.files[file] = parent_file_path
|
||||
print(f"Found vocab files: {self.files}")
|
||||
def _detect_files(self) -> dict[str, Path | None]:
|
||||
def locate(file: str) -> Path | None:
|
||||
if (path := self.path / file).exists():
|
||||
return path
|
||||
if (path := self.path.parent / file).exists():
|
||||
return path
|
||||
return None
|
||||
|
||||
def _select_file(self, vocabtype: str | None) -> Path:
|
||||
if vocabtype in ["spm", "bpe"]:
|
||||
for file_key in self.files.keys():
|
||||
if (file := self.files[file_key]) is not None:
|
||||
return file
|
||||
raise FileNotFoundError(f"{vocabtype} vocab not found.")
|
||||
if vocabtype == "hfft":
|
||||
# For Hugging Face Fast Tokenizer, return the directory path instead of a specific file
|
||||
return self.path
|
||||
raise ValueError(f"Unsupported vocabulary type {vocabtype}")
|
||||
return {vt: locate(f) for vt, f in self._FILES.items()}
|
||||
|
||||
def _select_file(self, vocab_types: list[str]) -> tuple[str, Path]:
|
||||
for vtype in vocab_types:
|
||||
try:
|
||||
path = self.file_paths[vtype]
|
||||
except KeyError:
|
||||
raise ValueError(f"Unsupported vocabulary type {vtype}") from None
|
||||
if path is not None:
|
||||
return vtype, path
|
||||
raise FileNotFoundError(f"Could not find any of {[self._FILES[vt] for vt in vocab_types]}")
|
||||
|
||||
def _create_special_vocab(self, vocab: Vocab, vocabtype: str, model_parent_path: Path) -> gguf.SpecialVocab:
|
||||
load_merges = vocabtype == "bpe"
|
||||
|
@ -1322,30 +1319,30 @@ class VocabFactory:
|
|||
n_vocab=n_vocab,
|
||||
)
|
||||
|
||||
def load_vocab(self, vocabtype: str, model_parent_path: Path) -> tuple[Vocab, gguf.SpecialVocab]:
|
||||
path = self._select_file(vocabtype)
|
||||
print(f"Loading vocab file '{path}', type '{vocabtype}'")
|
||||
def load_vocab(self, vocab_types: list[str], model_parent_path: Path) -> tuple[Vocab, gguf.SpecialVocab]:
|
||||
vocab_type, path = self._select_file(vocab_types)
|
||||
print(f"Loading vocab file {path!r}, type {vocab_type!r}")
|
||||
|
||||
added_tokens_path = path.parent / "added_tokens.json"
|
||||
vocab: Vocab
|
||||
if vocabtype == "bpe":
|
||||
if vocab_type == "bpe":
|
||||
vocab = BpeVocab(
|
||||
path, added_tokens_path if added_tokens_path.exists() else None
|
||||
)
|
||||
elif vocabtype == "spm":
|
||||
elif vocab_type == "spm":
|
||||
vocab = SentencePieceVocab(
|
||||
path, added_tokens_path if added_tokens_path.exists() else None
|
||||
)
|
||||
elif vocabtype == "hfft":
|
||||
elif vocab_type == "hfft":
|
||||
vocab = HfVocab(
|
||||
path, added_tokens_path if added_tokens_path.exists() else None
|
||||
path.parent, added_tokens_path if added_tokens_path.exists() else None
|
||||
)
|
||||
else:
|
||||
raise ValueError(f"Unsupported vocabulary type {vocabtype}")
|
||||
raise ValueError(vocab_type)
|
||||
# FIXME: Respect --vocab-dir?
|
||||
special_vocab = self._create_special_vocab(
|
||||
vocab,
|
||||
vocabtype,
|
||||
vocab_type,
|
||||
model_parent_path,
|
||||
)
|
||||
return vocab, special_vocab
|
||||
|
@ -1379,15 +1376,14 @@ def main(args_in: list[str] | None = None) -> None:
|
|||
if np.uint32(1) == np.uint32(1).newbyteorder("<"):
|
||||
# We currently only support Q8_0 output on little endian systems.
|
||||
output_choices.append("q8_0")
|
||||
vocab_types = ["spm", "bpe", "hfft"]
|
||||
parser = argparse.ArgumentParser(description="Convert a LLaMa model to a GGML compatible file")
|
||||
parser = argparse.ArgumentParser(description="Convert a LLaMA model to a GGML compatible file")
|
||||
parser.add_argument("--awq-path", type=Path, help="Path to scale awq cache file", default=None)
|
||||
parser.add_argument("--dump", action="store_true", help="don't convert, just show what's in the model")
|
||||
parser.add_argument("--dump-single", action="store_true", help="don't convert, just show what's in a single model file")
|
||||
parser.add_argument("--vocab-only", action="store_true", help="extract only the vocab")
|
||||
parser.add_argument("--outtype", choices=output_choices, help="output format - note: q8_0 may be very slow (default: f16 or f32 based on input)")
|
||||
parser.add_argument("--vocab-dir", type=Path, help="directory containing tokenizer.model, if separate from model file")
|
||||
parser.add_argument("--vocab-type", choices=vocab_types, help="The vocabulary format used to define the tokenizer model (default: spm)", default="spm")
|
||||
parser.add_argument("--vocab-type", help="vocab types to try in order, choose from 'spm', 'bpe', 'hfft' (default: spm,hfft)", default="spm,hfft")
|
||||
parser.add_argument("--outfile", type=Path, help="path to write to; default: based on input")
|
||||
parser.add_argument("model", type=Path, help="directory containing model file, or model file itself (*.pth, *.pt, *.bin)")
|
||||
parser.add_argument("--ctx", type=int, help="model training context (default: based on input)")
|
||||
|
@ -1448,7 +1444,7 @@ def main(args_in: list[str] | None = None) -> None:
|
|||
model_parent_path = model_plus.paths[0].parent
|
||||
vocab_path = Path(args.vocab_dir or args.model or model_parent_path)
|
||||
vocab_factory = VocabFactory(vocab_path)
|
||||
vocab, special_vocab = vocab_factory.load_vocab(args.vocab_type, model_parent_path)
|
||||
vocab, special_vocab = vocab_factory.load_vocab(args.vocab_type.split(","), model_parent_path)
|
||||
|
||||
if args.vocab_only:
|
||||
if not args.outfile:
|
||||
|
|
|
@ -32,16 +32,15 @@ int main(int argc, char ** argv) {
|
|||
gpt_params params;
|
||||
|
||||
if (argc == 1 || argv[1][0] == '-') {
|
||||
printf("usage: %s MODEL_PATH [N_KV_MAX] [IS_PP_SHARED] [NGL] [MMQ] <PP> <TG> <PL>\n" , argv[0]);
|
||||
printf("usage: %s MODEL_PATH [N_KV_MAX] [IS_PP_SHARED] [NGL] <PP> <TG> <PL>\n" , argv[0]);
|
||||
printf(" <PP>, <TG> and PL are comma-separated lists of numbers without spaces\n\n");
|
||||
printf(" example: %s ggml-model-f16.gguf 2048 0 999 0 128,256,512 128,256 1,2,4,8,16,32\n\n", argv[0]);
|
||||
printf(" example: %s ggml-model-f16.gguf 2048 0 999 128,256,512 128,256 1,2,4,8,16,32\n\n", argv[0]);
|
||||
return 1 ;
|
||||
}
|
||||
|
||||
int n_kv_max = 2048;
|
||||
int is_pp_shared = 0;
|
||||
int n_gpu_layers = 0;
|
||||
int mmq = 0;
|
||||
|
||||
std::vector<int> n_pp = { 128, 256, 512, 1024, 2048, 3584, 7680, };
|
||||
std::vector<int> n_tg = { 128, 256, };
|
||||
|
@ -65,19 +64,15 @@ int main(int argc, char ** argv) {
|
|||
}
|
||||
|
||||
if (argc >= 6) {
|
||||
mmq = std::atoi(argv[5]);
|
||||
n_pp = parse_list(argv[5]);
|
||||
}
|
||||
|
||||
if (argc >= 7) {
|
||||
n_pp = parse_list(argv[6]);
|
||||
n_tg = parse_list(argv[6]);
|
||||
}
|
||||
|
||||
if (argc >= 8) {
|
||||
n_tg = parse_list(argv[7]);
|
||||
}
|
||||
|
||||
if (argc >= 9) {
|
||||
n_pl = parse_list(argv[8]);
|
||||
n_pl = parse_list(argv[7]);
|
||||
}
|
||||
|
||||
// init LLM
|
||||
|
@ -106,7 +101,6 @@ int main(int argc, char ** argv) {
|
|||
ctx_params.seed = 1234;
|
||||
ctx_params.n_ctx = n_kv_max;
|
||||
ctx_params.n_batch = 512;
|
||||
ctx_params.mul_mat_q = mmq;
|
||||
|
||||
ctx_params.n_threads = params.n_threads;
|
||||
ctx_params.n_threads_batch = params.n_threads_batch == -1 ? params.n_threads : params.n_threads_batch;
|
||||
|
@ -159,7 +153,7 @@ int main(int argc, char ** argv) {
|
|||
}
|
||||
|
||||
LOG_TEE("\n");
|
||||
LOG_TEE("%s: n_kv_max = %d, is_pp_shared = %d, n_gpu_layers = %d, mmq = %d, n_threads = %u, n_threads_batch = %u\n", __func__, n_kv_max, is_pp_shared, n_gpu_layers, mmq, ctx_params.n_threads, ctx_params.n_threads_batch);
|
||||
LOG_TEE("%s: n_kv_max = %d, is_pp_shared = %d, n_gpu_layers = %d, n_threads = %u, n_threads_batch = %u\n", __func__, n_kv_max, is_pp_shared, n_gpu_layers, ctx_params.n_threads, ctx_params.n_threads_batch);
|
||||
LOG_TEE("\n");
|
||||
|
||||
LOG_TEE("|%6s | %6s | %4s | %6s | %8s | %8s | %8s | %8s | %8s | %8s |\n", "PP", "TG", "B", "N_KV", "T_PP s", "S_PP t/s", "T_TG s", "S_TG t/s", "T s", "S t/s");
|
||||
|
|
|
@ -378,10 +378,10 @@ int main(int argc, char ** argv) {
|
|||
if (params.interactive) {
|
||||
const char *control_message;
|
||||
if (params.multiline_input) {
|
||||
control_message = " - To return control to LLaMa, end your input with '\\'.\n"
|
||||
control_message = " - To return control to LLaMA, end your input with '\\'.\n"
|
||||
" - To return control without starting a new line, end your input with '/'.\n";
|
||||
} else {
|
||||
control_message = " - Press Return to return control to LLaMa.\n"
|
||||
control_message = " - Press Return to return control to LLaMA.\n"
|
||||
" - To return control without starting a new line, end your input with '/'.\n"
|
||||
" - If you want to submit another line, end your input with '\\'.\n";
|
||||
}
|
||||
|
@ -448,7 +448,7 @@ int main(int argc, char ** argv) {
|
|||
n_past, n_left, n_ctx, params.n_keep, n_discard);
|
||||
|
||||
llama_kv_cache_seq_rm (ctx, 0, params.n_keep + 1 , params.n_keep + n_discard + 1);
|
||||
llama_kv_cache_seq_shift(ctx, 0, params.n_keep + 1 + n_discard, n_past, -n_discard);
|
||||
llama_kv_cache_seq_add(ctx, 0, params.n_keep + 1 + n_discard, n_past, -n_discard);
|
||||
|
||||
n_past -= n_discard;
|
||||
|
||||
|
|
|
@ -35,7 +35,6 @@ options:
|
|||
-mg, --main-gpu <i> (default: 0)
|
||||
-nkvo, --no-kv-offload <0|1> (default: 0)
|
||||
-mmp, --mmap <0|1> (default: 1)
|
||||
-mmq, --mul-mat-q <0|1> (default: 1)
|
||||
-ts, --tensor_split <ts0/ts1/..> (default: 0)
|
||||
-r, --repetitions <n> (default: 5)
|
||||
-o, --output <csv|json|md|sql> (default: md)
|
||||
|
|
|
@ -123,20 +123,15 @@ static std::string get_gpu_info() {
|
|||
}
|
||||
#endif
|
||||
#ifdef GGML_USE_SYCL
|
||||
int device_list[GGML_SYCL_MAX_DEVICES];
|
||||
ggml_sycl_get_gpu_list(device_list, GGML_SYCL_MAX_DEVICES);
|
||||
|
||||
for (int i = 0; i < GGML_SYCL_MAX_DEVICES; i++) {
|
||||
if (device_list[i] >0 ){
|
||||
int count = ggml_backend_sycl_get_device_count();
|
||||
for (int i = 0; i < count; i++) {
|
||||
char buf[128];
|
||||
ggml_sycl_get_device_description(i, buf, sizeof(buf));
|
||||
id += buf;
|
||||
if (i < count - 1) {
|
||||
id += "/";
|
||||
}
|
||||
}
|
||||
if (id.length() >2 ) {
|
||||
id.pop_back();
|
||||
}
|
||||
#endif
|
||||
// TODO: other backends
|
||||
return id;
|
||||
|
@ -176,7 +171,6 @@ struct cmd_params {
|
|||
std::vector<llama_split_mode> split_mode;
|
||||
std::vector<int> main_gpu;
|
||||
std::vector<bool> no_kv_offload;
|
||||
std::vector<bool> mul_mat_q;
|
||||
std::vector<std::vector<float>> tensor_split;
|
||||
std::vector<bool> use_mmap;
|
||||
int reps;
|
||||
|
@ -196,7 +190,6 @@ static const cmd_params cmd_params_defaults = {
|
|||
/* split_mode */ {LLAMA_SPLIT_MODE_LAYER},
|
||||
/* main_gpu */ {0},
|
||||
/* no_kv_offload */ {false},
|
||||
/* mul_mat_q */ {true},
|
||||
/* tensor_split */ {std::vector<float>(llama_max_devices(), 0.0f)},
|
||||
/* use_mmap */ {true},
|
||||
/* reps */ 5,
|
||||
|
@ -221,7 +214,6 @@ static void print_usage(int /* argc */, char ** argv) {
|
|||
printf(" -mg, --main-gpu <i> (default: %s)\n", join(cmd_params_defaults.main_gpu, ",").c_str());
|
||||
printf(" -nkvo, --no-kv-offload <0|1> (default: %s)\n", join(cmd_params_defaults.no_kv_offload, ",").c_str());
|
||||
printf(" -mmp, --mmap <0|1> (default: %s)\n", join(cmd_params_defaults.use_mmap, ",").c_str());
|
||||
printf(" -mmq, --mul-mat-q <0|1> (default: %s)\n", join(cmd_params_defaults.mul_mat_q, ",").c_str());
|
||||
printf(" -ts, --tensor_split <ts0/ts1/..> (default: 0)\n");
|
||||
printf(" -r, --repetitions <n> (default: %d)\n", cmd_params_defaults.reps);
|
||||
printf(" -o, --output <csv|json|md|sql> (default: %s)\n", output_format_str(cmd_params_defaults.output_format));
|
||||
|
@ -383,13 +375,6 @@ static cmd_params parse_cmd_params(int argc, char ** argv) {
|
|||
}
|
||||
auto p = split<bool>(argv[i], split_delim);
|
||||
params.no_kv_offload.insert(params.no_kv_offload.end(), p.begin(), p.end());
|
||||
} else if (arg == "-mmq" || arg == "--mul-mat-q") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
auto p = split<bool>(argv[i], split_delim);
|
||||
params.mul_mat_q.insert(params.mul_mat_q.end(), p.begin(), p.end());
|
||||
} else if (arg == "-mmp" || arg == "--mmap") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
|
@ -466,7 +451,6 @@ static cmd_params parse_cmd_params(int argc, char ** argv) {
|
|||
if (params.split_mode.empty()) { params.split_mode = cmd_params_defaults.split_mode; }
|
||||
if (params.main_gpu.empty()) { params.main_gpu = cmd_params_defaults.main_gpu; }
|
||||
if (params.no_kv_offload.empty()){ params.no_kv_offload = cmd_params_defaults.no_kv_offload; }
|
||||
if (params.mul_mat_q.empty()) { params.mul_mat_q = cmd_params_defaults.mul_mat_q; }
|
||||
if (params.tensor_split.empty()) { params.tensor_split = cmd_params_defaults.tensor_split; }
|
||||
if (params.use_mmap.empty()) { params.use_mmap = cmd_params_defaults.use_mmap; }
|
||||
if (params.n_threads.empty()) { params.n_threads = cmd_params_defaults.n_threads; }
|
||||
|
@ -486,7 +470,6 @@ struct cmd_params_instance {
|
|||
llama_split_mode split_mode;
|
||||
int main_gpu;
|
||||
bool no_kv_offload;
|
||||
bool mul_mat_q;
|
||||
std::vector<float> tensor_split;
|
||||
bool use_mmap;
|
||||
|
||||
|
@ -518,7 +501,6 @@ struct cmd_params_instance {
|
|||
cparams.n_batch = n_batch;
|
||||
cparams.type_k = type_k;
|
||||
cparams.type_v = type_v;
|
||||
cparams.mul_mat_q = mul_mat_q;
|
||||
cparams.offload_kqv = !no_kv_offload;
|
||||
|
||||
return cparams;
|
||||
|
@ -538,7 +520,6 @@ static std::vector<cmd_params_instance> get_cmd_params_instances(const cmd_param
|
|||
for (const auto & nb : params.n_batch)
|
||||
for (const auto & tk : params.type_k)
|
||||
for (const auto & tv : params.type_v)
|
||||
for (const auto & mmq : params.mul_mat_q)
|
||||
for (const auto & nkvo : params.no_kv_offload)
|
||||
for (const auto & nt : params.n_threads) {
|
||||
for (const auto & n_prompt : params.n_prompt) {
|
||||
|
@ -557,7 +538,6 @@ static std::vector<cmd_params_instance> get_cmd_params_instances(const cmd_param
|
|||
/* .split_mode = */ sm,
|
||||
/* .main_gpu = */ mg,
|
||||
/* .no_kv_offload= */ nkvo,
|
||||
/* .mul_mat_q = */ mmq,
|
||||
/* .tensor_split = */ ts,
|
||||
/* .use_mmap = */ mmp,
|
||||
};
|
||||
|
@ -580,7 +560,6 @@ static std::vector<cmd_params_instance> get_cmd_params_instances(const cmd_param
|
|||
/* .split_mode = */ sm,
|
||||
/* .main_gpu = */ mg,
|
||||
/* .no_kv_offload= */ nkvo,
|
||||
/* .mul_mat_q = */ mmq,
|
||||
/* .tensor_split = */ ts,
|
||||
/* .use_mmap = */ mmp,
|
||||
};
|
||||
|
@ -616,7 +595,6 @@ struct test {
|
|||
llama_split_mode split_mode;
|
||||
int main_gpu;
|
||||
bool no_kv_offload;
|
||||
bool mul_mat_q;
|
||||
std::vector<float> tensor_split;
|
||||
bool use_mmap;
|
||||
int n_prompt;
|
||||
|
@ -639,7 +617,6 @@ struct test {
|
|||
split_mode = inst.split_mode;
|
||||
main_gpu = inst.main_gpu;
|
||||
no_kv_offload = inst.no_kv_offload;
|
||||
mul_mat_q = inst.mul_mat_q;
|
||||
tensor_split = inst.tensor_split;
|
||||
use_mmap = inst.use_mmap;
|
||||
n_prompt = inst.n_prompt;
|
||||
|
@ -713,7 +690,7 @@ struct test {
|
|||
"n_batch", "n_threads", "type_k", "type_v",
|
||||
"n_gpu_layers", "split_mode",
|
||||
"main_gpu", "no_kv_offload",
|
||||
"mul_mat_q", "tensor_split", "use_mmap",
|
||||
"tensor_split", "use_mmap",
|
||||
"n_prompt", "n_gen", "test_time",
|
||||
"avg_ns", "stddev_ns",
|
||||
"avg_ts", "stddev_ts"
|
||||
|
@ -733,7 +710,7 @@ struct test {
|
|||
}
|
||||
if (field == "cuda" || field == "opencl" || field == "vulkan" || field == "kompute" || field == "metal" ||
|
||||
field == "gpu_blas" || field == "blas" || field == "sycl" ||field == "f16_kv" || field == "no_kv_offload" ||
|
||||
field == "mul_mat_q" || field == "use_mmap") {
|
||||
field == "use_mmap") {
|
||||
return BOOL;
|
||||
}
|
||||
if (field == "avg_ts" || field == "stddev_ts") {
|
||||
|
@ -767,7 +744,7 @@ struct test {
|
|||
std::to_string(n_batch), std::to_string(n_threads), ggml_type_name(type_k), ggml_type_name(type_v),
|
||||
std::to_string(n_gpu_layers), split_mode_str(split_mode),
|
||||
std::to_string(main_gpu), std::to_string(no_kv_offload),
|
||||
std::to_string(mul_mat_q), tensor_split_str, std::to_string(use_mmap),
|
||||
tensor_split_str, std::to_string(use_mmap),
|
||||
std::to_string(n_prompt), std::to_string(n_gen), test_time,
|
||||
std::to_string(avg_ns()), std::to_string(stdev_ns()),
|
||||
std::to_string(avg_ts()), std::to_string(stdev_ts())
|
||||
|
@ -931,9 +908,6 @@ struct markdown_printer : public printer {
|
|||
if (field == "n_threads") {
|
||||
return "threads";
|
||||
}
|
||||
if (field == "mul_mat_q") {
|
||||
return "mmq";
|
||||
}
|
||||
if (field == "no_kv_offload") {
|
||||
return "nkvo";
|
||||
}
|
||||
|
@ -974,9 +948,6 @@ struct markdown_printer : public printer {
|
|||
if (params.split_mode.size() > 1 || params.split_mode != cmd_params_defaults.split_mode) {
|
||||
fields.emplace_back("split_mode");
|
||||
}
|
||||
if (params.mul_mat_q.size() > 1 || params.mul_mat_q != cmd_params_defaults.mul_mat_q) {
|
||||
fields.emplace_back("mul_mat_q");
|
||||
}
|
||||
if (params.no_kv_offload.size() > 1 || params.no_kv_offload != cmd_params_defaults.no_kv_offload) {
|
||||
fields.emplace_back("no_kv_offload");
|
||||
}
|
||||
|
|
|
@ -21,12 +21,8 @@ android {
|
|||
useSupportLibrary = true
|
||||
}
|
||||
ndk {
|
||||
// Workaround for https://github.com/llvm/llvm-project/issues/65820
|
||||
// affecting armeabi-v7a. Skip armeabi-v7a when invoked with
|
||||
// -Pskip-armeabi-v7a (e.g., ./gradlew build -Pskip-armeabi-v7a).
|
||||
if (project.hasProperty("skip-armeabi-v7a")) {
|
||||
abiFilters += listOf("arm64-v8a", "x86_64", "x86")
|
||||
}
|
||||
// Add NDK properties if wanted, e.g.
|
||||
// abiFilters += listOf("arm64-v8a")
|
||||
}
|
||||
externalNativeBuild {
|
||||
cmake {
|
||||
|
|
|
@ -549,7 +549,7 @@ int main(int argc, char ** argv) {
|
|||
n_past, n_left, n_ctx, params.n_keep, n_discard);
|
||||
|
||||
llama_kv_cache_seq_rm (ctx, 0, params.n_keep , params.n_keep + n_discard);
|
||||
llama_kv_cache_seq_shift(ctx, 0, params.n_keep + n_discard, n_past, -n_discard);
|
||||
llama_kv_cache_seq_add(ctx, 0, params.n_keep + n_discard, n_past, -n_discard);
|
||||
|
||||
n_past -= n_discard;
|
||||
|
||||
|
@ -576,9 +576,9 @@ int main(int argc, char ** argv) {
|
|||
LOG("div: [%6d, %6d] / %6d -> [%6d, %6d]\n", ga_i + ib*bd, ga_i + ib*bd + ga_w, ga_n, (ga_i + ib*bd)/ga_n, (ga_i + ib*bd + ga_w)/ga_n);
|
||||
LOG("shift: [%6d, %6d] + %6d -> [%6d, %6d]\n", ga_i + ib*bd + ga_w, n_past + ib*bd, dd, ga_i + ib*bd + ga_w + dd, n_past + ib*bd + dd);
|
||||
|
||||
llama_kv_cache_seq_shift(ctx, 0, ga_i, n_past, ib*bd);
|
||||
llama_kv_cache_seq_div (ctx, 0, ga_i + ib*bd, ga_i + ib*bd + ga_w, ga_n);
|
||||
llama_kv_cache_seq_shift(ctx, 0, ga_i + ib*bd + ga_w, n_past + ib*bd, dd);
|
||||
llama_kv_cache_seq_add(ctx, 0, ga_i, n_past, ib*bd);
|
||||
llama_kv_cache_seq_div(ctx, 0, ga_i + ib*bd, ga_i + ib*bd + ga_w, ga_n);
|
||||
llama_kv_cache_seq_add(ctx, 0, ga_i + ib*bd + ga_w, n_past + ib*bd, dd);
|
||||
|
||||
n_past -= bd;
|
||||
|
||||
|
|
|
@ -126,7 +126,7 @@ int main(int argc, char ** argv) {
|
|||
const int n_batch = ctx_params.n_batch;
|
||||
const int n_batch_grp = ctx_params.n_batch/n_grp;
|
||||
|
||||
LOG_TEE("\n%s: n_len = %d, n_ctx = %d, n_kv_req = %d, n_grp = %d, n_batch = %d\n", __func__, n_len, n_ctx, n_kv_req, n_grp, n_batch);
|
||||
LOG_TEE("\n%s: n_len = %d, n_ctx = %d, n_kv_req = %d, n_grp = %d, n_batch = %d, n_junk = %d, i_pos = %d\n", __func__, n_len, n_ctx, n_kv_req, n_grp, n_batch, n_junk, i_pos);
|
||||
|
||||
// print the prompt token-by-token
|
||||
|
||||
|
@ -146,10 +146,11 @@ int main(int argc, char ** argv) {
|
|||
const int ib = i/n_batch - 1;
|
||||
const int bd = n_batch_grp*(n_grp - 1);
|
||||
|
||||
llama_kv_cache_seq_shift(ctx, 0, n_past - n_batch, n_past, ib*bd);
|
||||
llama_kv_cache_seq_add (ctx, 0, n_past - n_batch, n_past, ib*bd);
|
||||
llama_kv_cache_seq_div (ctx, 0, n_past - n_batch + ib*bd, n_past + ib*bd, n_grp);
|
||||
llama_kv_cache_update (ctx);
|
||||
|
||||
n_past -= bd;
|
||||
n_past = llama_kv_cache_seq_pos_max(ctx, 0) + 1;
|
||||
}
|
||||
|
||||
llama_batch_clear(batch);
|
||||
|
@ -180,9 +181,11 @@ int main(int argc, char ** argv) {
|
|||
LOG_TEE("%s: shifting KV cache with %d\n", __func__, n_discard);
|
||||
|
||||
llama_kv_cache_seq_rm (ctx, 0, n_keep , n_keep + n_discard);
|
||||
llama_kv_cache_seq_shift(ctx, 0, n_keep + n_discard, n_ctx, -n_discard);
|
||||
llama_kv_cache_seq_add(ctx, 0, n_keep + n_discard, n_ctx, -n_discard);
|
||||
//llama_kv_cache_defrag (ctx);
|
||||
llama_kv_cache_update (ctx);
|
||||
|
||||
n_past -= n_discard;
|
||||
n_past = llama_kv_cache_seq_pos_max(ctx, 0) + 1;
|
||||
|
||||
llama_batch_clear(batch);
|
||||
|
||||
|
@ -209,9 +212,11 @@ int main(int argc, char ** argv) {
|
|||
LOG_TEE("%s: shifting KV cache with %d to free space for the answer\n", __func__, n_discard);
|
||||
|
||||
llama_kv_cache_seq_rm (ctx, 0, n_keep , n_keep + n_discard);
|
||||
llama_kv_cache_seq_shift(ctx, 0, n_keep + n_discard, n_ctx, -n_discard);
|
||||
llama_kv_cache_seq_add(ctx, 0, n_keep + n_discard, n_ctx, -n_discard);
|
||||
//llama_kv_cache_defrag (ctx);
|
||||
llama_kv_cache_update (ctx);
|
||||
|
||||
n_past -= n_discard;
|
||||
n_past = llama_kv_cache_seq_pos_max(ctx, 0) + 1;
|
||||
}
|
||||
}
|
||||
|
||||
|
|
|
@ -23,6 +23,8 @@ static const std::vector<struct quant_option> QUANT_OPTIONS = {
|
|||
{ "Q5_1", LLAMA_FTYPE_MOSTLY_Q5_1, " 4.70G, +0.0349 ppl @ LLaMA-v1-7B", },
|
||||
{ "IQ2_XXS",LLAMA_FTYPE_MOSTLY_IQ2_XXS," 2.06 bpw quantization", },
|
||||
{ "IQ2_XS", LLAMA_FTYPE_MOSTLY_IQ2_XS, " 2.31 bpw quantization", },
|
||||
{ "IQ2_S", LLAMA_FTYPE_MOSTLY_IQ2_S, " 2.5 bpw quantization", },
|
||||
{ "IQ2_M", LLAMA_FTYPE_MOSTLY_IQ2_M, " 2.7 bpw quantization", },
|
||||
{ "IQ1_S", LLAMA_FTYPE_MOSTLY_IQ1_S, " 1.56 bpw quantization", },
|
||||
{ "Q2_K", LLAMA_FTYPE_MOSTLY_Q2_K, " 2.63G, +0.6717 ppl @ LLaMA-v1-7B", },
|
||||
{ "Q2_K_S", LLAMA_FTYPE_MOSTLY_Q2_K_S, " 2.16G, +9.0634 ppl @ LLaMA-v1-7B", },
|
||||
|
@ -30,11 +32,12 @@ static const std::vector<struct quant_option> QUANT_OPTIONS = {
|
|||
{ "IQ3_S", LLAMA_FTYPE_MOSTLY_IQ3_S, " 3.44 bpw quantization", },
|
||||
{ "IQ3_M", LLAMA_FTYPE_MOSTLY_IQ3_M, " 3.66 bpw quantization mix", },
|
||||
{ "Q3_K", LLAMA_FTYPE_MOSTLY_Q3_K_M, "alias for Q3_K_M" },
|
||||
{ "Q3_K_XS",LLAMA_FTYPE_MOSTLY_Q3_K_XS,"3-bit extra small quantization" , },
|
||||
{ "IQ3_XS", LLAMA_FTYPE_MOSTLY_IQ3_XS, " 3.3 bpw quantization" , },
|
||||
{ "Q3_K_S", LLAMA_FTYPE_MOSTLY_Q3_K_S, " 2.75G, +0.5551 ppl @ LLaMA-v1-7B", },
|
||||
{ "Q3_K_M", LLAMA_FTYPE_MOSTLY_Q3_K_M, " 3.07G, +0.2496 ppl @ LLaMA-v1-7B", },
|
||||
{ "Q3_K_L", LLAMA_FTYPE_MOSTLY_Q3_K_L, " 3.35G, +0.1764 ppl @ LLaMA-v1-7B", },
|
||||
{ "IQ4_NL", LLAMA_FTYPE_MOSTLY_IQ4_NL, " 4.25 bpw non-linear quantization", },
|
||||
{ "IQ4_NL", LLAMA_FTYPE_MOSTLY_IQ4_NL, " 4.50 bpw non-linear quantization", },
|
||||
{ "IQ4_XS", LLAMA_FTYPE_MOSTLY_IQ4_XS, " 4.25 bpw non-linear quantization", },
|
||||
{ "Q4_K", LLAMA_FTYPE_MOSTLY_Q4_K_M, "alias for Q4_K_M", },
|
||||
{ "Q4_K_S", LLAMA_FTYPE_MOSTLY_Q4_K_S, " 3.59G, +0.0992 ppl @ LLaMA-v1-7B", },
|
||||
{ "Q4_K_M", LLAMA_FTYPE_MOSTLY_Q4_K_M, " 3.80G, +0.0532 ppl @ LLaMA-v1-7B", },
|
||||
|
@ -292,6 +295,7 @@ int main(int argc, char ** argv) {
|
|||
}
|
||||
|
||||
if ((params.ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS || params.ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS ||
|
||||
params.ftype == LLAMA_FTYPE_MOSTLY_IQ2_S ||
|
||||
params.ftype == LLAMA_FTYPE_MOSTLY_Q2_K_S || params.ftype == LLAMA_FTYPE_MOSTLY_IQ1_S) && imatrix_data.empty()) {
|
||||
fprintf(stderr, "\n===============================================================================================\n");
|
||||
fprintf(stderr, "Please do not use IQ1_S, IQ2_XXS, IQ2_XS or Q2_K_S quantization without an importance matrix\n");
|
||||
|
|
|
@ -1,11 +1,24 @@
|
|||
# llama.cpp/example/server
|
||||
# LLaMA.cpp HTTP Server
|
||||
|
||||
This example demonstrates a simple HTTP API server and a simple web front end to interact with llama.cpp.
|
||||
Fast, lightweight, pure C/C++ HTTP server based on [httplib](https://github.com/yhirose/cpp-httplib), [nlohmann::json](https://github.com/nlohmann/json) and **llama.cpp**.
|
||||
|
||||
Command line options:
|
||||
Set of LLM REST APIs and a simple web front end to interact with llama.cpp.
|
||||
|
||||
**Features:**
|
||||
* LLM inference of F16 and quantum models on GPU and CPU
|
||||
* [OpenAI API](https://github.com/openai/openai-openapi) compatible chat completions and embeddings routes
|
||||
* Parallel decoding with multi-user support
|
||||
* Continuous batching
|
||||
* Multimodal (wip)
|
||||
* Monitoring endpoints
|
||||
|
||||
The project is under active development, and we are [looking for feedback and contributors](https://github.com/ggerganov/llama.cpp/issues/4216).
|
||||
|
||||
**Command line options:**
|
||||
|
||||
- `--threads N`, `-t N`: Set the number of threads to use during generation.
|
||||
- `-tb N, --threads-batch N`: Set the number of threads to use during batch and prompt processing. If not specified, the number of threads will be set to the number of threads used for generation.
|
||||
- `--threads-http N`: number of threads in the http server pool to process requests (default: `std::thread::hardware_concurrency()`)
|
||||
- `-m FNAME`, `--model FNAME`: Specify the path to the LLaMA model file (e.g., `models/7B/ggml-model.gguf`).
|
||||
- `-a ALIAS`, `--alias ALIAS`: Set an alias for the model. The alias will be returned in API responses.
|
||||
- `-c N`, `--ctx-size N`: Set the size of the prompt context. The default is 512, but LLaMA models were built with a context of 2048, which will provide better results for longer input/inference. The size may differ in other models, for example, baichuan models were build with a context of 4096.
|
||||
|
@ -313,7 +326,7 @@ Notice that each `probs` is an array of length `n_probs`.
|
|||
- `default_generation_settings` - the default generation settings for the `/completion` endpoint, has the same fields as the `generation_settings` response object from the `/completion` endpoint.
|
||||
- `total_slots` - the total number of slots for process requests (defined by `--parallel` option)
|
||||
|
||||
- **POST** `/v1/chat/completions`: OpenAI-compatible Chat Completions API. Given a ChatML-formatted json description in `messages`, it returns the predicted completion. Both synchronous and streaming mode are supported, so scripted and interactive applications work fine. While no strong claims of compatibility with OpenAI API spec is being made, in our experience it suffices to support many apps. Only ChatML-tuned models, such as Dolphin, OpenOrca, OpenHermes, OpenChat-3.5, etc can be used with this endpoint. Compared to `api_like_OAI.py` this API implementation does not require a wrapper to be served.
|
||||
- **POST** `/v1/chat/completions`: OpenAI-compatible Chat Completions API. Given a ChatML-formatted json description in `messages`, it returns the predicted completion. Both synchronous and streaming mode are supported, so scripted and interactive applications work fine. While no strong claims of compatibility with OpenAI API spec is being made, in our experience it suffices to support many apps. Only ChatML-tuned models, such as Dolphin, OpenOrca, OpenHermes, OpenChat-3.5, etc can be used with this endpoint.
|
||||
|
||||
*Options:*
|
||||
|
||||
|
@ -515,20 +528,7 @@ bash chat.sh
|
|||
|
||||
### API like OAI
|
||||
|
||||
API example using Python Flask: [api_like_OAI.py](api_like_OAI.py)
|
||||
This example must be used with server.cpp
|
||||
|
||||
```sh
|
||||
python api_like_OAI.py
|
||||
```
|
||||
|
||||
After running the API server, you can use it in Python by setting the API base URL.
|
||||
|
||||
```python
|
||||
openai.api_base = "http://<Your api-server IP>:port"
|
||||
```
|
||||
|
||||
Then you can utilize llama.cpp as an OpenAI's **chat.completion** or **text_completion** API
|
||||
The HTTP server supports OAI-like API
|
||||
|
||||
### Extending or building alternative Web Front End
|
||||
|
||||
|
|
|
@ -1,228 +0,0 @@
|
|||
#!/usr/bin/env python3
|
||||
import argparse
|
||||
from flask import Flask, jsonify, request, Response
|
||||
import urllib.parse
|
||||
import requests
|
||||
import time
|
||||
import json
|
||||
|
||||
|
||||
app = Flask(__name__)
|
||||
slot_id = -1
|
||||
|
||||
parser = argparse.ArgumentParser(description="An example of using server.cpp with a similar API to OAI. It must be used together with server.cpp.")
|
||||
parser.add_argument("--chat-prompt", type=str, help="the top prompt in chat completions(default: 'A chat between a curious user and an artificial intelligence assistant. The assistant follows the given rules no matter what.')", default='A chat between a curious user and an artificial intelligence assistant. The assistant follows the given rules no matter what.')
|
||||
parser.add_argument("--user-name", type=str, help="USER name in chat completions(default: 'USER: ')", default="USER: ")
|
||||
parser.add_argument("--ai-name", type=str, help="ASSISTANT name in chat completions(default: 'ASSISTANT: ')", default="ASSISTANT: ")
|
||||
parser.add_argument("--system-name", type=str, help="SYSTEM name in chat completions(default: 'ASSISTANT's RULE: ')", default="ASSISTANT's RULE: ")
|
||||
parser.add_argument("--stop", type=str, help="the end of response in chat completions(default: '</s>')", default="</s>")
|
||||
parser.add_argument("--llama-api", type=str, help="Set the address of server.cpp in llama.cpp(default: http://127.0.0.1:8080)", default='http://127.0.0.1:8080')
|
||||
parser.add_argument("--api-key", type=str, help="Set the api key to allow only few user(default: NULL)", default="")
|
||||
parser.add_argument("--host", type=str, help="Set the ip address to listen.(default: 127.0.0.1)", default='127.0.0.1')
|
||||
parser.add_argument("--port", type=int, help="Set the port to listen.(default: 8081)", default=8081)
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
def is_present(json, key):
|
||||
try:
|
||||
buf = json[key]
|
||||
except KeyError:
|
||||
return False
|
||||
if json[key] == None:
|
||||
return False
|
||||
return True
|
||||
|
||||
#convert chat to prompt
|
||||
def convert_chat(messages):
|
||||
|
||||
system_n = args.system_name
|
||||
user_n = args.user_name
|
||||
ai_n = args.ai_name
|
||||
stop = args.stop
|
||||
|
||||
prompt = "" + args.chat_prompt + stop
|
||||
|
||||
for line in messages:
|
||||
if (line["role"] == "system"):
|
||||
prompt += f"{system_n}{line['content']}{stop}"
|
||||
if (line["role"] == "user"):
|
||||
prompt += f"{user_n}{line['content']}{stop}"
|
||||
if (line["role"] == "assistant"):
|
||||
prompt += f"{ai_n}{line['content']}{stop}"
|
||||
prompt += ai_n.rstrip()
|
||||
|
||||
return prompt
|
||||
|
||||
def make_postData(body, chat=False, stream=False):
|
||||
postData = {}
|
||||
if (chat):
|
||||
postData["prompt"] = convert_chat(body["messages"])
|
||||
else:
|
||||
postData["prompt"] = body["prompt"]
|
||||
if(is_present(body, "temperature")): postData["temperature"] = body["temperature"]
|
||||
if(is_present(body, "top_k")): postData["top_k"] = body["top_k"]
|
||||
if(is_present(body, "top_p")): postData["top_p"] = body["top_p"]
|
||||
if(is_present(body, "max_tokens")): postData["n_predict"] = body["max_tokens"]
|
||||
if(is_present(body, "presence_penalty")): postData["presence_penalty"] = body["presence_penalty"]
|
||||
if(is_present(body, "frequency_penalty")): postData["frequency_penalty"] = body["frequency_penalty"]
|
||||
if(is_present(body, "repeat_penalty")): postData["repeat_penalty"] = body["repeat_penalty"]
|
||||
if(is_present(body, "mirostat")): postData["mirostat"] = body["mirostat"]
|
||||
if(is_present(body, "mirostat_tau")): postData["mirostat_tau"] = body["mirostat_tau"]
|
||||
if(is_present(body, "mirostat_eta")): postData["mirostat_eta"] = body["mirostat_eta"]
|
||||
if(is_present(body, "seed")): postData["seed"] = body["seed"]
|
||||
if(is_present(body, "grammar")): postData["grammar"] = body["grammar"]
|
||||
if(is_present(body, "logit_bias")): postData["logit_bias"] = [[int(token), body["logit_bias"][token]] for token in body["logit_bias"].keys()]
|
||||
if (args.stop != ""):
|
||||
postData["stop"] = [args.stop]
|
||||
else:
|
||||
postData["stop"] = []
|
||||
if(is_present(body, "stop")): postData["stop"] += body["stop"]
|
||||
postData["n_keep"] = -1
|
||||
postData["stream"] = stream
|
||||
postData["cache_prompt"] = True
|
||||
postData["slot_id"] = slot_id
|
||||
return postData
|
||||
|
||||
def make_resData(data, chat=False, promptToken=[]):
|
||||
resData = {
|
||||
"id": "chatcmpl" if (chat) else "cmpl",
|
||||
"object": "chat.completion" if (chat) else "text_completion",
|
||||
"created": int(time.time()),
|
||||
"truncated": data["truncated"],
|
||||
"model": "LLaMA_CPP",
|
||||
"usage": {
|
||||
"prompt_tokens": data["tokens_evaluated"],
|
||||
"completion_tokens": data["tokens_predicted"],
|
||||
"total_tokens": data["tokens_evaluated"] + data["tokens_predicted"]
|
||||
}
|
||||
}
|
||||
if (len(promptToken) != 0):
|
||||
resData["promptToken"] = promptToken
|
||||
if (chat):
|
||||
#only one choice is supported
|
||||
resData["choices"] = [{
|
||||
"index": 0,
|
||||
"message": {
|
||||
"role": "assistant",
|
||||
"content": data["content"],
|
||||
},
|
||||
"finish_reason": "stop" if (data["stopped_eos"] or data["stopped_word"]) else "length"
|
||||
}]
|
||||
else:
|
||||
#only one choice is supported
|
||||
resData["choices"] = [{
|
||||
"text": data["content"],
|
||||
"index": 0,
|
||||
"logprobs": None,
|
||||
"finish_reason": "stop" if (data["stopped_eos"] or data["stopped_word"]) else "length"
|
||||
}]
|
||||
return resData
|
||||
|
||||
def make_resData_stream(data, chat=False, time_now = 0, start=False):
|
||||
resData = {
|
||||
"id": "chatcmpl" if (chat) else "cmpl",
|
||||
"object": "chat.completion.chunk" if (chat) else "text_completion.chunk",
|
||||
"created": time_now,
|
||||
"model": "LLaMA_CPP",
|
||||
"choices": [
|
||||
{
|
||||
"finish_reason": None,
|
||||
"index": 0
|
||||
}
|
||||
]
|
||||
}
|
||||
slot_id = data.get("slot_id")
|
||||
if (chat):
|
||||
if (start):
|
||||
resData["choices"][0]["delta"] = {
|
||||
"role": "assistant"
|
||||
}
|
||||
else:
|
||||
resData["choices"][0]["delta"] = {
|
||||
"content": data["content"]
|
||||
}
|
||||
if (data["stop"]):
|
||||
resData["choices"][0]["finish_reason"] = "stop" if (data["stopped_eos"] or data["stopped_word"]) else "length"
|
||||
else:
|
||||
resData["choices"][0]["text"] = data["content"]
|
||||
if (data["stop"]):
|
||||
resData["choices"][0]["finish_reason"] = "stop" if (data["stopped_eos"] or data["stopped_word"]) else "length"
|
||||
|
||||
return resData
|
||||
|
||||
|
||||
@app.route('/chat/completions', methods=['POST', 'OPTIONS'])
|
||||
@app.route('/v1/chat/completions', methods=['POST', 'OPTIONS'])
|
||||
def chat_completions():
|
||||
if (args.api_key != "" and request.headers["Authorization"].split()[1] != args.api_key):
|
||||
return Response(status=403)
|
||||
if request.method == 'OPTIONS':
|
||||
return Response(headers={"Access-Control-Allow-Origin": "*", "Access-Control-Allow-Headers": "*"})
|
||||
body = request.get_json()
|
||||
stream = False
|
||||
tokenize = False
|
||||
if(is_present(body, "stream")): stream = body["stream"]
|
||||
if(is_present(body, "tokenize")): tokenize = body["tokenize"]
|
||||
postData = make_postData(body, chat=True, stream=stream)
|
||||
|
||||
promptToken = []
|
||||
if (tokenize):
|
||||
tokenData = requests.request("POST", urllib.parse.urljoin(args.llama_api, "/tokenize"), data=json.dumps({"content": postData["prompt"]})).json()
|
||||
promptToken = tokenData["tokens"]
|
||||
|
||||
if (not stream):
|
||||
data = requests.request("POST", urllib.parse.urljoin(args.llama_api, "/completion"), data=json.dumps(postData))
|
||||
print(data.json())
|
||||
resData = make_resData(data.json(), chat=True, promptToken=promptToken)
|
||||
return jsonify(resData)
|
||||
else:
|
||||
def generate():
|
||||
data = requests.request("POST", urllib.parse.urljoin(args.llama_api, "/completion"), data=json.dumps(postData), stream=True)
|
||||
time_now = int(time.time())
|
||||
resData = make_resData_stream({}, chat=True, time_now=time_now, start=True)
|
||||
yield 'data: {}\n\n'.format(json.dumps(resData))
|
||||
for line in data.iter_lines():
|
||||
if line:
|
||||
decoded_line = line.decode('utf-8')
|
||||
resData = make_resData_stream(json.loads(decoded_line[6:]), chat=True, time_now=time_now)
|
||||
yield 'data: {}\n\n'.format(json.dumps(resData))
|
||||
return Response(generate(), mimetype='text/event-stream', headers={"Access-Control-Allow-Origin": "*", "Access-Control-Allow-Headers": "*"})
|
||||
|
||||
|
||||
@app.route('/completions', methods=['POST', 'OPTIONS'])
|
||||
@app.route('/v1/completions', methods=['POST', 'OPTIONS'])
|
||||
def completion():
|
||||
if (args.api_key != "" and request.headers["Authorization"].split()[1] != args.api_key):
|
||||
return Response(status=403)
|
||||
if request.method == 'OPTIONS':
|
||||
return Response(headers={"Access-Control-Allow-Origin": "*", "Access-Control-Allow-Headers": "*"})
|
||||
body = request.get_json()
|
||||
stream = False
|
||||
tokenize = False
|
||||
if(is_present(body, "stream")): stream = body["stream"]
|
||||
if(is_present(body, "tokenize")): tokenize = body["tokenize"]
|
||||
postData = make_postData(body, chat=False, stream=stream)
|
||||
|
||||
promptToken = []
|
||||
if (tokenize):
|
||||
tokenData = requests.request("POST", urllib.parse.urljoin(args.llama_api, "/tokenize"), data=json.dumps({"content": postData["prompt"]})).json()
|
||||
promptToken = tokenData["tokens"]
|
||||
|
||||
if (not stream):
|
||||
data = requests.request("POST", urllib.parse.urljoin(args.llama_api, "/completion"), data=json.dumps(postData))
|
||||
print(data.json())
|
||||
resData = make_resData(data.json(), chat=False, promptToken=promptToken)
|
||||
return jsonify(resData)
|
||||
else:
|
||||
def generate():
|
||||
data = requests.request("POST", urllib.parse.urljoin(args.llama_api, "/completion"), data=json.dumps(postData), stream=True)
|
||||
time_now = int(time.time())
|
||||
for line in data.iter_lines():
|
||||
if line:
|
||||
decoded_line = line.decode('utf-8')
|
||||
resData = make_resData_stream(json.loads(decoded_line[6:]), chat=False, time_now=time_now)
|
||||
yield 'data: {}\n\n'.format(json.dumps(resData))
|
||||
return Response(generate(), mimetype='text/event-stream', headers={"Access-Control-Allow-Origin": "*", "Access-Control-Allow-Headers": "*"})
|
||||
|
||||
if __name__ == '__main__':
|
||||
app.run(args.host, port=args.port)
|
|
@ -33,8 +33,7 @@
|
|||
|
||||
using json = nlohmann::json;
|
||||
|
||||
struct server_params
|
||||
{
|
||||
struct server_params {
|
||||
std::string hostname = "127.0.0.1";
|
||||
std::vector<std::string> api_keys;
|
||||
std::string public_path = "examples/server/public";
|
||||
|
@ -44,108 +43,56 @@ struct server_params
|
|||
int32_t write_timeout = 600;
|
||||
bool slots_endpoint = true;
|
||||
bool metrics_endpoint = false;
|
||||
int n_threads_http = -1;
|
||||
};
|
||||
|
||||
bool server_verbose = false;
|
||||
bool server_log_json = true;
|
||||
|
||||
static size_t common_part(const std::vector<llama_token> &a, const std::vector<llama_token> &b)
|
||||
{
|
||||
size_t i;
|
||||
for (i = 0; i < a.size() && i < b.size() && a[i] == b[i]; i++)
|
||||
{
|
||||
}
|
||||
return i;
|
||||
}
|
||||
|
||||
enum stop_type
|
||||
{
|
||||
enum stop_type {
|
||||
STOP_FULL,
|
||||
STOP_PARTIAL,
|
||||
};
|
||||
|
||||
static bool ends_with(const std::string &str, const std::string &suffix)
|
||||
{
|
||||
return str.size() >= suffix.size() &&
|
||||
0 == str.compare(str.size() - suffix.size(), suffix.size(), suffix);
|
||||
}
|
||||
// TODO: can become bool if we can't find use of more states
|
||||
enum slot_state {
|
||||
IDLE,
|
||||
PROCESSING,
|
||||
};
|
||||
|
||||
static size_t find_partial_stop_string(const std::string &stop,
|
||||
const std::string &text)
|
||||
{
|
||||
if (!text.empty() && !stop.empty())
|
||||
{
|
||||
const char text_last_char = text.back();
|
||||
for (int64_t char_index = stop.size() - 1; char_index >= 0; char_index--)
|
||||
{
|
||||
if (stop[char_index] == text_last_char)
|
||||
{
|
||||
const std::string current_partial = stop.substr(0, char_index + 1);
|
||||
if (ends_with(text, current_partial))
|
||||
{
|
||||
return text.size() - char_index - 1;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
return std::string::npos;
|
||||
}
|
||||
enum slot_command {
|
||||
NONE,
|
||||
LOAD_PROMPT,
|
||||
RELEASE,
|
||||
};
|
||||
|
||||
// TODO: reuse llama_detokenize
|
||||
template <class Iter>
|
||||
static std::string tokens_to_str(llama_context *ctx, Iter begin, Iter end)
|
||||
{
|
||||
std::string ret;
|
||||
for (; begin != end; ++begin)
|
||||
{
|
||||
ret += llama_token_to_piece(ctx, *begin);
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
struct slot_params {
|
||||
bool stream = true;
|
||||
bool cache_prompt = false; // remember the prompt to avoid reprocessing all prompt
|
||||
|
||||
// format incomplete utf-8 multibyte character for output
|
||||
static std::string tokens_to_output_formatted_string(const llama_context *ctx, const llama_token token)
|
||||
{
|
||||
std::string out = token == -1 ? "" : llama_token_to_piece(ctx, token);
|
||||
// if the size is 1 and first bit is 1, meaning it's a partial character
|
||||
// (size > 1 meaning it's already a known token)
|
||||
if (out.size() == 1 && (out[0] & 0x80) == 0x80)
|
||||
{
|
||||
std::stringstream ss;
|
||||
ss << std::hex << (out[0] & 0xff);
|
||||
std::string res(ss.str());
|
||||
out = "byte: \\x" + res;
|
||||
}
|
||||
return out;
|
||||
}
|
||||
uint32_t seed = -1; // RNG seed
|
||||
int32_t n_keep = 0; // number of tokens to keep from initial prompt
|
||||
int32_t n_predict = -1; // new tokens to predict
|
||||
|
||||
// convert a vector of completion_token_output to json
|
||||
static json probs_vector_to_json(const llama_context *ctx, const std::vector<completion_token_output> &probs)
|
||||
{
|
||||
json out = json::array();
|
||||
for (const auto &prob : probs)
|
||||
{
|
||||
json probs_for_token = json::array();
|
||||
for (const auto &p : prob.probs)
|
||||
{
|
||||
std::string tok_str = tokens_to_output_formatted_string(ctx, p.tok);
|
||||
probs_for_token.push_back(json
|
||||
{
|
||||
{"tok_str", tok_str},
|
||||
{"prob", p.prob},
|
||||
});
|
||||
}
|
||||
std::string tok_str = tokens_to_output_formatted_string(ctx, prob.tok);
|
||||
out.push_back(json{
|
||||
{"content", tok_str},
|
||||
{"probs", probs_for_token},
|
||||
});
|
||||
}
|
||||
return out;
|
||||
}
|
||||
std::vector<std::string> antiprompt;
|
||||
|
||||
struct llama_client_slot
|
||||
{
|
||||
json input_prefix;
|
||||
json input_suffix;
|
||||
};
|
||||
|
||||
struct slot_image {
|
||||
int32_t id;
|
||||
|
||||
bool request_encode_image = false;
|
||||
float * image_embedding = nullptr;
|
||||
int32_t image_tokens = 0;
|
||||
|
||||
clip_image_u8 * img_data;
|
||||
|
||||
std::string prefix_prompt; // before of this image
|
||||
};
|
||||
|
||||
struct server_slot {
|
||||
int id;
|
||||
int task_id = -1;
|
||||
|
||||
|
@ -165,8 +112,8 @@ struct llama_client_slot
|
|||
int32_t i_batch = -1;
|
||||
int32_t n_predict = -1;
|
||||
|
||||
int32_t num_prompt_tokens = 0;
|
||||
int32_t num_prompt_tokens_processed = 0;
|
||||
int32_t n_prompt_tokens = 0;
|
||||
int32_t n_prompt_tokens_processed = 0;
|
||||
|
||||
json prompt;
|
||||
std::string generated_text;
|
||||
|
@ -201,8 +148,8 @@ struct llama_client_slot
|
|||
std::vector<slot_image> images;
|
||||
|
||||
// stats
|
||||
size_t sent_count = 0;
|
||||
size_t sent_token_probs_index = 0;
|
||||
size_t n_sent_text = 0; // number of sent text character
|
||||
size_t n_sent_token_probs = 0;
|
||||
|
||||
int64_t t_start_process_prompt;
|
||||
int64_t t_start_genereration;
|
||||
|
@ -214,7 +161,7 @@ struct llama_client_slot
|
|||
int multitask_id = -1;
|
||||
|
||||
void reset() {
|
||||
num_prompt_tokens = 0;
|
||||
n_prompt_tokens = 0;
|
||||
generated_text = "";
|
||||
truncated = false;
|
||||
stopped_eos = false;
|
||||
|
@ -222,16 +169,15 @@ struct llama_client_slot
|
|||
stopped_limit = false;
|
||||
stopping_word = "";
|
||||
n_past = 0;
|
||||
sent_count = 0;
|
||||
sent_token_probs_index = 0;
|
||||
n_sent_text = 0;
|
||||
n_sent_token_probs = 0;
|
||||
infill = false;
|
||||
ga_i = 0;
|
||||
n_past_se = 0;
|
||||
|
||||
generated_token_probs.clear();
|
||||
|
||||
for (slot_image & img : images)
|
||||
{
|
||||
for (slot_image & img : images) {
|
||||
free(img.image_embedding);
|
||||
if (img.img_data) {
|
||||
clip_image_u8_free(img.img_data);
|
||||
|
@ -243,19 +189,15 @@ struct llama_client_slot
|
|||
}
|
||||
|
||||
bool has_budget(gpt_params &global_params) {
|
||||
if (params.n_predict == -1 && global_params.n_predict == -1)
|
||||
{
|
||||
if (params.n_predict == -1 && global_params.n_predict == -1) {
|
||||
return true; // limitless
|
||||
}
|
||||
|
||||
n_remaining = -1;
|
||||
|
||||
if (params.n_predict != -1)
|
||||
{
|
||||
if (params.n_predict != -1) {
|
||||
n_remaining = params.n_predict - n_decoded;
|
||||
}
|
||||
else if (global_params.n_predict != -1)
|
||||
{
|
||||
} else if (global_params.n_predict != -1) {
|
||||
n_remaining = global_params.n_predict - n_decoded;
|
||||
}
|
||||
|
||||
|
@ -271,8 +213,7 @@ struct llama_client_slot
|
|||
}
|
||||
|
||||
void add_token_string(const completion_token_output &token) {
|
||||
if (command == RELEASE)
|
||||
{
|
||||
if (command == RELEASE) {
|
||||
return;
|
||||
}
|
||||
cache_tokens.push_back(token.tok);
|
||||
|
@ -290,10 +231,10 @@ struct llama_client_slot
|
|||
json get_formated_timings() {
|
||||
return json
|
||||
{
|
||||
{"prompt_n", num_prompt_tokens_processed},
|
||||
{"prompt_n", n_prompt_tokens_processed},
|
||||
{"prompt_ms", t_prompt_processing},
|
||||
{"prompt_per_token_ms", t_prompt_processing / num_prompt_tokens_processed},
|
||||
{"prompt_per_second", 1e3 / t_prompt_processing * num_prompt_tokens_processed},
|
||||
{"prompt_per_token_ms", t_prompt_processing / n_prompt_tokens_processed},
|
||||
{"prompt_per_second", 1e3 / t_prompt_processing * n_prompt_tokens_processed},
|
||||
|
||||
{"predicted_n", n_decoded},
|
||||
{"predicted_ms", t_token_generation},
|
||||
|
@ -304,16 +245,16 @@ struct llama_client_slot
|
|||
|
||||
void print_timings() const {
|
||||
char buffer[512];
|
||||
double t_token = t_prompt_processing / num_prompt_tokens_processed;
|
||||
double n_tokens_second = 1e3 / t_prompt_processing * num_prompt_tokens_processed;
|
||||
double t_token = t_prompt_processing / n_prompt_tokens_processed;
|
||||
double n_tokens_second = 1e3 / t_prompt_processing * n_prompt_tokens_processed;
|
||||
sprintf(buffer, "prompt eval time = %10.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)",
|
||||
t_prompt_processing, num_prompt_tokens_processed,
|
||||
t_prompt_processing, n_prompt_tokens_processed,
|
||||
t_token, n_tokens_second);
|
||||
LOG_INFO(buffer, {
|
||||
{"slot_id", id},
|
||||
{"task_id", task_id},
|
||||
{"t_prompt_processing", t_prompt_processing},
|
||||
{"num_prompt_tokens_processed", num_prompt_tokens_processed},
|
||||
{"n_prompt_tokens_processed", n_prompt_tokens_processed},
|
||||
{"t_token", t_token},
|
||||
{"n_tokens_second", n_tokens_second},
|
||||
});
|
||||
|
@ -343,7 +284,7 @@ struct llama_client_slot
|
|||
}
|
||||
};
|
||||
|
||||
struct llama_metrics {
|
||||
struct server_metrics {
|
||||
uint64_t n_prompt_tokens_processed_total = 0;
|
||||
uint64_t n_tokens_predicted_total = 0;
|
||||
|
||||
|
@ -354,16 +295,14 @@ struct llama_metrics {
|
|||
uint64_t t_tokens_generation = 0;
|
||||
|
||||
|
||||
void on_prompt_eval(const llama_client_slot &slot) {
|
||||
n_prompt_tokens_processed_total += slot.num_prompt_tokens_processed;
|
||||
|
||||
n_prompt_tokens_processed += slot.num_prompt_tokens_processed;
|
||||
void on_prompt_eval(const server_slot &slot) {
|
||||
n_prompt_tokens_processed_total += slot.n_prompt_tokens_processed;
|
||||
n_prompt_tokens_processed += slot.n_prompt_tokens_processed;
|
||||
t_prompt_processing += slot.t_prompt_processing;
|
||||
}
|
||||
|
||||
void on_prediction(const llama_client_slot &slot) {
|
||||
void on_prediction(const server_slot &slot) {
|
||||
n_tokens_predicted_total += slot.n_decoded;
|
||||
|
||||
n_tokens_predicted += slot.n_decoded;
|
||||
t_tokens_generation += slot.t_token_generation;
|
||||
}
|
||||
|
@ -404,13 +343,13 @@ struct llama_server_context
|
|||
std::string name_assistant;
|
||||
|
||||
// slots / clients
|
||||
std::vector<llama_client_slot> slots;
|
||||
std::vector<server_slot> slots;
|
||||
json default_generation_settings_for_props;
|
||||
|
||||
llama_server_queue queue_tasks;
|
||||
llama_server_response queue_results;
|
||||
|
||||
llama_metrics metrics;
|
||||
server_metrics metrics;
|
||||
|
||||
~llama_server_context()
|
||||
{
|
||||
|
@ -487,7 +426,7 @@ struct llama_server_context
|
|||
LOG_INFO("initializing slots", {{"n_slots", params.n_parallel}});
|
||||
for (int i = 0; i < params.n_parallel; i++)
|
||||
{
|
||||
llama_client_slot slot;
|
||||
server_slot slot;
|
||||
|
||||
slot.id = i;
|
||||
slot.n_ctx = n_ctx_slot;
|
||||
|
@ -579,11 +518,11 @@ struct llama_server_context
|
|||
return prompt_tokens;
|
||||
}
|
||||
|
||||
llama_client_slot* get_slot(int id) {
|
||||
server_slot* get_slot(int id) {
|
||||
int64_t t_last = ggml_time_us();
|
||||
llama_client_slot *last_used = nullptr;
|
||||
server_slot *last_used = nullptr;
|
||||
|
||||
for (llama_client_slot & slot : slots)
|
||||
for (server_slot & slot : slots)
|
||||
{
|
||||
if (slot.id == id && slot.available())
|
||||
{
|
||||
|
@ -600,7 +539,7 @@ struct llama_server_context
|
|||
return last_used;
|
||||
}
|
||||
|
||||
bool launch_slot_with_data(llama_client_slot* &slot, json data) {
|
||||
bool launch_slot_with_data(server_slot* &slot, json data) {
|
||||
slot_params default_params;
|
||||
llama_sampling_params default_sparams;
|
||||
|
||||
|
@ -888,7 +827,7 @@ struct llama_server_context
|
|||
clean_kv_cache = false;
|
||||
}
|
||||
|
||||
void update_system_prompt() {
|
||||
void system_prompt_update() {
|
||||
kv_cache_clear();
|
||||
system_tokens.clear();
|
||||
|
||||
|
@ -902,11 +841,25 @@ struct llama_server_context
|
|||
llama_batch_add(batch, system_tokens[i], i, { 0 }, false);
|
||||
}
|
||||
|
||||
if (llama_decode(ctx, batch) != 0)
|
||||
for (int32_t i = 0; i < (int32_t) batch.n_tokens; i += params.n_batch)
|
||||
{
|
||||
const int32_t n_tokens = std::min(params.n_batch, (int32_t) (batch.n_tokens - i));
|
||||
llama_batch batch_view = {
|
||||
n_tokens,
|
||||
batch.token + i,
|
||||
nullptr,
|
||||
batch.pos + i,
|
||||
batch.n_seq_id + i,
|
||||
batch.seq_id + i,
|
||||
batch.logits + i,
|
||||
0, 0, 0, // unused
|
||||
};
|
||||
if (llama_decode(ctx, batch_view) != 0)
|
||||
{
|
||||
LOG_TEE("%s: llama_decode() failed\n", __func__);
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
// assign the system KV cache to all parallel sequences
|
||||
for (int32_t i = 1; i < params.n_parallel; ++i)
|
||||
|
@ -919,9 +872,9 @@ struct llama_server_context
|
|||
system_need_update = false;
|
||||
}
|
||||
|
||||
void notify_system_prompt_changed() {
|
||||
void system_prompt_notify() {
|
||||
// release all slots
|
||||
for (llama_client_slot &slot : slots)
|
||||
for (server_slot &slot : slots)
|
||||
{
|
||||
slot.release();
|
||||
}
|
||||
|
@ -929,17 +882,17 @@ struct llama_server_context
|
|||
system_need_update = true;
|
||||
}
|
||||
|
||||
void process_system_prompt_data(const json &sys_props) {
|
||||
void system_prompt_process(const json &sys_props) {
|
||||
system_prompt = sys_props.value("prompt", "");
|
||||
name_user = sys_props.value("anti_prompt", "");
|
||||
name_assistant = sys_props.value("assistant_name", "");
|
||||
|
||||
|
||||
notify_system_prompt_changed();
|
||||
system_prompt_notify();
|
||||
}
|
||||
|
||||
static size_t find_stopping_strings(const std::string &text, const size_t last_token_size,
|
||||
const stop_type type, llama_client_slot &slot)
|
||||
const stop_type type, server_slot &slot)
|
||||
{
|
||||
size_t stop_pos = std::string::npos;
|
||||
|
||||
|
@ -972,7 +925,7 @@ struct llama_server_context
|
|||
return stop_pos;
|
||||
}
|
||||
|
||||
bool process_token(completion_token_output &result, llama_client_slot &slot) {
|
||||
bool process_token(completion_token_output &result, server_slot &slot) {
|
||||
// remember which tokens were sampled - used for repetition penalties during sampling
|
||||
const std::string token_str = llama_token_to_piece(ctx, result.tok);
|
||||
slot.sampled = result.tok;
|
||||
|
@ -1018,7 +971,7 @@ struct llama_server_context
|
|||
|
||||
if (!incomplete)
|
||||
{
|
||||
size_t pos = std::min(slot.sent_count, slot.generated_text.size());
|
||||
size_t pos = std::min(slot.n_sent_text, slot.generated_text.size());
|
||||
const std::string str_test = slot.generated_text.substr(pos);
|
||||
bool is_stop_full = false;
|
||||
size_t stop_pos = find_stopping_strings(str_test, token_str.size(), STOP_FULL, slot);
|
||||
|
@ -1028,7 +981,7 @@ struct llama_server_context
|
|||
slot.generated_text.erase(
|
||||
slot.generated_text.begin() + pos + stop_pos,
|
||||
slot.generated_text.end());
|
||||
pos = std::min(slot.sent_count, slot.generated_text.size());
|
||||
pos = std::min(slot.n_sent_text, slot.generated_text.size());
|
||||
}
|
||||
else
|
||||
{
|
||||
|
@ -1041,7 +994,7 @@ struct llama_server_context
|
|||
{
|
||||
// no send the stop word in the response
|
||||
result.text_to_send = slot.generated_text.substr(pos, std::string::npos);
|
||||
slot.sent_count += result.text_to_send.size();
|
||||
slot.n_sent_text += result.text_to_send.size();
|
||||
// add the token to slot queue and cache
|
||||
}
|
||||
slot.add_token_string(result);
|
||||
|
@ -1085,7 +1038,7 @@ struct llama_server_context
|
|||
return slot.has_next_token; // continue
|
||||
}
|
||||
|
||||
bool process_images(llama_client_slot &slot) const
|
||||
bool process_images(server_slot &slot) const
|
||||
{
|
||||
for (slot_image &img : slot.images)
|
||||
{
|
||||
|
@ -1118,7 +1071,7 @@ struct llama_server_context
|
|||
queue_results.send(res);
|
||||
}
|
||||
|
||||
json get_formated_generation(llama_client_slot &slot)
|
||||
json get_formated_generation(server_slot &slot)
|
||||
{
|
||||
const auto eos_bias = slot.sparams.logit_bias.find(llama_token_eos(model));
|
||||
const bool ignore_eos = eos_bias != slot.sparams.logit_bias.end() &&
|
||||
|
@ -1165,7 +1118,7 @@ struct llama_server_context
|
|||
};
|
||||
}
|
||||
|
||||
void send_partial_response(llama_client_slot &slot, completion_token_output tkn)
|
||||
void send_partial_response(server_slot &slot, completion_token_output tkn)
|
||||
{
|
||||
task_result res;
|
||||
res.id = slot.task_id;
|
||||
|
@ -1185,13 +1138,13 @@ struct llama_server_context
|
|||
{
|
||||
std::vector<completion_token_output> probs_output = {};
|
||||
const std::vector<llama_token> to_send_toks = llama_tokenize(ctx, tkn.text_to_send, false);
|
||||
size_t probs_pos = std::min(slot.sent_token_probs_index, slot.generated_token_probs.size());
|
||||
size_t probs_stop_pos = std::min(slot.sent_token_probs_index + to_send_toks.size(), slot.generated_token_probs.size());
|
||||
size_t probs_pos = std::min(slot.n_sent_token_probs, slot.generated_token_probs.size());
|
||||
size_t probs_stop_pos = std::min(slot.n_sent_token_probs + to_send_toks.size(), slot.generated_token_probs.size());
|
||||
if (probs_pos < probs_stop_pos)
|
||||
{
|
||||
probs_output = std::vector<completion_token_output>(slot.generated_token_probs.begin() + probs_pos, slot.generated_token_probs.begin() + probs_stop_pos);
|
||||
}
|
||||
slot.sent_token_probs_index = probs_stop_pos;
|
||||
slot.n_sent_token_probs = probs_stop_pos;
|
||||
res.result_json["completion_probabilities"] = probs_vector_to_json(ctx, probs_output);
|
||||
}
|
||||
|
||||
|
@ -1204,7 +1157,7 @@ struct llama_server_context
|
|||
queue_results.send(res);
|
||||
}
|
||||
|
||||
void send_final_response(llama_client_slot &slot)
|
||||
void send_final_response(server_slot &slot)
|
||||
{
|
||||
task_result res;
|
||||
res.id = slot.task_id;
|
||||
|
@ -1219,7 +1172,7 @@ struct llama_server_context
|
|||
{"stop", true},
|
||||
{"model", params.model_alias},
|
||||
{"tokens_predicted", slot.n_decoded},
|
||||
{"tokens_evaluated", slot.num_prompt_tokens},
|
||||
{"tokens_evaluated", slot.n_prompt_tokens},
|
||||
{"generation_settings", get_formated_generation(slot)},
|
||||
{"prompt", slot.prompt},
|
||||
{"truncated", slot.truncated},
|
||||
|
@ -1257,7 +1210,7 @@ struct llama_server_context
|
|||
queue_results.send(res);
|
||||
}
|
||||
|
||||
void send_embedding(llama_client_slot &slot)
|
||||
void send_embedding(server_slot &slot)
|
||||
{
|
||||
task_result res;
|
||||
res.id = slot.task_id;
|
||||
|
@ -1268,9 +1221,7 @@ struct llama_server_context
|
|||
const int n_embd = llama_n_embd(model);
|
||||
if (!params.embedding)
|
||||
{
|
||||
LOG_WARNING("embedding disabled", {
|
||||
{"params.embedding", params.embedding},
|
||||
});
|
||||
LOG_WARNING("embedding disabled", {{"params.embedding", params.embedding}});
|
||||
res.result_json = json
|
||||
{
|
||||
{"embedding", std::vector<float>(n_embd, 0.0f)},
|
||||
|
@ -1282,7 +1233,7 @@ struct llama_server_context
|
|||
std::vector<float> embedding(data, data + n_embd);
|
||||
res.result_json = json
|
||||
{
|
||||
{"embedding", embedding },
|
||||
{"embedding", embedding},
|
||||
};
|
||||
}
|
||||
queue_results.send(res);
|
||||
|
@ -1322,12 +1273,16 @@ struct llama_server_context
|
|||
split_multiprompt_task(task_id, task);
|
||||
}
|
||||
} else {
|
||||
// an empty prompt can make slot become buggy
|
||||
if (task.data.contains("prompt") && task.data["prompt"].is_string() && task.data["prompt"].get<std::string>().empty()) {
|
||||
task.data["prompt"] = " "; // add a space so that we have one token
|
||||
}
|
||||
queue_tasks.post(task);
|
||||
}
|
||||
}
|
||||
|
||||
// for multiple images processing
|
||||
bool ingest_images(llama_client_slot &slot, int n_batch)
|
||||
bool ingest_images(server_slot &slot, int n_batch)
|
||||
{
|
||||
int image_idx = 0;
|
||||
|
||||
|
@ -1366,7 +1321,17 @@ struct llama_server_context
|
|||
}
|
||||
|
||||
const int n_embd = llama_n_embd(model);
|
||||
llama_batch batch_img = { n_eval, nullptr, (img.image_embedding + i * n_embd), nullptr, nullptr, nullptr, nullptr, slot.n_past, 1, 0, };
|
||||
llama_batch batch_img = {
|
||||
n_eval,
|
||||
nullptr,
|
||||
(img.image_embedding + i * n_embd),
|
||||
nullptr,
|
||||
nullptr,
|
||||
nullptr,
|
||||
nullptr,
|
||||
slot.n_past,
|
||||
1, 0
|
||||
};
|
||||
if (llama_decode(ctx, batch_img))
|
||||
{
|
||||
LOG_TEE("%s : failed to eval image\n", __func__);
|
||||
|
@ -1436,7 +1401,7 @@ struct llama_server_context
|
|||
switch (task.type)
|
||||
{
|
||||
case TASK_TYPE_COMPLETION: {
|
||||
llama_client_slot *slot = get_slot(json_value(task.data, "slot_id", -1));
|
||||
server_slot *slot = get_slot(json_value(task.data, "slot_id", -1));
|
||||
if (slot == nullptr)
|
||||
{
|
||||
// if no slot is available, we defer this task for processing later
|
||||
|
@ -1451,10 +1416,10 @@ struct llama_server_context
|
|||
send_error(task, "system prompt can only be updated when all slots are idle");
|
||||
break;
|
||||
}
|
||||
process_system_prompt_data(task.data["system_prompt"]);
|
||||
system_prompt_process(task.data["system_prompt"]);
|
||||
|
||||
// reset cache_tokens for all slots
|
||||
for (llama_client_slot &slot : slots)
|
||||
for (server_slot &slot : slots)
|
||||
{
|
||||
slot.cache_tokens.clear();
|
||||
slot.n_past = 0;
|
||||
|
@ -1494,7 +1459,7 @@ struct llama_server_context
|
|||
int n_idle_slots = 0;
|
||||
int n_processing_slots = 0;
|
||||
|
||||
for (llama_client_slot &slot: slots) {
|
||||
for (server_slot &slot: slots) {
|
||||
json slot_data = get_formated_generation(slot);
|
||||
slot_data["id"] = slot.id;
|
||||
slot_data["task_id"] = slot.task_id;
|
||||
|
@ -1579,7 +1544,7 @@ struct llama_server_context
|
|||
if (system_need_update)
|
||||
{
|
||||
LOG_INFO("updating system prompt", {});
|
||||
update_system_prompt();
|
||||
system_prompt_update();
|
||||
}
|
||||
|
||||
llama_batch_clear(batch);
|
||||
|
@ -1600,7 +1565,7 @@ struct llama_server_context
|
|||
task.target_id = -1;
|
||||
queue_tasks.post(task);
|
||||
|
||||
for (llama_client_slot &slot : slots)
|
||||
for (server_slot &slot : slots)
|
||||
{
|
||||
if (slot.ga_n == 1)
|
||||
{
|
||||
|
@ -1623,7 +1588,7 @@ struct llama_server_context
|
|||
{"n_cache_tokens", slot.cache_tokens.size()}
|
||||
});
|
||||
llama_kv_cache_seq_rm (ctx, slot.id, n_keep , n_keep + n_discard);
|
||||
llama_kv_cache_seq_shift(ctx, slot.id, n_keep + n_discard, system_tokens.size() + slot.n_past, -n_discard);
|
||||
llama_kv_cache_seq_add(ctx, slot.id, n_keep + n_discard, system_tokens.size() + slot.n_past, -n_discard);
|
||||
|
||||
for (size_t i = n_keep + n_discard; i < slot.cache_tokens.size(); i++)
|
||||
{
|
||||
|
@ -1736,23 +1701,28 @@ struct llama_server_context
|
|||
prompt_tokens = tokenize(slot.prompt, system_prompt.empty() && add_bos_token); // add BOS if there isn't system prompt
|
||||
}
|
||||
|
||||
slot.num_prompt_tokens = prompt_tokens.size();
|
||||
slot.n_prompt_tokens = prompt_tokens.size();
|
||||
|
||||
if (slot.params.n_keep < 0)
|
||||
{
|
||||
slot.params.n_keep = slot.num_prompt_tokens;
|
||||
slot.params.n_keep = slot.n_prompt_tokens;
|
||||
}
|
||||
slot.params.n_keep = std::min(slot.n_ctx - 4, slot.params.n_keep);
|
||||
|
||||
// if input prompt is too big, truncate it
|
||||
if (slot.num_prompt_tokens >= slot.n_ctx)
|
||||
if (slot.n_prompt_tokens >= slot.n_ctx)
|
||||
{
|
||||
const int n_left = slot.n_ctx - slot.params.n_keep;
|
||||
const int n_block_size = n_left / 2;
|
||||
const int erased_blocks = (slot.num_prompt_tokens - slot.params.n_keep - n_block_size) / n_block_size;
|
||||
const int erased_blocks = (slot.n_prompt_tokens - slot.params.n_keep - n_block_size) / n_block_size;
|
||||
|
||||
std::vector<llama_token> new_tokens(prompt_tokens.begin(), prompt_tokens.begin() + slot.params.n_keep);
|
||||
new_tokens.insert(new_tokens.end(), prompt_tokens.begin() + slot.params.n_keep + erased_blocks * n_block_size, prompt_tokens.end());
|
||||
std::vector<llama_token> new_tokens(
|
||||
prompt_tokens.begin(),
|
||||
prompt_tokens.begin() + slot.params.n_keep);
|
||||
new_tokens.insert(
|
||||
new_tokens.end(),
|
||||
prompt_tokens.begin() + slot.params.n_keep + erased_blocks * n_block_size,
|
||||
prompt_tokens.end());
|
||||
|
||||
LOG_VERBOSE("input truncated", {
|
||||
{"n_ctx", slot.n_ctx},
|
||||
|
@ -1763,8 +1733,8 @@ struct llama_server_context
|
|||
slot.truncated = true;
|
||||
prompt_tokens = new_tokens;
|
||||
|
||||
slot.num_prompt_tokens = prompt_tokens.size();
|
||||
GGML_ASSERT(slot.num_prompt_tokens < slot.n_ctx);
|
||||
slot.n_prompt_tokens = prompt_tokens.size();
|
||||
GGML_ASSERT(slot.n_prompt_tokens < slot.n_ctx);
|
||||
}
|
||||
|
||||
if (!slot.params.cache_prompt)
|
||||
|
@ -1774,7 +1744,7 @@ struct llama_server_context
|
|||
slot.n_past = 0;
|
||||
slot.n_past_se = 0;
|
||||
slot.ga_i = 0;
|
||||
slot.num_prompt_tokens_processed = slot.num_prompt_tokens;
|
||||
slot.n_prompt_tokens_processed = slot.n_prompt_tokens;
|
||||
}
|
||||
else
|
||||
{
|
||||
|
@ -1785,7 +1755,15 @@ struct llama_server_context
|
|||
}
|
||||
|
||||
slot.n_past = common_part(slot.cache_tokens, prompt_tokens);
|
||||
slot.num_prompt_tokens_processed = slot.num_prompt_tokens - slot.n_past;
|
||||
|
||||
// the last token of the cache is not in the KV cache until the next call to llama_decode
|
||||
// (it was sampled, pushed into the "cache_tokens", but not yet put in the context)
|
||||
if (slot.n_past > 0 && slot.n_past == (int32_t) slot.cache_tokens.size())
|
||||
{
|
||||
slot.n_past -= 1;
|
||||
}
|
||||
|
||||
slot.n_prompt_tokens_processed = slot.n_prompt_tokens - slot.n_past;
|
||||
|
||||
if (slot.ga_n != 1)
|
||||
{
|
||||
|
@ -1810,13 +1788,13 @@ struct llama_server_context
|
|||
{ "slot_id", slot.id },
|
||||
{ "task_id", slot.task_id },
|
||||
{ "n_past", slot.n_past },
|
||||
{ "num_prompt_tokens_processed", slot.num_prompt_tokens_processed }
|
||||
{ "n_prompt_tokens_processed", slot.n_prompt_tokens_processed }
|
||||
});
|
||||
}
|
||||
|
||||
slot.cache_tokens = prompt_tokens;
|
||||
|
||||
if (slot.n_past == slot.num_prompt_tokens && slot.n_past > 0)
|
||||
if (slot.n_past == slot.n_prompt_tokens && slot.n_past > 0)
|
||||
{
|
||||
// we have to evaluate at least 1 token to generate logits.
|
||||
LOG_INFO("we have to evaluate at least 1 token to generate logits", {
|
||||
|
@ -1872,8 +1850,8 @@ struct llama_server_context
|
|||
if (has_images && !ingest_images(slot, n_batch))
|
||||
{
|
||||
LOG_ERROR("failed processing images", {
|
||||
"slot_id", slot.id,
|
||||
"task_id", slot.task_id,
|
||||
{"slot_id", slot.id},
|
||||
{"task_id", slot.task_id},
|
||||
});
|
||||
// FIXME @phymbert: to be properly tested
|
||||
// early returning without changing the slot state will block the slot for ever
|
||||
|
@ -1919,9 +1897,9 @@ struct llama_server_context
|
|||
LOG_TEE("div: [%6d, %6d] / %6d -> [%6d, %6d]\n", slot.ga_i + ib * bd, slot.ga_i + ib * bd + slot.ga_w, slot.ga_n, (slot.ga_i + ib * bd) / slot.ga_n, (slot.ga_i + ib * bd + slot.ga_w) / slot.ga_n);
|
||||
LOG_TEE("shift: [%6d, %6d] + %6d -> [%6d, %6d]\n", slot.ga_i + ib * bd + slot.ga_w, slot.n_past_se + ib * bd, dd, slot.ga_i + ib * bd + slot.ga_w + dd, slot.n_past_se + ib * bd + dd);
|
||||
|
||||
llama_kv_cache_seq_shift(ctx, slot.id, slot.ga_i, slot.n_past_se, ib * bd);
|
||||
llama_kv_cache_seq_add(ctx, slot.id, slot.ga_i, slot.n_past_se, ib * bd);
|
||||
llama_kv_cache_seq_div(ctx, slot.id, slot.ga_i + ib * bd, slot.ga_i + ib * bd + slot.ga_w,slot.ga_n);
|
||||
llama_kv_cache_seq_shift(ctx, slot.id, slot.ga_i + ib * bd + slot.ga_w,slot.n_past_se + ib * bd, dd);
|
||||
llama_kv_cache_seq_add(ctx, slot.id, slot.ga_i + ib * bd + slot.ga_w,slot.n_past_se + ib * bd, dd);
|
||||
|
||||
slot.n_past_se -= bd;
|
||||
|
||||
|
@ -2023,10 +2001,6 @@ struct llama_server_context
|
|||
LOG_VERBOSE("slots updated", {});
|
||||
return true;
|
||||
}
|
||||
|
||||
void run_on_all_tasks_finished() {
|
||||
update_slots();
|
||||
}
|
||||
};
|
||||
|
||||
static void server_print_usage(const char *argv0, const gpt_params ¶ms,
|
||||
|
@ -2039,6 +2013,7 @@ static void server_print_usage(const char *argv0, const gpt_params ¶ms,
|
|||
printf(" -v, --verbose verbose output (default: %s)\n", server_verbose ? "enabled" : "disabled");
|
||||
printf(" -t N, --threads N number of threads to use during computation (default: %d)\n", params.n_threads);
|
||||
printf(" -tb N, --threads-batch N number of threads to use during batch and prompt processing (default: same as --threads)\n");
|
||||
printf(" --threads-http N number of threads in the http server pool to process requests (default: hardware concurrency)\n");
|
||||
printf(" -c N, --ctx-size N size of the prompt context (default: %d)\n", params.n_ctx);
|
||||
printf(" --rope-scaling {none,linear,yarn}\n");
|
||||
printf(" RoPE frequency scaling method, defaults to linear unless specified by the model\n");
|
||||
|
@ -2107,8 +2082,8 @@ static void server_print_usage(const char *argv0, const gpt_params ¶ms,
|
|||
printf(" --override-kv KEY=TYPE:VALUE\n");
|
||||
printf(" advanced option to override model metadata by key. may be specified multiple times.\n");
|
||||
printf(" types: int, float, bool. example: --override-kv tokenizer.ggml.add_bos_token=bool:false\n");
|
||||
printf(" -gan N, --grp-attn-n N set the group attention factor to extend context size through self-extend(default: 1=disabled), used together with group attention width `--grp-attn-w`");
|
||||
printf(" -gaw N, --grp-attn-w N set the group attention width to extend context size through self-extend(default: 512), used together with group attention factor `--grp-attn-n`");
|
||||
printf(" -gan N, --grp-attn-n N set the group attention factor to extend context size through self-extend(default: 1=disabled), used together with group attention width `--grp-attn-w`\n");
|
||||
printf(" -gaw N, --grp-attn-w N set the group attention width to extend context size through self-extend(default: 512), used together with group attention factor `--grp-attn-n`\n");
|
||||
printf(" --chat-template JINJA_TEMPLATE\n");
|
||||
printf(" set custom jinja chat template (default: template taken from model's metadata)\n");
|
||||
printf(" Note: only commonly used templates are accepted, since we don't have jinja parser\n");
|
||||
|
@ -2325,6 +2300,15 @@ static void server_params_parse(int argc, char **argv, server_params &sparams,
|
|||
}
|
||||
params.n_threads_batch = std::stoi(argv[i]);
|
||||
}
|
||||
else if (arg == "--threads-http")
|
||||
{
|
||||
if (++i >= argc)
|
||||
{
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
sparams.n_threads_http = std::stoi(argv[i]);
|
||||
}
|
||||
else if (arg == "-b" || arg == "--batch-size")
|
||||
{
|
||||
if (++i >= argc)
|
||||
|
@ -2406,14 +2390,6 @@ static void server_params_parse(int argc, char **argv, server_params &sparams,
|
|||
}
|
||||
#else
|
||||
LOG_WARNING("llama.cpp was compiled without cuBLAS. It is not possible to set a tensor split.\n", {});
|
||||
#endif // GGML_USE_CUBLAS
|
||||
}
|
||||
else if (arg == "--no-mul-mat-q" || arg == "-nommq")
|
||||
{
|
||||
#if defined(GGML_USE_CUBLAS) || defined(GGML_USE_SYCL)
|
||||
params.mul_mat_q = false;
|
||||
#else
|
||||
LOG_WARNING("warning: llama.cpp was compiled without cuBLAS. Disabling mul_mat_q kernels has no effect.\n", {});
|
||||
#endif // GGML_USE_CUBLAS
|
||||
}
|
||||
else if (arg == "--main-gpu" || arg == "-mg")
|
||||
|
@ -2535,7 +2511,7 @@ static void server_params_parse(int argc, char **argv, server_params &sparams,
|
|||
std::istreambuf_iterator<char>(),
|
||||
std::back_inserter(systm_content)
|
||||
);
|
||||
llama.process_system_prompt_data(json::parse(systm_content));
|
||||
llama.system_prompt_process(json::parse(systm_content));
|
||||
}
|
||||
else if (arg == "-ctk" || arg == "--cache-type-k") {
|
||||
params.cache_type_k = argv[++i];
|
||||
|
@ -2666,7 +2642,7 @@ static void server_params_parse(int argc, char **argv, server_params &sparams,
|
|||
|
||||
/* llama.cpp completion api semantics */
|
||||
static json format_partial_response(
|
||||
llama_server_context &llama, llama_client_slot *slot, const std::string &content, const std::vector<completion_token_output> &probs
|
||||
llama_server_context &llama, server_slot *slot, const std::string &content, const std::vector<completion_token_output> &probs
|
||||
) {
|
||||
json res = json
|
||||
{
|
||||
|
@ -2722,14 +2698,7 @@ static void log_server_request(const httplib::Request &req, const httplib::Respo
|
|||
});
|
||||
}
|
||||
|
||||
struct token_translator
|
||||
{
|
||||
llama_context * ctx;
|
||||
std::string operator()(llama_token tok) const { return llama_token_to_piece(ctx, tok); }
|
||||
std::string operator()(const completion_token_output &cto) const { return (*this)(cto.tok); }
|
||||
};
|
||||
|
||||
static void append_to_generated_text_from_generated_token_probs(llama_server_context &llama, llama_client_slot *slot)
|
||||
static void append_to_generated_text_from_generated_token_probs(llama_server_context &llama, server_slot *slot)
|
||||
{
|
||||
auto & gtps = slot->generated_token_probs;
|
||||
auto translator = token_translator{llama.ctx};
|
||||
|
@ -2746,7 +2715,16 @@ static void append_to_generated_text_from_generated_token_probs(llama_server_con
|
|||
}
|
||||
|
||||
std::function<void(int)> shutdown_handler;
|
||||
inline void signal_handler(int signal) { shutdown_handler(signal); }
|
||||
std::atomic_flag is_terminating = ATOMIC_FLAG_INIT;
|
||||
inline void signal_handler(int signal) {
|
||||
if (is_terminating.test_and_set()) {
|
||||
// in case it hangs, we can force terminate the server by hitting Ctrl+C twice
|
||||
// this is for better developer experience, we can remove when the server is stable enough
|
||||
fprintf(stderr, "Received second interrupt, terminating immediately.\n");
|
||||
exit(1);
|
||||
}
|
||||
shutdown_handler(signal);
|
||||
}
|
||||
|
||||
int main(int argc, char **argv)
|
||||
{
|
||||
|
@ -3185,9 +3163,7 @@ int main(int argc, char **argv)
|
|||
res.set_content(models.dump(), "application/json; charset=utf-8");
|
||||
});
|
||||
|
||||
|
||||
// TODO: add mount point without "/v1" prefix -- how?
|
||||
svr.Post("/v1/chat/completions", [&llama, &validate_api_key, &sparams](const httplib::Request &req, httplib::Response &res)
|
||||
const auto chat_completions = [&llama, &validate_api_key, &sparams](const httplib::Request &req, httplib::Response &res)
|
||||
{
|
||||
res.set_header("Access-Control-Allow-Origin", req.get_header_value("Origin"));
|
||||
if (!validate_api_key(req, res)) {
|
||||
|
@ -3265,7 +3241,10 @@ int main(int argc, char **argv)
|
|||
|
||||
res.set_chunked_content_provider("text/event-stream", chunked_content_provider, on_complete);
|
||||
}
|
||||
});
|
||||
};
|
||||
|
||||
svr.Post("/chat/completions", chat_completions);
|
||||
svr.Post("/v1/chat/completions", chat_completions);
|
||||
|
||||
svr.Post("/infill", [&llama, &validate_api_key](const httplib::Request &req, httplib::Response &res)
|
||||
{
|
||||
|
@ -3473,6 +3452,11 @@ int main(int argc, char **argv)
|
|||
}*/
|
||||
//);
|
||||
|
||||
if (sparams.n_threads_http > 0) {
|
||||
log_data["n_threads_http"] = std::to_string(sparams.n_threads_http);
|
||||
svr.new_task_queue = [&sparams] { return new httplib::ThreadPool(sparams.n_threads_http); };
|
||||
}
|
||||
|
||||
LOG_INFO("HTTP server listening", log_data);
|
||||
// run the HTTP server in a thread - see comment below
|
||||
std::thread t([&]()
|
||||
|
@ -3490,8 +3474,8 @@ int main(int argc, char **argv)
|
|||
&llama_server_context::process_single_task, &llama, std::placeholders::_1));
|
||||
llama.queue_tasks.on_finish_multitask(std::bind(
|
||||
&llama_server_context::on_finish_multitask, &llama, std::placeholders::_1));
|
||||
llama.queue_tasks.on_all_tasks_finished(std::bind(
|
||||
&llama_server_context::run_on_all_tasks_finished, &llama));
|
||||
llama.queue_tasks.on_run_slots(std::bind(
|
||||
&llama_server_context::update_slots, &llama));
|
||||
llama.queue_results.on_multitask_update(std::bind(
|
||||
&llama_server_queue::update_multitask,
|
||||
&llama.queue_tasks,
|
||||
|
|
|
@ -54,6 +54,28 @@ Feature: Parallel
|
|||
| disabled | 128 |
|
||||
| enabled | 64 |
|
||||
|
||||
Scenario Outline: Multi users OAI completions compatibility no v1
|
||||
Given a system prompt You are a writer.
|
||||
And a model tinyllama-2
|
||||
Given a prompt:
|
||||
"""
|
||||
Write a very long book.
|
||||
"""
|
||||
And a prompt:
|
||||
"""
|
||||
Write another a poem.
|
||||
"""
|
||||
And <n_predict> max tokens to predict
|
||||
And streaming is <streaming>
|
||||
Given concurrent OAI completions requests no v1
|
||||
Then the server is busy
|
||||
Then the server is idle
|
||||
Then all prompts are predicted with <n_predict> tokens
|
||||
Examples:
|
||||
| streaming | n_predict |
|
||||
| disabled | 128 |
|
||||
| enabled | 64 |
|
||||
|
||||
Scenario: Multi users with total number of tokens to predict exceeds the KV Cache size #3969
|
||||
Given a prompt:
|
||||
"""
|
||||
|
|
|
@ -231,6 +231,7 @@ async def step_oai_chat_completions(context, api_error):
|
|||
completion = await oai_chat_completions(context.prompts.pop(),
|
||||
context.system_prompt,
|
||||
context.base_url,
|
||||
'/v1/chat',
|
||||
False,
|
||||
model=context.model if hasattr(context, 'model') else None,
|
||||
|
||||
|
@ -288,6 +289,28 @@ async def step_oai_chat_completions(context):
|
|||
# user_prompt is inserted automatically
|
||||
context.system_prompt,
|
||||
context.base_url,
|
||||
'/v1/chat/completions',
|
||||
True, # async_client
|
||||
model=context.model
|
||||
if hasattr(context, 'model') else None,
|
||||
n_predict=context.n_predict
|
||||
if hasattr(context, 'n_predict') else None,
|
||||
enable_streaming=context.enable_streaming
|
||||
if hasattr(context, 'enable_streaming') else None,
|
||||
server_seed=context.server_seed
|
||||
if hasattr(context, 'server_seed') else None,
|
||||
user_api_key=context.user_api_key
|
||||
if hasattr(context, 'user_api_key') else None)
|
||||
|
||||
|
||||
@step(u'concurrent OAI completions requests no v1')
|
||||
@async_run_until_complete
|
||||
async def step_oai_chat_completions(context):
|
||||
await concurrent_requests(context, oai_chat_completions,
|
||||
# user_prompt is inserted automatically
|
||||
context.system_prompt,
|
||||
context.base_url,
|
||||
'/chat/completions',
|
||||
True, # async_client
|
||||
model=context.model
|
||||
if hasattr(context, 'model') else None,
|
||||
|
@ -497,6 +520,7 @@ async def request_completion(prompt,
|
|||
async def oai_chat_completions(user_prompt,
|
||||
system_prompt,
|
||||
base_url,
|
||||
base_path,
|
||||
async_client,
|
||||
debug=False,
|
||||
model=None,
|
||||
|
@ -537,7 +561,7 @@ async def oai_chat_completions(user_prompt,
|
|||
origin = 'llama.cpp'
|
||||
headers = {'Authorization': f'Bearer {user_api_key}', 'Origin': origin}
|
||||
async with aiohttp.ClientSession() as session:
|
||||
async with session.post(f'{base_url}/v1/chat/completions',
|
||||
async with session.post(f'{base_url}{base_path}',
|
||||
json=payload,
|
||||
headers=headers) as response:
|
||||
if enable_streaming:
|
||||
|
@ -579,7 +603,7 @@ async def oai_chat_completions(user_prompt,
|
|||
else:
|
||||
try:
|
||||
openai.api_key = user_api_key
|
||||
openai.api_base = f'{base_url}/v1/chat'
|
||||
openai.api_base = f'{base_url}{base_path}'
|
||||
chat_completion = openai.Completion.create(
|
||||
messages=payload['messages'],
|
||||
model=model,
|
||||
|
@ -699,6 +723,8 @@ async def wait_for_health_status(context,
|
|||
if context.debug:
|
||||
print(f"Starting checking for health for expected_health_status={expected_health_status}")
|
||||
timeout = 3 # seconds
|
||||
if expected_health_status == 'ok':
|
||||
timeout = 10 # CI slow inference
|
||||
interval = 0.5
|
||||
counter = 0
|
||||
async with aiohttp.ClientSession() as session:
|
||||
|
@ -736,7 +762,7 @@ async def wait_for_health_status(context,
|
|||
if n_completions > 0:
|
||||
return
|
||||
|
||||
assert False, 'timeout exceeded'
|
||||
assert False, f'{expected_health_status} timeout exceeded {counter}s>={timeout}'
|
||||
|
||||
|
||||
def assert_embeddings(embeddings):
|
||||
|
|
|
@ -37,10 +37,6 @@ extern bool server_log_json;
|
|||
#define LOG_WARNING(MSG, ...) server_log("WARN", __func__, __LINE__, MSG, __VA_ARGS__)
|
||||
#define LOG_INFO( MSG, ...) server_log("INFO", __func__, __LINE__, MSG, __VA_ARGS__)
|
||||
|
||||
//
|
||||
// parallel
|
||||
//
|
||||
|
||||
enum server_state {
|
||||
SERVER_STATE_LOADING_MODEL, // Server is starting up, model not fully loaded yet
|
||||
SERVER_STATE_READY, // Server is ready and model is loaded
|
||||
|
@ -78,51 +74,8 @@ struct task_multi {
|
|||
std::vector<task_result> results{};
|
||||
};
|
||||
|
||||
// TODO: can become bool if we can't find use of more states
|
||||
enum slot_state
|
||||
{
|
||||
IDLE,
|
||||
PROCESSING,
|
||||
};
|
||||
|
||||
enum slot_command
|
||||
{
|
||||
NONE,
|
||||
LOAD_PROMPT,
|
||||
RELEASE,
|
||||
};
|
||||
|
||||
struct slot_params
|
||||
{
|
||||
bool stream = true;
|
||||
bool cache_prompt = false; // remember the prompt to avoid reprocessing all prompt
|
||||
|
||||
uint32_t seed = -1; // RNG seed
|
||||
int32_t n_keep = 0; // number of tokens to keep from initial prompt
|
||||
int32_t n_predict = -1; // new tokens to predict
|
||||
|
||||
std::vector<std::string> antiprompt;
|
||||
|
||||
json input_prefix;
|
||||
json input_suffix;
|
||||
};
|
||||
|
||||
struct slot_image
|
||||
{
|
||||
int32_t id;
|
||||
|
||||
bool request_encode_image = false;
|
||||
float * image_embedding = nullptr;
|
||||
int32_t image_tokens = 0;
|
||||
|
||||
clip_image_u8 * img_data;
|
||||
|
||||
std::string prefix_prompt; // before of this image
|
||||
};
|
||||
|
||||
// completion token output with probabilities
|
||||
struct completion_token_output
|
||||
{
|
||||
struct completion_token_output {
|
||||
struct token_prob
|
||||
{
|
||||
llama_token tok;
|
||||
|
@ -134,8 +87,13 @@ struct completion_token_output
|
|||
std::string text_to_send;
|
||||
};
|
||||
|
||||
static inline void server_log(const char *level, const char *function, int line, const char *message, const nlohmann::ordered_json &extra)
|
||||
{
|
||||
struct token_translator {
|
||||
llama_context * ctx;
|
||||
std::string operator()(llama_token tok) const { return llama_token_to_piece(ctx, tok); }
|
||||
std::string operator()(const completion_token_output &cto) const { return (*this)(cto.tok); }
|
||||
};
|
||||
|
||||
static inline void server_log(const char *level, const char *function, int line, const char *message, const nlohmann::ordered_json &extra) {
|
||||
std::stringstream ss_tid;
|
||||
ss_tid << std::this_thread::get_id();
|
||||
json log = nlohmann::ordered_json{
|
||||
|
@ -183,8 +141,7 @@ static inline void server_log(const char *level, const char *function, int line,
|
|||
//
|
||||
|
||||
template <typename T>
|
||||
static T json_value(const json &body, const std::string &key, const T &default_value)
|
||||
{
|
||||
static T json_value(const json &body, const std::string &key, const T &default_value) {
|
||||
// Fallback null to default value
|
||||
return body.contains(key) && !body.at(key).is_null()
|
||||
? body.value(key, default_value)
|
||||
|
@ -200,8 +157,7 @@ inline bool verify_custom_template(const std::string & tmpl) {
|
|||
}
|
||||
|
||||
// Format given chat. If tmpl is empty, we take the template from model metadata
|
||||
inline std::string format_chat(const struct llama_model * model, const std::string & tmpl, const std::vector<json> & messages)
|
||||
{
|
||||
inline std::string format_chat(const struct llama_model * model, const std::string & tmpl, const std::vector<json> & messages) {
|
||||
size_t alloc_size = 0;
|
||||
// vector holding all allocated string to be passed to llama_chat_apply_template
|
||||
std::vector<std::string> str(messages.size() * 2);
|
||||
|
@ -250,7 +206,7 @@ struct llama_server_queue {
|
|||
// callback functions
|
||||
std::function<void(task_server&)> callback_new_task;
|
||||
std::function<void(task_multi&)> callback_finish_multitask;
|
||||
std::function<void(void)> callback_all_task_finished;
|
||||
std::function<void(void)> callback_run_slots;
|
||||
|
||||
// Add a new task to the end of the queue
|
||||
int post(task_server task) {
|
||||
|
@ -283,14 +239,14 @@ struct llama_server_queue {
|
|||
callback_new_task = callback;
|
||||
}
|
||||
|
||||
// Register function to process a multitask
|
||||
// Register function to process a multitask when it is finished
|
||||
void on_finish_multitask(std::function<void(task_multi&)> callback) {
|
||||
callback_finish_multitask = callback;
|
||||
}
|
||||
|
||||
// Register the function to be called when the batch of tasks is finished
|
||||
void on_all_tasks_finished(std::function<void(void)> callback) {
|
||||
callback_all_task_finished = callback;
|
||||
// Register the function to be called when all slots data is ready to be processed
|
||||
void on_run_slots(std::function<void(void)> callback) {
|
||||
callback_run_slots = callback;
|
||||
}
|
||||
|
||||
// Call when the state of one slot is changed
|
||||
|
@ -312,7 +268,13 @@ struct llama_server_queue {
|
|||
condition_tasks.notify_all();
|
||||
}
|
||||
|
||||
// Start the main loop.
|
||||
/**
|
||||
* Main loop consists of these steps:
|
||||
* - Wait until a new task arrives
|
||||
* - Process the task (i.e. maybe copy data into slot)
|
||||
* - Check if multitask is finished
|
||||
* - Run all slots
|
||||
*/
|
||||
void start_loop() {
|
||||
running = true;
|
||||
while (true) {
|
||||
|
@ -331,8 +293,8 @@ struct llama_server_queue {
|
|||
LOG_VERBOSE("callback_new_task", {{"task_id", task.id}});
|
||||
callback_new_task(task);
|
||||
}
|
||||
LOG_VERBOSE("callback_all_task_finished", {});
|
||||
// process and update all the multitasks
|
||||
LOG_VERBOSE("update_multitasks", {});
|
||||
// check if we have any finished multitasks
|
||||
auto queue_iterator = queue_multitasks.begin();
|
||||
while (queue_iterator != queue_multitasks.end())
|
||||
{
|
||||
|
@ -349,8 +311,9 @@ struct llama_server_queue {
|
|||
++queue_iterator;
|
||||
}
|
||||
}
|
||||
// all tasks in the current loop is finished
|
||||
callback_all_task_finished();
|
||||
// all tasks in the current loop is processed, slots data is now ready
|
||||
LOG_VERBOSE("callback_run_slots", {});
|
||||
callback_run_slots();
|
||||
}
|
||||
LOG_VERBOSE("wait for new task", {});
|
||||
// wait for new task
|
||||
|
@ -408,12 +371,14 @@ struct llama_server_response {
|
|||
std::mutex mutex_results;
|
||||
std::condition_variable condition_results;
|
||||
|
||||
// add the task_id to the list of tasks waiting for response
|
||||
void add_waiting_task_id(int task_id) {
|
||||
LOG_VERBOSE("waiting for task id", {{"task_id", task_id}});
|
||||
std::unique_lock<std::mutex> lock(mutex_results);
|
||||
waiting_task_ids.insert(task_id);
|
||||
}
|
||||
|
||||
// when the request is finished, we can remove task associated with it
|
||||
void remove_waiting_task_id(int task_id) {
|
||||
LOG_VERBOSE("remove waiting for task id", {{"task_id", task_id}});
|
||||
std::unique_lock<std::mutex> lock(mutex_results);
|
||||
|
@ -574,3 +539,96 @@ static std::string gen_chatcmplid()
|
|||
chatcmplid << "chatcmpl-" << random_string();
|
||||
return chatcmplid.str();
|
||||
}
|
||||
|
||||
//
|
||||
// other common utils
|
||||
//
|
||||
|
||||
static size_t common_part(const std::vector<llama_token> &a, const std::vector<llama_token> &b)
|
||||
{
|
||||
size_t i;
|
||||
for (i = 0; i < a.size() && i < b.size() && a[i] == b[i]; i++)
|
||||
{
|
||||
}
|
||||
return i;
|
||||
}
|
||||
|
||||
static bool ends_with(const std::string &str, const std::string &suffix)
|
||||
{
|
||||
return str.size() >= suffix.size() &&
|
||||
0 == str.compare(str.size() - suffix.size(), suffix.size(), suffix);
|
||||
}
|
||||
|
||||
static size_t find_partial_stop_string(const std::string &stop,
|
||||
const std::string &text)
|
||||
{
|
||||
if (!text.empty() && !stop.empty())
|
||||
{
|
||||
const char text_last_char = text.back();
|
||||
for (int64_t char_index = stop.size() - 1; char_index >= 0; char_index--)
|
||||
{
|
||||
if (stop[char_index] == text_last_char)
|
||||
{
|
||||
const std::string current_partial = stop.substr(0, char_index + 1);
|
||||
if (ends_with(text, current_partial))
|
||||
{
|
||||
return text.size() - char_index - 1;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
return std::string::npos;
|
||||
}
|
||||
|
||||
// TODO: reuse llama_detokenize
|
||||
template <class Iter>
|
||||
static std::string tokens_to_str(llama_context *ctx, Iter begin, Iter end)
|
||||
{
|
||||
std::string ret;
|
||||
for (; begin != end; ++begin)
|
||||
{
|
||||
ret += llama_token_to_piece(ctx, *begin);
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
|
||||
// format incomplete utf-8 multibyte character for output
|
||||
static std::string tokens_to_output_formatted_string(const llama_context *ctx, const llama_token token)
|
||||
{
|
||||
std::string out = token == -1 ? "" : llama_token_to_piece(ctx, token);
|
||||
// if the size is 1 and first bit is 1, meaning it's a partial character
|
||||
// (size > 1 meaning it's already a known token)
|
||||
if (out.size() == 1 && (out[0] & 0x80) == 0x80)
|
||||
{
|
||||
std::stringstream ss;
|
||||
ss << std::hex << (out[0] & 0xff);
|
||||
std::string res(ss.str());
|
||||
out = "byte: \\x" + res;
|
||||
}
|
||||
return out;
|
||||
}
|
||||
|
||||
// convert a vector of completion_token_output to json
|
||||
static json probs_vector_to_json(const llama_context *ctx, const std::vector<completion_token_output> &probs)
|
||||
{
|
||||
json out = json::array();
|
||||
for (const auto &prob : probs)
|
||||
{
|
||||
json probs_for_token = json::array();
|
||||
for (const auto &p : prob.probs)
|
||||
{
|
||||
std::string tok_str = tokens_to_output_formatted_string(ctx, p.tok);
|
||||
probs_for_token.push_back(json
|
||||
{
|
||||
{"tok_str", tok_str},
|
||||
{"prob", p.prob},
|
||||
});
|
||||
}
|
||||
std::string tok_str = tokens_to_output_formatted_string(ctx, prob.tok);
|
||||
out.push_back(json{
|
||||
{"content", tok_str},
|
||||
{"probs", probs_for_token},
|
||||
});
|
||||
}
|
||||
return out;
|
||||
}
|
||||
|
|
|
@ -7,7 +7,7 @@
|
|||
|
||||
#include "ggml-sycl.h"
|
||||
|
||||
int main(int argc, char ** argv) {
|
||||
int main() {
|
||||
ggml_backend_sycl_print_sycl_devices();
|
||||
return 0;
|
||||
}
|
||||
|
|
|
@ -8,12 +8,19 @@ INPUT2="Building a website can be done in 10 simple steps:\nStep 1:"
|
|||
source /opt/intel/oneapi/setvars.sh
|
||||
|
||||
if [ $# -gt 0 ]; then
|
||||
export GGML_SYCL_DEVICE=$1
|
||||
GGML_SYCL_DEVICE=$1
|
||||
else
|
||||
export GGML_SYCL_DEVICE=0
|
||||
GGML_SYCL_DEVICE=0
|
||||
fi
|
||||
echo GGML_SYCL_DEVICE=$GGML_SYCL_DEVICE
|
||||
echo "use $GGML_SYCL_DEVICE as main GPU"
|
||||
#export GGML_SYCL_DEBUG=1
|
||||
./build/bin/main -m models/llama-2-7b.Q4_0.gguf -p "${INPUT2}" -n 400 -e -ngl 33 -s 0
|
||||
#./build/bin/main -m models/llama-2-7b.Q4_0.gguf -p "${INPUT2}" -n 5 -e -ngl 33 -t 1 -s 0
|
||||
|
||||
|
||||
#ZES_ENABLE_SYSMAN=1, Support to get free memory of GPU by sycl::aspect::ext_intel_free_memory. Recommended to use when --split-mode = layer.
|
||||
|
||||
#use all GPUs with same max compute units
|
||||
ZES_ENABLE_SYSMAN=1 ./build/bin/main -m models/llama-2-7b.Q4_0.gguf -p "${INPUT2}" -n 400 -e -ngl 33 -s 0
|
||||
|
||||
#use main GPU only
|
||||
#ZES_ENABLE_SYSMAN=1 ./build/bin/main -m models/llama-2-7b.Q4_0.gguf -p "${INPUT2}" -n 400 -e -ngl 33 -s 0 -mg $GGML_SYCL_DEVICE -sm none
|
||||
|
||||
|
|
6
flake.lock
generated
6
flake.lock
generated
|
@ -20,11 +20,11 @@
|
|||
},
|
||||
"nixpkgs": {
|
||||
"locked": {
|
||||
"lastModified": 1708118438,
|
||||
"narHash": "sha256-kk9/0nuVgA220FcqH/D2xaN6uGyHp/zoxPNUmPCMmEE=",
|
||||
"lastModified": 1708655239,
|
||||
"narHash": "sha256-ZrP/yACUvDB+zbqYJsln4iwotbH6CTZiTkANJ0AgDv4=",
|
||||
"owner": "NixOS",
|
||||
"repo": "nixpkgs",
|
||||
"rev": "5863c27340ba4de8f83e7e3c023b9599c3cb3c80",
|
||||
"rev": "cbc4211f0afffe6dfd2478a62615dd5175a13f9a",
|
||||
"type": "github"
|
||||
},
|
||||
"original": {
|
||||
|
|
10
flake.nix
10
flake.nix
|
@ -107,11 +107,12 @@
|
|||
# ```
|
||||
#
|
||||
# Cf. https://nixos.org/manual/nix/unstable/command-ref/new-cli/nix3-flake.html?highlight=flake#flake-format
|
||||
flake.overlays.default =
|
||||
(final: prev: {
|
||||
flake.overlays.default = (
|
||||
final: prev: {
|
||||
llamaPackages = final.callPackage .devops/nix/scope.nix { inherit llamaVersion; };
|
||||
inherit (final.llamaPackages) llama-cpp;
|
||||
});
|
||||
}
|
||||
);
|
||||
|
||||
systems = [
|
||||
"aarch64-darwin"
|
||||
|
@ -131,6 +132,9 @@
|
|||
...
|
||||
}:
|
||||
{
|
||||
# For standardised reproducible formatting with `nix fmt`
|
||||
formatter = pkgs.nixfmt-rfc-style;
|
||||
|
||||
# Unlike `.#packages`, legacyPackages may contain values of
|
||||
# arbitrary types (including nested attrsets) and may even throw
|
||||
# exceptions. This attribute isn't recursed into by `nix flake
|
||||
|
|
|
@ -104,6 +104,8 @@ extern "C" {
|
|||
};
|
||||
|
||||
struct ggml_backend {
|
||||
ggml_guid_t guid;
|
||||
|
||||
struct ggml_backend_i iface;
|
||||
|
||||
ggml_backend_context_t context;
|
||||
|
|
|
@ -12,7 +12,6 @@
|
|||
|
||||
#define MAX(a, b) ((a) > (b) ? (a) : (b))
|
||||
|
||||
|
||||
// backend buffer type
|
||||
|
||||
const char * ggml_backend_buft_name(ggml_backend_buffer_type_t buft) {
|
||||
|
@ -159,6 +158,13 @@ bool ggml_backend_buffer_copy_tensor(const struct ggml_tensor * src, struct ggml
|
|||
|
||||
// backend
|
||||
|
||||
ggml_guid_t ggml_backend_guid(ggml_backend_t backend) {
|
||||
if (backend == NULL) {
|
||||
return NULL;
|
||||
}
|
||||
return backend->guid;
|
||||
}
|
||||
|
||||
const char * ggml_backend_name(ggml_backend_t backend) {
|
||||
if (backend == NULL) {
|
||||
return "NULL";
|
||||
|
@ -781,6 +787,11 @@ static struct ggml_backend_i cpu_backend_i = {
|
|||
/* .supports_op = */ ggml_backend_cpu_supports_op,
|
||||
};
|
||||
|
||||
static ggml_guid_t ggml_backend_cpu_guid(void) {
|
||||
static ggml_guid guid = { 0xaa, 0x67, 0xc7, 0x43, 0x96, 0xe6, 0xa3, 0x8a, 0xe3, 0xaf, 0xea, 0x92, 0x36, 0xbc, 0xfc, 0x89 };
|
||||
return &guid;
|
||||
}
|
||||
|
||||
ggml_backend_t ggml_backend_cpu_init(void) {
|
||||
struct ggml_backend_cpu_context * ctx = malloc(sizeof(struct ggml_backend_cpu_context));
|
||||
if (ctx == NULL) {
|
||||
|
@ -800,6 +811,7 @@ ggml_backend_t ggml_backend_cpu_init(void) {
|
|||
}
|
||||
|
||||
*cpu_backend = (struct ggml_backend) {
|
||||
/* .guid = */ ggml_backend_cpu_guid(),
|
||||
/* .interface = */ cpu_backend_i,
|
||||
/* .context = */ ctx
|
||||
};
|
||||
|
@ -807,7 +819,7 @@ ggml_backend_t ggml_backend_cpu_init(void) {
|
|||
}
|
||||
|
||||
GGML_CALL bool ggml_backend_is_cpu(ggml_backend_t backend) {
|
||||
return backend && backend->iface.get_name == ggml_backend_cpu_name;
|
||||
return backend != NULL && ggml_guid_matches(backend->guid, ggml_backend_cpu_guid());
|
||||
}
|
||||
|
||||
void ggml_backend_cpu_set_n_threads(ggml_backend_t backend_cpu, int n_threads) {
|
||||
|
|
|
@ -49,7 +49,7 @@ extern "C" {
|
|||
// Backend
|
||||
//
|
||||
|
||||
|
||||
GGML_API ggml_guid_t ggml_backend_guid(ggml_backend_t backend);
|
||||
GGML_API const char * ggml_backend_name(ggml_backend_t backend);
|
||||
GGML_API void ggml_backend_free(ggml_backend_t backend);
|
||||
|
||||
|
|
724
ggml-cuda.cu
724
ggml-cuda.cu
|
@ -523,6 +523,17 @@ typedef struct {
|
|||
} block_iq2_xs;
|
||||
static_assert(sizeof(block_iq2_xs) == sizeof(ggml_fp16_t) + QK_K/8*sizeof(uint16_t) + QK_K/32, "wrong iq2_xs block size/padding");
|
||||
|
||||
// 2.5625 bpw quants
|
||||
#define QR2_S 8
|
||||
#define QI2_S (QK_K / (4*QR2_S))
|
||||
typedef struct {
|
||||
half d;
|
||||
uint8_t qs[QK_K/4];
|
||||
uint8_t qh[QK_K/32];
|
||||
uint8_t scales[QK_K/32];
|
||||
} block_iq2_s;
|
||||
static_assert(sizeof(block_iq2_s) == sizeof(ggml_fp16_t) + QK_K/4 + QK_K/16, "wrong iq2_s block size/padding");
|
||||
|
||||
#define QR3_XXS 8
|
||||
#define QI3_XXS (QK_K / (4*QR3_XXS))
|
||||
typedef struct {
|
||||
|
@ -533,14 +544,19 @@ static_assert(sizeof(block_iq3_xxs) == sizeof(ggml_fp16_t) + 3*(QK_K/8), "wrong
|
|||
|
||||
#define QR3_XS 8
|
||||
#define QI3_XS (QK_K / (4*QR3_XS))
|
||||
#if QK_K == 64
|
||||
#define IQ3S_N_SCALE 2
|
||||
#else
|
||||
#define IQ3S_N_SCALE QK_K/64
|
||||
#endif
|
||||
typedef struct {
|
||||
half d;
|
||||
uint8_t qs[QK_K/4];
|
||||
uint8_t qh[QK_K/32];
|
||||
uint8_t signs[QK_K/8];
|
||||
uint8_t scales[QK_K/64];
|
||||
uint8_t scales[IQ3S_N_SCALE];
|
||||
} block_iq3_s;
|
||||
static_assert(sizeof(block_iq3_s) == sizeof(ggml_fp16_t) + 27*(QK_K/64), "wrong iq3_s block size/padding");
|
||||
static_assert(sizeof(block_iq3_s) == sizeof(ggml_fp16_t) + 13*(QK_K/32) + IQ3S_N_SCALE, "wrong iq3_s block size/padding");
|
||||
|
||||
#define QR1_S 8
|
||||
#define QI1_S (QK_K / (4*QR1_S))
|
||||
|
@ -560,6 +576,23 @@ typedef struct {
|
|||
} block_iq4_nl;
|
||||
static_assert(sizeof(block_iq4_nl) == sizeof(ggml_fp16_t) + QK4_NL/2, "wrong iq4_nl block size/padding");
|
||||
|
||||
#if QK_K == 64
|
||||
#define block_iq4_xs block_iq4_nl
|
||||
#define QR4_XS QR4_NL
|
||||
#define QI4_XS QI4_NL
|
||||
#else
|
||||
// QR4_XS = 8 is very slightly faster than QR4_XS = 4
|
||||
#define QR4_XS 8
|
||||
#define QI4_XS (QK_K / (4*QR4_XS))
|
||||
typedef struct {
|
||||
half d;
|
||||
uint16_t scales_h;
|
||||
uint8_t scales_l[QK_K/64];
|
||||
uint8_t qs[QK_K/2];
|
||||
} block_iq4_xs;
|
||||
static_assert(sizeof(block_iq4_xs) == sizeof(ggml_fp16_t) + sizeof(uint16_t) + QK_K/64 + QK_K/2, "wrong iq4_xs block size/padding");
|
||||
#endif
|
||||
|
||||
#define WARP_SIZE 32
|
||||
#define MATRIX_ROW_PADDING 512 // last row of quant. matrices is a multiple of this to avoid out-of-bounds memory accesses
|
||||
|
||||
|
@ -685,18 +718,20 @@ static __device__ __forceinline__ float2 warp_reduce_sum(float2 a) {
|
|||
return a;
|
||||
}
|
||||
|
||||
//static __device__ __forceinline__ half2 warp_reduce_sum(half2 a) {
|
||||
//#if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= CC_PASCAL
|
||||
//#pragma unroll
|
||||
// for (int mask = 16; mask > 0; mask >>= 1) {
|
||||
// a = __hadd2(a, __shfl_xor_sync(0xffffffff, a, mask, 32));
|
||||
// }
|
||||
// return a;
|
||||
//#else
|
||||
// (void) a;
|
||||
// NO_DEVICE_CODE;
|
||||
//#endif // !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= CC_PASCAL
|
||||
//}
|
||||
#ifdef GGML_CUDA_F16
|
||||
static __device__ __forceinline__ half2 warp_reduce_sum(half2 a) {
|
||||
#if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= CC_PASCAL
|
||||
#pragma unroll
|
||||
for (int mask = 16; mask > 0; mask >>= 1) {
|
||||
a = __hadd2(a, __shfl_xor_sync(0xffffffff, a, mask, 32));
|
||||
}
|
||||
return a;
|
||||
#else
|
||||
(void) a;
|
||||
NO_DEVICE_CODE;
|
||||
#endif // !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= CC_PASCAL
|
||||
}
|
||||
#endif // GGML_CUDA_F16
|
||||
|
||||
static __device__ __forceinline__ float warp_reduce_max(float x) {
|
||||
#pragma unroll
|
||||
|
@ -1689,6 +1724,265 @@ static const __device__ uint64_t iq2xs_grid[512] = {
|
|||
0x2b2b2b2b082b2b08, 0x2b2b2b2b082b2b2b, 0x2b2b2b2b2b190819, 0x2b2b2b2b2b2b2b2b,
|
||||
};
|
||||
|
||||
static const __device__ uint64_t iq2s_grid[1024] = {
|
||||
0x0808080808080808, 0x080808080808082b, 0x0808080808081919, 0x0808080808082b08,
|
||||
0x0808080808082b2b, 0x0808080808190819, 0x0808080808191908, 0x080808080819192b,
|
||||
0x0808080808192b19, 0x08080808082b0808, 0x08080808082b082b, 0x08080808082b1919,
|
||||
0x08080808082b2b08, 0x0808080819080819, 0x0808080819081908, 0x080808081908192b,
|
||||
0x0808080819082b19, 0x0808080819190808, 0x080808081919082b, 0x0808080819191919,
|
||||
0x0808080819192b08, 0x08080808192b0819, 0x08080808192b1908, 0x08080808192b192b,
|
||||
0x08080808192b2b19, 0x080808082b080808, 0x080808082b08082b, 0x080808082b081919,
|
||||
0x080808082b082b08, 0x080808082b190819, 0x080808082b191908, 0x080808082b2b0808,
|
||||
0x080808082b2b1919, 0x080808082b2b2b2b, 0x0808081908080819, 0x0808081908081908,
|
||||
0x080808190808192b, 0x0808081908082b19, 0x0808081908190808, 0x080808190819082b,
|
||||
0x0808081908191919, 0x0808081908192b08, 0x08080819082b0819, 0x08080819082b1908,
|
||||
0x0808081919080808, 0x080808191908082b, 0x0808081919081919, 0x0808081919082b08,
|
||||
0x0808081919190819, 0x0808081919191908, 0x080808191919192b, 0x0808081919192b19,
|
||||
0x08080819192b0808, 0x08080819192b1919, 0x08080819192b2b08, 0x080808192b080819,
|
||||
0x080808192b081908, 0x080808192b190808, 0x080808192b19082b, 0x080808192b191919,
|
||||
0x080808192b2b0819, 0x080808192b2b1908, 0x0808082b08080808, 0x0808082b0808082b,
|
||||
0x0808082b08081919, 0x0808082b08082b08, 0x0808082b08190819, 0x0808082b08191908,
|
||||
0x0808082b082b0808, 0x0808082b082b2b2b, 0x0808082b19080819, 0x0808082b19081908,
|
||||
0x0808082b1908192b, 0x0808082b19082b19, 0x0808082b19190808, 0x0808082b19191919,
|
||||
0x0808082b2b080808, 0x0808082b2b081919, 0x0808082b2b082b2b, 0x0808082b2b191908,
|
||||
0x0808082b2b2b082b, 0x0808190808080819, 0x0808190808081908, 0x080819080808192b,
|
||||
0x0808190808082b19, 0x0808190808190808, 0x080819080819082b, 0x0808190808191919,
|
||||
0x0808190808192b08, 0x08081908082b0819, 0x08081908082b1908, 0x08081908082b192b,
|
||||
0x08081908082b2b19, 0x0808190819080808, 0x080819081908082b, 0x0808190819081919,
|
||||
0x0808190819082b08, 0x0808190819082b2b, 0x0808190819190819, 0x0808190819191908,
|
||||
0x080819081919192b, 0x0808190819192b19, 0x08081908192b0808, 0x08081908192b082b,
|
||||
0x08081908192b1919, 0x080819082b080819, 0x080819082b081908, 0x080819082b08192b,
|
||||
0x080819082b082b19, 0x080819082b190808, 0x080819082b191919, 0x080819082b192b08,
|
||||
0x080819082b2b0819, 0x080819082b2b1908, 0x0808191908080808, 0x080819190808082b,
|
||||
0x0808191908081919, 0x0808191908082b08, 0x0808191908082b2b, 0x0808191908190819,
|
||||
0x0808191908191908, 0x080819190819192b, 0x0808191908192b19, 0x08081919082b0808,
|
||||
0x08081919082b1919, 0x08081919082b2b08, 0x0808191919080819, 0x0808191919081908,
|
||||
0x080819191908192b, 0x0808191919082b19, 0x0808191919190808, 0x080819191919082b,
|
||||
0x0808191919191919, 0x0808191919192b08, 0x08081919192b0819, 0x08081919192b1908,
|
||||
0x080819192b080808, 0x080819192b08082b, 0x080819192b081919, 0x080819192b082b08,
|
||||
0x080819192b190819, 0x080819192b191908, 0x080819192b2b0808, 0x0808192b08080819,
|
||||
0x0808192b08081908, 0x0808192b0808192b, 0x0808192b08082b19, 0x0808192b08190808,
|
||||
0x0808192b08191919, 0x0808192b19080808, 0x0808192b19081919, 0x0808192b19082b08,
|
||||
0x0808192b19190819, 0x0808192b19191908, 0x0808192b192b0808, 0x0808192b2b080819,
|
||||
0x0808192b2b081908, 0x0808192b2b190808, 0x08082b0808080808, 0x08082b080808082b,
|
||||
0x08082b0808081919, 0x08082b0808082b08, 0x08082b0808190819, 0x08082b0808191908,
|
||||
0x08082b080819192b, 0x08082b0808192b19, 0x08082b08082b0808, 0x08082b08082b1919,
|
||||
0x08082b08082b2b2b, 0x08082b0819080819, 0x08082b0819081908, 0x08082b081908192b,
|
||||
0x08082b0819082b19, 0x08082b0819190808, 0x08082b081919082b, 0x08082b0819191919,
|
||||
0x08082b0819192b08, 0x08082b08192b0819, 0x08082b08192b1908, 0x08082b082b080808,
|
||||
0x08082b082b081919, 0x08082b082b191908, 0x08082b082b2b2b2b, 0x08082b1908080819,
|
||||
0x08082b1908081908, 0x08082b1908190808, 0x08082b190819082b, 0x08082b1908191919,
|
||||
0x08082b1908192b08, 0x08082b19082b0819, 0x08082b1919080808, 0x08082b1919081919,
|
||||
0x08082b1919082b08, 0x08082b1919190819, 0x08082b1919191908, 0x08082b19192b0808,
|
||||
0x08082b192b080819, 0x08082b192b190808, 0x08082b2b08080808, 0x08082b2b08190819,
|
||||
0x08082b2b08191908, 0x08082b2b082b082b, 0x08082b2b082b2b08, 0x08082b2b082b2b2b,
|
||||
0x08082b2b19190808, 0x08082b2b2b192b19, 0x0819080808080819, 0x0819080808081908,
|
||||
0x081908080808192b, 0x0819080808082b19, 0x0819080808190808, 0x081908080819082b,
|
||||
0x0819080808191919, 0x0819080808192b08, 0x08190808082b0819, 0x08190808082b1908,
|
||||
0x08190808082b192b, 0x0819080819080808, 0x081908081908082b, 0x0819080819081919,
|
||||
0x0819080819082b08, 0x0819080819190819, 0x0819080819191908, 0x081908081919192b,
|
||||
0x0819080819192b19, 0x08190808192b0808, 0x08190808192b082b, 0x08190808192b1919,
|
||||
0x08190808192b2b08, 0x081908082b080819, 0x081908082b081908, 0x081908082b08192b,
|
||||
0x081908082b190808, 0x081908082b191919, 0x081908082b192b08, 0x081908082b2b0819,
|
||||
0x081908082b2b1908, 0x0819081908080808, 0x081908190808082b, 0x0819081908081919,
|
||||
0x0819081908082b08, 0x0819081908082b2b, 0x0819081908190819, 0x0819081908191908,
|
||||
0x081908190819192b, 0x0819081908192b19, 0x08190819082b0808, 0x08190819082b082b,
|
||||
0x08190819082b1919, 0x08190819082b2b08, 0x0819081919080819, 0x0819081919081908,
|
||||
0x081908191908192b, 0x0819081919082b19, 0x0819081919190808, 0x081908191919082b,
|
||||
0x0819081919191919, 0x0819081919192b08, 0x08190819192b0819, 0x08190819192b1908,
|
||||
0x081908192b080808, 0x081908192b08082b, 0x081908192b081919, 0x081908192b082b08,
|
||||
0x081908192b190819, 0x081908192b191908, 0x0819082b08080819, 0x0819082b08081908,
|
||||
0x0819082b08082b19, 0x0819082b08190808, 0x0819082b08191919, 0x0819082b082b0819,
|
||||
0x0819082b082b1908, 0x0819082b19080808, 0x0819082b19081919, 0x0819082b19190819,
|
||||
0x0819082b19191908, 0x0819082b2b080819, 0x0819082b2b081908, 0x0819082b2b190808,
|
||||
0x0819190808080808, 0x081919080808082b, 0x0819190808081919, 0x0819190808082b08,
|
||||
0x0819190808190819, 0x0819190808191908, 0x081919080819192b, 0x0819190808192b19,
|
||||
0x08191908082b0808, 0x08191908082b1919, 0x08191908082b2b08, 0x0819190819080819,
|
||||
0x0819190819081908, 0x081919081908192b, 0x0819190819082b19, 0x0819190819190808,
|
||||
0x081919081919082b, 0x0819190819191919, 0x0819190819192b08, 0x08191908192b0819,
|
||||
0x08191908192b1908, 0x081919082b080808, 0x081919082b08082b, 0x081919082b081919,
|
||||
0x081919082b082b08, 0x081919082b190819, 0x081919082b191908, 0x081919082b2b0808,
|
||||
0x0819191908080819, 0x0819191908081908, 0x081919190808192b, 0x0819191908082b19,
|
||||
0x0819191908190808, 0x081919190819082b, 0x0819191908191919, 0x0819191908192b08,
|
||||
0x08191919082b0819, 0x08191919082b1908, 0x0819191919080808, 0x081919191908082b,
|
||||
0x0819191919081919, 0x0819191919082b08, 0x0819191919190819, 0x0819191919191908,
|
||||
0x08191919192b0808, 0x081919192b080819, 0x081919192b081908, 0x081919192b190808,
|
||||
0x0819192b08080808, 0x0819192b08081919, 0x0819192b08082b08, 0x0819192b08190819,
|
||||
0x0819192b08191908, 0x0819192b082b0808, 0x0819192b19080819, 0x0819192b19081908,
|
||||
0x0819192b19190808, 0x0819192b2b080808, 0x0819192b2b2b2b2b, 0x08192b0808080819,
|
||||
0x08192b0808081908, 0x08192b080808192b, 0x08192b0808082b19, 0x08192b0808190808,
|
||||
0x08192b0808191919, 0x08192b0808192b08, 0x08192b08082b0819, 0x08192b0819080808,
|
||||
0x08192b081908082b, 0x08192b0819081919, 0x08192b0819082b08, 0x08192b0819190819,
|
||||
0x08192b0819191908, 0x08192b08192b0808, 0x08192b082b080819, 0x08192b082b081908,
|
||||
0x08192b1908080808, 0x08192b190808082b, 0x08192b1908081919, 0x08192b1908082b08,
|
||||
0x08192b1908190819, 0x08192b1908191908, 0x08192b19082b0808, 0x08192b1919080819,
|
||||
0x08192b1919081908, 0x08192b1919190808, 0x08192b19192b2b19, 0x08192b192b2b082b,
|
||||
0x08192b2b08081908, 0x08192b2b08190808, 0x08192b2b19080808, 0x08192b2b1919192b,
|
||||
0x082b080808080808, 0x082b08080808082b, 0x082b080808081919, 0x082b080808082b08,
|
||||
0x082b080808190819, 0x082b080808191908, 0x082b08080819192b, 0x082b080808192b19,
|
||||
0x082b0808082b0808, 0x082b0808082b1919, 0x082b0808082b2b2b, 0x082b080819080819,
|
||||
0x082b080819081908, 0x082b080819190808, 0x082b08081919082b, 0x082b080819191919,
|
||||
0x082b0808192b1908, 0x082b08082b080808, 0x082b08082b082b2b, 0x082b08082b191908,
|
||||
0x082b08082b2b2b2b, 0x082b081908080819, 0x082b081908081908, 0x082b081908190808,
|
||||
0x082b08190819082b, 0x082b081908191919, 0x082b0819082b0819, 0x082b081919080808,
|
||||
0x082b08191908082b, 0x082b081919081919, 0x082b081919190819, 0x082b081919191908,
|
||||
0x082b0819192b0808, 0x082b08192b080819, 0x082b08192b081908, 0x082b08192b190808,
|
||||
0x082b082b08080808, 0x082b082b08082b2b, 0x082b082b082b082b, 0x082b082b082b2b08,
|
||||
0x082b082b082b2b2b, 0x082b082b19081908, 0x082b082b19190808, 0x082b082b2b082b08,
|
||||
0x082b082b2b082b2b, 0x082b082b2b2b2b08, 0x082b190808080819, 0x082b190808081908,
|
||||
0x082b19080808192b, 0x082b190808082b19, 0x082b190808190808, 0x082b190808191919,
|
||||
0x082b190808192b08, 0x082b1908082b0819, 0x082b1908082b1908, 0x082b190819080808,
|
||||
0x082b19081908082b, 0x082b190819081919, 0x082b190819082b08, 0x082b190819190819,
|
||||
0x082b190819191908, 0x082b1908192b0808, 0x082b19082b080819, 0x082b19082b081908,
|
||||
0x082b19082b190808, 0x082b191908080808, 0x082b191908081919, 0x082b191908082b08,
|
||||
0x082b191908190819, 0x082b191908191908, 0x082b1919082b0808, 0x082b191919080819,
|
||||
0x082b191919081908, 0x082b191919190808, 0x082b1919192b192b, 0x082b19192b080808,
|
||||
0x082b192b08080819, 0x082b192b08081908, 0x082b192b08190808, 0x082b192b19080808,
|
||||
0x082b192b19192b19, 0x082b2b0808080808, 0x082b2b0808081919, 0x082b2b0808190819,
|
||||
0x082b2b0808191908, 0x082b2b0819080819, 0x082b2b0819081908, 0x082b2b0819190808,
|
||||
0x082b2b082b082b2b, 0x082b2b082b2b2b2b, 0x082b2b1908080819, 0x082b2b1908081908,
|
||||
0x082b2b1908190808, 0x082b2b192b191919, 0x082b2b2b08082b2b, 0x082b2b2b082b082b,
|
||||
0x082b2b2b192b1908, 0x082b2b2b2b082b08, 0x082b2b2b2b082b2b, 0x1908080808080819,
|
||||
0x1908080808081908, 0x190808080808192b, 0x1908080808082b19, 0x1908080808190808,
|
||||
0x190808080819082b, 0x1908080808191919, 0x1908080808192b08, 0x1908080808192b2b,
|
||||
0x19080808082b0819, 0x19080808082b1908, 0x19080808082b192b, 0x1908080819080808,
|
||||
0x190808081908082b, 0x1908080819081919, 0x1908080819082b08, 0x1908080819082b2b,
|
||||
0x1908080819190819, 0x1908080819191908, 0x190808081919192b, 0x1908080819192b19,
|
||||
0x19080808192b0808, 0x19080808192b082b, 0x19080808192b1919, 0x190808082b080819,
|
||||
0x190808082b081908, 0x190808082b190808, 0x190808082b191919, 0x190808082b192b08,
|
||||
0x190808082b2b0819, 0x190808082b2b1908, 0x1908081908080808, 0x190808190808082b,
|
||||
0x1908081908081919, 0x1908081908082b08, 0x1908081908190819, 0x1908081908191908,
|
||||
0x190808190819192b, 0x1908081908192b19, 0x19080819082b0808, 0x19080819082b082b,
|
||||
0x19080819082b1919, 0x1908081919080819, 0x1908081919081908, 0x190808191908192b,
|
||||
0x1908081919082b19, 0x1908081919190808, 0x190808191919082b, 0x1908081919191919,
|
||||
0x1908081919192b08, 0x19080819192b0819, 0x19080819192b1908, 0x190808192b080808,
|
||||
0x190808192b08082b, 0x190808192b081919, 0x190808192b082b08, 0x190808192b190819,
|
||||
0x190808192b191908, 0x190808192b2b0808, 0x1908082b08080819, 0x1908082b08081908,
|
||||
0x1908082b08190808, 0x1908082b0819082b, 0x1908082b08191919, 0x1908082b08192b08,
|
||||
0x1908082b082b1908, 0x1908082b19080808, 0x1908082b19081919, 0x1908082b19082b08,
|
||||
0x1908082b19190819, 0x1908082b19191908, 0x1908082b192b0808, 0x1908082b2b080819,
|
||||
0x1908082b2b081908, 0x1908190808080808, 0x190819080808082b, 0x1908190808081919,
|
||||
0x1908190808082b08, 0x1908190808082b2b, 0x1908190808190819, 0x1908190808191908,
|
||||
0x190819080819192b, 0x1908190808192b19, 0x19081908082b0808, 0x19081908082b082b,
|
||||
0x19081908082b1919, 0x19081908082b2b08, 0x1908190819080819, 0x1908190819081908,
|
||||
0x190819081908192b, 0x1908190819082b19, 0x1908190819190808, 0x190819081919082b,
|
||||
0x1908190819191919, 0x1908190819192b08, 0x19081908192b0819, 0x19081908192b1908,
|
||||
0x190819082b080808, 0x190819082b08082b, 0x190819082b081919, 0x190819082b082b08,
|
||||
0x190819082b190819, 0x190819082b191908, 0x190819082b2b0808, 0x1908191908080819,
|
||||
0x1908191908081908, 0x190819190808192b, 0x1908191908082b19, 0x1908191908190808,
|
||||
0x190819190819082b, 0x1908191908191919, 0x1908191908192b08, 0x19081919082b0819,
|
||||
0x19081919082b1908, 0x1908191919080808, 0x190819191908082b, 0x1908191919081919,
|
||||
0x1908191919082b08, 0x1908191919190819, 0x1908191919191908, 0x19081919192b0808,
|
||||
0x19081919192b2b2b, 0x190819192b080819, 0x190819192b081908, 0x190819192b190808,
|
||||
0x1908192b08080808, 0x1908192b0808082b, 0x1908192b08081919, 0x1908192b08082b08,
|
||||
0x1908192b08190819, 0x1908192b08191908, 0x1908192b082b0808, 0x1908192b19080819,
|
||||
0x1908192b19081908, 0x1908192b19190808, 0x1908192b2b080808, 0x1908192b2b2b1919,
|
||||
0x19082b0808080819, 0x19082b0808081908, 0x19082b0808082b19, 0x19082b0808190808,
|
||||
0x19082b080819082b, 0x19082b0808191919, 0x19082b0808192b08, 0x19082b08082b0819,
|
||||
0x19082b08082b1908, 0x19082b0819080808, 0x19082b081908082b, 0x19082b0819081919,
|
||||
0x19082b0819082b08, 0x19082b0819190819, 0x19082b0819191908, 0x19082b08192b0808,
|
||||
0x19082b082b081908, 0x19082b082b190808, 0x19082b1908080808, 0x19082b190808082b,
|
||||
0x19082b1908081919, 0x19082b1908082b08, 0x19082b1908190819, 0x19082b1908191908,
|
||||
0x19082b19082b0808, 0x19082b1919080819, 0x19082b1919081908, 0x19082b1919190808,
|
||||
0x19082b192b080808, 0x19082b192b19192b, 0x19082b2b08080819, 0x19082b2b08081908,
|
||||
0x19082b2b08190808, 0x19082b2b19080808, 0x1919080808080808, 0x191908080808082b,
|
||||
0x1919080808081919, 0x1919080808082b08, 0x1919080808190819, 0x1919080808191908,
|
||||
0x191908080819192b, 0x1919080808192b19, 0x19190808082b0808, 0x19190808082b082b,
|
||||
0x19190808082b1919, 0x19190808082b2b08, 0x1919080819080819, 0x1919080819081908,
|
||||
0x191908081908192b, 0x1919080819082b19, 0x1919080819190808, 0x191908081919082b,
|
||||
0x1919080819191919, 0x1919080819192b08, 0x19190808192b0819, 0x19190808192b1908,
|
||||
0x191908082b080808, 0x191908082b08082b, 0x191908082b081919, 0x191908082b082b08,
|
||||
0x191908082b190819, 0x191908082b191908, 0x1919081908080819, 0x1919081908081908,
|
||||
0x191908190808192b, 0x1919081908082b19, 0x1919081908190808, 0x191908190819082b,
|
||||
0x1919081908191919, 0x1919081908192b08, 0x19190819082b0819, 0x19190819082b1908,
|
||||
0x1919081919080808, 0x191908191908082b, 0x1919081919081919, 0x1919081919082b08,
|
||||
0x1919081919190819, 0x1919081919191908, 0x19190819192b0808, 0x191908192b080819,
|
||||
0x191908192b081908, 0x191908192b190808, 0x1919082b08080808, 0x1919082b08081919,
|
||||
0x1919082b08082b08, 0x1919082b08190819, 0x1919082b08191908, 0x1919082b082b0808,
|
||||
0x1919082b19080819, 0x1919082b19081908, 0x1919082b19190808, 0x1919082b192b2b19,
|
||||
0x1919082b2b080808, 0x1919190808080819, 0x1919190808081908, 0x191919080808192b,
|
||||
0x1919190808082b19, 0x1919190808190808, 0x191919080819082b, 0x1919190808191919,
|
||||
0x1919190808192b08, 0x19191908082b0819, 0x19191908082b1908, 0x1919190819080808,
|
||||
0x191919081908082b, 0x1919190819081919, 0x1919190819082b08, 0x1919190819190819,
|
||||
0x1919190819191908, 0x19191908192b0808, 0x191919082b080819, 0x191919082b081908,
|
||||
0x191919082b190808, 0x1919191908080808, 0x191919190808082b, 0x1919191908081919,
|
||||
0x1919191908082b08, 0x1919191908190819, 0x1919191908191908, 0x19191919082b0808,
|
||||
0x1919191919080819, 0x1919191919081908, 0x1919191919190808, 0x191919192b080808,
|
||||
0x1919192b08080819, 0x1919192b08081908, 0x1919192b08190808, 0x1919192b082b192b,
|
||||
0x1919192b19080808, 0x19192b0808080808, 0x19192b080808082b, 0x19192b0808081919,
|
||||
0x19192b0808082b08, 0x19192b0808190819, 0x19192b0808191908, 0x19192b08082b0808,
|
||||
0x19192b0819080819, 0x19192b0819081908, 0x19192b0819190808, 0x19192b0819192b2b,
|
||||
0x19192b082b080808, 0x19192b1908080819, 0x19192b1908081908, 0x19192b1908190808,
|
||||
0x19192b1919080808, 0x19192b2b08080808, 0x19192b2b08192b19, 0x19192b2b2b081919,
|
||||
0x19192b2b2b2b2b08, 0x192b080808080819, 0x192b080808081908, 0x192b08080808192b,
|
||||
0x192b080808190808, 0x192b08080819082b, 0x192b080808191919, 0x192b080808192b08,
|
||||
0x192b0808082b0819, 0x192b0808082b1908, 0x192b080819080808, 0x192b080819081919,
|
||||
0x192b080819082b08, 0x192b080819190819, 0x192b080819191908, 0x192b0808192b0808,
|
||||
0x192b08082b081908, 0x192b08082b190808, 0x192b081908080808, 0x192b08190808082b,
|
||||
0x192b081908081919, 0x192b081908082b08, 0x192b081908190819, 0x192b081908191908,
|
||||
0x192b0819082b0808, 0x192b081919080819, 0x192b081919081908, 0x192b081919190808,
|
||||
0x192b08192b080808, 0x192b08192b192b19, 0x192b082b08081908, 0x192b082b08190808,
|
||||
0x192b082b19080808, 0x192b082b1919192b, 0x192b082b2b2b0819, 0x192b190808080808,
|
||||
0x192b190808081919, 0x192b190808082b08, 0x192b190808190819, 0x192b190808191908,
|
||||
0x192b1908082b0808, 0x192b190819080819, 0x192b190819081908, 0x192b190819190808,
|
||||
0x192b19082b080808, 0x192b191908080819, 0x192b191908081908, 0x192b191908190808,
|
||||
0x192b191919080808, 0x192b191919082b2b, 0x192b1919192b2b08, 0x192b19192b19082b,
|
||||
0x192b192b08080808, 0x192b192b2b191908, 0x192b2b0808080819, 0x192b2b0808081908,
|
||||
0x192b2b0808190808, 0x192b2b08192b1919, 0x192b2b082b192b08, 0x192b2b1908080808,
|
||||
0x192b2b19082b2b2b, 0x192b2b2b1908082b, 0x192b2b2b2b2b0819, 0x2b08080808080808,
|
||||
0x2b0808080808082b, 0x2b08080808081919, 0x2b08080808082b08, 0x2b08080808190819,
|
||||
0x2b08080808191908, 0x2b08080808192b19, 0x2b080808082b0808, 0x2b080808082b1919,
|
||||
0x2b08080819080819, 0x2b08080819081908, 0x2b08080819190808, 0x2b0808081919082b,
|
||||
0x2b08080819191919, 0x2b08080819192b08, 0x2b080808192b0819, 0x2b0808082b080808,
|
||||
0x2b0808082b081919, 0x2b0808082b190819, 0x2b0808082b191908, 0x2b08081908080819,
|
||||
0x2b08081908081908, 0x2b08081908082b19, 0x2b08081908190808, 0x2b0808190819082b,
|
||||
0x2b08081908191919, 0x2b08081908192b08, 0x2b080819082b0819, 0x2b080819082b1908,
|
||||
0x2b08081919080808, 0x2b0808191908082b, 0x2b08081919081919, 0x2b08081919082b08,
|
||||
0x2b08081919190819, 0x2b08081919191908, 0x2b0808192b080819, 0x2b0808192b081908,
|
||||
0x2b0808192b190808, 0x2b0808192b2b2b19, 0x2b08082b08080808, 0x2b08082b08081919,
|
||||
0x2b08082b08082b2b, 0x2b08082b08190819, 0x2b08082b08191908, 0x2b08082b19080819,
|
||||
0x2b08082b19081908, 0x2b08082b19190808, 0x2b08190808080819, 0x2b08190808081908,
|
||||
0x2b0819080808192b, 0x2b08190808082b19, 0x2b08190808190808, 0x2b0819080819082b,
|
||||
0x2b08190808191919, 0x2b08190808192b08, 0x2b081908082b0819, 0x2b08190819080808,
|
||||
0x2b0819081908082b, 0x2b08190819081919, 0x2b08190819082b08, 0x2b08190819190819,
|
||||
0x2b08190819191908, 0x2b081908192b0808, 0x2b0819082b080819, 0x2b0819082b081908,
|
||||
0x2b0819082b190808, 0x2b08191908080808, 0x2b0819190808082b, 0x2b08191908081919,
|
||||
0x2b08191908082b08, 0x2b08191908190819, 0x2b08191908191908, 0x2b081919082b0808,
|
||||
0x2b08191919080819, 0x2b08191919081908, 0x2b08191919190808, 0x2b0819192b080808,
|
||||
0x2b0819192b082b2b, 0x2b08192b08080819, 0x2b08192b08081908, 0x2b08192b08190808,
|
||||
0x2b08192b082b2b19, 0x2b08192b19080808, 0x2b082b0808080808, 0x2b082b0808081919,
|
||||
0x2b082b0808190819, 0x2b082b0808191908, 0x2b082b0819080819, 0x2b082b0819081908,
|
||||
0x2b082b0819190808, 0x2b082b082b2b082b, 0x2b082b1908080819, 0x2b082b1908081908,
|
||||
0x2b082b1919080808, 0x2b082b19192b1919, 0x2b082b2b082b082b, 0x2b082b2b19192b08,
|
||||
0x2b082b2b19192b2b, 0x2b082b2b2b08082b, 0x2b082b2b2b2b082b, 0x2b19080808080819,
|
||||
0x2b19080808081908, 0x2b19080808082b19, 0x2b19080808190808, 0x2b1908080819082b,
|
||||
0x2b19080808191919, 0x2b19080808192b08, 0x2b190808082b1908, 0x2b19080819080808,
|
||||
0x2b1908081908082b, 0x2b19080819081919, 0x2b19080819082b08, 0x2b19080819190819,
|
||||
0x2b19080819191908, 0x2b190808192b0808, 0x2b1908082b080819, 0x2b1908082b081908,
|
||||
0x2b1908082b190808, 0x2b19081908080808, 0x2b19081908081919, 0x2b19081908190819,
|
||||
0x2b19081908191908, 0x2b19081919080819, 0x2b19081919081908, 0x2b19081919190808,
|
||||
0x2b19081919192b2b, 0x2b19082b08080819, 0x2b19082b08081908, 0x2b19082b08190808,
|
||||
0x2b19082b19080808, 0x2b19082b2b2b192b, 0x2b19190808080808, 0x2b1919080808082b,
|
||||
0x2b19190808081919, 0x2b19190808082b08, 0x2b19190808190819, 0x2b19190808191908,
|
||||
0x2b191908082b0808, 0x2b19190819080819, 0x2b19190819081908, 0x2b19190819190808,
|
||||
0x2b1919082b080808, 0x2b1919082b19192b, 0x2b19191908080819, 0x2b19191908081908,
|
||||
0x2b19191908190808, 0x2b19191919080808, 0x2b1919192b192b08, 0x2b1919192b2b0819,
|
||||
0x2b19192b08080808, 0x2b19192b1908192b, 0x2b19192b192b1908, 0x2b192b0808080819,
|
||||
0x2b192b0808081908, 0x2b192b0808190808, 0x2b192b08082b192b, 0x2b192b0819080808,
|
||||
0x2b192b082b2b2b19, 0x2b192b1908080808, 0x2b192b1919082b19, 0x2b192b191919082b,
|
||||
0x2b192b2b2b190808, 0x2b2b080808080808, 0x2b2b080808081919, 0x2b2b080808082b2b,
|
||||
0x2b2b080808191908, 0x2b2b0808082b082b, 0x2b2b0808082b2b2b, 0x2b2b080819080819,
|
||||
0x2b2b080819081908, 0x2b2b080819190808, 0x2b2b08082b2b082b, 0x2b2b08082b2b2b2b,
|
||||
0x2b2b081919080808, 0x2b2b0819192b1919, 0x2b2b082b0808082b, 0x2b2b082b08082b2b,
|
||||
0x2b2b082b082b082b, 0x2b2b082b082b2b08, 0x2b2b082b082b2b2b, 0x2b2b082b2b08082b,
|
||||
0x2b2b082b2b082b08, 0x2b2b082b2b082b2b, 0x2b2b082b2b2b2b08, 0x2b2b190808080819,
|
||||
0x2b2b190808081908, 0x2b2b190808190808, 0x2b2b190819080808, 0x2b2b19082b082b19,
|
||||
0x2b2b19082b2b1908, 0x2b2b191908080808, 0x2b2b191908192b19, 0x2b2b192b19190819,
|
||||
0x2b2b2b0808082b2b, 0x2b2b2b08082b2b08, 0x2b2b2b082b2b082b, 0x2b2b2b1919191908,
|
||||
0x2b2b2b192b08192b, 0x2b2b2b2b08082b08, 0x2b2b2b2b08082b2b, 0x2b2b2b2b082b0808,
|
||||
0x2b2b2b2b082b082b, 0x2b2b2b2b082b2b08, 0x2b2b2b2b2b082b08, 0x2b2b2b2b2b2b2b2b,
|
||||
};
|
||||
|
||||
static const __device__ uint32_t iq3xxs_grid[256] = {
|
||||
0x04040404, 0x04040414, 0x04040424, 0x04040c0c, 0x04040c1c, 0x04040c3e, 0x04041404, 0x04041414,
|
||||
0x04041c0c, 0x04042414, 0x04043e1c, 0x04043e2c, 0x040c040c, 0x040c041c, 0x040c0c04, 0x040c0c14,
|
||||
|
@ -1724,74 +2018,73 @@ static const __device__ uint32_t iq3xxs_grid[256] = {
|
|||
0x3e1c1c1c, 0x3e1c3404, 0x3e24140c, 0x3e24240c, 0x3e2c0404, 0x3e2c0414, 0x3e2c1424, 0x3e341c04,
|
||||
};
|
||||
|
||||
static const __device__ uint32_t iq3xs_grid[512] = {
|
||||
0x04040404, 0x0404040c, 0x04040414, 0x0404042c, 0x0404043e, 0x04040c04, 0x04040c0c, 0x04040c14,
|
||||
0x04040c24, 0x04040c34, 0x04041404, 0x0404140c, 0x0404142c, 0x04041c1c, 0x04042404, 0x04042414,
|
||||
0x0404242c, 0x0404243e, 0x04042c0c, 0x04042c1c, 0x04043404, 0x04043414, 0x04043e0c, 0x04043e24,
|
||||
0x04043e3e, 0x040c0404, 0x040c040c, 0x040c0414, 0x040c0424, 0x040c0c04, 0x040c0c0c, 0x040c0c2c,
|
||||
0x040c1404, 0x040c141c, 0x040c143e, 0x040c1c0c, 0x040c1c2c, 0x040c2424, 0x040c340c, 0x040c342c,
|
||||
0x040c3e14, 0x04140404, 0x0414040c, 0x0414042c, 0x0414043e, 0x04140c04, 0x04140c1c, 0x04140c34,
|
||||
0x0414140c, 0x0414142c, 0x04141c04, 0x04141c24, 0x04142414, 0x0414242c, 0x0414243e, 0x04142c0c,
|
||||
0x04142c1c, 0x04143e04, 0x04143e1c, 0x041c041c, 0x041c0c0c, 0x041c0c2c, 0x041c1404, 0x041c1414,
|
||||
0x041c1c0c, 0x041c1c1c, 0x041c1c34, 0x041c2424, 0x041c2c04, 0x041c2c14, 0x041c343e, 0x041c3e0c,
|
||||
0x041c3e2c, 0x04240404, 0x04240c1c, 0x04240c3e, 0x0424140c, 0x04241424, 0x04241c14, 0x04242404,
|
||||
0x0424241c, 0x04242c0c, 0x04243e04, 0x042c0414, 0x042c0424, 0x042c1404, 0x042c1414, 0x042c1434,
|
||||
0x042c1c1c, 0x042c240c, 0x042c242c, 0x042c243e, 0x042c3434, 0x042c3e1c, 0x04340434, 0x04340c0c,
|
||||
0x04340c1c, 0x04341c0c, 0x04342c14, 0x04343e0c, 0x043e0404, 0x043e0414, 0x043e0424, 0x043e1404,
|
||||
0x043e1414, 0x043e1434, 0x043e1c1c, 0x043e2c04, 0x043e2c24, 0x0c040404, 0x0c04040c, 0x0c040414,
|
||||
0x0c040424, 0x0c040c04, 0x0c040c0c, 0x0c040c1c, 0x0c040c2c, 0x0c040c3e, 0x0c041404, 0x0c041414,
|
||||
0x0c041c0c, 0x0c041c24, 0x0c041c34, 0x0c042c24, 0x0c042c34, 0x0c04340c, 0x0c043e14, 0x0c0c0404,
|
||||
0x0c0c040c, 0x0c0c041c, 0x0c0c0434, 0x0c0c0c04, 0x0c0c0c24, 0x0c0c140c, 0x0c0c1c04, 0x0c0c1c1c,
|
||||
0x0c0c240c, 0x0c0c2c04, 0x0c0c2c14, 0x0c0c3e04, 0x0c0c3e34, 0x0c140404, 0x0c140c14, 0x0c140c2c,
|
||||
0x0c140c3e, 0x0c141404, 0x0c141424, 0x0c141c14, 0x0c142404, 0x0c14241c, 0x0c142c2c, 0x0c143404,
|
||||
0x0c143e14, 0x0c1c040c, 0x0c1c0424, 0x0c1c043e, 0x0c1c0c04, 0x0c1c0c1c, 0x0c1c140c, 0x0c1c143e,
|
||||
0x0c1c1c04, 0x0c1c1c24, 0x0c1c240c, 0x0c1c3414, 0x0c1c3e04, 0x0c24041c, 0x0c24042c, 0x0c240c14,
|
||||
0x0c240c24, 0x0c241c0c, 0x0c241c1c, 0x0c242414, 0x0c242434, 0x0c242c04, 0x0c242c24, 0x0c2c040c,
|
||||
0x0c2c0c04, 0x0c2c0c1c, 0x0c2c140c, 0x0c2c1c04, 0x0c2c1c14, 0x0c2c2c0c, 0x0c341404, 0x0c341424,
|
||||
0x0c34143e, 0x0c342424, 0x0c342434, 0x0c3e040c, 0x0c3e041c, 0x0c3e0c04, 0x0c3e0c14, 0x0c3e140c,
|
||||
0x0c3e1c2c, 0x0c3e240c, 0x0c3e3414, 0x0c3e3e04, 0x14040404, 0x1404040c, 0x1404041c, 0x1404042c,
|
||||
0x1404043e, 0x14040c04, 0x14040c14, 0x14040c24, 0x14040c34, 0x1404140c, 0x1404141c, 0x1404143e,
|
||||
0x14041c04, 0x14041c14, 0x1404240c, 0x1404241c, 0x1404242c, 0x14042c04, 0x14042c14, 0x1404343e,
|
||||
0x14043e04, 0x14043e1c, 0x14043e2c, 0x140c0404, 0x140c0414, 0x140c0c04, 0x140c0c1c, 0x140c0c3e,
|
||||
0x140c1414, 0x140c142c, 0x140c1c0c, 0x140c1c24, 0x140c2414, 0x140c2c0c, 0x1414040c, 0x14140424,
|
||||
0x1414043e, 0x1414140c, 0x1414141c, 0x14141c04, 0x14141c3e, 0x1414240c, 0x14142c1c, 0x14142c3e,
|
||||
0x14143e0c, 0x14143e24, 0x141c0404, 0x141c0414, 0x141c042c, 0x141c0c0c, 0x141c1414, 0x141c1424,
|
||||
0x141c1c0c, 0x141c1c1c, 0x141c2414, 0x141c2c04, 0x141c3434, 0x1424040c, 0x1424043e, 0x14241404,
|
||||
0x1424141c, 0x14241c14, 0x14241c2c, 0x1424240c, 0x14243e14, 0x14243e2c, 0x142c0424, 0x142c0c0c,
|
||||
0x142c1414, 0x142c1c3e, 0x142c2404, 0x142c2c1c, 0x142c3e04, 0x14340404, 0x14340414, 0x1434043e,
|
||||
0x1434140c, 0x14342c2c, 0x1434340c, 0x143e042c, 0x143e0c0c, 0x143e1434, 0x143e1c04, 0x143e241c,
|
||||
0x143e2c04, 0x1c040414, 0x1c040c0c, 0x1c040c1c, 0x1c040c2c, 0x1c040c3e, 0x1c041414, 0x1c041c0c,
|
||||
0x1c041c1c, 0x1c041c2c, 0x1c042414, 0x1c042424, 0x1c04243e, 0x1c042c0c, 0x1c04341c, 0x1c043e0c,
|
||||
0x1c0c040c, 0x1c0c041c, 0x1c0c042c, 0x1c0c0c24, 0x1c0c140c, 0x1c0c141c, 0x1c0c2404, 0x1c0c3404,
|
||||
0x1c0c3e14, 0x1c0c3e34, 0x1c140404, 0x1c140c14, 0x1c141404, 0x1c141c14, 0x1c141c24, 0x1c142c04,
|
||||
0x1c1c040c, 0x1c1c0c04, 0x1c1c0c24, 0x1c1c140c, 0x1c1c141c, 0x1c1c143e, 0x1c1c1c04, 0x1c1c240c,
|
||||
0x1c1c241c, 0x1c1c243e, 0x1c1c2c2c, 0x1c1c3e1c, 0x1c24041c, 0x1c240c0c, 0x1c240c34, 0x1c241414,
|
||||
0x1c241c0c, 0x1c242c14, 0x1c243404, 0x1c243424, 0x1c2c040c, 0x1c2c0c04, 0x1c2c0c14, 0x1c2c142c,
|
||||
0x1c2c1c14, 0x1c2c2424, 0x1c2c2c34, 0x1c2c3e1c, 0x1c340c34, 0x1c34240c, 0x1c3e040c, 0x1c3e041c,
|
||||
0x1c3e1404, 0x1c3e1414, 0x1c3e1c2c, 0x24040404, 0x24040424, 0x24040c14, 0x24041404, 0x24041424,
|
||||
0x2404143e, 0x24041c14, 0x2404240c, 0x24042c04, 0x24043e04, 0x240c0414, 0x240c043e, 0x240c0c0c,
|
||||
0x240c0c1c, 0x240c1414, 0x240c1c04, 0x240c1c2c, 0x240c241c, 0x240c2c0c, 0x240c2c2c, 0x2414040c,
|
||||
0x2414041c, 0x24140c04, 0x24140c2c, 0x2414140c, 0x24141c1c, 0x24142404, 0x24142c3e, 0x24143414,
|
||||
0x24143e04, 0x241c0424, 0x241c0c0c, 0x241c0c1c, 0x241c1404, 0x241c1414, 0x241c1c0c, 0x241c1c2c,
|
||||
0x24240404, 0x24240414, 0x24241424, 0x24241c3e, 0x24242404, 0x24243e0c, 0x242c042c, 0x242c043e,
|
||||
0x242c140c, 0x242c3414, 0x24340c1c, 0x24341c24, 0x24343404, 0x243e0c04, 0x243e0c2c, 0x243e1c04,
|
||||
0x243e241c, 0x243e2c0c, 0x2c040414, 0x2c040c04, 0x2c040c24, 0x2c041414, 0x2c042404, 0x2c042424,
|
||||
0x2c04243e, 0x2c042c14, 0x2c043434, 0x2c043e24, 0x2c0c040c, 0x2c0c041c, 0x2c0c042c, 0x2c0c0c14,
|
||||
0x2c0c140c, 0x2c0c1c14, 0x2c0c3e14, 0x2c140404, 0x2c140c0c, 0x2c14141c, 0x2c141c04, 0x2c141c34,
|
||||
0x2c142c1c, 0x2c1c0414, 0x2c1c043e, 0x2c1c0c04, 0x2c1c143e, 0x2c1c2424, 0x2c1c2c0c, 0x2c1c342c,
|
||||
0x2c1c3e1c, 0x2c24040c, 0x2c240424, 0x2c241404, 0x2c241c14, 0x2c242434, 0x2c2c0c14, 0x2c2c1434,
|
||||
0x2c2c2c0c, 0x2c2c2c1c, 0x2c342414, 0x2c3e0414, 0x2c3e0424, 0x2c3e1414, 0x34040c0c, 0x34040c1c,
|
||||
0x34040c2c, 0x34041c0c, 0x34041c1c, 0x34043404, 0x340c0404, 0x340c1404, 0x340c143e, 0x340c3424,
|
||||
0x34140c14, 0x34141c24, 0x34142414, 0x34142c2c, 0x34143414, 0x34143e04, 0x341c0404, 0x341c0c24,
|
||||
0x341c140c, 0x341c2404, 0x3424142c, 0x3424241c, 0x34243414, 0x342c0404, 0x342c041c, 0x342c1c24,
|
||||
0x342c3404, 0x3434042c, 0x34342404, 0x343e0c0c, 0x343e0c1c, 0x3e040404, 0x3e040424, 0x3e04043e,
|
||||
0x3e041404, 0x3e041414, 0x3e041c34, 0x3e042404, 0x3e042c24, 0x3e043414, 0x3e0c0414, 0x3e0c0c0c,
|
||||
0x3e0c1424, 0x3e0c241c, 0x3e0c242c, 0x3e14040c, 0x3e140424, 0x3e140c04, 0x3e140c34, 0x3e14140c,
|
||||
0x3e141c04, 0x3e142c0c, 0x3e1c0414, 0x3e1c1c14, 0x3e1c1c2c, 0x3e1c2c1c, 0x3e24040c, 0x3e24042c,
|
||||
0x3e240c1c, 0x3e241404, 0x3e242c04, 0x3e2c1414, 0x3e2c2414, 0x3e340414, 0x3e341c0c, 0x3e3e0404,
|
||||
static const __device__ uint32_t iq3s_grid[512] = {
|
||||
0x01010101, 0x01010103, 0x01010105, 0x0101010b, 0x0101010f, 0x01010301, 0x01010303, 0x01010305,
|
||||
0x01010309, 0x0101030d, 0x01010501, 0x01010503, 0x0101050b, 0x01010707, 0x01010901, 0x01010905,
|
||||
0x0101090b, 0x0101090f, 0x01010b03, 0x01010b07, 0x01010d01, 0x01010d05, 0x01010f03, 0x01010f09,
|
||||
0x01010f0f, 0x01030101, 0x01030103, 0x01030105, 0x01030109, 0x01030301, 0x01030303, 0x0103030b,
|
||||
0x01030501, 0x01030507, 0x0103050f, 0x01030703, 0x0103070b, 0x01030909, 0x01030d03, 0x01030d0b,
|
||||
0x01030f05, 0x01050101, 0x01050103, 0x0105010b, 0x0105010f, 0x01050301, 0x01050307, 0x0105030d,
|
||||
0x01050503, 0x0105050b, 0x01050701, 0x01050709, 0x01050905, 0x0105090b, 0x0105090f, 0x01050b03,
|
||||
0x01050b07, 0x01050f01, 0x01050f07, 0x01070107, 0x01070303, 0x0107030b, 0x01070501, 0x01070505,
|
||||
0x01070703, 0x01070707, 0x0107070d, 0x01070909, 0x01070b01, 0x01070b05, 0x01070d0f, 0x01070f03,
|
||||
0x01070f0b, 0x01090101, 0x01090307, 0x0109030f, 0x01090503, 0x01090509, 0x01090705, 0x01090901,
|
||||
0x01090907, 0x01090b03, 0x01090f01, 0x010b0105, 0x010b0109, 0x010b0501, 0x010b0505, 0x010b050d,
|
||||
0x010b0707, 0x010b0903, 0x010b090b, 0x010b090f, 0x010b0d0d, 0x010b0f07, 0x010d010d, 0x010d0303,
|
||||
0x010d0307, 0x010d0703, 0x010d0b05, 0x010d0f03, 0x010f0101, 0x010f0105, 0x010f0109, 0x010f0501,
|
||||
0x010f0505, 0x010f050d, 0x010f0707, 0x010f0b01, 0x010f0b09, 0x03010101, 0x03010103, 0x03010105,
|
||||
0x03010109, 0x03010301, 0x03010303, 0x03010307, 0x0301030b, 0x0301030f, 0x03010501, 0x03010505,
|
||||
0x03010703, 0x03010709, 0x0301070d, 0x03010b09, 0x03010b0d, 0x03010d03, 0x03010f05, 0x03030101,
|
||||
0x03030103, 0x03030107, 0x0303010d, 0x03030301, 0x03030309, 0x03030503, 0x03030701, 0x03030707,
|
||||
0x03030903, 0x03030b01, 0x03030b05, 0x03030f01, 0x03030f0d, 0x03050101, 0x03050305, 0x0305030b,
|
||||
0x0305030f, 0x03050501, 0x03050509, 0x03050705, 0x03050901, 0x03050907, 0x03050b0b, 0x03050d01,
|
||||
0x03050f05, 0x03070103, 0x03070109, 0x0307010f, 0x03070301, 0x03070307, 0x03070503, 0x0307050f,
|
||||
0x03070701, 0x03070709, 0x03070903, 0x03070d05, 0x03070f01, 0x03090107, 0x0309010b, 0x03090305,
|
||||
0x03090309, 0x03090703, 0x03090707, 0x03090905, 0x0309090d, 0x03090b01, 0x03090b09, 0x030b0103,
|
||||
0x030b0301, 0x030b0307, 0x030b0503, 0x030b0701, 0x030b0705, 0x030b0b03, 0x030d0501, 0x030d0509,
|
||||
0x030d050f, 0x030d0909, 0x030d090d, 0x030f0103, 0x030f0107, 0x030f0301, 0x030f0305, 0x030f0503,
|
||||
0x030f070b, 0x030f0903, 0x030f0d05, 0x030f0f01, 0x05010101, 0x05010103, 0x05010107, 0x0501010b,
|
||||
0x0501010f, 0x05010301, 0x05010305, 0x05010309, 0x0501030d, 0x05010503, 0x05010507, 0x0501050f,
|
||||
0x05010701, 0x05010705, 0x05010903, 0x05010907, 0x0501090b, 0x05010b01, 0x05010b05, 0x05010d0f,
|
||||
0x05010f01, 0x05010f07, 0x05010f0b, 0x05030101, 0x05030105, 0x05030301, 0x05030307, 0x0503030f,
|
||||
0x05030505, 0x0503050b, 0x05030703, 0x05030709, 0x05030905, 0x05030b03, 0x05050103, 0x05050109,
|
||||
0x0505010f, 0x05050503, 0x05050507, 0x05050701, 0x0505070f, 0x05050903, 0x05050b07, 0x05050b0f,
|
||||
0x05050f03, 0x05050f09, 0x05070101, 0x05070105, 0x0507010b, 0x05070303, 0x05070505, 0x05070509,
|
||||
0x05070703, 0x05070707, 0x05070905, 0x05070b01, 0x05070d0d, 0x05090103, 0x0509010f, 0x05090501,
|
||||
0x05090507, 0x05090705, 0x0509070b, 0x05090903, 0x05090f05, 0x05090f0b, 0x050b0109, 0x050b0303,
|
||||
0x050b0505, 0x050b070f, 0x050b0901, 0x050b0b07, 0x050b0f01, 0x050d0101, 0x050d0105, 0x050d010f,
|
||||
0x050d0503, 0x050d0b0b, 0x050d0d03, 0x050f010b, 0x050f0303, 0x050f050d, 0x050f0701, 0x050f0907,
|
||||
0x050f0b01, 0x07010105, 0x07010303, 0x07010307, 0x0701030b, 0x0701030f, 0x07010505, 0x07010703,
|
||||
0x07010707, 0x0701070b, 0x07010905, 0x07010909, 0x0701090f, 0x07010b03, 0x07010d07, 0x07010f03,
|
||||
0x07030103, 0x07030107, 0x0703010b, 0x07030309, 0x07030503, 0x07030507, 0x07030901, 0x07030d01,
|
||||
0x07030f05, 0x07030f0d, 0x07050101, 0x07050305, 0x07050501, 0x07050705, 0x07050709, 0x07050b01,
|
||||
0x07070103, 0x07070301, 0x07070309, 0x07070503, 0x07070507, 0x0707050f, 0x07070701, 0x07070903,
|
||||
0x07070907, 0x0707090f, 0x07070b0b, 0x07070f07, 0x07090107, 0x07090303, 0x0709030d, 0x07090505,
|
||||
0x07090703, 0x07090b05, 0x07090d01, 0x07090d09, 0x070b0103, 0x070b0301, 0x070b0305, 0x070b050b,
|
||||
0x070b0705, 0x070b0909, 0x070b0b0d, 0x070b0f07, 0x070d030d, 0x070d0903, 0x070f0103, 0x070f0107,
|
||||
0x070f0501, 0x070f0505, 0x070f070b, 0x09010101, 0x09010109, 0x09010305, 0x09010501, 0x09010509,
|
||||
0x0901050f, 0x09010705, 0x09010903, 0x09010b01, 0x09010f01, 0x09030105, 0x0903010f, 0x09030303,
|
||||
0x09030307, 0x09030505, 0x09030701, 0x0903070b, 0x09030907, 0x09030b03, 0x09030b0b, 0x09050103,
|
||||
0x09050107, 0x09050301, 0x0905030b, 0x09050503, 0x09050707, 0x09050901, 0x09050b0f, 0x09050d05,
|
||||
0x09050f01, 0x09070109, 0x09070303, 0x09070307, 0x09070501, 0x09070505, 0x09070703, 0x0907070b,
|
||||
0x09090101, 0x09090105, 0x09090509, 0x0909070f, 0x09090901, 0x09090f03, 0x090b010b, 0x090b010f,
|
||||
0x090b0503, 0x090b0d05, 0x090d0307, 0x090d0709, 0x090d0d01, 0x090f0301, 0x090f030b, 0x090f0701,
|
||||
0x090f0907, 0x090f0b03, 0x0b010105, 0x0b010301, 0x0b010309, 0x0b010505, 0x0b010901, 0x0b010909,
|
||||
0x0b01090f, 0x0b010b05, 0x0b010d0d, 0x0b010f09, 0x0b030103, 0x0b030107, 0x0b03010b, 0x0b030305,
|
||||
0x0b030503, 0x0b030705, 0x0b030f05, 0x0b050101, 0x0b050303, 0x0b050507, 0x0b050701, 0x0b05070d,
|
||||
0x0b050b07, 0x0b070105, 0x0b07010f, 0x0b070301, 0x0b07050f, 0x0b070909, 0x0b070b03, 0x0b070d0b,
|
||||
0x0b070f07, 0x0b090103, 0x0b090109, 0x0b090501, 0x0b090705, 0x0b09090d, 0x0b0b0305, 0x0b0b050d,
|
||||
0x0b0b0b03, 0x0b0b0b07, 0x0b0d0905, 0x0b0f0105, 0x0b0f0109, 0x0b0f0505, 0x0d010303, 0x0d010307,
|
||||
0x0d01030b, 0x0d010703, 0x0d010707, 0x0d010d01, 0x0d030101, 0x0d030501, 0x0d03050f, 0x0d030d09,
|
||||
0x0d050305, 0x0d050709, 0x0d050905, 0x0d050b0b, 0x0d050d05, 0x0d050f01, 0x0d070101, 0x0d070309,
|
||||
0x0d070503, 0x0d070901, 0x0d09050b, 0x0d090907, 0x0d090d05, 0x0d0b0101, 0x0d0b0107, 0x0d0b0709,
|
||||
0x0d0b0d01, 0x0d0d010b, 0x0d0d0901, 0x0d0f0303, 0x0d0f0307, 0x0f010101, 0x0f010109, 0x0f01010f,
|
||||
0x0f010501, 0x0f010505, 0x0f01070d, 0x0f010901, 0x0f010b09, 0x0f010d05, 0x0f030105, 0x0f030303,
|
||||
0x0f030509, 0x0f030907, 0x0f03090b, 0x0f050103, 0x0f050109, 0x0f050301, 0x0f05030d, 0x0f050503,
|
||||
0x0f050701, 0x0f050b03, 0x0f070105, 0x0f070705, 0x0f07070b, 0x0f070b07, 0x0f090103, 0x0f09010b,
|
||||
0x0f090307, 0x0f090501, 0x0f090b01, 0x0f0b0505, 0x0f0b0905, 0x0f0d0105, 0x0f0d0703, 0x0f0f0101,
|
||||
};
|
||||
|
||||
|
||||
static const __device__ uint64_t iq1s_grid[512] = {
|
||||
0xffffffffffff0101, 0xffffffffff01ff00, 0xffffffffff010100, 0xffffffff00000000,
|
||||
0xffffffff01ff00ff, 0xffffffff01ff0001, 0xffffffff0101ffff, 0xffffffff0101ff01,
|
||||
|
@ -2037,6 +2330,27 @@ static __global__ void dequantize_block_iq2_xs(const void * __restrict__ vx, dst
|
|||
|
||||
}
|
||||
|
||||
template<typename dst_t>
|
||||
static __global__ void dequantize_block_iq2_s(const void * __restrict__ vx, dst_t * __restrict__ yy) {
|
||||
|
||||
const int i = blockIdx.x;
|
||||
const block_iq2_s * x = (const block_iq2_s *) vx;
|
||||
|
||||
const int tid = threadIdx.x;
|
||||
#if QK_K == 256
|
||||
const int il = tid/8; // 0...3
|
||||
const int ib = tid%8; // 0...7
|
||||
dst_t * y = yy + i*QK_K + 32*ib + 8*il;
|
||||
const uint8_t * grid = (const uint8_t *)(iq2s_grid + (x[i].qs[4*ib+il] | ((x[i].qh[ib] << (8-2*il)) & 0x300)));
|
||||
const float d = (float)x[i].d * (0.5f + ((x[i].scales[ib] >> 4*(il/2)) & 0xf)) * 0.25f;
|
||||
const uint8_t signs = x[i].qs[QK_K/8+4*ib+il];
|
||||
for (int j = 0; j < 8; ++j) y[j] = d * grid[j] * (signs & kmask_iq2xs[j] ? -1.f : 1.f);
|
||||
#else
|
||||
assert(false);
|
||||
#endif
|
||||
|
||||
}
|
||||
|
||||
template<typename dst_t>
|
||||
static __global__ void dequantize_block_iq3_xxs(const void * __restrict__ vx, dst_t * __restrict__ yy) {
|
||||
|
||||
|
@ -2077,9 +2391,9 @@ static __global__ void dequantize_block_iq3_s(const void * __restrict__ vx, dst_
|
|||
const int ib = tid%8; // 0...7
|
||||
dst_t * y = yy + i*QK_K + 32*ib + 8*il;
|
||||
const uint8_t * qs = x[i].qs + 8*ib;
|
||||
const uint8_t * grid1 = (const uint8_t *)(iq3xs_grid + (qs[2*il+0] | ((x[i].qh[ib] << (8-2*il)) & 256)));
|
||||
const uint8_t * grid2 = (const uint8_t *)(iq3xs_grid + (qs[2*il+1] | ((x[i].qh[ib] << (7-2*il)) & 256)));
|
||||
const float d = (float)x[i].d * (0.5f + ((x[i].scales[ib/2] >> 4*(ib%2)) & 0xf)) * 0.5f;
|
||||
const uint8_t * grid1 = (const uint8_t *)(iq3s_grid + (qs[2*il+0] | ((x[i].qh[ib] << (8-2*il)) & 256)));
|
||||
const uint8_t * grid2 = (const uint8_t *)(iq3s_grid + (qs[2*il+1] | ((x[i].qh[ib] << (7-2*il)) & 256)));
|
||||
const float d = (float)x[i].d * (1 + 2*((x[i].scales[ib/2] >> 4*(ib%2)) & 0xf));
|
||||
const uint8_t signs = x[i].signs[4*ib + il];
|
||||
for (int j = 0; j < 4; ++j) {
|
||||
y[j+0] = d * grid1[j] * (signs & kmask_iq2xs[j+0] ? -1.f : 1.f);
|
||||
|
@ -2134,6 +2448,25 @@ static __global__ void dequantize_block_iq4_nl(const void * __restrict__ vx, dst
|
|||
|
||||
}
|
||||
|
||||
#if QK_K != 64
|
||||
template<typename dst_t>
|
||||
static __global__ void dequantize_block_iq4_xs(const void * __restrict__ vx, dst_t * __restrict__ yy) {
|
||||
const int i = blockIdx.x;
|
||||
const block_iq4_xs * x = (const block_iq4_xs *)vx;
|
||||
|
||||
const int tid = threadIdx.x;
|
||||
const int il = tid/8; // 0...3
|
||||
const int ib = tid%8; // 0...7
|
||||
dst_t * y = yy + i*QK_K + 32*ib + 4*il;
|
||||
const uint8_t * q4 = x[i].qs + 16*ib + 4*il;
|
||||
const float d = (float)x[i].d * ((((x[i].scales_l[ib/2] >> 4*(ib%2)) & 0xf) | (((x[i].scales_h >> 2*ib) & 3) << 4)) - 32);
|
||||
for (int j = 0; j < 4; ++j) {
|
||||
y[j+ 0] = d * kvalues_iq4nl[q4[j] & 0xf];
|
||||
y[j+16] = d * kvalues_iq4nl[q4[j] >> 4];
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
static __global__ void dequantize_mul_mat_vec_q2_k(const void * __restrict__ vx, const float * __restrict__ yy, float * __restrict__ dst, const int ncols, int nrows) {
|
||||
|
||||
static_assert(16%K_QUANTS_PER_ITERATION == 0, "16 must be divisible by K_QUANTS_PER_ITERATION");
|
||||
|
@ -2230,10 +2563,7 @@ static __global__ void dequantize_mul_mat_vec_q2_k(const void * __restrict__ vx,
|
|||
#endif
|
||||
|
||||
// sum up partial sums and write back result
|
||||
#pragma unroll
|
||||
for (int mask = 16; mask > 0; mask >>= 1) {
|
||||
tmp += __shfl_xor_sync(0xffffffff, tmp, mask, 32);
|
||||
}
|
||||
tmp = warp_reduce_sum(tmp);
|
||||
|
||||
if (threadIdx.x == 0) {
|
||||
dst[row] = tmp;
|
||||
|
@ -2334,10 +2664,7 @@ static __global__ void dequantize_mul_mat_vec_q3_k(const void * __restrict__ vx,
|
|||
#endif
|
||||
|
||||
// sum up partial sums and write back result
|
||||
#pragma unroll
|
||||
for (int mask = 16; mask > 0; mask >>= 1) {
|
||||
tmp += __shfl_xor_sync(0xffffffff, tmp, mask, 32);
|
||||
}
|
||||
tmp = warp_reduce_sum(tmp);
|
||||
|
||||
if (threadIdx.x == 0) {
|
||||
dst[row] = tmp;
|
||||
|
@ -2470,10 +2797,7 @@ static __global__ void dequantize_mul_mat_vec_q4_k(const void * __restrict__ vx,
|
|||
#endif
|
||||
|
||||
// sum up partial sums and write back result
|
||||
#pragma unroll
|
||||
for (int mask = 16; mask > 0; mask >>= 1) {
|
||||
tmp += __shfl_xor_sync(0xffffffff, tmp, mask, 32);
|
||||
}
|
||||
tmp = warp_reduce_sum(tmp);
|
||||
|
||||
if (tid == 0) {
|
||||
dst[row] = tmp;
|
||||
|
@ -2586,10 +2910,7 @@ static __global__ void dequantize_mul_mat_vec_q5_k(const void * __restrict__ vx,
|
|||
#endif
|
||||
|
||||
// sum up partial sums and write back result
|
||||
#pragma unroll
|
||||
for (int mask = 16; mask > 0; mask >>= 1) {
|
||||
tmp += __shfl_xor_sync(0xffffffff, tmp, mask, 32);
|
||||
}
|
||||
tmp = warp_reduce_sum(tmp);
|
||||
|
||||
if (threadIdx.x == 0) {
|
||||
dst[row] = tmp;
|
||||
|
@ -2696,10 +3017,7 @@ static __global__ void dequantize_mul_mat_vec_q6_k(const void * __restrict__ vx,
|
|||
#endif
|
||||
|
||||
// sum up partial sums and write back result
|
||||
#pragma unroll
|
||||
for (int mask = 16; mask > 0; mask >>= 1) {
|
||||
tmp += __shfl_xor_sync(0xffffffff, tmp, mask, 32);
|
||||
}
|
||||
tmp = warp_reduce_sum(tmp);
|
||||
|
||||
if (tid == 0) {
|
||||
dst[row] = tmp;
|
||||
|
@ -2734,11 +3052,8 @@ static __global__ void quantize_q8_1(const float * __restrict__ x, void * __rest
|
|||
float amax = fabsf(xi);
|
||||
float sum = xi;
|
||||
|
||||
#pragma unroll
|
||||
for (int mask = 16; mask > 0; mask >>= 1) {
|
||||
amax = fmaxf(amax, __shfl_xor_sync(0xffffffff, amax, mask, 32));
|
||||
sum += __shfl_xor_sync(0xffffffff, sum, mask, 32);
|
||||
}
|
||||
amax = warp_reduce_max(amax);
|
||||
sum = warp_reduce_sum(sum);
|
||||
|
||||
const float d = amax / 127;
|
||||
const int8_t q = amax == 0.0f ? 0 : roundf(xi / d);
|
||||
|
@ -4800,6 +5115,54 @@ static __device__ __forceinline__ float vec_dot_iq2_xs_q8_1(
|
|||
#endif
|
||||
}
|
||||
|
||||
// TODO
|
||||
static __device__ __forceinline__ float vec_dot_iq2_s_q8_1(
|
||||
const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
|
||||
#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
|
||||
#if QK_K == 256
|
||||
const block_iq2_s * bq2 = (const block_iq2_s *) vbq;
|
||||
|
||||
const int ib32 = iqs;
|
||||
const int8_t * q8 = bq8_1[ib32].qs;
|
||||
const uint8_t * signs = bq2->qs + QK_K/8 + 4*ib32;
|
||||
const uint8_t ls1 = bq2->scales[ib32] & 0xf;
|
||||
const uint8_t ls2 = bq2->scales[ib32] >> 4;
|
||||
int sumi1 = 0;
|
||||
for (int l = 0; l < 2; ++l) {
|
||||
const uint32_t * grid = (const uint32_t *)(iq2s_grid + (bq2->qs[4*ib32+l] | ((bq2->qh[ib32] << (8-2*l)) & 0x300)));
|
||||
const uint32_t signs0 = __vcmpeq4(((signs[l] & 0xf) * 0x01010101) & 0x08040201, 0x08040201);
|
||||
const uint32_t signs1 = __vcmpeq4(((signs[l] >> 4) * 0x01010101) & 0x08040201, 0x08040201);
|
||||
const int grid_l = __vsub4(grid[0] ^ signs0, signs0);
|
||||
const int grid_h = __vsub4(grid[1] ^ signs1, signs1);
|
||||
sumi1 = __dp4a(grid_l, *((const int *)q8 + 0), sumi1);
|
||||
sumi1 = __dp4a(grid_h, *((const int *)q8 + 1), sumi1);
|
||||
q8 += 8;
|
||||
}
|
||||
int sumi2 = 0;
|
||||
for (int l = 2; l < 4; ++l) {
|
||||
const uint32_t * grid = (const uint32_t *)(iq2s_grid + (bq2->qs[4*ib32+l] | ((bq2->qh[ib32] << (8-2*l)) & 0x300)));
|
||||
const uint32_t signs0 = __vcmpeq4(((signs[l] & 0xf) * 0x01010101) & 0x08040201, 0x08040201);
|
||||
const uint32_t signs1 = __vcmpeq4(((signs[l] >> 4) * 0x01010101) & 0x08040201, 0x08040201);
|
||||
const int grid_l = __vsub4(grid[0] ^ signs0, signs0);
|
||||
const int grid_h = __vsub4(grid[1] ^ signs1, signs1);
|
||||
sumi2 = __dp4a(grid_l, *((const int *)q8 + 0), sumi2);
|
||||
sumi2 = __dp4a(grid_h, *((const int *)q8 + 1), sumi2);
|
||||
q8 += 8;
|
||||
}
|
||||
const float d = (float)bq2->d * __low2float(bq8_1[ib32].ds) * 0.25f;
|
||||
return d * ((0.5f + ls1) * sumi1 + (0.5f + ls2) * sumi2);
|
||||
#else
|
||||
(void) ksigns64;
|
||||
assert(false);
|
||||
return 0.f;
|
||||
#endif
|
||||
#else
|
||||
(void) ksigns64;
|
||||
assert(false);
|
||||
return 0.f;
|
||||
#endif
|
||||
}
|
||||
|
||||
static __device__ __forceinline__ float vec_dot_iq3_xxs_q8_1(
|
||||
const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
|
||||
#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
|
||||
|
@ -4847,8 +5210,8 @@ static __device__ __forceinline__ float vec_dot_iq3_s_q8_1(
|
|||
const int8_t * q8 = bq8_1[ib32].qs;
|
||||
int sumi = 0;
|
||||
for (int l = 0; l < 4; ++l) {
|
||||
const uint32_t * grid1 = iq3xs_grid + (qs[2*l+0] | ((bq2->qh[ib32] << (8 - 2*l)) & 256));
|
||||
const uint32_t * grid2 = iq3xs_grid + (qs[2*l+1] | ((bq2->qh[ib32] << (7 - 2*l)) & 256));
|
||||
const uint32_t * grid1 = iq3s_grid + (qs[2*l+0] | ((bq2->qh[ib32] << (8 - 2*l)) & 256));
|
||||
const uint32_t * grid2 = iq3s_grid + (qs[2*l+1] | ((bq2->qh[ib32] << (7 - 2*l)) & 256));
|
||||
uint32_t signs0 = __vcmpeq4(((bq2->signs[4*ib32+l] & 0xf) * 0x01010101) & 0x08040201, 0x08040201);
|
||||
uint32_t signs1 = __vcmpeq4(((bq2->signs[4*ib32+l] >> 4) * 0x01010101) & 0x08040201, 0x08040201);
|
||||
const int grid_l = __vsub4(grid1[0] ^ signs0, signs0);
|
||||
|
@ -4857,7 +5220,7 @@ static __device__ __forceinline__ float vec_dot_iq3_s_q8_1(
|
|||
sumi = __dp4a(grid_h, *((int *)q8+1), sumi);
|
||||
q8 += 8;
|
||||
}
|
||||
const float d = (float)bq2->d * (0.5f + ((bq2->scales[ib32/2] >> 4*(ib32%2)) & 0xf)) * __low2float(bq8_1[ib32].ds) * 0.5f;
|
||||
const float d = (float)bq2->d * (1 + 2*((bq2->scales[ib32/2] >> 4*(ib32%2)) & 0xf)) * __low2float(bq8_1[ib32].ds);
|
||||
return d * sumi;
|
||||
#else
|
||||
assert(false);
|
||||
|
@ -4963,6 +5326,75 @@ static __device__ __forceinline__ float vec_dot_iq4_nl_q8_1(
|
|||
return d * (sumi1 + sumi2);
|
||||
}
|
||||
|
||||
static __device__ __forceinline__ float vec_dot_iq4_xs_q8_1(
|
||||
const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
|
||||
|
||||
#if QK_K == 256
|
||||
#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
|
||||
|
||||
const block_iq4_xs * bq4 = (const block_iq4_xs *) vbq;
|
||||
const uint8_t * values = (const uint8_t *)kvalues_iq4nl;
|
||||
|
||||
//// iqs is 0...7
|
||||
//const int ib64 = iqs/2;
|
||||
//const int il = iqs%2;
|
||||
//const int32_t * q8_1 = (const int *)bq8_1[2*ib64+0].qs + 2*il;
|
||||
//const int32_t * q8_2 = (const int *)bq8_1[2*ib64+1].qs + 2*il;
|
||||
//const uint32_t * q4_1 = (const uint32_t *)bq4->qs + 8*ib64 + 2*il;
|
||||
//const uint32_t * q4_2 = q4_1 + 4;
|
||||
//const int8_t ls1 = (bq4->scales_l[ib64] & 0xf) | (((bq4->scales_h >> (4*ib64+0)) & 3) << 4);
|
||||
//const int8_t ls2 = (bq4->scales_l[ib64] >> 4) | (((bq4->scales_h >> (4*ib64+2)) & 3) << 4);
|
||||
//const float d1 = (float)bq4->d * (ls1 - 32) * __low2float(bq8_1[2*ib64+0].ds);
|
||||
//const float d2 = (float)bq4->d * (ls2 - 32) * __low2float(bq8_1[2*ib64+1].ds);
|
||||
//int v1, v2;
|
||||
//int sumi1 = 0, sumi2 = 0;
|
||||
//for (int j = 0; j < 2; ++j) {
|
||||
// get_int_from_table_16(q4_1[j], values, v1, v2);
|
||||
// sumi1 = __dp4a(v2, q8_1[j+4], __dp4a(v1, q8_1[j+0], sumi1));
|
||||
// get_int_from_table_16(q4_2[j], values, v1, v2);
|
||||
// sumi2 = __dp4a(v2, q8_2[j+4], __dp4a(v1, q8_2[j+0], sumi2));
|
||||
//}
|
||||
//return d1 * sumi1 + d2 * sumi2;
|
||||
|
||||
// iqs is 0...7
|
||||
const int ib32 = iqs;
|
||||
const int32_t * q8 = (const int *)bq8_1[ib32].qs;
|
||||
const uint32_t * q4 = (const uint32_t *)bq4->qs + 4*ib32;
|
||||
const int8_t ls = ((bq4->scales_l[ib32/2] >> 4*(ib32%2)) & 0xf) | (((bq4->scales_h >> 2*ib32) & 3) << 4);
|
||||
const float d = (float)bq4->d * (ls - 32) * __low2float(bq8_1[ib32].ds);
|
||||
int v1, v2;
|
||||
int sumi1 = 0, sumi2 = 0;
|
||||
for (int j = 0; j < 4; ++j) {
|
||||
get_int_from_table_16(q4[j], values, v1, v2);
|
||||
sumi1 = __dp4a(v1, q8[j+0], sumi1);
|
||||
sumi2 = __dp4a(v2, q8[j+4], sumi2);
|
||||
}
|
||||
return d * (sumi1 + sumi2);
|
||||
|
||||
//// iqs is 0...15
|
||||
//const int ib32 = iqs/2;
|
||||
//const int il = iqs%2;
|
||||
//const int32_t * q8 = (const int *)bq8_1[ib32].qs + 2*il;
|
||||
//const uint32_t * q4 = (const uint32_t *)bq4->qs + 4*ib32 + 2*il;
|
||||
//const int8_t ls = ((bq4->scales_l[ib32/2] >> 4*(ib32%2)) & 0xf) | (((bq4->scales_h >> 2*ib32) & 3) << 4);
|
||||
//const float d = (float)bq4->d * (ls - 32) * __low2float(bq8_1[ib32].ds);
|
||||
//int v1, v2;
|
||||
//int sumi1 = 0, sumi2 = 0;
|
||||
//for (int j = 0; j < 2; ++j) {
|
||||
// get_int_from_table_16(q4[j], values, v1, v2);
|
||||
// sumi1 = __dp4a(v1, q8[j+0], sumi1);
|
||||
// sumi2 = __dp4a(v2, q8[j+4], sumi2);
|
||||
//}
|
||||
//return d * (sumi1 + sumi2);
|
||||
#else
|
||||
assert(false);
|
||||
return 0.f;
|
||||
#endif
|
||||
#else
|
||||
return vec_dot_iq4_xs_q8_1(vbq, bq8_1, iqs);
|
||||
#endif
|
||||
}
|
||||
|
||||
template <int qk, int qr, int qi, bool need_sum, typename block_q_t, int mmq_x, int mmq_y, int nwarps,
|
||||
allocate_tiles_cuda_t allocate_tiles, load_tiles_cuda_t load_tiles, int vdr, vec_dot_q_mul_mat_cuda_t vec_dot>
|
||||
static __device__ __forceinline__ void mul_mat_q(
|
||||
|
@ -5883,10 +6315,7 @@ static __global__ void dequantize_mul_mat_vec(const void * __restrict__ vx, cons
|
|||
}
|
||||
|
||||
// sum up partial sums and write back result
|
||||
#pragma unroll
|
||||
for (int mask = 16; mask > 0; mask >>= 1) {
|
||||
tmp += __shfl_xor_sync(0xffffffff, tmp, mask, 32);
|
||||
}
|
||||
tmp = warp_reduce_sum(tmp);
|
||||
|
||||
if (tid == 0) {
|
||||
#ifdef GGML_CUDA_F16
|
||||
|
@ -5936,10 +6365,7 @@ static __global__ void mul_mat_p021_f16_f32(
|
|||
const int idst = channel*nrows_dst + row_dst;
|
||||
|
||||
// sum up partial sums and write back result
|
||||
#pragma unroll
|
||||
for (int mask = 16; mask > 0; mask >>= 1) {
|
||||
tmp += __shfl_xor_sync(0xffffffff, tmp, mask, 32);
|
||||
}
|
||||
tmp = warp_reduce_sum(tmp);
|
||||
|
||||
if (threadIdx.x == 0) {
|
||||
dst[idst] = tmp;
|
||||
|
@ -5982,10 +6408,7 @@ static __global__ void mul_mat_vec_nc_f16_f32( // nc == non-contiguous
|
|||
}
|
||||
|
||||
// sum up partial sums and write back result
|
||||
#pragma unroll
|
||||
for (int mask = 16; mask > 0; mask >>= 1) {
|
||||
tmp += __shfl_xor_sync(0xffffffff, tmp, mask, 32);
|
||||
}
|
||||
tmp = warp_reduce_sum(tmp);
|
||||
|
||||
if (threadIdx.x == 0) {
|
||||
dst[idst] = tmp;
|
||||
|
@ -6996,6 +7419,12 @@ static void dequantize_row_iq2_xs_cuda(const void * vx, dst_t * y, const int k,
|
|||
dequantize_block_iq2_xs<<<nb, 32, 0, stream>>>(vx, y);
|
||||
}
|
||||
|
||||
template<typename dst_t>
|
||||
static void dequantize_row_iq2_s_cuda(const void * vx, dst_t * y, const int k, cudaStream_t stream) {
|
||||
const int nb = k / QK_K;
|
||||
dequantize_block_iq2_s<<<nb, 32, 0, stream>>>(vx, y);
|
||||
}
|
||||
|
||||
template<typename dst_t>
|
||||
static void dequantize_row_iq3_xxs_cuda(const void * vx, dst_t * y, const int k, cudaStream_t stream) {
|
||||
const int nb = k / QK_K;
|
||||
|
@ -7020,6 +7449,16 @@ static void dequantize_row_iq4_nl_cuda(const void * vx, dst_t * y, const int k,
|
|||
dequantize_block_iq4_nl<<<nb, 32, 0, stream>>>(vx, y);
|
||||
}
|
||||
|
||||
template<typename dst_t>
|
||||
static void dequantize_row_iq4_xs_cuda(const void * vx, dst_t * y, const int k, cudaStream_t stream) {
|
||||
const int nb = (k + QK_K - 1) / QK_K;
|
||||
#if QK_K == 64
|
||||
dequantize_block_iq4_nl<<<nb, 32, 0, stream>>>(vx, y);
|
||||
#else
|
||||
dequantize_block_iq4_xs<<<nb, 32, 0, stream>>>(vx, y);
|
||||
#endif
|
||||
}
|
||||
|
||||
template <typename src_t, typename dst_t>
|
||||
static void convert_unary_cuda(const void * __restrict__ vx, dst_t * __restrict__ y, const int k, cudaStream_t stream) {
|
||||
const int num_blocks = (k + CUDA_DEQUANTIZE_BLOCK_SIZE - 1) / CUDA_DEQUANTIZE_BLOCK_SIZE;
|
||||
|
@ -7057,12 +7496,16 @@ static to_fp16_cuda_t ggml_get_to_fp16_cuda(ggml_type type) {
|
|||
return dequantize_row_iq2_xxs_cuda;
|
||||
case GGML_TYPE_IQ2_XS:
|
||||
return dequantize_row_iq2_xs_cuda;
|
||||
case GGML_TYPE_IQ2_S:
|
||||
return dequantize_row_iq2_s_cuda;
|
||||
case GGML_TYPE_IQ3_XXS:
|
||||
return dequantize_row_iq3_xxs_cuda;
|
||||
case GGML_TYPE_IQ1_S:
|
||||
return dequantize_row_iq1_s_cuda;
|
||||
case GGML_TYPE_IQ4_NL:
|
||||
return dequantize_row_iq4_nl_cuda;
|
||||
case GGML_TYPE_IQ4_XS:
|
||||
return dequantize_row_iq4_xs_cuda;
|
||||
case GGML_TYPE_IQ3_S:
|
||||
return dequantize_row_iq3_s_cuda;
|
||||
case GGML_TYPE_F32:
|
||||
|
@ -7098,12 +7541,16 @@ static to_fp32_cuda_t ggml_get_to_fp32_cuda(ggml_type type) {
|
|||
return dequantize_row_iq2_xxs_cuda;
|
||||
case GGML_TYPE_IQ2_XS:
|
||||
return dequantize_row_iq2_xs_cuda;
|
||||
case GGML_TYPE_IQ2_S:
|
||||
return dequantize_row_iq2_s_cuda;
|
||||
case GGML_TYPE_IQ3_XXS:
|
||||
return dequantize_row_iq3_xxs_cuda;
|
||||
case GGML_TYPE_IQ1_S:
|
||||
return dequantize_row_iq1_s_cuda;
|
||||
case GGML_TYPE_IQ4_NL:
|
||||
return dequantize_row_iq4_nl_cuda;
|
||||
case GGML_TYPE_IQ4_XS:
|
||||
return dequantize_row_iq4_xs_cuda;
|
||||
case GGML_TYPE_IQ3_S:
|
||||
return dequantize_row_iq3_s_cuda;
|
||||
case GGML_TYPE_F16:
|
||||
|
@ -8079,8 +8526,8 @@ static void * ggml_cuda_pool_malloc_leg(int device, size_t size, size_t * actual
|
|||
*actual_size = look_ahead_size;
|
||||
g_cuda_pool_size[device] += look_ahead_size;
|
||||
#ifdef DEBUG_CUDA_MALLOC
|
||||
fprintf(stderr, "%s[%d]: %d buffers, max_size = %u MB, pool_size = %u MB, requested %u MB\n", __func__, id, nnz,
|
||||
(uint32_t)(max_size/1024/1024), (uint32_t)(g_cuda_pool_size[id]/1024/1024), (uint32_t)(size/1024/1024));
|
||||
fprintf(stderr, "%s[%d]: %d buffers, max_size = %u MB, pool_size = %u MB, requested %u MB\n", __func__, device, nnz,
|
||||
(uint32_t)(max_size/1024/1024), (uint32_t)(g_cuda_pool_size[device]/1024/1024), (uint32_t)(size/1024/1024));
|
||||
#endif
|
||||
return ptr;
|
||||
}
|
||||
|
@ -8166,7 +8613,7 @@ static void * ggml_cuda_pool_malloc_vmm(int device, size_t size, size_t * actual
|
|||
g_cuda_pool_used[device] += size;
|
||||
|
||||
#ifdef DEBUG_CUDA_MALLOC
|
||||
printf("cuda pool[%d]: allocated %llu bytes at %llx [%s]\n", id, (unsigned long long) size, ptr);
|
||||
printf("cuda pool[%d]: allocated %llu bytes at %llx\n", device, (unsigned long long) size, ptr);
|
||||
#endif
|
||||
|
||||
return ptr;
|
||||
|
@ -8176,7 +8623,7 @@ static void ggml_cuda_pool_free_vmm(int device, void * ptr, size_t size) {
|
|||
scoped_spin_lock lock(g_cuda_pool_lock);
|
||||
|
||||
#ifdef DEBUG_CUDA_MALLOC
|
||||
printf("cuda pool[%d]: freed %llu bytes at %llx\n", id, (unsigned long long) size, ptr);
|
||||
printf("cuda pool[%d]: freed %llu bytes at %llx\n", device, (unsigned long long) size, ptr);
|
||||
#endif
|
||||
|
||||
g_cuda_pool_used[device] -= size;
|
||||
|
@ -8848,9 +9295,11 @@ static int64_t get_row_rounding(ggml_type type, const std::array<float, GGML_CUD
|
|||
case GGML_TYPE_Q6_K:
|
||||
case GGML_TYPE_IQ2_XXS:
|
||||
case GGML_TYPE_IQ2_XS:
|
||||
case GGML_TYPE_IQ2_S:
|
||||
case GGML_TYPE_IQ3_XXS:
|
||||
case GGML_TYPE_IQ1_S:
|
||||
case GGML_TYPE_IQ4_NL:
|
||||
case GGML_TYPE_IQ4_XS:
|
||||
case GGML_TYPE_IQ3_S:
|
||||
return max_compute_capability >= CC_RDNA2 ? 128 : 64;
|
||||
default:
|
||||
|
@ -8874,9 +9323,11 @@ static int64_t get_row_rounding(ggml_type type, const std::array<float, GGML_CUD
|
|||
case GGML_TYPE_Q5_K:
|
||||
case GGML_TYPE_IQ2_XXS:
|
||||
case GGML_TYPE_IQ2_XS:
|
||||
case GGML_TYPE_IQ2_S:
|
||||
case GGML_TYPE_IQ3_XXS:
|
||||
case GGML_TYPE_IQ1_S:
|
||||
case GGML_TYPE_IQ4_NL:
|
||||
case GGML_TYPE_IQ4_XS:
|
||||
case GGML_TYPE_IQ3_S:
|
||||
return max_compute_capability >= CC_VOLTA ? 128 : 64;
|
||||
case GGML_TYPE_Q6_K:
|
||||
|
@ -8971,6 +9422,10 @@ static void ggml_cuda_op_mul_mat_vec_q(
|
|||
mul_mat_vec_q_cuda<QK_K, QI2_XS, block_iq2_xs, 1, vec_dot_iq2_xs_q8_1>
|
||||
(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
|
||||
break;
|
||||
case GGML_TYPE_IQ2_S:
|
||||
mul_mat_vec_q_cuda<QK_K, QI2_S, block_iq2_s, 1, vec_dot_iq2_s_q8_1>
|
||||
(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
|
||||
break;
|
||||
case GGML_TYPE_IQ3_XXS:
|
||||
mul_mat_vec_q_cuda<QK_K, QI3_XXS, block_iq3_xxs, 1, vec_dot_iq3_xxs_q8_1>
|
||||
(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
|
||||
|
@ -8983,6 +9438,10 @@ static void ggml_cuda_op_mul_mat_vec_q(
|
|||
mul_mat_vec_q_cuda<QK4_NL, QI4_NL, block_iq4_nl, VDR_Q4_0_Q8_1_MMVQ, vec_dot_iq4_nl_q8_1>
|
||||
(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
|
||||
break;
|
||||
case GGML_TYPE_IQ4_XS:
|
||||
mul_mat_vec_q_cuda<QK_K, QI4_XS, block_iq4_xs, 1, vec_dot_iq4_xs_q8_1>
|
||||
(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
|
||||
break;
|
||||
case GGML_TYPE_IQ3_S:
|
||||
mul_mat_vec_q_cuda<QK_K, QI3_XS, block_iq3_s, 1, vec_dot_iq3_s_q8_1>
|
||||
(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
|
||||
|
@ -11710,7 +12169,8 @@ GGML_CALL static bool ggml_backend_cuda_supports_op(ggml_backend_t backend, cons
|
|||
}
|
||||
ggml_type a_type = a->type;
|
||||
if (a_type == GGML_TYPE_IQ2_XXS || a_type == GGML_TYPE_IQ2_XS || a_type == GGML_TYPE_IQ3_XXS ||
|
||||
a_type == GGML_TYPE_IQ1_S || a_type == GGML_TYPE_IQ4_NL || a_type == GGML_TYPE_IQ3_S) {
|
||||
a_type == GGML_TYPE_IQ1_S || a_type == GGML_TYPE_IQ4_NL || a_type == GGML_TYPE_IQ3_S ||
|
||||
a_type == GGML_TYPE_IQ2_S || a_type == GGML_TYPE_IQ4_XS) {
|
||||
if (b->ne[1] == 1 && ggml_nrows(b) > 1) {
|
||||
return false;
|
||||
}
|
||||
|
@ -11816,6 +12276,11 @@ static ggml_backend_i ggml_backend_cuda_interface = {
|
|||
/* .supports_op = */ ggml_backend_cuda_supports_op,
|
||||
};
|
||||
|
||||
static ggml_guid_t ggml_backend_cuda_guid() {
|
||||
static ggml_guid guid = { 0x2c, 0xdd, 0xe8, 0x1c, 0x65, 0xb3, 0x65, 0x73, 0x6a, 0x12, 0x88, 0x61, 0x1c, 0xc9, 0xdc, 0x25 };
|
||||
return &guid;
|
||||
}
|
||||
|
||||
GGML_CALL ggml_backend_t ggml_backend_cuda_init(int device) {
|
||||
ggml_init_cublas(); // TODO: remove from ggml.c
|
||||
|
||||
|
@ -11833,6 +12298,7 @@ GGML_CALL ggml_backend_t ggml_backend_cuda_init(int device) {
|
|||
};
|
||||
|
||||
ggml_backend_t cuda_backend = new ggml_backend {
|
||||
/* .guid = */ ggml_backend_cuda_guid(),
|
||||
/* .interface = */ ggml_backend_cuda_interface,
|
||||
/* .context = */ ctx
|
||||
};
|
||||
|
@ -11841,7 +12307,7 @@ GGML_CALL ggml_backend_t ggml_backend_cuda_init(int device) {
|
|||
}
|
||||
|
||||
GGML_CALL bool ggml_backend_is_cuda(ggml_backend_t backend) {
|
||||
return backend && backend->iface.get_name == ggml_backend_cuda_name;
|
||||
return backend != NULL && ggml_guid_matches(backend->guid, ggml_backend_cuda_guid());
|
||||
}
|
||||
|
||||
GGML_CALL int ggml_backend_cuda_get_device_count() {
|
||||
|
|
|
@ -1953,11 +1953,17 @@ static struct ggml_backend_i kompute_backend_i = {
|
|||
/* .supports_op = */ ggml_backend_kompute_supports_op,
|
||||
};
|
||||
|
||||
static ggml_guid_t ggml_backend_kompute_guid() {
|
||||
static ggml_guid guid = { 0x7b, 0x57, 0xdc, 0xaf, 0xde, 0x12, 0x1d, 0x49, 0xfb, 0x35, 0xfa, 0x9b, 0x18, 0x31, 0x1d, 0xca };
|
||||
return &guid;
|
||||
}
|
||||
|
||||
ggml_backend_t ggml_backend_kompute_init(int device) {
|
||||
GGML_ASSERT(s_kompute_context == nullptr);
|
||||
s_kompute_context = new ggml_kompute_context(device);
|
||||
|
||||
ggml_backend_t kompute_backend = new ggml_backend {
|
||||
/* .guid = */ ggml_backend_kompute_guid(),
|
||||
/* .interface = */ kompute_backend_i,
|
||||
/* .context = */ s_kompute_context,
|
||||
};
|
||||
|
@ -1966,7 +1972,7 @@ ggml_backend_t ggml_backend_kompute_init(int device) {
|
|||
}
|
||||
|
||||
bool ggml_backend_is_kompute(ggml_backend_t backend) {
|
||||
return backend && backend->iface.get_name == ggml_backend_kompute_name;
|
||||
return backend != NULL && ggml_guid_matches(backend->guid, ggml_backend_kompute_guid());
|
||||
}
|
||||
|
||||
static ggml_backend_t ggml_backend_reg_kompute_init(const char * params, void * user_data) {
|
||||
|
|
66
ggml-metal.m
66
ggml-metal.m
|
@ -62,8 +62,10 @@ enum ggml_metal_kernel_type {
|
|||
GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ2_XS,
|
||||
GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ3_XXS,
|
||||
GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ3_S,
|
||||
GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ2_S,
|
||||
GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ1_S,
|
||||
GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ4_NL,
|
||||
GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ4_XS,
|
||||
GGML_METAL_KERNEL_TYPE_GET_ROWS_I32,
|
||||
GGML_METAL_KERNEL_TYPE_RMS_NORM,
|
||||
GGML_METAL_KERNEL_TYPE_GROUP_NORM,
|
||||
|
@ -87,8 +89,10 @@ enum ggml_metal_kernel_type {
|
|||
GGML_METAL_KERNEL_TYPE_MUL_MV_IQ2_XS_F32,
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MV_IQ3_XXS_F32,
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MV_IQ3_S_F32,
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MV_IQ2_S_F32,
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MV_IQ1_S_F32,
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MV_IQ4_NL_F32,
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MV_IQ4_XS_F32,
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MV_ID_F32_F32,
|
||||
//GGML_METAL_KERNEL_TYPE_MUL_MV_ID_F16_F16,
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MV_ID_F16_F32,
|
||||
|
@ -108,8 +112,10 @@ enum ggml_metal_kernel_type {
|
|||
GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ2_XS_F32,
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ3_XXS_F32,
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ3_S_F32,
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ2_S_F32,
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ1_S_F32,
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ4_NL_F32,
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ4_XS_F32,
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MM_F32_F32,
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MM_F16_F32,
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MM_Q4_0_F32,
|
||||
|
@ -126,8 +132,10 @@ enum ggml_metal_kernel_type {
|
|||
GGML_METAL_KERNEL_TYPE_MUL_MM_IQ2_XS_F32,
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MM_IQ3_XXS_F32,
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MM_IQ3_S_F32,
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MM_IQ2_S_F32,
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MM_IQ1_S_F32,
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MM_IQ4_NL_F32,
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MM_IQ4_XS_F32,
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_F32_F32,
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_F16_F32,
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q4_0_F32,
|
||||
|
@ -144,8 +152,10 @@ enum ggml_metal_kernel_type {
|
|||
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ2_XS_F32,
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ3_XXS_F32,
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ3_S_F32,
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ2_S_F32,
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ1_S_F32,
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ4_NL_F32,
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ4_XS_F32,
|
||||
GGML_METAL_KERNEL_TYPE_ROPE_F32,
|
||||
GGML_METAL_KERNEL_TYPE_ROPE_F16,
|
||||
GGML_METAL_KERNEL_TYPE_ALIBI_F32,
|
||||
|
@ -458,8 +468,10 @@ static struct ggml_metal_context * ggml_metal_init(int n_cb) {
|
|||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ2_XS, get_rows_iq2_xs, true);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ3_XXS, get_rows_iq3_xxs, true);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ3_S, get_rows_iq3_s, true);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ2_S, get_rows_iq2_s, true);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ1_S, get_rows_iq1_s, true);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ4_NL, get_rows_iq4_nl, true);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ4_XS, get_rows_iq4_xs, true);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_I32, get_rows_i32, true);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_RMS_NORM, rms_norm, ctx->support_simdgroup_reduction);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GROUP_NORM, group_norm, ctx->support_simdgroup_reduction);
|
||||
|
@ -483,8 +495,10 @@ static struct ggml_metal_context * ggml_metal_init(int n_cb) {
|
|||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_IQ2_XS_F32, mul_mv_iq2_xs_f32, ctx->support_simdgroup_reduction);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_IQ3_XXS_F32, mul_mv_iq3_xxs_f32, ctx->support_simdgroup_reduction);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_IQ3_S_F32, mul_mv_iq3_s_f32, ctx->support_simdgroup_reduction);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_IQ2_S_F32, mul_mv_iq2_s_f32, ctx->support_simdgroup_reduction);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_IQ1_S_F32, mul_mv_iq1_s_f32, ctx->support_simdgroup_reduction);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_IQ4_NL_F32, mul_mv_iq4_nl_f32, ctx->support_simdgroup_reduction);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_IQ4_XS_F32, mul_mv_iq4_xs_f32, ctx->support_simdgroup_reduction);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_F32_F32, mul_mv_id_f32_f32, ctx->support_simdgroup_reduction);
|
||||
//GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_F16_F16, mul_mv_id_f16_f16, ctx->support_simdgroup_reduction);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_F16_F32, mul_mv_id_f16_f32, ctx->support_simdgroup_reduction);
|
||||
|
@ -504,8 +518,10 @@ static struct ggml_metal_context * ggml_metal_init(int n_cb) {
|
|||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ2_XS_F32, mul_mv_id_iq2_xs_f32, ctx->support_simdgroup_reduction);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ3_XXS_F32, mul_mv_id_iq3_xxs_f32, ctx->support_simdgroup_reduction);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ3_S_F32, mul_mv_id_iq3_s_f32, ctx->support_simdgroup_reduction);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ2_S_F32, mul_mv_id_iq2_s_f32, ctx->support_simdgroup_reduction);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ1_S_F32, mul_mv_id_iq1_s_f32, ctx->support_simdgroup_reduction);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ4_NL_F32, mul_mv_id_iq4_nl_f32, ctx->support_simdgroup_reduction);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ4_XS_F32, mul_mv_id_iq4_xs_f32, ctx->support_simdgroup_reduction);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_F32_F32, mul_mm_f32_f32, ctx->support_simdgroup_mm);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_F16_F32, mul_mm_f16_f32, ctx->support_simdgroup_mm);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_Q4_0_F32, mul_mm_q4_0_f32, ctx->support_simdgroup_mm);
|
||||
|
@ -522,8 +538,10 @@ static struct ggml_metal_context * ggml_metal_init(int n_cb) {
|
|||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ2_XS_F32, mul_mm_iq2_xs_f32, ctx->support_simdgroup_mm);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ3_XXS_F32, mul_mm_iq3_xxs_f32, ctx->support_simdgroup_mm);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ3_S_F32, mul_mm_iq3_s_f32, ctx->support_simdgroup_mm);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ2_S_F32, mul_mm_iq2_s_f32, ctx->support_simdgroup_mm);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ1_S_F32, mul_mm_iq1_s_f32, ctx->support_simdgroup_mm);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ4_NL_F32, mul_mm_iq4_nl_f32, ctx->support_simdgroup_mm);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ4_XS_F32, mul_mm_iq4_xs_f32, ctx->support_simdgroup_mm);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_F32_F32, mul_mm_id_f32_f32, ctx->support_simdgroup_mm);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_F16_F32, mul_mm_id_f16_f32, ctx->support_simdgroup_mm);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q4_0_F32, mul_mm_id_q4_0_f32, ctx->support_simdgroup_mm);
|
||||
|
@ -540,8 +558,10 @@ static struct ggml_metal_context * ggml_metal_init(int n_cb) {
|
|||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ2_XS_F32, mul_mm_id_iq2_xs_f32, ctx->support_simdgroup_mm);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ3_XXS_F32, mul_mm_id_iq3_xxs_f32, ctx->support_simdgroup_mm);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ3_S_F32, mul_mm_id_iq3_s_f32, ctx->support_simdgroup_mm);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ2_S_F32, mul_mm_id_iq2_s_f32, ctx->support_simdgroup_mm);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ1_S_F32, mul_mm_id_iq1_s_f32, ctx->support_simdgroup_mm);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ4_NL_F32, mul_mm_id_iq4_nl_f32, ctx->support_simdgroup_mm);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ4_XS_F32, mul_mm_id_iq4_xs_f32, ctx->support_simdgroup_mm);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ROPE_F32, rope_f32, true);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ROPE_F16, rope_f16, true);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ALIBI_F32, alibi_f32, true);
|
||||
|
@ -1358,8 +1378,10 @@ static bool ggml_metal_graph_compute(
|
|||
case GGML_TYPE_IQ2_XS: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_IQ2_XS_F32 ].pipeline; break;
|
||||
case GGML_TYPE_IQ3_XXS: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_IQ3_XXS_F32].pipeline; break;
|
||||
case GGML_TYPE_IQ3_S: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_IQ3_S_F32 ].pipeline; break;
|
||||
case GGML_TYPE_IQ2_S: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_IQ2_S_F32 ].pipeline; break;
|
||||
case GGML_TYPE_IQ1_S: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_IQ1_S_F32 ].pipeline; break;
|
||||
case GGML_TYPE_IQ4_NL: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_IQ4_NL_F32 ].pipeline; break;
|
||||
case GGML_TYPE_IQ4_XS: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_IQ4_XS_F32 ].pipeline; break;
|
||||
default: GGML_ASSERT(false && "MUL MAT-MAT not implemented");
|
||||
}
|
||||
|
||||
|
@ -1500,6 +1522,12 @@ static bool ggml_metal_graph_compute(
|
|||
nth1 = 16;
|
||||
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_IQ3_S_F32].pipeline;
|
||||
} break;
|
||||
case GGML_TYPE_IQ2_S:
|
||||
{
|
||||
nth0 = 4;
|
||||
nth1 = 16;
|
||||
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_IQ2_S_F32].pipeline;
|
||||
} break;
|
||||
case GGML_TYPE_IQ1_S:
|
||||
{
|
||||
nth0 = 4;
|
||||
|
@ -1512,6 +1540,12 @@ static bool ggml_metal_graph_compute(
|
|||
nth1 = 16;
|
||||
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_IQ4_NL_F32].pipeline;
|
||||
} break;
|
||||
case GGML_TYPE_IQ4_XS:
|
||||
{
|
||||
nth0 = 4;
|
||||
nth1 = 16;
|
||||
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_IQ4_XS_F32].pipeline;
|
||||
} break;
|
||||
default:
|
||||
{
|
||||
GGML_METAL_LOG_ERROR("Asserting on type %d\n", (int)src0t);
|
||||
|
@ -1546,7 +1580,7 @@ static bool ggml_metal_graph_compute(
|
|||
|
||||
if (src0t == GGML_TYPE_Q4_0 || src0t == GGML_TYPE_Q4_1 ||
|
||||
src0t == GGML_TYPE_Q5_0 || src0t == GGML_TYPE_Q5_1 || src0t == GGML_TYPE_Q8_0 ||
|
||||
src0t == GGML_TYPE_Q2_K || src0t == GGML_TYPE_IQ1_S) { // || src0t == GGML_TYPE_Q4_K) {
|
||||
src0t == GGML_TYPE_Q2_K || src0t == GGML_TYPE_IQ1_S || src0t == GGML_TYPE_IQ2_S) {
|
||||
[encoder dispatchThreadgroups:MTLSizeMake((ne01 + 7)/8, ne11, ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
||||
}
|
||||
else if (src0t == GGML_TYPE_IQ2_XXS || src0t == GGML_TYPE_IQ2_XS) {
|
||||
|
@ -1559,7 +1593,7 @@ static bool ggml_metal_graph_compute(
|
|||
[encoder setThreadgroupMemoryLength:mem_size atIndex:0];
|
||||
[encoder dispatchThreadgroups:MTLSizeMake((ne01 + 7)/8, ne11, ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
||||
}
|
||||
else if (src0t == GGML_TYPE_IQ4_NL) {
|
||||
else if (src0t == GGML_TYPE_IQ4_NL || src0t == GGML_TYPE_IQ4_XS) {
|
||||
const int mem_size = 32*sizeof(float);
|
||||
[encoder setThreadgroupMemoryLength:mem_size atIndex:0];
|
||||
[encoder dispatchThreadgroups:MTLSizeMake((ne01 + 3)/4, ne11, ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
||||
|
@ -1658,8 +1692,10 @@ static bool ggml_metal_graph_compute(
|
|||
case GGML_TYPE_IQ2_XS: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ2_XS_F32 ].pipeline; break;
|
||||
case GGML_TYPE_IQ3_XXS: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ3_XXS_F32].pipeline; break;
|
||||
case GGML_TYPE_IQ3_S: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ3_S_F32 ].pipeline; break;
|
||||
case GGML_TYPE_IQ2_S: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ2_S_F32 ].pipeline; break;
|
||||
case GGML_TYPE_IQ1_S: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ1_S_F32 ].pipeline; break;
|
||||
case GGML_TYPE_IQ4_NL: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ4_NL_F32 ].pipeline; break;
|
||||
case GGML_TYPE_IQ4_XS: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ4_XS_F32 ].pipeline; break;
|
||||
default: GGML_ASSERT(false && "MUL_MAT_ID not implemented");
|
||||
}
|
||||
|
||||
|
@ -1803,6 +1839,12 @@ static bool ggml_metal_graph_compute(
|
|||
nth1 = 16;
|
||||
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ3_S_F32].pipeline;
|
||||
} break;
|
||||
case GGML_TYPE_IQ2_S:
|
||||
{
|
||||
nth0 = 4;
|
||||
nth1 = 16;
|
||||
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ2_S_F32].pipeline;
|
||||
} break;
|
||||
case GGML_TYPE_IQ1_S:
|
||||
{
|
||||
nth0 = 4;
|
||||
|
@ -1815,6 +1857,12 @@ static bool ggml_metal_graph_compute(
|
|||
nth1 = 16;
|
||||
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ4_NL_F32].pipeline;
|
||||
} break;
|
||||
case GGML_TYPE_IQ4_XS:
|
||||
{
|
||||
nth0 = 4;
|
||||
nth1 = 16;
|
||||
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ4_XS_F32].pipeline;
|
||||
} break;
|
||||
default:
|
||||
{
|
||||
GGML_METAL_LOG_ERROR("Asserting on type %d\n", (int)src2t);
|
||||
|
@ -1865,7 +1913,7 @@ static bool ggml_metal_graph_compute(
|
|||
|
||||
if (src2t == GGML_TYPE_Q4_0 || src2t == GGML_TYPE_Q4_1 ||
|
||||
src2t == GGML_TYPE_Q5_0 || src2t == GGML_TYPE_Q5_1 || src2t == GGML_TYPE_Q8_0 ||
|
||||
src2t == GGML_TYPE_Q2_K || src2t == GGML_TYPE_IQ1_S) { // || src2t == GGML_TYPE_Q4_K) {
|
||||
src2t == GGML_TYPE_Q2_K || src2t == GGML_TYPE_IQ1_S || src2t == GGML_TYPE_IQ2_S) {
|
||||
[encoder dispatchThreadgroups:MTLSizeMake((ne21 + 7)/8, _ne1, ne01*ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
||||
}
|
||||
else if (src2t == GGML_TYPE_IQ2_XXS || src2t == GGML_TYPE_IQ2_XS) {
|
||||
|
@ -1878,7 +1926,7 @@ static bool ggml_metal_graph_compute(
|
|||
[encoder setThreadgroupMemoryLength:mem_size atIndex:0];
|
||||
[encoder dispatchThreadgroups:MTLSizeMake((ne21 + 7)/8, _ne1, ne01*ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
||||
}
|
||||
else if (src2t == GGML_TYPE_IQ4_NL) {
|
||||
else if (src2t == GGML_TYPE_IQ4_NL || src2t == GGML_TYPE_IQ4_XS) {
|
||||
const int mem_size = 32*sizeof(float);
|
||||
[encoder setThreadgroupMemoryLength:mem_size atIndex:0];
|
||||
[encoder dispatchThreadgroups:MTLSizeMake((ne21 + 3)/4, _ne1, ne01*ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
||||
|
@ -1925,8 +1973,10 @@ static bool ggml_metal_graph_compute(
|
|||
case GGML_TYPE_IQ2_XS: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ2_XS ].pipeline; break;
|
||||
case GGML_TYPE_IQ3_XXS: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ3_XXS].pipeline; break;
|
||||
case GGML_TYPE_IQ3_S: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ3_S ].pipeline; break;
|
||||
case GGML_TYPE_IQ2_S: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ2_S ].pipeline; break;
|
||||
case GGML_TYPE_IQ1_S: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ1_S ].pipeline; break;
|
||||
case GGML_TYPE_IQ4_NL: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ4_NL ].pipeline; break;
|
||||
case GGML_TYPE_IQ4_XS: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ4_XS ].pipeline; break;
|
||||
case GGML_TYPE_I32: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_I32 ].pipeline; break;
|
||||
default: GGML_ASSERT(false && "not implemented");
|
||||
}
|
||||
|
@ -2721,6 +2771,11 @@ void ggml_backend_metal_log_set_callback(ggml_log_callback log_callback, void *
|
|||
ggml_metal_log_user_data = user_data;
|
||||
}
|
||||
|
||||
static ggml_guid_t ggml_backend_metal_guid(void) {
|
||||
static ggml_guid guid = { 0x81, 0xa1, 0x8b, 0x1e, 0x71, 0xec, 0x79, 0xed, 0x2b, 0x85, 0xdc, 0x8a, 0x61, 0x98, 0x30, 0xe6 };
|
||||
return &guid;
|
||||
}
|
||||
|
||||
ggml_backend_t ggml_backend_metal_init(void) {
|
||||
struct ggml_metal_context * ctx = ggml_metal_init(GGML_DEFAULT_N_THREADS);
|
||||
|
||||
|
@ -2731,6 +2786,7 @@ ggml_backend_t ggml_backend_metal_init(void) {
|
|||
ggml_backend_t metal_backend = malloc(sizeof(struct ggml_backend));
|
||||
|
||||
*metal_backend = (struct ggml_backend) {
|
||||
/* .guid = */ ggml_backend_metal_guid(),
|
||||
/* .interface = */ ggml_backend_metal_i,
|
||||
/* .context = */ ctx,
|
||||
};
|
||||
|
@ -2739,7 +2795,7 @@ ggml_backend_t ggml_backend_metal_init(void) {
|
|||
}
|
||||
|
||||
bool ggml_backend_is_metal(ggml_backend_t backend) {
|
||||
return backend && backend->iface.get_name == ggml_backend_metal_name;
|
||||
return backend != NULL && ggml_guid_matches(backend->guid, ggml_backend_metal_guid());
|
||||
}
|
||||
|
||||
void ggml_backend_metal_set_n_cb(ggml_backend_t backend, int n_cb) {
|
||||
|
|
915
ggml-metal.metal
915
ggml-metal.metal
File diff suppressed because it is too large
Load diff
1495
ggml-quants.c
1495
ggml-quants.c
File diff suppressed because it is too large
Load diff
|
@ -182,6 +182,15 @@ typedef struct {
|
|||
} block_iq2_xs;
|
||||
static_assert(sizeof(block_iq2_xs) == sizeof(ggml_fp16_t) + QK_K/8*sizeof(uint16_t) + QK_K/32, "wrong iq2_xs block size/padding");
|
||||
|
||||
// 2.5625 bpw quants
|
||||
typedef struct {
|
||||
ggml_fp16_t d;
|
||||
uint8_t qs[QK_K/4];
|
||||
uint8_t qh[QK_K/32];
|
||||
uint8_t scales[QK_K/32];
|
||||
} block_iq2_s;
|
||||
static_assert(sizeof(block_iq2_s) == sizeof(ggml_fp16_t) + QK_K/4 + QK_K/16, "wrong iq2_s block size/padding");
|
||||
|
||||
// (Almost) "true" 3-bit quantization.
|
||||
// Due to the need to use blocks as per ggml design, it ends up using
|
||||
// 3.0625 bpw because of the 16-bit scale for each block of 256.
|
||||
|
@ -221,6 +230,19 @@ typedef struct {
|
|||
} block_iq4_nl;
|
||||
static_assert(sizeof(block_iq4_nl) == sizeof(ggml_fp16_t) + QK4_NL/2, "wrong iq4_nl block size/padding");
|
||||
|
||||
#if QK_K == 64
|
||||
#define block_iq4_xs block_iq4_nl
|
||||
//typedef struct block_iq4_nl block_iq4_xs;
|
||||
#else
|
||||
typedef struct {
|
||||
ggml_fp16_t d;
|
||||
uint16_t scales_h;
|
||||
uint8_t scales_l[QK_K/64];
|
||||
uint8_t qs[QK_K/2];
|
||||
} block_iq4_xs;
|
||||
static_assert(sizeof(block_iq4_xs) == sizeof(ggml_fp16_t) + sizeof(uint16_t) + QK_K/64 + QK_K/2, "wrong iq4_xs block size/padding");
|
||||
#endif
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
@ -241,7 +263,9 @@ void quantize_row_q6_K_reference(const float * GGML_RESTRICT x, block_q6_K * GGM
|
|||
void quantize_row_q8_K_reference(const float * GGML_RESTRICT x, block_q8_K * GGML_RESTRICT y, int k);
|
||||
void quantize_row_iq3_xxs_reference(const float * GGML_RESTRICT x, block_iq3_xxs * GGML_RESTRICT y, int k);
|
||||
void quantize_row_iq4_nl_reference (const float * GGML_RESTRICT x, block_iq4_nl * GGML_RESTRICT y, int k);
|
||||
void quantize_row_iq4_xs_reference (const float * GGML_RESTRICT x, block_iq4_xs * GGML_RESTRICT y, int k);
|
||||
void quantize_row_iq3_s_reference (const float * GGML_RESTRICT x, block_iq3_s * GGML_RESTRICT y, int k);
|
||||
void quantize_row_iq2_s_reference (const float * GGML_RESTRICT x, block_iq2_s * GGML_RESTRICT y, int k);
|
||||
|
||||
void quantize_row_q4_0(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int k);
|
||||
void quantize_row_q4_1(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int k);
|
||||
|
@ -258,7 +282,9 @@ void quantize_row_q6_K(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, in
|
|||
void quantize_row_q8_K(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int k);
|
||||
void quantize_row_iq3_xxs(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int k);
|
||||
void quantize_row_iq4_nl (const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int k);
|
||||
void quantize_row_iq4_xs (const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int k);
|
||||
void quantize_row_iq3_s (const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int k);
|
||||
void quantize_row_iq2_s (const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int k);
|
||||
|
||||
// Dequantization
|
||||
void dequantize_row_q4_0(const block_q4_0 * GGML_RESTRICT x, float * GGML_RESTRICT y, int k);
|
||||
|
@ -276,9 +302,11 @@ void dequantize_row_q6_K(const block_q6_K * GGML_RESTRICT x, float * GGML_RESTRI
|
|||
void dequantize_row_q8_K(const block_q8_K * GGML_RESTRICT x, float * GGML_RESTRICT y, int k);
|
||||
void dequantize_row_iq2_xxs(const block_iq2_xxs * GGML_RESTRICT x, float * GGML_RESTRICT y, int k);
|
||||
void dequantize_row_iq2_xs (const block_iq2_xs * GGML_RESTRICT x, float * GGML_RESTRICT y, int k);
|
||||
void dequantize_row_iq2_s (const block_iq2_s * GGML_RESTRICT x, float * GGML_RESTRICT y, int k);
|
||||
void dequantize_row_iq3_xxs(const block_iq3_xxs * GGML_RESTRICT x, float * GGML_RESTRICT y, int k);
|
||||
void dequantize_row_iq1_s (const block_iq1_s * GGML_RESTRICT x, float * GGML_RESTRICT y, int k);
|
||||
void dequantize_row_iq4_nl (const block_iq4_nl * GGML_RESTRICT x, float * GGML_RESTRICT y, int k);
|
||||
void dequantize_row_iq4_xs (const block_iq4_xs * GGML_RESTRICT x, float * GGML_RESTRICT y, int k);
|
||||
void dequantize_row_iq3_s (const block_iq3_s * GGML_RESTRICT x, float * GGML_RESTRICT y, int k);
|
||||
|
||||
// Dot product
|
||||
|
@ -295,9 +323,11 @@ void ggml_vec_dot_q5_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi
|
|||
void ggml_vec_dot_q6_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
void ggml_vec_dot_iq2_xxs_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
void ggml_vec_dot_iq2_xs_q8_K (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
void ggml_vec_dot_iq2_s_q8_K (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
void ggml_vec_dot_iq3_xxs_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
void ggml_vec_dot_iq1_s_q8_K (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
void ggml_vec_dot_iq4_nl_q8_0 (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
void ggml_vec_dot_iq4_xs_q8_K (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
void ggml_vec_dot_iq3_s_q8_K (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
|
||||
//
|
||||
|
@ -305,9 +335,11 @@ void ggml_vec_dot_iq3_s_q8_K (int n, float * GGML_RESTRICT s, size_t bs, const
|
|||
//
|
||||
size_t quantize_iq2_xxs(const float * src, void * dst, int nrows, int n_per_row, int64_t * hist, const float * imatrix);
|
||||
size_t quantize_iq2_xs (const float * src, void * dst, int nrows, int n_per_row, int64_t * hist, const float * imatrix);
|
||||
size_t quantize_iq2_s (const float * src, void * dst, int nrows, int n_per_row, int64_t * hist, const float * imatrix);
|
||||
size_t quantize_iq3_xxs(const float * src, void * dst, int nrows, int n_per_row, int64_t * hist, const float * imatrix);
|
||||
size_t quantize_iq1_s (const float * src, void * dst, int nrows, int n_per_row, int64_t * hist, const float * imatrix);
|
||||
size_t quantize_iq4_nl (const float * src, void * dst, int nrows, int n_per_row, int64_t * hist, const float * imatrix);
|
||||
size_t quantize_iq4_xs (const float * src, void * dst, int nrows, int n_per_row, int64_t * hist, const float * imatrix);
|
||||
size_t quantize_iq3_s (const float * src, void * dst, int nrows, int n_per_row, int64_t * hist, const float * imatrix);
|
||||
size_t quantize_q2_K (const float * src, void * dst, int nrows, int n_per_row, int64_t * hist, const float * imatrix);
|
||||
size_t quantize_q3_K (const float * src, void * dst, int nrows, int n_per_row, int64_t * hist, const float * imatrix);
|
||||
|
|
2496
ggml-sycl.cpp
2496
ggml-sycl.cpp
File diff suppressed because it is too large
Load diff
|
@ -24,6 +24,11 @@ GGML_API ggml_backend_buffer_type_t ggml_backend_sycl_host_buffer_type(void);
|
|||
GGML_API void ggml_backend_sycl_print_sycl_devices(void);
|
||||
GGML_API GGML_CALL void ggml_sycl_get_gpu_list(int *id_list, int max_len);
|
||||
GGML_API GGML_CALL void ggml_sycl_get_device_description(int device, char *description, size_t description_size);
|
||||
GGML_API GGML_CALL int ggml_backend_sycl_get_device_count();
|
||||
GGML_API GGML_CALL ggml_backend_buffer_type_t ggml_backend_sycl_split_buffer_type(const float * tensor_split);
|
||||
GGML_API GGML_CALL void ggml_backend_sycl_get_device_memory(int device, size_t *free, size_t *total);
|
||||
GGML_API GGML_CALL int ggml_backend_sycl_get_device_index(int device_id);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
|
|
@ -1274,7 +1274,9 @@ void ggml_vk_instance_init() {
|
|||
|
||||
const std::vector<vk::ExtensionProperties> instance_extensions = vk::enumerateInstanceExtensionProperties();
|
||||
const bool validation_ext = ggml_vk_instance_validation_ext_available(instance_extensions);
|
||||
#ifdef __APPLE__
|
||||
const bool portability_enumeration_ext = ggml_vk_instance_portability_enumeration_ext_available(instance_extensions);
|
||||
#endif
|
||||
|
||||
std::vector<const char*> layers;
|
||||
|
||||
|
@ -1285,13 +1287,17 @@ void ggml_vk_instance_init() {
|
|||
if (validation_ext) {
|
||||
extensions.push_back("VK_EXT_validation_features");
|
||||
}
|
||||
#ifdef __APPLE__
|
||||
if (portability_enumeration_ext) {
|
||||
extensions.push_back("VK_KHR_portability_enumeration");
|
||||
}
|
||||
#endif
|
||||
vk::InstanceCreateInfo instance_create_info(vk::InstanceCreateFlags{}, &app_info, layers, extensions);
|
||||
#ifdef __APPLE__
|
||||
if (portability_enumeration_ext) {
|
||||
instance_create_info.flags |= vk::InstanceCreateFlagBits::eEnumeratePortabilityKHR;
|
||||
}
|
||||
#endif
|
||||
|
||||
std::vector<vk::ValidationFeatureEnableEXT> features_enable;
|
||||
vk::ValidationFeaturesEXT validation_features;
|
||||
|
@ -5743,6 +5749,11 @@ static ggml_backend_i ggml_backend_vk_interface = {
|
|||
/* .supports_op = */ ggml_backend_vk_supports_op,
|
||||
};
|
||||
|
||||
static ggml_guid_t ggml_backend_vk_guid() {
|
||||
static ggml_guid guid = { 0xb8, 0xf7, 0x4f, 0x86, 0x40, 0x3c, 0xe1, 0x02, 0x91, 0xc8, 0xdd, 0xe9, 0x02, 0x3f, 0xc0, 0x2b };
|
||||
return &guid;
|
||||
}
|
||||
|
||||
GGML_CALL ggml_backend_t ggml_backend_vk_init(size_t idx) {
|
||||
if (vk_instance.initialized[idx]) {
|
||||
return vk_instance.backends[idx];
|
||||
|
@ -5761,6 +5772,7 @@ GGML_CALL ggml_backend_t ggml_backend_vk_init(size_t idx) {
|
|||
vk_instance.initialized[idx] = true;
|
||||
|
||||
ggml_backend_t vk_backend = new ggml_backend {
|
||||
/* .guid = */ ggml_backend_vk_guid(),
|
||||
/* .interface = */ ggml_backend_vk_interface,
|
||||
/* .context = */ &vk_instance.contexts[ctx->idx],
|
||||
};
|
||||
|
@ -5771,7 +5783,7 @@ GGML_CALL ggml_backend_t ggml_backend_vk_init(size_t idx) {
|
|||
}
|
||||
|
||||
GGML_CALL bool ggml_backend_is_vk(ggml_backend_t backend) {
|
||||
return backend && backend->iface.get_name == ggml_backend_vk_name;
|
||||
return backend != NULL && ggml_guid_matches(backend->guid, ggml_backend_vk_guid());
|
||||
}
|
||||
|
||||
GGML_CALL int ggml_backend_vk_get_device_count() {
|
||||
|
@ -5914,9 +5926,9 @@ static void ggml_vk_print_tensor(ggml_backend_vk_context * ctx, const ggml_tenso
|
|||
tensor_data = malloc(tensor_size);
|
||||
|
||||
ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) tensor->extra;
|
||||
vk_buffer buf = extra->buffer_gpu.lock();
|
||||
|
||||
ggml_vk_buffer_read(ctx, buf, extra->offset, tensor_data, tensor_size);
|
||||
vk_buffer buffer_gpu = extra->buffer_gpu.lock();
|
||||
ggml_vk_buffer_read(ctx, buffer_gpu, extra->offset, tensor_data, tensor_size);
|
||||
}
|
||||
|
||||
std::cerr << "TENSOR CHECK " << name << " (" << tensor->name << "): " << ggml_op_name(tensor->op) << std::endl;
|
||||
|
@ -6027,13 +6039,13 @@ static void ggml_vk_check_results_0(ggml_backend_vk_context * ctx, ggml_compute_
|
|||
memcpy(src0_clone->nb, src0->nb, sizeof(size_t) * GGML_MAX_DIMS);
|
||||
} else if (src0->backend == GGML_BACKEND_TYPE_GPU) {
|
||||
ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) src0->extra;
|
||||
vk_buffer buf = extra->buffer_gpu.lock();
|
||||
vk_buffer buffer_gpu = extra->buffer_gpu.lock();
|
||||
uint64_t offset = extra->offset;
|
||||
if (!ggml_is_contiguous(src0) && ggml_vk_dim01_contiguous(src0)) {
|
||||
for (int i3 = 0; i3 < src0->ne[3]; i3++) {
|
||||
for (int i2 = 0; i2 < src0->ne[2]; i2++) {
|
||||
const int idx = i3*src0->ne[2] + i2;
|
||||
ggml_vk_buffer_read(ctx, buf, offset + idx * src0->nb[2], ((char *)src0_clone->data + idx * src0_clone->nb[2]), src0->ne[1] * src0->nb[1]);
|
||||
ggml_vk_buffer_read(ctx, buffer_gpu, offset + idx * src0->nb[2], ((char *)src0_clone->data + idx * src0_clone->nb[2]), src0->ne[1] * src0->nb[1]);
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -6043,10 +6055,10 @@ static void ggml_vk_check_results_0(ggml_backend_vk_context * ctx, ggml_compute_
|
|||
src0_clone->nb[i] = src0_clone->nb[i - 1]*src0_clone->ne[i - 1];
|
||||
}
|
||||
} else {
|
||||
if (offset + src0_size >= buf->size) {
|
||||
src0_size = buf->size - offset;
|
||||
if (offset + src0_size >= buffer_gpu->size) {
|
||||
src0_size = buffer_gpu->size - offset;
|
||||
}
|
||||
ggml_vk_buffer_read(ctx, buf, offset, src0_clone->data, src0_size);
|
||||
ggml_vk_buffer_read(ctx, buffer_gpu, offset, src0_clone->data, src0_size);
|
||||
memcpy(src0_clone->nb, src0->nb, sizeof(size_t) * GGML_MAX_DIMS);
|
||||
}
|
||||
} else {
|
||||
|
@ -6071,13 +6083,13 @@ static void ggml_vk_check_results_0(ggml_backend_vk_context * ctx, ggml_compute_
|
|||
memcpy(src1_clone->nb, src1->nb, sizeof(size_t) * GGML_MAX_DIMS);
|
||||
} else if (src1->backend == GGML_BACKEND_TYPE_GPU) {
|
||||
ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) src1->extra;
|
||||
vk_buffer buf = extra->buffer_gpu.lock();
|
||||
vk_buffer buffer_gpu = extra->buffer_gpu.lock();
|
||||
uint64_t offset = extra->offset;
|
||||
if (!ggml_is_contiguous(src1) && ggml_vk_dim01_contiguous(src1)) {
|
||||
for (int i3 = 0; i3 < src1->ne[3]; i3++) {
|
||||
for (int i2 = 0; i2 < src1->ne[2]; i2++) {
|
||||
const int idx = i3*src1->ne[2] + i2;
|
||||
ggml_vk_buffer_read(ctx, buf, offset + idx * src1->nb[2], ((char *)src1_clone->data + idx * src1_clone->nb[2]), src1->ne[1] * src1->nb[1]);
|
||||
ggml_vk_buffer_read(ctx, buffer_gpu, offset + idx * src1->nb[2], ((char *)src1_clone->data + idx * src1_clone->nb[2]), src1->ne[1] * src1->nb[1]);
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -6087,10 +6099,10 @@ static void ggml_vk_check_results_0(ggml_backend_vk_context * ctx, ggml_compute_
|
|||
src1_clone->nb[i] = src1_clone->nb[i - 1]*src1_clone->ne[i - 1];
|
||||
}
|
||||
} else {
|
||||
if (offset + src1_size >= buf->size) {
|
||||
src1_size = buf->size - offset;
|
||||
if (offset + src1_size >= buffer_gpu->size) {
|
||||
src1_size = buffer_gpu->size - offset;
|
||||
}
|
||||
ggml_vk_buffer_read(ctx, buf, offset, src1_clone->data, src1_size);
|
||||
ggml_vk_buffer_read(ctx, buffer_gpu, offset, src1_clone->data, src1_size);
|
||||
memcpy(src1_clone->nb, src1->nb, sizeof(size_t) * GGML_MAX_DIMS);
|
||||
}
|
||||
} else {
|
||||
|
@ -6309,13 +6321,13 @@ static void ggml_vk_check_results_1(ggml_backend_vk_context * ctx, ggml_compute_
|
|||
tensor_data = malloc(tensor_size);
|
||||
|
||||
ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) tensor->extra;
|
||||
vk_buffer buf = extra->buffer_gpu.lock();
|
||||
|
||||
if (extra->offset + tensor_size >= buf->size) {
|
||||
tensor_size = buf->size - (extra->offset);
|
||||
vk_buffer buffer_gpu = extra->buffer_gpu.lock();
|
||||
if (extra->offset + tensor_size >= buffer_gpu->size) {
|
||||
tensor_size = buffer_gpu->size - (extra->offset);
|
||||
}
|
||||
|
||||
ggml_vk_buffer_read(ctx, buf, extra->offset, tensor_data, tensor_size);
|
||||
ggml_vk_buffer_read(ctx, buffer_gpu, extra->offset, tensor_data, tensor_size);
|
||||
}
|
||||
|
||||
float first_error_result = -1.0f;
|
||||
|
|
126
ggml.c
126
ggml.c
|
@ -355,6 +355,10 @@ void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, int n) {
|
|||
}
|
||||
}
|
||||
|
||||
bool ggml_guid_matches(ggml_guid_t guid_a, ggml_guid_t guid_b) {
|
||||
return memcmp(guid_a, guid_b, sizeof(ggml_guid)) == 0;
|
||||
}
|
||||
|
||||
//
|
||||
// timing
|
||||
//
|
||||
|
@ -690,6 +694,18 @@ static const ggml_type_traits_t type_traits[GGML_TYPE_COUNT] = {
|
|||
.vec_dot_type = GGML_TYPE_Q8_K,
|
||||
.nrows = 1,
|
||||
},
|
||||
[GGML_TYPE_IQ2_S] = {
|
||||
.type_name = "iq2_s",
|
||||
.blck_size = QK_K,
|
||||
.type_size = sizeof(block_iq2_s),
|
||||
.is_quantized = true,
|
||||
.to_float = (ggml_to_float_t) dequantize_row_iq2_s,
|
||||
.from_float = quantize_row_iq2_s,
|
||||
.from_float_reference = (ggml_from_float_t)quantize_row_iq2_s_reference,
|
||||
.vec_dot = ggml_vec_dot_iq2_s_q8_K,
|
||||
.vec_dot_type = GGML_TYPE_Q8_K,
|
||||
.nrows = 1,
|
||||
},
|
||||
[GGML_TYPE_IQ1_S] = {
|
||||
.type_name = "iq1_s",
|
||||
.blck_size = QK_K,
|
||||
|
@ -714,6 +730,26 @@ static const ggml_type_traits_t type_traits[GGML_TYPE_COUNT] = {
|
|||
.vec_dot_type = GGML_TYPE_Q8_0,
|
||||
.nrows = 1,
|
||||
},
|
||||
[GGML_TYPE_IQ4_XS] = {
|
||||
.type_name = "iq4_xs",
|
||||
#if QK_K == 64
|
||||
.blck_size = QK4_NL,
|
||||
#else
|
||||
.blck_size = QK_K,
|
||||
#endif
|
||||
.type_size = sizeof(block_iq4_xs),
|
||||
.is_quantized = true,
|
||||
.to_float = (ggml_to_float_t) dequantize_row_iq4_xs,
|
||||
.from_float = quantize_row_iq4_xs,
|
||||
.from_float_reference = (ggml_from_float_t)quantize_row_iq4_xs_reference,
|
||||
.vec_dot = ggml_vec_dot_iq4_xs_q8_K,
|
||||
#if QK_K == 64
|
||||
.vec_dot_type = GGML_TYPE_Q8_0,
|
||||
#else
|
||||
.vec_dot_type = GGML_TYPE_Q8_K,
|
||||
#endif
|
||||
.nrows = 1,
|
||||
},
|
||||
[GGML_TYPE_Q8_K] = {
|
||||
.type_name = "q8_K",
|
||||
.blck_size = QK_K,
|
||||
|
@ -1572,10 +1608,16 @@ inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp
|
|||
inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
|
||||
uint16_t t;
|
||||
for (int i = 0; i < n; ++i) {
|
||||
if (x[i] <= -10.0f) {
|
||||
y[i] = 0.0f;
|
||||
} else if (x[i] >= 10.0f) {
|
||||
y[i] = x[i];
|
||||
} else {
|
||||
ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
|
||||
memcpy(&t, &fp16, sizeof(uint16_t));
|
||||
y[i] = GGML_FP16_TO_FP32(ggml_table_gelu_f16[t]);
|
||||
}
|
||||
}
|
||||
}
|
||||
#else
|
||||
inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
|
||||
|
@ -2316,7 +2358,9 @@ enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype) {
|
|||
case GGML_FTYPE_MOSTLY_IQ3_XXS: wtype = GGML_TYPE_IQ3_XXS; break;
|
||||
case GGML_FTYPE_MOSTLY_IQ1_S: wtype = GGML_TYPE_IQ1_S; break;
|
||||
case GGML_FTYPE_MOSTLY_IQ4_NL: wtype = GGML_TYPE_IQ4_NL; break;
|
||||
case GGML_FTYPE_MOSTLY_IQ4_XS: wtype = GGML_TYPE_IQ4_XS; break;
|
||||
case GGML_FTYPE_MOSTLY_IQ3_S: wtype = GGML_TYPE_IQ3_S; break;
|
||||
case GGML_FTYPE_MOSTLY_IQ2_S: wtype = GGML_TYPE_IQ2_S; break;
|
||||
case GGML_FTYPE_UNKNOWN: wtype = GGML_TYPE_COUNT; break;
|
||||
case GGML_FTYPE_MOSTLY_Q4_1_SOME_F16: wtype = GGML_TYPE_COUNT; break;
|
||||
}
|
||||
|
@ -5742,11 +5786,13 @@ struct ggml_tensor * ggml_pool_1d(
|
|||
is_node = true;
|
||||
}
|
||||
|
||||
const int64_t ne[2] = {
|
||||
const int64_t ne[4] = {
|
||||
ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
|
||||
a->ne[1],
|
||||
a->ne[2],
|
||||
a->ne[3],
|
||||
};
|
||||
struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
|
||||
struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
|
||||
|
||||
int32_t params[] = { op, k0, s0, p0 };
|
||||
ggml_set_op_params(result, params, sizeof(params));
|
||||
|
@ -7751,7 +7797,9 @@ static void ggml_compute_forward_add(
|
|||
case GGML_TYPE_IQ3_XXS:
|
||||
case GGML_TYPE_IQ1_S:
|
||||
case GGML_TYPE_IQ4_NL:
|
||||
case GGML_TYPE_IQ4_XS:
|
||||
case GGML_TYPE_IQ3_S:
|
||||
case GGML_TYPE_IQ2_S:
|
||||
{
|
||||
ggml_compute_forward_add_q_f32(params, dst);
|
||||
} break;
|
||||
|
@ -8031,7 +8079,9 @@ static void ggml_compute_forward_add1(
|
|||
case GGML_TYPE_IQ3_XXS:
|
||||
case GGML_TYPE_IQ1_S:
|
||||
case GGML_TYPE_IQ4_NL:
|
||||
case GGML_TYPE_IQ4_XS:
|
||||
case GGML_TYPE_IQ3_S:
|
||||
case GGML_TYPE_IQ2_S:
|
||||
{
|
||||
ggml_compute_forward_add1_q_f32(params, dst);
|
||||
} break;
|
||||
|
@ -8156,7 +8206,9 @@ static void ggml_compute_forward_acc(
|
|||
case GGML_TYPE_IQ3_XXS:
|
||||
case GGML_TYPE_IQ1_S:
|
||||
case GGML_TYPE_IQ4_NL:
|
||||
case GGML_TYPE_IQ4_XS:
|
||||
case GGML_TYPE_IQ3_S:
|
||||
case GGML_TYPE_IQ2_S:
|
||||
default:
|
||||
{
|
||||
GGML_ASSERT(false);
|
||||
|
@ -11055,7 +11107,9 @@ static void ggml_compute_forward_out_prod(
|
|||
case GGML_TYPE_IQ3_XXS:
|
||||
case GGML_TYPE_IQ1_S:
|
||||
case GGML_TYPE_IQ4_NL:
|
||||
case GGML_TYPE_IQ4_XS:
|
||||
case GGML_TYPE_IQ3_S:
|
||||
case GGML_TYPE_IQ2_S:
|
||||
{
|
||||
ggml_compute_forward_out_prod_q_f32(params, dst);
|
||||
} break;
|
||||
|
@ -11244,7 +11298,9 @@ static void ggml_compute_forward_set(
|
|||
case GGML_TYPE_IQ3_XXS:
|
||||
case GGML_TYPE_IQ1_S:
|
||||
case GGML_TYPE_IQ4_NL:
|
||||
case GGML_TYPE_IQ4_XS:
|
||||
case GGML_TYPE_IQ3_S:
|
||||
case GGML_TYPE_IQ2_S:
|
||||
default:
|
||||
{
|
||||
GGML_ASSERT(false);
|
||||
|
@ -11447,7 +11503,9 @@ static void ggml_compute_forward_get_rows(
|
|||
case GGML_TYPE_IQ3_XXS:
|
||||
case GGML_TYPE_IQ1_S:
|
||||
case GGML_TYPE_IQ4_NL:
|
||||
case GGML_TYPE_IQ4_XS:
|
||||
case GGML_TYPE_IQ3_S:
|
||||
case GGML_TYPE_IQ2_S:
|
||||
{
|
||||
ggml_compute_forward_get_rows_q(params, dst);
|
||||
} break;
|
||||
|
@ -12148,7 +12206,9 @@ static void ggml_compute_forward_alibi(
|
|||
case GGML_TYPE_IQ3_XXS:
|
||||
case GGML_TYPE_IQ1_S:
|
||||
case GGML_TYPE_IQ4_NL:
|
||||
case GGML_TYPE_IQ4_XS:
|
||||
case GGML_TYPE_IQ3_S:
|
||||
case GGML_TYPE_IQ2_S:
|
||||
case GGML_TYPE_Q8_K:
|
||||
case GGML_TYPE_I8:
|
||||
case GGML_TYPE_I16:
|
||||
|
@ -12232,7 +12292,9 @@ static void ggml_compute_forward_clamp(
|
|||
case GGML_TYPE_IQ3_XXS:
|
||||
case GGML_TYPE_IQ1_S:
|
||||
case GGML_TYPE_IQ4_NL:
|
||||
case GGML_TYPE_IQ4_XS:
|
||||
case GGML_TYPE_IQ3_S:
|
||||
case GGML_TYPE_IQ2_S:
|
||||
case GGML_TYPE_Q8_K:
|
||||
case GGML_TYPE_I8:
|
||||
case GGML_TYPE_I16:
|
||||
|
@ -15027,9 +15089,10 @@ static void ggml_compute_forward_map_custom1(
|
|||
return;
|
||||
}
|
||||
|
||||
struct ggml_map_custom1_op_params * p = (struct ggml_map_custom1_op_params *) dst->op_params;
|
||||
struct ggml_map_custom1_op_params p;
|
||||
memcpy(&p, dst->op_params, sizeof(p));
|
||||
|
||||
p->fun(dst, a, params->ith, params->nth, p->userdata);
|
||||
p.fun(dst, a, params->ith, params->nth, p.userdata);
|
||||
}
|
||||
|
||||
// ggml_compute_forward_map_custom2
|
||||
|
@ -15045,9 +15108,10 @@ static void ggml_compute_forward_map_custom2(
|
|||
return;
|
||||
}
|
||||
|
||||
struct ggml_map_custom2_op_params * p = (struct ggml_map_custom2_op_params *) dst->op_params;
|
||||
struct ggml_map_custom2_op_params p;
|
||||
memcpy(&p, dst->op_params, sizeof(p));
|
||||
|
||||
p->fun(dst, a, b, params->ith, params->nth, p->userdata);
|
||||
p.fun(dst, a, b, params->ith, params->nth, p.userdata);
|
||||
}
|
||||
|
||||
// ggml_compute_forward_map_custom3
|
||||
|
@ -15064,9 +15128,10 @@ static void ggml_compute_forward_map_custom3(
|
|||
return;
|
||||
}
|
||||
|
||||
struct ggml_map_custom3_op_params * p = (struct ggml_map_custom3_op_params *) dst->op_params;
|
||||
struct ggml_map_custom3_op_params p;
|
||||
memcpy(&p, dst->op_params, sizeof(p));
|
||||
|
||||
p->fun(dst, a, b, c, params->ith, params->nth, p->userdata);
|
||||
p.fun(dst, a, b, c, params->ith, params->nth, p.userdata);
|
||||
}
|
||||
|
||||
// ggml_compute_forward_cross_entropy_loss
|
||||
|
@ -17332,29 +17397,32 @@ static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads) {
|
|||
} break;
|
||||
case GGML_OP_MAP_CUSTOM1:
|
||||
{
|
||||
struct ggml_map_custom1_op_params * p = (struct ggml_map_custom1_op_params *) node->op_params;
|
||||
if (p->n_tasks == GGML_N_TASKS_MAX) {
|
||||
struct ggml_map_custom1_op_params p;
|
||||
memcpy(&p, node->op_params, sizeof(p));
|
||||
if (p.n_tasks == GGML_N_TASKS_MAX) {
|
||||
n_tasks = n_threads;
|
||||
} else {
|
||||
n_tasks = MIN(p->n_tasks, n_threads);
|
||||
n_tasks = MIN(p.n_tasks, n_threads);
|
||||
}
|
||||
} break;
|
||||
case GGML_OP_MAP_CUSTOM2:
|
||||
{
|
||||
struct ggml_map_custom2_op_params * p = (struct ggml_map_custom2_op_params *) node->op_params;
|
||||
if (p->n_tasks == GGML_N_TASKS_MAX) {
|
||||
struct ggml_map_custom2_op_params p;
|
||||
memcpy(&p, node->op_params, sizeof(p));
|
||||
if (p.n_tasks == GGML_N_TASKS_MAX) {
|
||||
n_tasks = n_threads;
|
||||
} else {
|
||||
n_tasks = MIN(p->n_tasks, n_threads);
|
||||
n_tasks = MIN(p.n_tasks, n_threads);
|
||||
}
|
||||
} break;
|
||||
case GGML_OP_MAP_CUSTOM3:
|
||||
{
|
||||
struct ggml_map_custom3_op_params * p = (struct ggml_map_custom3_op_params *) node->op_params;
|
||||
if (p->n_tasks == GGML_N_TASKS_MAX) {
|
||||
struct ggml_map_custom3_op_params p;
|
||||
memcpy(&p, node->op_params, sizeof(p));
|
||||
if (p.n_tasks == GGML_N_TASKS_MAX) {
|
||||
n_tasks = n_threads;
|
||||
} else {
|
||||
n_tasks = MIN(p->n_tasks, n_threads);
|
||||
n_tasks = MIN(p.n_tasks, n_threads);
|
||||
}
|
||||
} break;
|
||||
case GGML_OP_CROSS_ENTROPY_LOSS:
|
||||
|
@ -19482,6 +19550,7 @@ void ggml_quantize_init(enum ggml_type type) {
|
|||
switch (type) {
|
||||
case GGML_TYPE_IQ2_XXS:
|
||||
case GGML_TYPE_IQ2_XS:
|
||||
case GGML_TYPE_IQ2_S:
|
||||
case GGML_TYPE_IQ1_S: iq2xs_init_impl(type); break;
|
||||
case GGML_TYPE_IQ3_XXS: iq3xs_init_impl(256); break;
|
||||
case GGML_TYPE_IQ3_S: iq3xs_init_impl(512); break;
|
||||
|
@ -19768,6 +19837,15 @@ size_t ggml_quantize_chunk(enum ggml_type type, const float * src, void * dst, i
|
|||
result = quantize_iq3_s(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
|
||||
GGML_ASSERT(result == row_size * nrows);
|
||||
} break;
|
||||
case GGML_TYPE_IQ2_S:
|
||||
{
|
||||
GGML_ASSERT(start % QK_K == 0);
|
||||
GGML_ASSERT(start % n_per_row == 0);
|
||||
size_t start_row = start / n_per_row;
|
||||
size_t row_size = ggml_row_size(type, n_per_row);
|
||||
result = quantize_iq2_s(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
|
||||
GGML_ASSERT(result == row_size * nrows);
|
||||
} break;
|
||||
case GGML_TYPE_IQ1_S:
|
||||
{
|
||||
GGML_ASSERT(start % QK_K == 0);
|
||||
|
@ -19778,6 +19856,9 @@ size_t ggml_quantize_chunk(enum ggml_type type, const float * src, void * dst, i
|
|||
GGML_ASSERT(result == row_size * nrows);
|
||||
} break;
|
||||
case GGML_TYPE_IQ4_NL:
|
||||
#if QK_K == 64
|
||||
case GGML_TYPE_IQ4_XS:
|
||||
#endif
|
||||
{
|
||||
GGML_ASSERT(start % QK4_NL == 0);
|
||||
GGML_ASSERT(start % n_per_row == 0);
|
||||
|
@ -19786,6 +19867,17 @@ size_t ggml_quantize_chunk(enum ggml_type type, const float * src, void * dst, i
|
|||
result = quantize_iq4_nl(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
|
||||
GGML_ASSERT(result == row_size * nrows);
|
||||
} break;
|
||||
#if QK_K != 64
|
||||
case GGML_TYPE_IQ4_XS:
|
||||
{
|
||||
GGML_ASSERT(start % QK_K == 0);
|
||||
GGML_ASSERT(start % n_per_row == 0);
|
||||
size_t start_row = start / n_per_row;
|
||||
size_t row_size = ggml_row_size(type, n_per_row);
|
||||
result = quantize_iq4_xs(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
|
||||
GGML_ASSERT(result == row_size * nrows);
|
||||
} break;
|
||||
#endif
|
||||
case GGML_TYPE_F16:
|
||||
{
|
||||
size_t elemsize = sizeof(ggml_fp16_t);
|
||||
|
|
14
ggml.h
14
ggml.h
|
@ -351,6 +351,8 @@ extern "C" {
|
|||
GGML_TYPE_IQ1_S = 19,
|
||||
GGML_TYPE_IQ4_NL = 20,
|
||||
GGML_TYPE_IQ3_S = 21,
|
||||
GGML_TYPE_IQ2_S = 22,
|
||||
GGML_TYPE_IQ4_XS = 23,
|
||||
GGML_TYPE_I8,
|
||||
GGML_TYPE_I16,
|
||||
GGML_TYPE_I32,
|
||||
|
@ -391,6 +393,8 @@ extern "C" {
|
|||
GGML_FTYPE_MOSTLY_IQ1_S = 18, // except 1d tensors
|
||||
GGML_FTYPE_MOSTLY_IQ4_NL = 19, // except 1d tensors
|
||||
GGML_FTYPE_MOSTLY_IQ3_S = 20, // except 1d tensors
|
||||
GGML_FTYPE_MOSTLY_IQ2_S = 21, // except 1d tensors
|
||||
GGML_FTYPE_MOSTLY_IQ4_XS = 22, // except 1d tensors
|
||||
};
|
||||
|
||||
// available tensor operations:
|
||||
|
@ -668,6 +672,16 @@ extern "C" {
|
|||
GGML_NUMA_STRATEGY_COUNT
|
||||
};
|
||||
|
||||
//
|
||||
// GUID
|
||||
//
|
||||
|
||||
// GUID types
|
||||
typedef uint8_t ggml_guid[16];
|
||||
typedef ggml_guid * ggml_guid_t;
|
||||
|
||||
GGML_API bool ggml_guid_matches(ggml_guid_t guid_a, ggml_guid_t guid_b);
|
||||
|
||||
// misc
|
||||
|
||||
GGML_API void ggml_time_init(void); // call this once at the beginning of the program
|
||||
|
|
|
@ -112,6 +112,7 @@ class MODEL_ARCH(IntEnum):
|
|||
INTERNLM2 = auto()
|
||||
MINICPM = auto()
|
||||
GEMMA = auto()
|
||||
STARCODER2 = auto()
|
||||
|
||||
|
||||
class MODEL_TENSOR(IntEnum):
|
||||
|
@ -169,6 +170,7 @@ MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = {
|
|||
MODEL_ARCH.INTERNLM2: "internlm2",
|
||||
MODEL_ARCH.MINICPM: "minicpm",
|
||||
MODEL_ARCH.GEMMA: "gemma",
|
||||
MODEL_ARCH.STARCODER2: "starcoder2",
|
||||
}
|
||||
|
||||
TENSOR_NAMES: dict[MODEL_TENSOR, str] = {
|
||||
|
@ -526,6 +528,21 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
|
|||
MODEL_TENSOR.FFN_UP,
|
||||
MODEL_TENSOR.FFN_NORM,
|
||||
],
|
||||
MODEL_ARCH.STARCODER2: [
|
||||
MODEL_TENSOR.TOKEN_EMBD,
|
||||
MODEL_TENSOR.OUTPUT_NORM,
|
||||
MODEL_TENSOR.OUTPUT,
|
||||
MODEL_TENSOR.ROPE_FREQS,
|
||||
MODEL_TENSOR.ATTN_NORM,
|
||||
MODEL_TENSOR.ATTN_Q,
|
||||
MODEL_TENSOR.ATTN_K,
|
||||
MODEL_TENSOR.ATTN_V,
|
||||
MODEL_TENSOR.ATTN_OUT,
|
||||
MODEL_TENSOR.ATTN_ROT_EMBD,
|
||||
MODEL_TENSOR.FFN_NORM,
|
||||
MODEL_TENSOR.FFN_DOWN,
|
||||
MODEL_TENSOR.FFN_UP,
|
||||
],
|
||||
# TODO
|
||||
}
|
||||
|
||||
|
@ -554,6 +571,10 @@ MODEL_TENSOR_SKIP: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
|
|||
MODEL_TENSOR.ROPE_FREQS,
|
||||
MODEL_TENSOR.ATTN_ROT_EMBD,
|
||||
],
|
||||
MODEL_ARCH.STARCODER2: [
|
||||
MODEL_TENSOR.ROPE_FREQS,
|
||||
MODEL_TENSOR.ATTN_ROT_EMBD,
|
||||
],
|
||||
}
|
||||
|
||||
#
|
||||
|
|
|
@ -362,7 +362,7 @@ class GGUFWriter:
|
|||
self.add_bool(Keys.Attention.CAUSAL.format(arch=self.arch), value)
|
||||
|
||||
def add_pooling_type(self, value: PoolingType) -> None:
|
||||
self.add_uint32(Keys.LLM.POOLING_TYPE.format(arch=self.arch), value)
|
||||
self.add_uint32(Keys.LLM.POOLING_TYPE.format(arch=self.arch), value.value)
|
||||
|
||||
def add_rope_dimension_count(self, count: int) -> None:
|
||||
self.add_uint32(Keys.Rope.DIMENSION_COUNT.format(arch=self.arch), count)
|
||||
|
|
|
@ -210,6 +210,7 @@ class TensorNameMap:
|
|||
"model.layers.layers.{bid}.mlp.up_proj", # plamo
|
||||
"model.layers.{bid}.feed_forward.w3", # internlm2
|
||||
"encoder.layers.{bid}.mlp.fc11", # nomic-bert
|
||||
"model.layers.{bid}.mlp.c_fc", # starcoder2
|
||||
),
|
||||
|
||||
MODEL_TENSOR.FFN_UP_EXP: (
|
||||
|
@ -256,6 +257,7 @@ class TensorNameMap:
|
|||
"model.layers.layers.{bid}.mlp.down_proj", # plamo
|
||||
"model.layers.{bid}.feed_forward.w2", # internlm2
|
||||
"encoder.layers.{bid}.mlp.fc2", # nomic-bert
|
||||
"model.layers.{bid}.mlp.c_proj", # starcoder2
|
||||
),
|
||||
|
||||
MODEL_TENSOR.FFN_DOWN_EXP: (
|
||||
|
|
88
llama.h
88
llama.h
|
@ -64,6 +64,15 @@ extern "C" {
|
|||
LLAMA_VOCAB_TYPE_WPM = 2, // WordPiece
|
||||
};
|
||||
|
||||
// note: these values should be synchronized with ggml_rope
|
||||
// TODO: maybe move this enum to ggml.h (ggml_rope_type)
|
||||
enum llama_rope_type {
|
||||
LLAMA_ROPE_TYPE_NONE = -1,
|
||||
LLAMA_ROPE_TYPE_NORM = 0,
|
||||
LLAMA_ROPE_TYPE_NEOX = 2,
|
||||
LLAMA_ROPE_TYPE_GLM = 4,
|
||||
};
|
||||
|
||||
enum llama_token_type {
|
||||
LLAMA_TOKEN_TYPE_UNDEFINED = 0,
|
||||
LLAMA_TOKEN_TYPE_NORMAL = 1,
|
||||
|
@ -98,12 +107,15 @@ extern "C" {
|
|||
LLAMA_FTYPE_MOSTLY_IQ2_XXS = 19, // except 1d tensors
|
||||
LLAMA_FTYPE_MOSTLY_IQ2_XS = 20, // except 1d tensors
|
||||
LLAMA_FTYPE_MOSTLY_Q2_K_S = 21, // except 1d tensors
|
||||
LLAMA_FTYPE_MOSTLY_Q3_K_XS = 22, // except 1d tensors
|
||||
LLAMA_FTYPE_MOSTLY_IQ3_XS = 22, // except 1d tensors
|
||||
LLAMA_FTYPE_MOSTLY_IQ3_XXS = 23, // except 1d tensors
|
||||
LLAMA_FTYPE_MOSTLY_IQ1_S = 24, // except 1d tensors
|
||||
LLAMA_FTYPE_MOSTLY_IQ4_NL = 25, // except 1d tensors
|
||||
LLAMA_FTYPE_MOSTLY_IQ3_S = 26, // except 1d tensors
|
||||
LLAMA_FTYPE_MOSTLY_IQ3_M = 27, // except 1d tensors
|
||||
LLAMA_FTYPE_MOSTLY_IQ2_S = 28, // except 1d tensors
|
||||
LLAMA_FTYPE_MOSTLY_IQ2_M = 29, // except 1d tensors
|
||||
LLAMA_FTYPE_MOSTLY_IQ4_XS = 30, // except 1d tensors
|
||||
|
||||
LLAMA_FTYPE_GUESSED = 1024, // not specified in the model file
|
||||
};
|
||||
|
@ -234,6 +246,7 @@ extern "C" {
|
|||
float yarn_beta_fast; // YaRN low correction dim
|
||||
float yarn_beta_slow; // YaRN high correction dim
|
||||
uint32_t yarn_orig_ctx; // YaRN original context size
|
||||
float defrag_thold; // defragment the KV cache if holes/size > thold, < 0 disabled (default)
|
||||
|
||||
ggml_backend_sched_eval_callback cb_eval;
|
||||
void * cb_eval_user_data;
|
||||
|
@ -242,7 +255,6 @@ extern "C" {
|
|||
enum ggml_type type_v; // data type for V cache
|
||||
|
||||
// Keep the booleans together to avoid misalignment during copy-by-value.
|
||||
bool mul_mat_q; // if true, use experimental mul_mat_q kernels (DEPRECATED - always true)
|
||||
bool logits_all; // the llama_eval() call computes all logits, not just the last one (DEPRECATED - set llama_batch.logits instead)
|
||||
bool embedding; // embedding mode only
|
||||
bool offload_kqv; // whether to offload the KQV ops (including the KV cache) to GPU
|
||||
|
@ -351,15 +363,13 @@ extern "C" {
|
|||
LLAMA_API bool llama_supports_mlock (void);
|
||||
LLAMA_API bool llama_supports_gpu_offload(void);
|
||||
|
||||
LLAMA_API DEPRECATED(bool llama_mmap_supported (void), "use llama_supports_mmap() instead");
|
||||
LLAMA_API DEPRECATED(bool llama_mlock_supported(void), "use llama_supports_mlock() instead");
|
||||
|
||||
LLAMA_API const struct llama_model * llama_get_model(const struct llama_context * ctx);
|
||||
|
||||
LLAMA_API uint32_t llama_n_ctx (const struct llama_context * ctx);
|
||||
LLAMA_API uint32_t llama_n_batch (const struct llama_context * ctx);
|
||||
|
||||
LLAMA_API enum llama_vocab_type llama_vocab_type(const struct llama_model * model);
|
||||
LLAMA_API enum llama_rope_type llama_rope_type (const struct llama_model * model);
|
||||
|
||||
LLAMA_API int32_t llama_n_vocab (const struct llama_model * model);
|
||||
LLAMA_API int32_t llama_n_ctx_train(const struct llama_model * model);
|
||||
|
@ -409,14 +419,6 @@ extern "C" {
|
|||
// The model needs to be reloaded before applying a new adapter, otherwise the adapter
|
||||
// will be applied on top of the previous one
|
||||
// Returns 0 on success
|
||||
LLAMA_API DEPRECATED(int32_t llama_apply_lora_from_file(
|
||||
struct llama_context * ctx,
|
||||
const char * path_lora,
|
||||
float scale,
|
||||
const char * path_base_model,
|
||||
int32_t n_threads),
|
||||
"use llama_model_apply_lora_from_file instead");
|
||||
|
||||
LLAMA_API int32_t llama_model_apply_lora_from_file(
|
||||
const struct llama_model * model,
|
||||
const char * path_lora,
|
||||
|
@ -514,10 +516,12 @@ extern "C" {
|
|||
llama_seq_id seq_id);
|
||||
|
||||
// Adds relative position "delta" to all tokens that belong to the specified sequence and have positions in [p0, p1)
|
||||
// If the KV cache is RoPEd, the KV data is updated accordingly
|
||||
// If the KV cache is RoPEd, the KV data is updated accordingly:
|
||||
// - lazily on next llama_decode()
|
||||
// - explicitly with llama_kv_cache_update()
|
||||
// p0 < 0 : [0, p1]
|
||||
// p1 < 0 : [p0, inf)
|
||||
LLAMA_API void llama_kv_cache_seq_shift(
|
||||
LLAMA_API void llama_kv_cache_seq_add(
|
||||
struct llama_context * ctx,
|
||||
llama_seq_id seq_id,
|
||||
llama_pos p0,
|
||||
|
@ -525,7 +529,9 @@ extern "C" {
|
|||
llama_pos delta);
|
||||
|
||||
// Integer division of the positions by factor of `d > 1`
|
||||
// If the KV cache is RoPEd, the KV data is updated accordingly
|
||||
// If the KV cache is RoPEd, the KV data is updated accordingly:
|
||||
// - lazily on next llama_decode()
|
||||
// - explicitly with llama_kv_cache_update()
|
||||
// p0 < 0 : [0, p1]
|
||||
// p1 < 0 : [p0, inf)
|
||||
LLAMA_API void llama_kv_cache_seq_div(
|
||||
|
@ -535,6 +541,20 @@ extern "C" {
|
|||
llama_pos p1,
|
||||
int d);
|
||||
|
||||
// Returns the largest position present in the KV cache for the specified sequence
|
||||
LLAMA_API llama_pos llama_kv_cache_seq_pos_max(
|
||||
struct llama_context * ctx,
|
||||
llama_seq_id seq_id);
|
||||
|
||||
// Defragment the KV cache
|
||||
// This will be applied:
|
||||
// - lazily on next llama_decode()
|
||||
// - explicitly with llama_kv_cache_update()
|
||||
LLAMA_API void llama_kv_cache_defrag(struct llama_context * ctx);
|
||||
|
||||
// Apply the KV cache updates (such as K-shifts, defragmentation, etc.)
|
||||
LLAMA_API void llama_kv_cache_update(struct llama_context * ctx);
|
||||
|
||||
//
|
||||
// State / sessions
|
||||
//
|
||||
|
@ -554,7 +574,7 @@ extern "C" {
|
|||
// Returns the number of bytes read
|
||||
LLAMA_API size_t llama_set_state_data(
|
||||
struct llama_context * ctx,
|
||||
uint8_t * src);
|
||||
const uint8_t * src);
|
||||
|
||||
// Save/load session file
|
||||
LLAMA_API bool llama_load_session_file(
|
||||
|
@ -574,27 +594,6 @@ extern "C" {
|
|||
// Decoding
|
||||
//
|
||||
|
||||
// Run the llama inference to obtain the logits and probabilities for the next token(s).
|
||||
// tokens + n_tokens is the provided batch of new tokens to process
|
||||
// n_past is the number of tokens to use from previous eval calls
|
||||
// Returns 0 on success
|
||||
// DEPRECATED: use llama_decode() instead
|
||||
LLAMA_API DEPRECATED(int llama_eval(
|
||||
struct llama_context * ctx,
|
||||
llama_token * tokens,
|
||||
int32_t n_tokens,
|
||||
int32_t n_past),
|
||||
"use llama_decode() instead");
|
||||
|
||||
// Same as llama_eval, but use float matrix input directly.
|
||||
// DEPRECATED: use llama_decode() instead
|
||||
LLAMA_API DEPRECATED(int llama_eval_embd(
|
||||
struct llama_context * ctx,
|
||||
float * embd,
|
||||
int32_t n_tokens,
|
||||
int32_t n_past),
|
||||
"use llama_decode() instead");
|
||||
|
||||
// Return batch for single sequence of tokens starting at pos_0
|
||||
//
|
||||
// NOTE: this is a helper function to facilitate transition to the new batch API - avoid using it
|
||||
|
@ -768,13 +767,6 @@ extern "C" {
|
|||
float * logits_guidance,
|
||||
float scale);
|
||||
|
||||
LLAMA_API DEPRECATED(void llama_sample_classifier_free_guidance(
|
||||
struct llama_context * ctx,
|
||||
llama_token_data_array * candidates,
|
||||
struct llama_context * guidance_ctx,
|
||||
float scale),
|
||||
"use llama_sample_apply_guidance() instead");
|
||||
|
||||
/// @details Sorts candidate tokens by their logits in descending order and calculate probabilities based on logits.
|
||||
LLAMA_API void llama_sample_softmax(
|
||||
struct llama_context * ctx,
|
||||
|
@ -828,12 +820,6 @@ extern "C" {
|
|||
llama_token_data_array * candidates,
|
||||
float temp);
|
||||
|
||||
LLAMA_API DEPRECATED(void llama_sample_temperature(
|
||||
struct llama_context * ctx,
|
||||
llama_token_data_array * candidates,
|
||||
float temp),
|
||||
"use llama_sample_temp instead");
|
||||
|
||||
/// @details Apply constraints from grammar
|
||||
LLAMA_API void llama_sample_grammar(
|
||||
struct llama_context * ctx,
|
||||
|
|
|
@ -1,2 +1,3 @@
|
|||
-r ./requirements-convert.txt
|
||||
torch~=2.1.1
|
||||
einops~=0.7.0
|
||||
|
|
|
@ -31,7 +31,7 @@ PRETTY_NAMES = {
|
|||
"model_size": "Model Size [GiB]", "model_n_params": "Num. of Parameters",
|
||||
"n_batch": "Batch size", "n_threads": "Threads", "type_k": "K type", "type_v": "V type",
|
||||
"n_gpu_layers": "GPU layers", "main_gpu": "Main GPU", "no_kv_offload": "NKVO",
|
||||
"mul_mat_q": "MMQ", "tensor_split": "Tensor split"
|
||||
"tensor_split": "Tensor split"
|
||||
}
|
||||
|
||||
DEFAULT_SHOW = ["model_type"] # Always show these properties by default.
|
||||
|
|
213
scripts/pod-llama.sh
Normal file
213
scripts/pod-llama.sh
Normal file
|
@ -0,0 +1,213 @@
|
|||
#!/bin/bash
|
||||
#
|
||||
# Use this script only on fresh pods (runpod.io)!
|
||||
# Otherwise, it can break your environment!
|
||||
#
|
||||
|
||||
if [ -z "$1" ]; then
|
||||
echo "Usage: $0 <data>"
|
||||
echo " 0: no models"
|
||||
echo " 1: tinyllama-1b"
|
||||
echo " 2: codellama-7b"
|
||||
echo " 3: codellama-13b"
|
||||
echo " 4: codellama-34b"
|
||||
echo " 5: codellama-7b-instruct"
|
||||
echo " 6: codellama-13b-instruct"
|
||||
echo " 7: codellama-34b-instruct"
|
||||
|
||||
exit 1
|
||||
fi
|
||||
|
||||
set -x
|
||||
|
||||
# setup deps
|
||||
apt-get update
|
||||
apt-get install -y git-lfs cmake cmake-curses-gui vim ruby
|
||||
git-lfs install
|
||||
|
||||
if [ ! -d "/workspace" ]; then
|
||||
ln -sfn $(pwd) /workspace
|
||||
fi
|
||||
|
||||
# download data
|
||||
cd /workspace
|
||||
|
||||
# this is useful to git clone repos without doubling the disk size due to .git
|
||||
git clone https://github.com/iboB/git-lfs-download
|
||||
ln -sfn /workspace/git-lfs-download/git-lfs-download /usr/local/bin/git-lfs-download
|
||||
|
||||
# llama.cpp
|
||||
cd /workspace
|
||||
git clone https://github.com/ggerganov/llama.cpp
|
||||
|
||||
cd llama.cpp
|
||||
|
||||
LLAMA_CUBLAS=1 make -j
|
||||
|
||||
ln -sfn /workspace/TinyLlama-1.1B-Chat-v0.3 ./models/tinyllama-1b
|
||||
ln -sfn /workspace/CodeLlama-7b-hf ./models/codellama-7b
|
||||
ln -sfn /workspace/CodeLlama-13b-hf ./models/codellama-13b
|
||||
ln -sfn /workspace/CodeLlama-34b-hf ./models/codellama-34b
|
||||
ln -sfn /workspace/CodeLlama-7b-Instruct-hf ./models/codellama-7b-instruct
|
||||
ln -sfn /workspace/CodeLlama-13b-Instruct-hf ./models/codellama-13b-instruct
|
||||
ln -sfn /workspace/CodeLlama-34b-Instruct-hf ./models/codellama-34b-instruct
|
||||
|
||||
pip install -r requirements.txt
|
||||
|
||||
# cmake
|
||||
cd /workspace/llama.cpp
|
||||
|
||||
mkdir build-cublas
|
||||
cd build-cublas
|
||||
|
||||
cmake -DLLAMA_CUBLAS=1 ../
|
||||
make -j
|
||||
|
||||
if [ "$1" -eq "0" ]; then
|
||||
exit 0
|
||||
fi
|
||||
|
||||
# more models
|
||||
if [ "$1" -eq "1" ]; then
|
||||
cd /workspace
|
||||
|
||||
git-lfs-download https://huggingface.co/PY007/TinyLlama-1.1B-Chat-v0.3
|
||||
|
||||
cd /workspace/llama.cpp
|
||||
|
||||
python3 convert.py ./models/tinyllama-1b --outfile ./models/tinyllama-1b/ggml-model-f16.gguf --outtype f16
|
||||
|
||||
./quantize ./models/tinyllama-1b/ggml-model-f16.gguf ./models/tinyllama-1b/ggml-model-q4_0.gguf q4_0
|
||||
./quantize ./models/tinyllama-1b/ggml-model-f16.gguf ./models/tinyllama-1b/ggml-model-q4_k.gguf q4_k
|
||||
./quantize ./models/tinyllama-1b/ggml-model-f16.gguf ./models/tinyllama-1b/ggml-model-q8_0.gguf q8_0
|
||||
fi
|
||||
|
||||
if [ "$1" -eq "2" ]; then
|
||||
cd /workspace
|
||||
|
||||
git-lfs-download https://huggingface.co/codellama/CodeLlama-7b-hf --without *safetensors*
|
||||
rm -v ./CodeLlama-7b-hf/*safetensors*
|
||||
|
||||
cd /workspace/llama.cpp
|
||||
|
||||
python3 convert.py ./models/codellama-7b --outfile ./models/codellama-7b/ggml-model-f16.gguf --outtype f16
|
||||
|
||||
./quantize ./models/codellama-7b/ggml-model-f16.gguf ./models/codellama-7b/ggml-model-q4_0.gguf q4_0
|
||||
./quantize ./models/codellama-7b/ggml-model-f16.gguf ./models/codellama-7b/ggml-model-q4_k.gguf q4_k
|
||||
./quantize ./models/codellama-7b/ggml-model-f16.gguf ./models/codellama-7b/ggml-model-q8_0.gguf q8_0
|
||||
fi
|
||||
|
||||
if [ "$1" -eq "3" ]; then
|
||||
cd /workspace
|
||||
|
||||
git-lfs-download https://huggingface.co/codellama/CodeLlama-13b-hf --without *safetensors*
|
||||
rm -v ./CodeLlama-13b-hf/*safetensors*
|
||||
|
||||
cd /workspace/llama.cpp
|
||||
|
||||
python3 convert.py ./models/codellama-13b --outfile ./models/codellama-13b/ggml-model-f16.gguf --outtype f16
|
||||
|
||||
./quantize ./models/codellama-13b/ggml-model-f16.gguf ./models/codellama-13b/ggml-model-q4_0.gguf q4_0
|
||||
./quantize ./models/codellama-13b/ggml-model-f16.gguf ./models/codellama-13b/ggml-model-q4_k.gguf q4_k
|
||||
./quantize ./models/codellama-13b/ggml-model-f16.gguf ./models/codellama-13b/ggml-model-q8_0.gguf q8_0
|
||||
fi
|
||||
|
||||
if [ "$1" -eq "4" ]; then
|
||||
cd /workspace
|
||||
|
||||
git-lfs-download https://huggingface.co/codellama/CodeLlama-34b-hf --without *safetensors*
|
||||
rm -v ./CodeLlama-34b-hf/*safetensors*
|
||||
|
||||
cd /workspace/llama.cpp
|
||||
|
||||
python3 convert.py ./models/codellama-34b --outfile ./models/codellama-34b/ggml-model-f16.gguf --outtype f16
|
||||
|
||||
./quantize ./models/codellama-34b/ggml-model-f16.gguf ./models/codellama-34b/ggml-model-q4_0.gguf q4_0
|
||||
./quantize ./models/codellama-34b/ggml-model-f16.gguf ./models/codellama-34b/ggml-model-q4_k.gguf q4_k
|
||||
./quantize ./models/codellama-34b/ggml-model-f16.gguf ./models/codellama-34b/ggml-model-q8_0.gguf q8_0
|
||||
fi
|
||||
|
||||
if [ "$1" -eq "5" ]; then
|
||||
cd /workspace
|
||||
|
||||
git-lfs-download https://huggingface.co/codellama/CodeLlama-7b-Instruct-hf --without *safetensors*
|
||||
rm -v ./CodeLlama-7b-Instruct-hf/*safetensors*
|
||||
|
||||
cd /workspace/llama.cpp
|
||||
|
||||
python3 convert.py ./models/codellama-7b-instruct --outfile ./models/codellama-7b-instruct/ggml-model-f16.gguf --outtype f16
|
||||
|
||||
./quantize ./models/codellama-7b-instruct/ggml-model-f16.gguf ./models/codellama-7b-instruct/ggml-model-q4_0.gguf q4_0
|
||||
./quantize ./models/codellama-7b-instruct/ggml-model-f16.gguf ./models/codellama-7b-instruct/ggml-model-q4_k.gguf q4_k
|
||||
./quantize ./models/codellama-7b-instruct/ggml-model-f16.gguf ./models/codellama-7b-instruct/ggml-model-q8_0.gguf q8_0
|
||||
fi
|
||||
|
||||
if [ "$1" -eq "6" ]; then
|
||||
cd /workspace
|
||||
|
||||
git-lfs-download https://huggingface.co/codellama/CodeLlama-13b-Instruct-hf --without *safetensors*
|
||||
rm -v ./CodeLlama-13b-Instruct-hf/*safetensors*
|
||||
|
||||
cd /workspace/llama.cpp
|
||||
|
||||
python3 convert.py ./models/codellama-13b-instruct --outfile ./models/codellama-13b-instruct/ggml-model-f16.gguf --outtype f16
|
||||
|
||||
./quantize ./models/codellama-13b-instruct/ggml-model-f16.gguf ./models/codellama-13b-instruct/ggml-model-q4_0.gguf q4_0
|
||||
./quantize ./models/codellama-13b-instruct/ggml-model-f16.gguf ./models/codellama-13b-instruct/ggml-model-q4_k.gguf q4_k
|
||||
./quantize ./models/codellama-13b-instruct/ggml-model-f16.gguf ./models/codellama-13b-instruct/ggml-model-q8_0.gguf q8_0
|
||||
fi
|
||||
|
||||
if [ "$1" -eq "7" ]; then
|
||||
cd /workspace
|
||||
|
||||
git-lfs-download https://huggingface.co/codellama/CodeLlama-34b-Instruct-hf --without *safetensors*
|
||||
rm -v ./CodeLlama-34b-Instruct-hf/*safetensors*
|
||||
|
||||
cd /workspace/llama.cpp
|
||||
|
||||
python3 convert.py ./models/codellama-34b-instruct --outfile ./models/codellama-34b-instruct/ggml-model-f16.gguf --outtype f16
|
||||
|
||||
./quantize ./models/codellama-34b-instruct/ggml-model-f16.gguf ./models/codellama-34b-instruct/ggml-model-q4_0.gguf q4_0
|
||||
./quantize ./models/codellama-34b-instruct/ggml-model-f16.gguf ./models/codellama-34b-instruct/ggml-model-q4_k.gguf q4_k
|
||||
./quantize ./models/codellama-34b-instruct/ggml-model-f16.gguf ./models/codellama-34b-instruct/ggml-model-q8_0.gguf q8_0
|
||||
fi
|
||||
|
||||
if [ "$1" -eq "1" ]; then
|
||||
# perf + perplexity
|
||||
cd /workspace/llama.cpp/build-cublas
|
||||
|
||||
make -j && ../scripts/run-all-perf.sh tinyllama-1b "f16" "-ngl 99 -t 1 -p 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,32,64,128,256,512,1024,2048 -n 128"
|
||||
|
||||
../scripts/get-wikitext-2.sh
|
||||
unzip wikitext-2-raw-v1.zip
|
||||
|
||||
make -j && ./bin/perplexity -m ../models/tinyllama-1b/ggml-model-f16.gguf -f ./wikitext-2-raw/wiki.test.raw -ngl 100 --chunks 32
|
||||
|
||||
# batched
|
||||
cd /workspace/llama.cpp
|
||||
|
||||
LLAMA_CUBLAS=1 make -j && ./batched ./models/tinyllama-1b/ggml-model-f16.gguf "Hello, my name is" 8 128 999
|
||||
|
||||
# batched-bench
|
||||
cd /workspace/llama.cpp
|
||||
|
||||
LLAMA_CUBLAS=1 make -j && ./batched-bench ./models/tinyllama-1b/ggml-model-f16.gguf 4608 1 99 0 512 128 1,2,3,4,5,6,7,8,16,32
|
||||
|
||||
# parallel
|
||||
cd /workspace/llama.cpp
|
||||
|
||||
LLAMA_CUBLAS=1 make -j && ./parallel -m ./models/tinyllama-1b/ggml-model-f16.gguf -t 1 -ngl 100 -c 4096 -b 512 -s 1 -np 8 -ns 128 -n 100 -cb
|
||||
|
||||
fi
|
||||
|
||||
# speculative
|
||||
#if [ "$1" -eq "7" ]; then
|
||||
# cd /workspace/llama.cpp
|
||||
#
|
||||
# LLAMA_CUBLAS=1 make -j && ./speculative -m ./models/codellama-34b-instruct/ggml-model-f16.gguf -md ./models/codellama-7b-instruct/ggml-model-q4_0.gguf -p "# Dijkstra's shortest path algorithm in Python (4 spaces indentation) + complexity analysis:\n\n" -e -ngl 999 -ngld 999 -t 4 -n 512 -c 4096 -s 21 --draft 16 -np 1 --temp 0.0
|
||||
#fi
|
||||
|
||||
# more benches
|
||||
#LLAMA_CUBLAS=1 make -j && ./batched-bench ./models/codellama-7b/ggml-model-q4_k.gguf 4096 1 99 1 512,3200 128,128,800 1
|
||||
#LLAMA_CUBLAS=1 make -j && ./batched-bench ./models/codellama-13b/ggml-model-q4_k.gguf 4096 1 99 1 512,3200 128,128,800 1
|
||||
|
|
@ -1 +1 @@
|
|||
8cdf783f288a98eddf521b0ab1b4d405be9e18ba
|
||||
b458250b736a7473f7ff3560d47c93f1644f3290
|
||||
|
|
|
@ -1916,9 +1916,9 @@ static bool test_backend(ggml_backend_t backend, test_mode mode, const char * op
|
|||
GGML_TYPE_Q2_K, GGML_TYPE_Q3_K,
|
||||
GGML_TYPE_Q4_K, GGML_TYPE_Q5_K,
|
||||
GGML_TYPE_Q6_K,
|
||||
GGML_TYPE_IQ2_XXS, GGML_TYPE_IQ2_XS,
|
||||
GGML_TYPE_IQ2_XXS, GGML_TYPE_IQ2_XS, GGML_TYPE_IQ2_S,
|
||||
GGML_TYPE_IQ3_XXS, GGML_TYPE_IQ1_S,
|
||||
GGML_TYPE_IQ4_NL, GGML_TYPE_IQ3_S,
|
||||
GGML_TYPE_IQ4_NL, GGML_TYPE_IQ3_S, GGML_TYPE_IQ4_XS,
|
||||
};
|
||||
|
||||
// unary ops
|
||||
|
|
|
@ -150,6 +150,7 @@ int main(int argc, char * argv[]) {
|
|||
const float total_error = total_quantization_error(qfns, test_size, test_data.data());
|
||||
const float max_quantization_error =
|
||||
type == GGML_TYPE_Q2_K ? MAX_QUANTIZATION_TOTAL_ERROR_2BITS :
|
||||
type == GGML_TYPE_IQ2_S ? MAX_QUANTIZATION_TOTAL_ERROR_2BITS :
|
||||
type == GGML_TYPE_Q3_K ? MAX_QUANTIZATION_TOTAL_ERROR_3BITS :
|
||||
type == GGML_TYPE_IQ3_S ? MAX_QUANTIZATION_TOTAL_ERROR_3BITS :
|
||||
type == GGML_TYPE_IQ3_XXS ? MAX_QUANTIZATION_TOTAL_ERROR_3BITS_XXS : MAX_QUANTIZATION_TOTAL_ERROR;
|
||||
|
@ -168,7 +169,8 @@ int main(int argc, char * argv[]) {
|
|||
|
||||
const float vec_dot_error = dot_product_error(qfns, test_size, test_data.data(), test_data2.data());
|
||||
const float max_allowed_error = type == GGML_TYPE_Q2_K || type == GGML_TYPE_IQ2_XS || type == GGML_TYPE_IQ2_XXS ||
|
||||
type == GGML_TYPE_IQ3_XXS || type == GGML_TYPE_IQ3_S ? MAX_DOT_PRODUCT_ERROR_LOWBIT
|
||||
type == GGML_TYPE_IQ3_XXS || type == GGML_TYPE_IQ3_S || type == GGML_TYPE_IQ2_S
|
||||
? MAX_DOT_PRODUCT_ERROR_LOWBIT
|
||||
: MAX_DOT_PRODUCT_ERROR;
|
||||
failed = !(vec_dot_error < max_allowed_error);
|
||||
num_failed += failed;
|
||||
|
|
311
unicode.h
311
unicode.h
|
@ -1,6 +1,7 @@
|
|||
#pragma once
|
||||
|
||||
#include <cassert>
|
||||
#include <map>
|
||||
#include <stdexcept>
|
||||
#include <string>
|
||||
#include <unordered_map>
|
||||
|
@ -223,6 +224,313 @@ static const std::vector<std::pair<uint32_t, uint32_t>> control_ranges = {
|
|||
{0x2B81E, 0x2B81F}, {0x2CEA2, 0x2CEAF}, {0x2EBE1, 0x2F7FF}, {0x2FA1E, 0x2FFFF}, {0x3134B, 0xE00FF}, {0xE01F0, 0x10FFFF},
|
||||
};
|
||||
|
||||
static const std::multimap<uint32_t, uint32_t> nfd_map = {
|
||||
{0xC0, 0x41}, {0xC0, 0x300}, {0xC1, 0x41}, {0xC1, 0x301}, {0xC2, 0x41}, {0xC2, 0x302}, {0xC3, 0x41}, {0xC3, 0x303}, {0xC4, 0x41}, {0xC4, 0x308}, {0xC5, 0x41}, {0xC5, 0x30A}, {0xC7, 0x43},
|
||||
{0xC7, 0x327}, {0xC8, 0x45}, {0xC8, 0x300}, {0xC9, 0x45}, {0xC9, 0x301}, {0xCA, 0x45}, {0xCA, 0x302}, {0xCB, 0x45}, {0xCB, 0x308}, {0xCC, 0x49}, {0xCC, 0x300}, {0xCD, 0x49}, {0xCD, 0x301},
|
||||
{0xCE, 0x49}, {0xCE, 0x302}, {0xCF, 0x49}, {0xCF, 0x308}, {0xD1, 0x4E}, {0xD1, 0x303}, {0xD2, 0x4F}, {0xD2, 0x300}, {0xD3, 0x4F}, {0xD3, 0x301}, {0xD4, 0x4F}, {0xD4, 0x302}, {0xD5, 0x4F},
|
||||
{0xD5, 0x303}, {0xD6, 0x4F}, {0xD6, 0x308}, {0xD9, 0x55}, {0xD9, 0x300}, {0xDA, 0x55}, {0xDA, 0x301}, {0xDB, 0x55}, {0xDB, 0x302}, {0xDC, 0x55}, {0xDC, 0x308}, {0xDD, 0x59}, {0xDD, 0x301},
|
||||
{0xE0, 0x61}, {0xE0, 0x300}, {0xE1, 0x61}, {0xE1, 0x301}, {0xE2, 0x61}, {0xE2, 0x302}, {0xE3, 0x61}, {0xE3, 0x303}, {0xE4, 0x61}, {0xE4, 0x308}, {0xE5, 0x61}, {0xE5, 0x30A}, {0xE7, 0x63},
|
||||
{0xE7, 0x327}, {0xE8, 0x65}, {0xE8, 0x300}, {0xE9, 0x65}, {0xE9, 0x301}, {0xEA, 0x65}, {0xEA, 0x302}, {0xEB, 0x65}, {0xEB, 0x308}, {0xEC, 0x69}, {0xEC, 0x300}, {0xED, 0x69}, {0xED, 0x301},
|
||||
{0xEE, 0x69}, {0xEE, 0x302}, {0xEF, 0x69}, {0xEF, 0x308}, {0xF1, 0x6E}, {0xF1, 0x303}, {0xF2, 0x6F}, {0xF2, 0x300}, {0xF3, 0x6F}, {0xF3, 0x301}, {0xF4, 0x6F}, {0xF4, 0x302}, {0xF5, 0x6F},
|
||||
{0xF5, 0x303}, {0xF6, 0x6F}, {0xF6, 0x308}, {0xF9, 0x75}, {0xF9, 0x300}, {0xFA, 0x75}, {0xFA, 0x301}, {0xFB, 0x75}, {0xFB, 0x302}, {0xFC, 0x75}, {0xFC, 0x308}, {0xFD, 0x79}, {0xFD, 0x301},
|
||||
{0xFF, 0x79}, {0xFF, 0x308}, {0x100, 0x41}, {0x100, 0x304}, {0x101, 0x61}, {0x101, 0x304}, {0x102, 0x41}, {0x102, 0x306}, {0x103, 0x61}, {0x103, 0x306}, {0x104, 0x41}, {0x104, 0x328}, {0x105, 0x61},
|
||||
{0x105, 0x328}, {0x106, 0x43}, {0x106, 0x301}, {0x107, 0x63}, {0x107, 0x301}, {0x108, 0x43}, {0x108, 0x302}, {0x109, 0x63}, {0x109, 0x302}, {0x10A, 0x43}, {0x10A, 0x307}, {0x10B, 0x63},
|
||||
{0x10B, 0x307}, {0x10C, 0x43}, {0x10C, 0x30C}, {0x10D, 0x63}, {0x10D, 0x30C}, {0x10E, 0x44}, {0x10E, 0x30C}, {0x10F, 0x64}, {0x10F, 0x30C}, {0x112, 0x45}, {0x112, 0x304}, {0x113, 0x65},
|
||||
{0x113, 0x304}, {0x114, 0x45}, {0x114, 0x306}, {0x115, 0x65}, {0x115, 0x306}, {0x116, 0x45}, {0x116, 0x307}, {0x117, 0x65}, {0x117, 0x307}, {0x118, 0x45}, {0x118, 0x328}, {0x119, 0x65},
|
||||
{0x119, 0x328}, {0x11A, 0x45}, {0x11A, 0x30C}, {0x11B, 0x65}, {0x11B, 0x30C}, {0x11C, 0x47}, {0x11C, 0x302}, {0x11D, 0x67}, {0x11D, 0x302}, {0x11E, 0x47}, {0x11E, 0x306}, {0x11F, 0x67},
|
||||
{0x11F, 0x306}, {0x120, 0x47}, {0x120, 0x307}, {0x121, 0x67}, {0x121, 0x307}, {0x122, 0x47}, {0x122, 0x327}, {0x123, 0x67}, {0x123, 0x327}, {0x124, 0x48}, {0x124, 0x302}, {0x125, 0x68},
|
||||
{0x125, 0x302}, {0x128, 0x49}, {0x128, 0x303}, {0x129, 0x69}, {0x129, 0x303}, {0x12A, 0x49}, {0x12A, 0x304}, {0x12B, 0x69}, {0x12B, 0x304}, {0x12C, 0x49}, {0x12C, 0x306}, {0x12D, 0x69},
|
||||
{0x12D, 0x306}, {0x12E, 0x49}, {0x12E, 0x328}, {0x12F, 0x69}, {0x12F, 0x328}, {0x130, 0x49}, {0x130, 0x307}, {0x134, 0x4A}, {0x134, 0x302}, {0x135, 0x6A}, {0x135, 0x302}, {0x136, 0x4B},
|
||||
{0x136, 0x327}, {0x137, 0x6B}, {0x137, 0x327}, {0x139, 0x4C}, {0x139, 0x301}, {0x13A, 0x6C}, {0x13A, 0x301}, {0x13B, 0x4C}, {0x13B, 0x327}, {0x13C, 0x6C}, {0x13C, 0x327}, {0x13D, 0x4C},
|
||||
{0x13D, 0x30C}, {0x13E, 0x6C}, {0x13E, 0x30C}, {0x143, 0x4E}, {0x143, 0x301}, {0x144, 0x6E}, {0x144, 0x301}, {0x145, 0x4E}, {0x145, 0x327}, {0x146, 0x6E}, {0x146, 0x327}, {0x147, 0x4E},
|
||||
{0x147, 0x30C}, {0x148, 0x6E}, {0x148, 0x30C}, {0x14C, 0x4F}, {0x14C, 0x304}, {0x14D, 0x6F}, {0x14D, 0x304}, {0x14E, 0x4F}, {0x14E, 0x306}, {0x14F, 0x6F}, {0x14F, 0x306}, {0x150, 0x4F},
|
||||
{0x150, 0x30B}, {0x151, 0x6F}, {0x151, 0x30B}, {0x154, 0x52}, {0x154, 0x301}, {0x155, 0x72}, {0x155, 0x301}, {0x156, 0x52}, {0x156, 0x327}, {0x157, 0x72}, {0x157, 0x327}, {0x158, 0x52},
|
||||
{0x158, 0x30C}, {0x159, 0x72}, {0x159, 0x30C}, {0x15A, 0x53}, {0x15A, 0x301}, {0x15B, 0x73}, {0x15B, 0x301}, {0x15C, 0x53}, {0x15C, 0x302}, {0x15D, 0x73}, {0x15D, 0x302}, {0x15E, 0x53},
|
||||
{0x15E, 0x327}, {0x15F, 0x73}, {0x15F, 0x327}, {0x160, 0x53}, {0x160, 0x30C}, {0x161, 0x73}, {0x161, 0x30C}, {0x162, 0x54}, {0x162, 0x327}, {0x163, 0x74}, {0x163, 0x327}, {0x164, 0x54},
|
||||
{0x164, 0x30C}, {0x165, 0x74}, {0x165, 0x30C}, {0x168, 0x55}, {0x168, 0x303}, {0x169, 0x75}, {0x169, 0x303}, {0x16A, 0x55}, {0x16A, 0x304}, {0x16B, 0x75}, {0x16B, 0x304}, {0x16C, 0x55},
|
||||
{0x16C, 0x306}, {0x16D, 0x75}, {0x16D, 0x306}, {0x16E, 0x55}, {0x16E, 0x30A}, {0x16F, 0x75}, {0x16F, 0x30A}, {0x170, 0x55}, {0x170, 0x30B}, {0x171, 0x75}, {0x171, 0x30B}, {0x172, 0x55},
|
||||
{0x172, 0x328}, {0x173, 0x75}, {0x173, 0x328}, {0x174, 0x57}, {0x174, 0x302}, {0x175, 0x77}, {0x175, 0x302}, {0x176, 0x59}, {0x176, 0x302}, {0x177, 0x79}, {0x177, 0x302}, {0x178, 0x59},
|
||||
{0x178, 0x308}, {0x179, 0x5A}, {0x179, 0x301}, {0x17A, 0x7A}, {0x17A, 0x301}, {0x17B, 0x5A}, {0x17B, 0x307}, {0x17C, 0x7A}, {0x17C, 0x307}, {0x17D, 0x5A}, {0x17D, 0x30C}, {0x17E, 0x7A},
|
||||
{0x17E, 0x30C}, {0x1A0, 0x4F}, {0x1A0, 0x31B}, {0x1A1, 0x6F}, {0x1A1, 0x31B}, {0x1AF, 0x55}, {0x1AF, 0x31B}, {0x1B0, 0x75}, {0x1B0, 0x31B}, {0x1CD, 0x41}, {0x1CD, 0x30C}, {0x1CE, 0x61},
|
||||
{0x1CE, 0x30C}, {0x1CF, 0x49}, {0x1CF, 0x30C}, {0x1D0, 0x69}, {0x1D0, 0x30C}, {0x1D1, 0x4F}, {0x1D1, 0x30C}, {0x1D2, 0x6F}, {0x1D2, 0x30C}, {0x1D3, 0x55}, {0x1D3, 0x30C}, {0x1D4, 0x75},
|
||||
{0x1D4, 0x30C}, {0x1D5, 0x55}, {0x1D5, 0x308}, {0x1D5, 0x304}, {0x1D6, 0x75}, {0x1D6, 0x308}, {0x1D6, 0x304}, {0x1D7, 0x55}, {0x1D7, 0x308}, {0x1D7, 0x301}, {0x1D8, 0x75}, {0x1D8, 0x308},
|
||||
{0x1D8, 0x301}, {0x1D9, 0x55}, {0x1D9, 0x308}, {0x1D9, 0x30C}, {0x1DA, 0x75}, {0x1DA, 0x308}, {0x1DA, 0x30C}, {0x1DB, 0x55}, {0x1DB, 0x308}, {0x1DB, 0x300}, {0x1DC, 0x75}, {0x1DC, 0x308},
|
||||
{0x1DC, 0x300}, {0x1DE, 0x41}, {0x1DE, 0x308}, {0x1DE, 0x304}, {0x1DF, 0x61}, {0x1DF, 0x308}, {0x1DF, 0x304}, {0x1E0, 0x41}, {0x1E0, 0x307}, {0x1E0, 0x304}, {0x1E1, 0x61}, {0x1E1, 0x307},
|
||||
{0x1E1, 0x304}, {0x1E2, 0xC6}, {0x1E2, 0x304}, {0x1E3, 0xE6}, {0x1E3, 0x304}, {0x1E6, 0x47}, {0x1E6, 0x30C}, {0x1E7, 0x67}, {0x1E7, 0x30C}, {0x1E8, 0x4B}, {0x1E8, 0x30C}, {0x1E9, 0x6B},
|
||||
{0x1E9, 0x30C}, {0x1EA, 0x4F}, {0x1EA, 0x328}, {0x1EB, 0x6F}, {0x1EB, 0x328}, {0x1EC, 0x4F}, {0x1EC, 0x328}, {0x1EC, 0x304}, {0x1ED, 0x6F}, {0x1ED, 0x328}, {0x1ED, 0x304}, {0x1EE, 0x1B7},
|
||||
{0x1EE, 0x30C}, {0x1EF, 0x292}, {0x1EF, 0x30C}, {0x1F0, 0x6A}, {0x1F0, 0x30C}, {0x1F4, 0x47}, {0x1F4, 0x301}, {0x1F5, 0x67}, {0x1F5, 0x301}, {0x1F8, 0x4E}, {0x1F8, 0x300}, {0x1F9, 0x6E},
|
||||
{0x1F9, 0x300}, {0x1FA, 0x41}, {0x1FA, 0x30A}, {0x1FA, 0x301}, {0x1FB, 0x61}, {0x1FB, 0x30A}, {0x1FB, 0x301}, {0x1FC, 0xC6}, {0x1FC, 0x301}, {0x1FD, 0xE6}, {0x1FD, 0x301}, {0x1FE, 0xD8},
|
||||
{0x1FE, 0x301}, {0x1FF, 0xF8}, {0x1FF, 0x301}, {0x200, 0x41}, {0x200, 0x30F}, {0x201, 0x61}, {0x201, 0x30F}, {0x202, 0x41}, {0x202, 0x311}, {0x203, 0x61}, {0x203, 0x311}, {0x204, 0x45},
|
||||
{0x204, 0x30F}, {0x205, 0x65}, {0x205, 0x30F}, {0x206, 0x45}, {0x206, 0x311}, {0x207, 0x65}, {0x207, 0x311}, {0x208, 0x49}, {0x208, 0x30F}, {0x209, 0x69}, {0x209, 0x30F}, {0x20A, 0x49},
|
||||
{0x20A, 0x311}, {0x20B, 0x69}, {0x20B, 0x311}, {0x20C, 0x4F}, {0x20C, 0x30F}, {0x20D, 0x6F}, {0x20D, 0x30F}, {0x20E, 0x4F}, {0x20E, 0x311}, {0x20F, 0x6F}, {0x20F, 0x311}, {0x210, 0x52},
|
||||
{0x210, 0x30F}, {0x211, 0x72}, {0x211, 0x30F}, {0x212, 0x52}, {0x212, 0x311}, {0x213, 0x72}, {0x213, 0x311}, {0x214, 0x55}, {0x214, 0x30F}, {0x215, 0x75}, {0x215, 0x30F}, {0x216, 0x55},
|
||||
{0x216, 0x311}, {0x217, 0x75}, {0x217, 0x311}, {0x218, 0x53}, {0x218, 0x326}, {0x219, 0x73}, {0x219, 0x326}, {0x21A, 0x54}, {0x21A, 0x326}, {0x21B, 0x74}, {0x21B, 0x326}, {0x21E, 0x48},
|
||||
{0x21E, 0x30C}, {0x21F, 0x68}, {0x21F, 0x30C}, {0x226, 0x41}, {0x226, 0x307}, {0x227, 0x61}, {0x227, 0x307}, {0x228, 0x45}, {0x228, 0x327}, {0x229, 0x65}, {0x229, 0x327}, {0x22A, 0x4F},
|
||||
{0x22A, 0x308}, {0x22A, 0x304}, {0x22B, 0x6F}, {0x22B, 0x308}, {0x22B, 0x304}, {0x22C, 0x4F}, {0x22C, 0x303}, {0x22C, 0x304}, {0x22D, 0x6F}, {0x22D, 0x303}, {0x22D, 0x304}, {0x22E, 0x4F},
|
||||
{0x22E, 0x307}, {0x22F, 0x6F}, {0x22F, 0x307}, {0x230, 0x4F}, {0x230, 0x307}, {0x230, 0x304}, {0x231, 0x6F}, {0x231, 0x307}, {0x231, 0x304}, {0x232, 0x59}, {0x232, 0x304}, {0x233, 0x79},
|
||||
{0x233, 0x304}, {0x340, 0x300}, {0x341, 0x301}, {0x343, 0x313}, {0x344, 0x308}, {0x344, 0x301}, {0x374, 0x2B9}, {0x37E, 0x3B}, {0x385, 0xA8}, {0x385, 0x301}, {0x386, 0x391}, {0x386, 0x301},
|
||||
{0x387, 0xB7}, {0x388, 0x395}, {0x388, 0x301}, {0x389, 0x397}, {0x389, 0x301}, {0x38A, 0x399}, {0x38A, 0x301}, {0x38C, 0x39F}, {0x38C, 0x301}, {0x38E, 0x3A5}, {0x38E, 0x301}, {0x38F, 0x3A9},
|
||||
{0x38F, 0x301}, {0x390, 0x3B9}, {0x390, 0x308}, {0x390, 0x301}, {0x3AA, 0x399}, {0x3AA, 0x308}, {0x3AB, 0x3A5}, {0x3AB, 0x308}, {0x3AC, 0x3B1}, {0x3AC, 0x301}, {0x3AD, 0x3B5}, {0x3AD, 0x301},
|
||||
{0x3AE, 0x3B7}, {0x3AE, 0x301}, {0x3AF, 0x3B9}, {0x3AF, 0x301}, {0x3B0, 0x3C5}, {0x3B0, 0x308}, {0x3B0, 0x301}, {0x3CA, 0x3B9}, {0x3CA, 0x308}, {0x3CB, 0x3C5}, {0x3CB, 0x308}, {0x3CC, 0x3BF},
|
||||
{0x3CC, 0x301}, {0x3CD, 0x3C5}, {0x3CD, 0x301}, {0x3CE, 0x3C9}, {0x3CE, 0x301}, {0x3D3, 0x3D2}, {0x3D3, 0x301}, {0x3D4, 0x3D2}, {0x3D4, 0x308}, {0x400, 0x415}, {0x400, 0x300}, {0x401, 0x415},
|
||||
{0x401, 0x308}, {0x403, 0x413}, {0x403, 0x301}, {0x407, 0x406}, {0x407, 0x308}, {0x40C, 0x41A}, {0x40C, 0x301}, {0x40D, 0x418}, {0x40D, 0x300}, {0x40E, 0x423}, {0x40E, 0x306}, {0x419, 0x418},
|
||||
{0x419, 0x306}, {0x439, 0x438}, {0x439, 0x306}, {0x450, 0x435}, {0x450, 0x300}, {0x451, 0x435}, {0x451, 0x308}, {0x453, 0x433}, {0x453, 0x301}, {0x457, 0x456}, {0x457, 0x308}, {0x45C, 0x43A},
|
||||
{0x45C, 0x301}, {0x45D, 0x438}, {0x45D, 0x300}, {0x45E, 0x443}, {0x45E, 0x306}, {0x476, 0x474}, {0x476, 0x30F}, {0x477, 0x475}, {0x477, 0x30F}, {0x4C1, 0x416}, {0x4C1, 0x306}, {0x4C2, 0x436},
|
||||
{0x4C2, 0x306}, {0x4D0, 0x410}, {0x4D0, 0x306}, {0x4D1, 0x430}, {0x4D1, 0x306}, {0x4D2, 0x410}, {0x4D2, 0x308}, {0x4D3, 0x430}, {0x4D3, 0x308}, {0x4D6, 0x415}, {0x4D6, 0x306}, {0x4D7, 0x435},
|
||||
{0x4D7, 0x306}, {0x4DA, 0x4D8}, {0x4DA, 0x308}, {0x4DB, 0x4D9}, {0x4DB, 0x308}, {0x4DC, 0x416}, {0x4DC, 0x308}, {0x4DD, 0x436}, {0x4DD, 0x308}, {0x4DE, 0x417}, {0x4DE, 0x308}, {0x4DF, 0x437},
|
||||
{0x4DF, 0x308}, {0x4E2, 0x418}, {0x4E2, 0x304}, {0x4E3, 0x438}, {0x4E3, 0x304}, {0x4E4, 0x418}, {0x4E4, 0x308}, {0x4E5, 0x438}, {0x4E5, 0x308}, {0x4E6, 0x41E}, {0x4E6, 0x308}, {0x4E7, 0x43E},
|
||||
{0x4E7, 0x308}, {0x4EA, 0x4E8}, {0x4EA, 0x308}, {0x4EB, 0x4E9}, {0x4EB, 0x308}, {0x4EC, 0x42D}, {0x4EC, 0x308}, {0x4ED, 0x44D}, {0x4ED, 0x308}, {0x4EE, 0x423}, {0x4EE, 0x304}, {0x4EF, 0x443},
|
||||
{0x4EF, 0x304}, {0x4F0, 0x423}, {0x4F0, 0x308}, {0x4F1, 0x443}, {0x4F1, 0x308}, {0x4F2, 0x423}, {0x4F2, 0x30B}, {0x4F3, 0x443}, {0x4F3, 0x30B}, {0x4F4, 0x427}, {0x4F4, 0x308}, {0x4F5, 0x447},
|
||||
{0x4F5, 0x308}, {0x4F8, 0x42B}, {0x4F8, 0x308}, {0x4F9, 0x44B}, {0x4F9, 0x308}, {0x622, 0x627}, {0x622, 0x653}, {0x623, 0x627}, {0x623, 0x654}, {0x624, 0x648}, {0x624, 0x654}, {0x625, 0x627},
|
||||
{0x625, 0x655}, {0x626, 0x64A}, {0x626, 0x654}, {0x6C0, 0x6D5}, {0x6C0, 0x654}, {0x6C2, 0x6C1}, {0x6C2, 0x654}, {0x6D3, 0x6D2}, {0x6D3, 0x654}, {0x929, 0x928}, {0x929, 0x93C}, {0x931, 0x930},
|
||||
{0x931, 0x93C}, {0x934, 0x933}, {0x934, 0x93C}, {0x958, 0x915}, {0x958, 0x93C}, {0x959, 0x916}, {0x959, 0x93C}, {0x95A, 0x917}, {0x95A, 0x93C}, {0x95B, 0x91C}, {0x95B, 0x93C}, {0x95C, 0x921},
|
||||
{0x95C, 0x93C}, {0x95D, 0x922}, {0x95D, 0x93C}, {0x95E, 0x92B}, {0x95E, 0x93C}, {0x95F, 0x92F}, {0x95F, 0x93C}, {0x9CB, 0x9C7}, {0x9CB, 0x9BE}, {0x9CC, 0x9C7}, {0x9CC, 0x9D7}, {0x9DC, 0x9A1},
|
||||
{0x9DC, 0x9BC}, {0x9DD, 0x9A2}, {0x9DD, 0x9BC}, {0x9DF, 0x9AF}, {0x9DF, 0x9BC}, {0xA33, 0xA32}, {0xA33, 0xA3C}, {0xA36, 0xA38}, {0xA36, 0xA3C}, {0xA59, 0xA16}, {0xA59, 0xA3C}, {0xA5A, 0xA17},
|
||||
{0xA5A, 0xA3C}, {0xA5B, 0xA1C}, {0xA5B, 0xA3C}, {0xA5E, 0xA2B}, {0xA5E, 0xA3C}, {0xB48, 0xB47}, {0xB48, 0xB56}, {0xB4B, 0xB47}, {0xB4B, 0xB3E}, {0xB4C, 0xB47}, {0xB4C, 0xB57}, {0xB5C, 0xB21},
|
||||
{0xB5C, 0xB3C}, {0xB5D, 0xB22}, {0xB5D, 0xB3C}, {0xB94, 0xB92}, {0xB94, 0xBD7}, {0xBCA, 0xBC6}, {0xBCA, 0xBBE}, {0xBCB, 0xBC7}, {0xBCB, 0xBBE}, {0xBCC, 0xBC6}, {0xBCC, 0xBD7}, {0xC48, 0xC46},
|
||||
{0xC48, 0xC56}, {0xCC0, 0xCBF}, {0xCC0, 0xCD5}, {0xCC7, 0xCC6}, {0xCC7, 0xCD5}, {0xCC8, 0xCC6}, {0xCC8, 0xCD6}, {0xCCA, 0xCC6}, {0xCCA, 0xCC2}, {0xCCB, 0xCC6}, {0xCCB, 0xCC2}, {0xCCB, 0xCD5},
|
||||
{0xD4A, 0xD46}, {0xD4A, 0xD3E}, {0xD4B, 0xD47}, {0xD4B, 0xD3E}, {0xD4C, 0xD46}, {0xD4C, 0xD57}, {0xDDA, 0xDD9}, {0xDDA, 0xDCA}, {0xDDC, 0xDD9}, {0xDDC, 0xDCF}, {0xDDD, 0xDD9}, {0xDDD, 0xDCF},
|
||||
{0xDDD, 0xDCA}, {0xDDE, 0xDD9}, {0xDDE, 0xDDF}, {0xF43, 0xF42}, {0xF43, 0xFB7}, {0xF4D, 0xF4C}, {0xF4D, 0xFB7}, {0xF52, 0xF51}, {0xF52, 0xFB7}, {0xF57, 0xF56}, {0xF57, 0xFB7}, {0xF5C, 0xF5B},
|
||||
{0xF5C, 0xFB7}, {0xF69, 0xF40}, {0xF69, 0xFB5}, {0xF73, 0xF71}, {0xF73, 0xF72}, {0xF75, 0xF71}, {0xF75, 0xF74}, {0xF76, 0xFB2}, {0xF76, 0xF80}, {0xF78, 0xFB3}, {0xF78, 0xF80}, {0xF81, 0xF71},
|
||||
{0xF81, 0xF80}, {0xF93, 0xF92}, {0xF93, 0xFB7}, {0xF9D, 0xF9C}, {0xF9D, 0xFB7}, {0xFA2, 0xFA1}, {0xFA2, 0xFB7}, {0xFA7, 0xFA6}, {0xFA7, 0xFB7}, {0xFAC, 0xFAB}, {0xFAC, 0xFB7}, {0xFB9, 0xF90},
|
||||
{0xFB9, 0xFB5}, {0x1026, 0x1025}, {0x1026, 0x102E}, {0x1B06, 0x1B05}, {0x1B06, 0x1B35}, {0x1B08, 0x1B07}, {0x1B08, 0x1B35}, {0x1B0A, 0x1B09}, {0x1B0A, 0x1B35}, {0x1B0C, 0x1B0B}, {0x1B0C, 0x1B35},
|
||||
{0x1B0E, 0x1B0D}, {0x1B0E, 0x1B35}, {0x1B12, 0x1B11}, {0x1B12, 0x1B35}, {0x1B3B, 0x1B3A}, {0x1B3B, 0x1B35}, {0x1B3D, 0x1B3C}, {0x1B3D, 0x1B35}, {0x1B40, 0x1B3E}, {0x1B40, 0x1B35}, {0x1B41, 0x1B3F},
|
||||
{0x1B41, 0x1B35}, {0x1B43, 0x1B42}, {0x1B43, 0x1B35}, {0x1E00, 0x41}, {0x1E00, 0x325}, {0x1E01, 0x61}, {0x1E01, 0x325}, {0x1E02, 0x42}, {0x1E02, 0x307}, {0x1E03, 0x62}, {0x1E03, 0x307},
|
||||
{0x1E04, 0x42}, {0x1E04, 0x323}, {0x1E05, 0x62}, {0x1E05, 0x323}, {0x1E06, 0x42}, {0x1E06, 0x331}, {0x1E07, 0x62}, {0x1E07, 0x331}, {0x1E08, 0x43}, {0x1E08, 0x327}, {0x1E08, 0x301}, {0x1E09, 0x63},
|
||||
{0x1E09, 0x327}, {0x1E09, 0x301}, {0x1E0A, 0x44}, {0x1E0A, 0x307}, {0x1E0B, 0x64}, {0x1E0B, 0x307}, {0x1E0C, 0x44}, {0x1E0C, 0x323}, {0x1E0D, 0x64}, {0x1E0D, 0x323}, {0x1E0E, 0x44}, {0x1E0E, 0x331},
|
||||
{0x1E0F, 0x64}, {0x1E0F, 0x331}, {0x1E10, 0x44}, {0x1E10, 0x327}, {0x1E11, 0x64}, {0x1E11, 0x327}, {0x1E12, 0x44}, {0x1E12, 0x32D}, {0x1E13, 0x64}, {0x1E13, 0x32D}, {0x1E14, 0x45}, {0x1E14, 0x304},
|
||||
{0x1E14, 0x300}, {0x1E15, 0x65}, {0x1E15, 0x304}, {0x1E15, 0x300}, {0x1E16, 0x45}, {0x1E16, 0x304}, {0x1E16, 0x301}, {0x1E17, 0x65}, {0x1E17, 0x304}, {0x1E17, 0x301}, {0x1E18, 0x45}, {0x1E18, 0x32D},
|
||||
{0x1E19, 0x65}, {0x1E19, 0x32D}, {0x1E1A, 0x45}, {0x1E1A, 0x330}, {0x1E1B, 0x65}, {0x1E1B, 0x330}, {0x1E1C, 0x45}, {0x1E1C, 0x327}, {0x1E1C, 0x306}, {0x1E1D, 0x65}, {0x1E1D, 0x327}, {0x1E1D, 0x306},
|
||||
{0x1E1E, 0x46}, {0x1E1E, 0x307}, {0x1E1F, 0x66}, {0x1E1F, 0x307}, {0x1E20, 0x47}, {0x1E20, 0x304}, {0x1E21, 0x67}, {0x1E21, 0x304}, {0x1E22, 0x48}, {0x1E22, 0x307}, {0x1E23, 0x68}, {0x1E23, 0x307},
|
||||
{0x1E24, 0x48}, {0x1E24, 0x323}, {0x1E25, 0x68}, {0x1E25, 0x323}, {0x1E26, 0x48}, {0x1E26, 0x308}, {0x1E27, 0x68}, {0x1E27, 0x308}, {0x1E28, 0x48}, {0x1E28, 0x327}, {0x1E29, 0x68}, {0x1E29, 0x327},
|
||||
{0x1E2A, 0x48}, {0x1E2A, 0x32E}, {0x1E2B, 0x68}, {0x1E2B, 0x32E}, {0x1E2C, 0x49}, {0x1E2C, 0x330}, {0x1E2D, 0x69}, {0x1E2D, 0x330}, {0x1E2E, 0x49}, {0x1E2E, 0x308}, {0x1E2E, 0x301}, {0x1E2F, 0x69},
|
||||
{0x1E2F, 0x308}, {0x1E2F, 0x301}, {0x1E30, 0x4B}, {0x1E30, 0x301}, {0x1E31, 0x6B}, {0x1E31, 0x301}, {0x1E32, 0x4B}, {0x1E32, 0x323}, {0x1E33, 0x6B}, {0x1E33, 0x323}, {0x1E34, 0x4B}, {0x1E34, 0x331},
|
||||
{0x1E35, 0x6B}, {0x1E35, 0x331}, {0x1E36, 0x4C}, {0x1E36, 0x323}, {0x1E37, 0x6C}, {0x1E37, 0x323}, {0x1E38, 0x4C}, {0x1E38, 0x323}, {0x1E38, 0x304}, {0x1E39, 0x6C}, {0x1E39, 0x323}, {0x1E39, 0x304},
|
||||
{0x1E3A, 0x4C}, {0x1E3A, 0x331}, {0x1E3B, 0x6C}, {0x1E3B, 0x331}, {0x1E3C, 0x4C}, {0x1E3C, 0x32D}, {0x1E3D, 0x6C}, {0x1E3D, 0x32D}, {0x1E3E, 0x4D}, {0x1E3E, 0x301}, {0x1E3F, 0x6D}, {0x1E3F, 0x301},
|
||||
{0x1E40, 0x4D}, {0x1E40, 0x307}, {0x1E41, 0x6D}, {0x1E41, 0x307}, {0x1E42, 0x4D}, {0x1E42, 0x323}, {0x1E43, 0x6D}, {0x1E43, 0x323}, {0x1E44, 0x4E}, {0x1E44, 0x307}, {0x1E45, 0x6E}, {0x1E45, 0x307},
|
||||
{0x1E46, 0x4E}, {0x1E46, 0x323}, {0x1E47, 0x6E}, {0x1E47, 0x323}, {0x1E48, 0x4E}, {0x1E48, 0x331}, {0x1E49, 0x6E}, {0x1E49, 0x331}, {0x1E4A, 0x4E}, {0x1E4A, 0x32D}, {0x1E4B, 0x6E}, {0x1E4B, 0x32D},
|
||||
{0x1E4C, 0x4F}, {0x1E4C, 0x303}, {0x1E4C, 0x301}, {0x1E4D, 0x6F}, {0x1E4D, 0x303}, {0x1E4D, 0x301}, {0x1E4E, 0x4F}, {0x1E4E, 0x303}, {0x1E4E, 0x308}, {0x1E4F, 0x6F}, {0x1E4F, 0x303}, {0x1E4F, 0x308},
|
||||
{0x1E50, 0x4F}, {0x1E50, 0x304}, {0x1E50, 0x300}, {0x1E51, 0x6F}, {0x1E51, 0x304}, {0x1E51, 0x300}, {0x1E52, 0x4F}, {0x1E52, 0x304}, {0x1E52, 0x301}, {0x1E53, 0x6F}, {0x1E53, 0x304}, {0x1E53, 0x301},
|
||||
{0x1E54, 0x50}, {0x1E54, 0x301}, {0x1E55, 0x70}, {0x1E55, 0x301}, {0x1E56, 0x50}, {0x1E56, 0x307}, {0x1E57, 0x70}, {0x1E57, 0x307}, {0x1E58, 0x52}, {0x1E58, 0x307}, {0x1E59, 0x72}, {0x1E59, 0x307},
|
||||
{0x1E5A, 0x52}, {0x1E5A, 0x323}, {0x1E5B, 0x72}, {0x1E5B, 0x323}, {0x1E5C, 0x52}, {0x1E5C, 0x323}, {0x1E5C, 0x304}, {0x1E5D, 0x72}, {0x1E5D, 0x323}, {0x1E5D, 0x304}, {0x1E5E, 0x52}, {0x1E5E, 0x331},
|
||||
{0x1E5F, 0x72}, {0x1E5F, 0x331}, {0x1E60, 0x53}, {0x1E60, 0x307}, {0x1E61, 0x73}, {0x1E61, 0x307}, {0x1E62, 0x53}, {0x1E62, 0x323}, {0x1E63, 0x73}, {0x1E63, 0x323}, {0x1E64, 0x53}, {0x1E64, 0x301},
|
||||
{0x1E64, 0x307}, {0x1E65, 0x73}, {0x1E65, 0x301}, {0x1E65, 0x307}, {0x1E66, 0x53}, {0x1E66, 0x30C}, {0x1E66, 0x307}, {0x1E67, 0x73}, {0x1E67, 0x30C}, {0x1E67, 0x307}, {0x1E68, 0x53}, {0x1E68, 0x323},
|
||||
{0x1E68, 0x307}, {0x1E69, 0x73}, {0x1E69, 0x323}, {0x1E69, 0x307}, {0x1E6A, 0x54}, {0x1E6A, 0x307}, {0x1E6B, 0x74}, {0x1E6B, 0x307}, {0x1E6C, 0x54}, {0x1E6C, 0x323}, {0x1E6D, 0x74}, {0x1E6D, 0x323},
|
||||
{0x1E6E, 0x54}, {0x1E6E, 0x331}, {0x1E6F, 0x74}, {0x1E6F, 0x331}, {0x1E70, 0x54}, {0x1E70, 0x32D}, {0x1E71, 0x74}, {0x1E71, 0x32D}, {0x1E72, 0x55}, {0x1E72, 0x324}, {0x1E73, 0x75}, {0x1E73, 0x324},
|
||||
{0x1E74, 0x55}, {0x1E74, 0x330}, {0x1E75, 0x75}, {0x1E75, 0x330}, {0x1E76, 0x55}, {0x1E76, 0x32D}, {0x1E77, 0x75}, {0x1E77, 0x32D}, {0x1E78, 0x55}, {0x1E78, 0x303}, {0x1E78, 0x301}, {0x1E79, 0x75},
|
||||
{0x1E79, 0x303}, {0x1E79, 0x301}, {0x1E7A, 0x55}, {0x1E7A, 0x304}, {0x1E7A, 0x308}, {0x1E7B, 0x75}, {0x1E7B, 0x304}, {0x1E7B, 0x308}, {0x1E7C, 0x56}, {0x1E7C, 0x303}, {0x1E7D, 0x76}, {0x1E7D, 0x303},
|
||||
{0x1E7E, 0x56}, {0x1E7E, 0x323}, {0x1E7F, 0x76}, {0x1E7F, 0x323}, {0x1E80, 0x57}, {0x1E80, 0x300}, {0x1E81, 0x77}, {0x1E81, 0x300}, {0x1E82, 0x57}, {0x1E82, 0x301}, {0x1E83, 0x77}, {0x1E83, 0x301},
|
||||
{0x1E84, 0x57}, {0x1E84, 0x308}, {0x1E85, 0x77}, {0x1E85, 0x308}, {0x1E86, 0x57}, {0x1E86, 0x307}, {0x1E87, 0x77}, {0x1E87, 0x307}, {0x1E88, 0x57}, {0x1E88, 0x323}, {0x1E89, 0x77}, {0x1E89, 0x323},
|
||||
{0x1E8A, 0x58}, {0x1E8A, 0x307}, {0x1E8B, 0x78}, {0x1E8B, 0x307}, {0x1E8C, 0x58}, {0x1E8C, 0x308}, {0x1E8D, 0x78}, {0x1E8D, 0x308}, {0x1E8E, 0x59}, {0x1E8E, 0x307}, {0x1E8F, 0x79}, {0x1E8F, 0x307},
|
||||
{0x1E90, 0x5A}, {0x1E90, 0x302}, {0x1E91, 0x7A}, {0x1E91, 0x302}, {0x1E92, 0x5A}, {0x1E92, 0x323}, {0x1E93, 0x7A}, {0x1E93, 0x323}, {0x1E94, 0x5A}, {0x1E94, 0x331}, {0x1E95, 0x7A}, {0x1E95, 0x331},
|
||||
{0x1E96, 0x68}, {0x1E96, 0x331}, {0x1E97, 0x74}, {0x1E97, 0x308}, {0x1E98, 0x77}, {0x1E98, 0x30A}, {0x1E99, 0x79}, {0x1E99, 0x30A}, {0x1E9B, 0x17F}, {0x1E9B, 0x307}, {0x1EA0, 0x41}, {0x1EA0, 0x323},
|
||||
{0x1EA1, 0x61}, {0x1EA1, 0x323}, {0x1EA2, 0x41}, {0x1EA2, 0x309}, {0x1EA3, 0x61}, {0x1EA3, 0x309}, {0x1EA4, 0x41}, {0x1EA4, 0x302}, {0x1EA4, 0x301}, {0x1EA5, 0x61}, {0x1EA5, 0x302}, {0x1EA5, 0x301},
|
||||
{0x1EA6, 0x41}, {0x1EA6, 0x302}, {0x1EA6, 0x300}, {0x1EA7, 0x61}, {0x1EA7, 0x302}, {0x1EA7, 0x300}, {0x1EA8, 0x41}, {0x1EA8, 0x302}, {0x1EA8, 0x309}, {0x1EA9, 0x61}, {0x1EA9, 0x302}, {0x1EA9, 0x309},
|
||||
{0x1EAA, 0x41}, {0x1EAA, 0x302}, {0x1EAA, 0x303}, {0x1EAB, 0x61}, {0x1EAB, 0x302}, {0x1EAB, 0x303}, {0x1EAC, 0x41}, {0x1EAC, 0x323}, {0x1EAC, 0x302}, {0x1EAD, 0x61}, {0x1EAD, 0x323}, {0x1EAD, 0x302},
|
||||
{0x1EAE, 0x41}, {0x1EAE, 0x306}, {0x1EAE, 0x301}, {0x1EAF, 0x61}, {0x1EAF, 0x306}, {0x1EAF, 0x301}, {0x1EB0, 0x41}, {0x1EB0, 0x306}, {0x1EB0, 0x300}, {0x1EB1, 0x61}, {0x1EB1, 0x306}, {0x1EB1, 0x300},
|
||||
{0x1EB2, 0x41}, {0x1EB2, 0x306}, {0x1EB2, 0x309}, {0x1EB3, 0x61}, {0x1EB3, 0x306}, {0x1EB3, 0x309}, {0x1EB4, 0x41}, {0x1EB4, 0x306}, {0x1EB4, 0x303}, {0x1EB5, 0x61}, {0x1EB5, 0x306}, {0x1EB5, 0x303},
|
||||
{0x1EB6, 0x41}, {0x1EB6, 0x323}, {0x1EB6, 0x306}, {0x1EB7, 0x61}, {0x1EB7, 0x323}, {0x1EB7, 0x306}, {0x1EB8, 0x45}, {0x1EB8, 0x323}, {0x1EB9, 0x65}, {0x1EB9, 0x323}, {0x1EBA, 0x45}, {0x1EBA, 0x309},
|
||||
{0x1EBB, 0x65}, {0x1EBB, 0x309}, {0x1EBC, 0x45}, {0x1EBC, 0x303}, {0x1EBD, 0x65}, {0x1EBD, 0x303}, {0x1EBE, 0x45}, {0x1EBE, 0x302}, {0x1EBE, 0x301}, {0x1EBF, 0x65}, {0x1EBF, 0x302}, {0x1EBF, 0x301},
|
||||
{0x1EC0, 0x45}, {0x1EC0, 0x302}, {0x1EC0, 0x300}, {0x1EC1, 0x65}, {0x1EC1, 0x302}, {0x1EC1, 0x300}, {0x1EC2, 0x45}, {0x1EC2, 0x302}, {0x1EC2, 0x309}, {0x1EC3, 0x65}, {0x1EC3, 0x302}, {0x1EC3, 0x309},
|
||||
{0x1EC4, 0x45}, {0x1EC4, 0x302}, {0x1EC4, 0x303}, {0x1EC5, 0x65}, {0x1EC5, 0x302}, {0x1EC5, 0x303}, {0x1EC6, 0x45}, {0x1EC6, 0x323}, {0x1EC6, 0x302}, {0x1EC7, 0x65}, {0x1EC7, 0x323}, {0x1EC7, 0x302},
|
||||
{0x1EC8, 0x49}, {0x1EC8, 0x309}, {0x1EC9, 0x69}, {0x1EC9, 0x309}, {0x1ECA, 0x49}, {0x1ECA, 0x323}, {0x1ECB, 0x69}, {0x1ECB, 0x323}, {0x1ECC, 0x4F}, {0x1ECC, 0x323}, {0x1ECD, 0x6F}, {0x1ECD, 0x323},
|
||||
{0x1ECE, 0x4F}, {0x1ECE, 0x309}, {0x1ECF, 0x6F}, {0x1ECF, 0x309}, {0x1ED0, 0x4F}, {0x1ED0, 0x302}, {0x1ED0, 0x301}, {0x1ED1, 0x6F}, {0x1ED1, 0x302}, {0x1ED1, 0x301}, {0x1ED2, 0x4F}, {0x1ED2, 0x302},
|
||||
{0x1ED2, 0x300}, {0x1ED3, 0x6F}, {0x1ED3, 0x302}, {0x1ED3, 0x300}, {0x1ED4, 0x4F}, {0x1ED4, 0x302}, {0x1ED4, 0x309}, {0x1ED5, 0x6F}, {0x1ED5, 0x302}, {0x1ED5, 0x309}, {0x1ED6, 0x4F}, {0x1ED6, 0x302},
|
||||
{0x1ED6, 0x303}, {0x1ED7, 0x6F}, {0x1ED7, 0x302}, {0x1ED7, 0x303}, {0x1ED8, 0x4F}, {0x1ED8, 0x323}, {0x1ED8, 0x302}, {0x1ED9, 0x6F}, {0x1ED9, 0x323}, {0x1ED9, 0x302}, {0x1EDA, 0x4F}, {0x1EDA, 0x31B},
|
||||
{0x1EDA, 0x301}, {0x1EDB, 0x6F}, {0x1EDB, 0x31B}, {0x1EDB, 0x301}, {0x1EDC, 0x4F}, {0x1EDC, 0x31B}, {0x1EDC, 0x300}, {0x1EDD, 0x6F}, {0x1EDD, 0x31B}, {0x1EDD, 0x300}, {0x1EDE, 0x4F}, {0x1EDE, 0x31B},
|
||||
{0x1EDE, 0x309}, {0x1EDF, 0x6F}, {0x1EDF, 0x31B}, {0x1EDF, 0x309}, {0x1EE0, 0x4F}, {0x1EE0, 0x31B}, {0x1EE0, 0x303}, {0x1EE1, 0x6F}, {0x1EE1, 0x31B}, {0x1EE1, 0x303}, {0x1EE2, 0x4F}, {0x1EE2, 0x31B},
|
||||
{0x1EE2, 0x323}, {0x1EE3, 0x6F}, {0x1EE3, 0x31B}, {0x1EE3, 0x323}, {0x1EE4, 0x55}, {0x1EE4, 0x323}, {0x1EE5, 0x75}, {0x1EE5, 0x323}, {0x1EE6, 0x55}, {0x1EE6, 0x309}, {0x1EE7, 0x75}, {0x1EE7, 0x309},
|
||||
{0x1EE8, 0x55}, {0x1EE8, 0x31B}, {0x1EE8, 0x301}, {0x1EE9, 0x75}, {0x1EE9, 0x31B}, {0x1EE9, 0x301}, {0x1EEA, 0x55}, {0x1EEA, 0x31B}, {0x1EEA, 0x300}, {0x1EEB, 0x75}, {0x1EEB, 0x31B}, {0x1EEB, 0x300},
|
||||
{0x1EEC, 0x55}, {0x1EEC, 0x31B}, {0x1EEC, 0x309}, {0x1EED, 0x75}, {0x1EED, 0x31B}, {0x1EED, 0x309}, {0x1EEE, 0x55}, {0x1EEE, 0x31B}, {0x1EEE, 0x303}, {0x1EEF, 0x75}, {0x1EEF, 0x31B}, {0x1EEF, 0x303},
|
||||
{0x1EF0, 0x55}, {0x1EF0, 0x31B}, {0x1EF0, 0x323}, {0x1EF1, 0x75}, {0x1EF1, 0x31B}, {0x1EF1, 0x323}, {0x1EF2, 0x59}, {0x1EF2, 0x300}, {0x1EF3, 0x79}, {0x1EF3, 0x300}, {0x1EF4, 0x59}, {0x1EF4, 0x323},
|
||||
{0x1EF5, 0x79}, {0x1EF5, 0x323}, {0x1EF6, 0x59}, {0x1EF6, 0x309}, {0x1EF7, 0x79}, {0x1EF7, 0x309}, {0x1EF8, 0x59}, {0x1EF8, 0x303}, {0x1EF9, 0x79}, {0x1EF9, 0x303}, {0x1F00, 0x3B1}, {0x1F00, 0x313},
|
||||
{0x1F01, 0x3B1}, {0x1F01, 0x314}, {0x1F02, 0x3B1}, {0x1F02, 0x313}, {0x1F02, 0x300}, {0x1F03, 0x3B1}, {0x1F03, 0x314}, {0x1F03, 0x300}, {0x1F04, 0x3B1}, {0x1F04, 0x313}, {0x1F04, 0x301},
|
||||
{0x1F05, 0x3B1}, {0x1F05, 0x314}, {0x1F05, 0x301}, {0x1F06, 0x3B1}, {0x1F06, 0x313}, {0x1F06, 0x342}, {0x1F07, 0x3B1}, {0x1F07, 0x314}, {0x1F07, 0x342}, {0x1F08, 0x391}, {0x1F08, 0x313},
|
||||
{0x1F09, 0x391}, {0x1F09, 0x314}, {0x1F0A, 0x391}, {0x1F0A, 0x313}, {0x1F0A, 0x300}, {0x1F0B, 0x391}, {0x1F0B, 0x314}, {0x1F0B, 0x300}, {0x1F0C, 0x391}, {0x1F0C, 0x313}, {0x1F0C, 0x301},
|
||||
{0x1F0D, 0x391}, {0x1F0D, 0x314}, {0x1F0D, 0x301}, {0x1F0E, 0x391}, {0x1F0E, 0x313}, {0x1F0E, 0x342}, {0x1F0F, 0x391}, {0x1F0F, 0x314}, {0x1F0F, 0x342}, {0x1F10, 0x3B5}, {0x1F10, 0x313},
|
||||
{0x1F11, 0x3B5}, {0x1F11, 0x314}, {0x1F12, 0x3B5}, {0x1F12, 0x313}, {0x1F12, 0x300}, {0x1F13, 0x3B5}, {0x1F13, 0x314}, {0x1F13, 0x300}, {0x1F14, 0x3B5}, {0x1F14, 0x313}, {0x1F14, 0x301},
|
||||
{0x1F15, 0x3B5}, {0x1F15, 0x314}, {0x1F15, 0x301}, {0x1F18, 0x395}, {0x1F18, 0x313}, {0x1F19, 0x395}, {0x1F19, 0x314}, {0x1F1A, 0x395}, {0x1F1A, 0x313}, {0x1F1A, 0x300}, {0x1F1B, 0x395},
|
||||
{0x1F1B, 0x314}, {0x1F1B, 0x300}, {0x1F1C, 0x395}, {0x1F1C, 0x313}, {0x1F1C, 0x301}, {0x1F1D, 0x395}, {0x1F1D, 0x314}, {0x1F1D, 0x301}, {0x1F20, 0x3B7}, {0x1F20, 0x313}, {0x1F21, 0x3B7},
|
||||
{0x1F21, 0x314}, {0x1F22, 0x3B7}, {0x1F22, 0x313}, {0x1F22, 0x300}, {0x1F23, 0x3B7}, {0x1F23, 0x314}, {0x1F23, 0x300}, {0x1F24, 0x3B7}, {0x1F24, 0x313}, {0x1F24, 0x301}, {0x1F25, 0x3B7},
|
||||
{0x1F25, 0x314}, {0x1F25, 0x301}, {0x1F26, 0x3B7}, {0x1F26, 0x313}, {0x1F26, 0x342}, {0x1F27, 0x3B7}, {0x1F27, 0x314}, {0x1F27, 0x342}, {0x1F28, 0x397}, {0x1F28, 0x313}, {0x1F29, 0x397},
|
||||
{0x1F29, 0x314}, {0x1F2A, 0x397}, {0x1F2A, 0x313}, {0x1F2A, 0x300}, {0x1F2B, 0x397}, {0x1F2B, 0x314}, {0x1F2B, 0x300}, {0x1F2C, 0x397}, {0x1F2C, 0x313}, {0x1F2C, 0x301}, {0x1F2D, 0x397},
|
||||
{0x1F2D, 0x314}, {0x1F2D, 0x301}, {0x1F2E, 0x397}, {0x1F2E, 0x313}, {0x1F2E, 0x342}, {0x1F2F, 0x397}, {0x1F2F, 0x314}, {0x1F2F, 0x342}, {0x1F30, 0x3B9}, {0x1F30, 0x313}, {0x1F31, 0x3B9},
|
||||
{0x1F31, 0x314}, {0x1F32, 0x3B9}, {0x1F32, 0x313}, {0x1F32, 0x300}, {0x1F33, 0x3B9}, {0x1F33, 0x314}, {0x1F33, 0x300}, {0x1F34, 0x3B9}, {0x1F34, 0x313}, {0x1F34, 0x301}, {0x1F35, 0x3B9},
|
||||
{0x1F35, 0x314}, {0x1F35, 0x301}, {0x1F36, 0x3B9}, {0x1F36, 0x313}, {0x1F36, 0x342}, {0x1F37, 0x3B9}, {0x1F37, 0x314}, {0x1F37, 0x342}, {0x1F38, 0x399}, {0x1F38, 0x313}, {0x1F39, 0x399},
|
||||
{0x1F39, 0x314}, {0x1F3A, 0x399}, {0x1F3A, 0x313}, {0x1F3A, 0x300}, {0x1F3B, 0x399}, {0x1F3B, 0x314}, {0x1F3B, 0x300}, {0x1F3C, 0x399}, {0x1F3C, 0x313}, {0x1F3C, 0x301}, {0x1F3D, 0x399},
|
||||
{0x1F3D, 0x314}, {0x1F3D, 0x301}, {0x1F3E, 0x399}, {0x1F3E, 0x313}, {0x1F3E, 0x342}, {0x1F3F, 0x399}, {0x1F3F, 0x314}, {0x1F3F, 0x342}, {0x1F40, 0x3BF}, {0x1F40, 0x313}, {0x1F41, 0x3BF},
|
||||
{0x1F41, 0x314}, {0x1F42, 0x3BF}, {0x1F42, 0x313}, {0x1F42, 0x300}, {0x1F43, 0x3BF}, {0x1F43, 0x314}, {0x1F43, 0x300}, {0x1F44, 0x3BF}, {0x1F44, 0x313}, {0x1F44, 0x301}, {0x1F45, 0x3BF},
|
||||
{0x1F45, 0x314}, {0x1F45, 0x301}, {0x1F48, 0x39F}, {0x1F48, 0x313}, {0x1F49, 0x39F}, {0x1F49, 0x314}, {0x1F4A, 0x39F}, {0x1F4A, 0x313}, {0x1F4A, 0x300}, {0x1F4B, 0x39F}, {0x1F4B, 0x314},
|
||||
{0x1F4B, 0x300}, {0x1F4C, 0x39F}, {0x1F4C, 0x313}, {0x1F4C, 0x301}, {0x1F4D, 0x39F}, {0x1F4D, 0x314}, {0x1F4D, 0x301}, {0x1F50, 0x3C5}, {0x1F50, 0x313}, {0x1F51, 0x3C5}, {0x1F51, 0x314},
|
||||
{0x1F52, 0x3C5}, {0x1F52, 0x313}, {0x1F52, 0x300}, {0x1F53, 0x3C5}, {0x1F53, 0x314}, {0x1F53, 0x300}, {0x1F54, 0x3C5}, {0x1F54, 0x313}, {0x1F54, 0x301}, {0x1F55, 0x3C5}, {0x1F55, 0x314},
|
||||
{0x1F55, 0x301}, {0x1F56, 0x3C5}, {0x1F56, 0x313}, {0x1F56, 0x342}, {0x1F57, 0x3C5}, {0x1F57, 0x314}, {0x1F57, 0x342}, {0x1F59, 0x3A5}, {0x1F59, 0x314}, {0x1F5B, 0x3A5}, {0x1F5B, 0x314},
|
||||
{0x1F5B, 0x300}, {0x1F5D, 0x3A5}, {0x1F5D, 0x314}, {0x1F5D, 0x301}, {0x1F5F, 0x3A5}, {0x1F5F, 0x314}, {0x1F5F, 0x342}, {0x1F60, 0x3C9}, {0x1F60, 0x313}, {0x1F61, 0x3C9}, {0x1F61, 0x314},
|
||||
{0x1F62, 0x3C9}, {0x1F62, 0x313}, {0x1F62, 0x300}, {0x1F63, 0x3C9}, {0x1F63, 0x314}, {0x1F63, 0x300}, {0x1F64, 0x3C9}, {0x1F64, 0x313}, {0x1F64, 0x301}, {0x1F65, 0x3C9}, {0x1F65, 0x314},
|
||||
{0x1F65, 0x301}, {0x1F66, 0x3C9}, {0x1F66, 0x313}, {0x1F66, 0x342}, {0x1F67, 0x3C9}, {0x1F67, 0x314}, {0x1F67, 0x342}, {0x1F68, 0x3A9}, {0x1F68, 0x313}, {0x1F69, 0x3A9}, {0x1F69, 0x314},
|
||||
{0x1F6A, 0x3A9}, {0x1F6A, 0x313}, {0x1F6A, 0x300}, {0x1F6B, 0x3A9}, {0x1F6B, 0x314}, {0x1F6B, 0x300}, {0x1F6C, 0x3A9}, {0x1F6C, 0x313}, {0x1F6C, 0x301}, {0x1F6D, 0x3A9}, {0x1F6D, 0x314},
|
||||
{0x1F6D, 0x301}, {0x1F6E, 0x3A9}, {0x1F6E, 0x313}, {0x1F6E, 0x342}, {0x1F6F, 0x3A9}, {0x1F6F, 0x314}, {0x1F6F, 0x342}, {0x1F70, 0x3B1}, {0x1F70, 0x300}, {0x1F71, 0x3B1}, {0x1F71, 0x301},
|
||||
{0x1F72, 0x3B5}, {0x1F72, 0x300}, {0x1F73, 0x3B5}, {0x1F73, 0x301}, {0x1F74, 0x3B7}, {0x1F74, 0x300}, {0x1F75, 0x3B7}, {0x1F75, 0x301}, {0x1F76, 0x3B9}, {0x1F76, 0x300}, {0x1F77, 0x3B9},
|
||||
{0x1F77, 0x301}, {0x1F78, 0x3BF}, {0x1F78, 0x300}, {0x1F79, 0x3BF}, {0x1F79, 0x301}, {0x1F7A, 0x3C5}, {0x1F7A, 0x300}, {0x1F7B, 0x3C5}, {0x1F7B, 0x301}, {0x1F7C, 0x3C9}, {0x1F7C, 0x300},
|
||||
{0x1F7D, 0x3C9}, {0x1F7D, 0x301}, {0x1F80, 0x3B1}, {0x1F80, 0x313}, {0x1F80, 0x345}, {0x1F81, 0x3B1}, {0x1F81, 0x314}, {0x1F81, 0x345}, {0x1F82, 0x3B1}, {0x1F82, 0x313}, {0x1F82, 0x300},
|
||||
{0x1F82, 0x345}, {0x1F83, 0x3B1}, {0x1F83, 0x314}, {0x1F83, 0x300}, {0x1F83, 0x345}, {0x1F84, 0x3B1}, {0x1F84, 0x313}, {0x1F84, 0x301}, {0x1F84, 0x345}, {0x1F85, 0x3B1}, {0x1F85, 0x314},
|
||||
{0x1F85, 0x301}, {0x1F85, 0x345}, {0x1F86, 0x3B1}, {0x1F86, 0x313}, {0x1F86, 0x342}, {0x1F86, 0x345}, {0x1F87, 0x3B1}, {0x1F87, 0x314}, {0x1F87, 0x342}, {0x1F87, 0x345}, {0x1F88, 0x391},
|
||||
{0x1F88, 0x313}, {0x1F88, 0x345}, {0x1F89, 0x391}, {0x1F89, 0x314}, {0x1F89, 0x345}, {0x1F8A, 0x391}, {0x1F8A, 0x313}, {0x1F8A, 0x300}, {0x1F8A, 0x345}, {0x1F8B, 0x391}, {0x1F8B, 0x314},
|
||||
{0x1F8B, 0x300}, {0x1F8B, 0x345}, {0x1F8C, 0x391}, {0x1F8C, 0x313}, {0x1F8C, 0x301}, {0x1F8C, 0x345}, {0x1F8D, 0x391}, {0x1F8D, 0x314}, {0x1F8D, 0x301}, {0x1F8D, 0x345}, {0x1F8E, 0x391},
|
||||
{0x1F8E, 0x313}, {0x1F8E, 0x342}, {0x1F8E, 0x345}, {0x1F8F, 0x391}, {0x1F8F, 0x314}, {0x1F8F, 0x342}, {0x1F8F, 0x345}, {0x1F90, 0x3B7}, {0x1F90, 0x313}, {0x1F90, 0x345}, {0x1F91, 0x3B7},
|
||||
{0x1F91, 0x314}, {0x1F91, 0x345}, {0x1F92, 0x3B7}, {0x1F92, 0x313}, {0x1F92, 0x300}, {0x1F92, 0x345}, {0x1F93, 0x3B7}, {0x1F93, 0x314}, {0x1F93, 0x300}, {0x1F93, 0x345}, {0x1F94, 0x3B7},
|
||||
{0x1F94, 0x313}, {0x1F94, 0x301}, {0x1F94, 0x345}, {0x1F95, 0x3B7}, {0x1F95, 0x314}, {0x1F95, 0x301}, {0x1F95, 0x345}, {0x1F96, 0x3B7}, {0x1F96, 0x313}, {0x1F96, 0x342}, {0x1F96, 0x345},
|
||||
{0x1F97, 0x3B7}, {0x1F97, 0x314}, {0x1F97, 0x342}, {0x1F97, 0x345}, {0x1F98, 0x397}, {0x1F98, 0x313}, {0x1F98, 0x345}, {0x1F99, 0x397}, {0x1F99, 0x314}, {0x1F99, 0x345}, {0x1F9A, 0x397},
|
||||
{0x1F9A, 0x313}, {0x1F9A, 0x300}, {0x1F9A, 0x345}, {0x1F9B, 0x397}, {0x1F9B, 0x314}, {0x1F9B, 0x300}, {0x1F9B, 0x345}, {0x1F9C, 0x397}, {0x1F9C, 0x313}, {0x1F9C, 0x301}, {0x1F9C, 0x345},
|
||||
{0x1F9D, 0x397}, {0x1F9D, 0x314}, {0x1F9D, 0x301}, {0x1F9D, 0x345}, {0x1F9E, 0x397}, {0x1F9E, 0x313}, {0x1F9E, 0x342}, {0x1F9E, 0x345}, {0x1F9F, 0x397}, {0x1F9F, 0x314}, {0x1F9F, 0x342},
|
||||
{0x1F9F, 0x345}, {0x1FA0, 0x3C9}, {0x1FA0, 0x313}, {0x1FA0, 0x345}, {0x1FA1, 0x3C9}, {0x1FA1, 0x314}, {0x1FA1, 0x345}, {0x1FA2, 0x3C9}, {0x1FA2, 0x313}, {0x1FA2, 0x300}, {0x1FA2, 0x345},
|
||||
{0x1FA3, 0x3C9}, {0x1FA3, 0x314}, {0x1FA3, 0x300}, {0x1FA3, 0x345}, {0x1FA4, 0x3C9}, {0x1FA4, 0x313}, {0x1FA4, 0x301}, {0x1FA4, 0x345}, {0x1FA5, 0x3C9}, {0x1FA5, 0x314}, {0x1FA5, 0x301},
|
||||
{0x1FA5, 0x345}, {0x1FA6, 0x3C9}, {0x1FA6, 0x313}, {0x1FA6, 0x342}, {0x1FA6, 0x345}, {0x1FA7, 0x3C9}, {0x1FA7, 0x314}, {0x1FA7, 0x342}, {0x1FA7, 0x345}, {0x1FA8, 0x3A9}, {0x1FA8, 0x313},
|
||||
{0x1FA8, 0x345}, {0x1FA9, 0x3A9}, {0x1FA9, 0x314}, {0x1FA9, 0x345}, {0x1FAA, 0x3A9}, {0x1FAA, 0x313}, {0x1FAA, 0x300}, {0x1FAA, 0x345}, {0x1FAB, 0x3A9}, {0x1FAB, 0x314}, {0x1FAB, 0x300},
|
||||
{0x1FAB, 0x345}, {0x1FAC, 0x3A9}, {0x1FAC, 0x313}, {0x1FAC, 0x301}, {0x1FAC, 0x345}, {0x1FAD, 0x3A9}, {0x1FAD, 0x314}, {0x1FAD, 0x301}, {0x1FAD, 0x345}, {0x1FAE, 0x3A9}, {0x1FAE, 0x313},
|
||||
{0x1FAE, 0x342}, {0x1FAE, 0x345}, {0x1FAF, 0x3A9}, {0x1FAF, 0x314}, {0x1FAF, 0x342}, {0x1FAF, 0x345}, {0x1FB0, 0x3B1}, {0x1FB0, 0x306}, {0x1FB1, 0x3B1}, {0x1FB1, 0x304}, {0x1FB2, 0x3B1},
|
||||
{0x1FB2, 0x300}, {0x1FB2, 0x345}, {0x1FB3, 0x3B1}, {0x1FB3, 0x345}, {0x1FB4, 0x3B1}, {0x1FB4, 0x301}, {0x1FB4, 0x345}, {0x1FB6, 0x3B1}, {0x1FB6, 0x342}, {0x1FB7, 0x3B1}, {0x1FB7, 0x342},
|
||||
{0x1FB7, 0x345}, {0x1FB8, 0x391}, {0x1FB8, 0x306}, {0x1FB9, 0x391}, {0x1FB9, 0x304}, {0x1FBA, 0x391}, {0x1FBA, 0x300}, {0x1FBB, 0x391}, {0x1FBB, 0x301}, {0x1FBC, 0x391}, {0x1FBC, 0x345},
|
||||
{0x1FBE, 0x3B9}, {0x1FC1, 0xA8}, {0x1FC1, 0x342}, {0x1FC2, 0x3B7}, {0x1FC2, 0x300}, {0x1FC2, 0x345}, {0x1FC3, 0x3B7}, {0x1FC3, 0x345}, {0x1FC4, 0x3B7}, {0x1FC4, 0x301}, {0x1FC4, 0x345},
|
||||
{0x1FC6, 0x3B7}, {0x1FC6, 0x342}, {0x1FC7, 0x3B7}, {0x1FC7, 0x342}, {0x1FC7, 0x345}, {0x1FC8, 0x395}, {0x1FC8, 0x300}, {0x1FC9, 0x395}, {0x1FC9, 0x301}, {0x1FCA, 0x397}, {0x1FCA, 0x300},
|
||||
{0x1FCB, 0x397}, {0x1FCB, 0x301}, {0x1FCC, 0x397}, {0x1FCC, 0x345}, {0x1FCD, 0x1FBF}, {0x1FCD, 0x300}, {0x1FCE, 0x1FBF}, {0x1FCE, 0x301}, {0x1FCF, 0x1FBF}, {0x1FCF, 0x342}, {0x1FD0, 0x3B9},
|
||||
{0x1FD0, 0x306}, {0x1FD1, 0x3B9}, {0x1FD1, 0x304}, {0x1FD2, 0x3B9}, {0x1FD2, 0x308}, {0x1FD2, 0x300}, {0x1FD3, 0x3B9}, {0x1FD3, 0x308}, {0x1FD3, 0x301}, {0x1FD6, 0x3B9}, {0x1FD6, 0x342},
|
||||
{0x1FD7, 0x3B9}, {0x1FD7, 0x308}, {0x1FD7, 0x342}, {0x1FD8, 0x399}, {0x1FD8, 0x306}, {0x1FD9, 0x399}, {0x1FD9, 0x304}, {0x1FDA, 0x399}, {0x1FDA, 0x300}, {0x1FDB, 0x399}, {0x1FDB, 0x301},
|
||||
{0x1FDD, 0x1FFE}, {0x1FDD, 0x300}, {0x1FDE, 0x1FFE}, {0x1FDE, 0x301}, {0x1FDF, 0x1FFE}, {0x1FDF, 0x342}, {0x1FE0, 0x3C5}, {0x1FE0, 0x306}, {0x1FE1, 0x3C5}, {0x1FE1, 0x304}, {0x1FE2, 0x3C5},
|
||||
{0x1FE2, 0x308}, {0x1FE2, 0x300}, {0x1FE3, 0x3C5}, {0x1FE3, 0x308}, {0x1FE3, 0x301}, {0x1FE4, 0x3C1}, {0x1FE4, 0x313}, {0x1FE5, 0x3C1}, {0x1FE5, 0x314}, {0x1FE6, 0x3C5}, {0x1FE6, 0x342},
|
||||
{0x1FE7, 0x3C5}, {0x1FE7, 0x308}, {0x1FE7, 0x342}, {0x1FE8, 0x3A5}, {0x1FE8, 0x306}, {0x1FE9, 0x3A5}, {0x1FE9, 0x304}, {0x1FEA, 0x3A5}, {0x1FEA, 0x300}, {0x1FEB, 0x3A5}, {0x1FEB, 0x301},
|
||||
{0x1FEC, 0x3A1}, {0x1FEC, 0x314}, {0x1FED, 0xA8}, {0x1FED, 0x300}, {0x1FEE, 0xA8}, {0x1FEE, 0x301}, {0x1FEF, 0x60}, {0x1FF2, 0x3C9}, {0x1FF2, 0x300}, {0x1FF2, 0x345}, {0x1FF3, 0x3C9}, {0x1FF3, 0x345},
|
||||
{0x1FF4, 0x3C9}, {0x1FF4, 0x301}, {0x1FF4, 0x345}, {0x1FF6, 0x3C9}, {0x1FF6, 0x342}, {0x1FF7, 0x3C9}, {0x1FF7, 0x342}, {0x1FF7, 0x345}, {0x1FF8, 0x39F}, {0x1FF8, 0x300}, {0x1FF9, 0x39F},
|
||||
{0x1FF9, 0x301}, {0x1FFA, 0x3A9}, {0x1FFA, 0x300}, {0x1FFB, 0x3A9}, {0x1FFB, 0x301}, {0x1FFC, 0x3A9}, {0x1FFC, 0x345}, {0x1FFD, 0xB4}, {0x2000, 0x2002}, {0x2001, 0x2003}, {0x2126, 0x3A9},
|
||||
{0x212A, 0x4B}, {0x212B, 0x41}, {0x212B, 0x30A}, {0x219A, 0x2190}, {0x219A, 0x338}, {0x219B, 0x2192}, {0x219B, 0x338}, {0x21AE, 0x2194}, {0x21AE, 0x338}, {0x21CD, 0x21D0}, {0x21CD, 0x338},
|
||||
{0x21CE, 0x21D4}, {0x21CE, 0x338}, {0x21CF, 0x21D2}, {0x21CF, 0x338}, {0x2204, 0x2203}, {0x2204, 0x338}, {0x2209, 0x2208}, {0x2209, 0x338}, {0x220C, 0x220B}, {0x220C, 0x338}, {0x2224, 0x2223},
|
||||
{0x2224, 0x338}, {0x2226, 0x2225}, {0x2226, 0x338}, {0x2241, 0x223C}, {0x2241, 0x338}, {0x2244, 0x2243}, {0x2244, 0x338}, {0x2247, 0x2245}, {0x2247, 0x338}, {0x2249, 0x2248}, {0x2249, 0x338},
|
||||
{0x2260, 0x3D}, {0x2260, 0x338}, {0x2262, 0x2261}, {0x2262, 0x338}, {0x226D, 0x224D}, {0x226D, 0x338}, {0x226E, 0x3C}, {0x226E, 0x338}, {0x226F, 0x3E}, {0x226F, 0x338}, {0x2270, 0x2264},
|
||||
{0x2270, 0x338}, {0x2271, 0x2265}, {0x2271, 0x338}, {0x2274, 0x2272}, {0x2274, 0x338}, {0x2275, 0x2273}, {0x2275, 0x338}, {0x2278, 0x2276}, {0x2278, 0x338}, {0x2279, 0x2277}, {0x2279, 0x338},
|
||||
{0x2280, 0x227A}, {0x2280, 0x338}, {0x2281, 0x227B}, {0x2281, 0x338}, {0x2284, 0x2282}, {0x2284, 0x338}, {0x2285, 0x2283}, {0x2285, 0x338}, {0x2288, 0x2286}, {0x2288, 0x338}, {0x2289, 0x2287},
|
||||
{0x2289, 0x338}, {0x22AC, 0x22A2}, {0x22AC, 0x338}, {0x22AD, 0x22A8}, {0x22AD, 0x338}, {0x22AE, 0x22A9}, {0x22AE, 0x338}, {0x22AF, 0x22AB}, {0x22AF, 0x338}, {0x22E0, 0x227C}, {0x22E0, 0x338},
|
||||
{0x22E1, 0x227D}, {0x22E1, 0x338}, {0x22E2, 0x2291}, {0x22E2, 0x338}, {0x22E3, 0x2292}, {0x22E3, 0x338}, {0x22EA, 0x22B2}, {0x22EA, 0x338}, {0x22EB, 0x22B3}, {0x22EB, 0x338}, {0x22EC, 0x22B4},
|
||||
{0x22EC, 0x338}, {0x22ED, 0x22B5}, {0x22ED, 0x338}, {0x2329, 0x3008}, {0x232A, 0x3009}, {0x2ADC, 0x2ADD}, {0x2ADC, 0x338}, {0x304C, 0x304B}, {0x304C, 0x3099}, {0x304E, 0x304D}, {0x304E, 0x3099},
|
||||
{0x3050, 0x304F}, {0x3050, 0x3099}, {0x3052, 0x3051}, {0x3052, 0x3099}, {0x3054, 0x3053}, {0x3054, 0x3099}, {0x3056, 0x3055}, {0x3056, 0x3099}, {0x3058, 0x3057}, {0x3058, 0x3099}, {0x305A, 0x3059},
|
||||
{0x305A, 0x3099}, {0x305C, 0x305B}, {0x305C, 0x3099}, {0x305E, 0x305D}, {0x305E, 0x3099}, {0x3060, 0x305F}, {0x3060, 0x3099}, {0x3062, 0x3061}, {0x3062, 0x3099}, {0x3065, 0x3064}, {0x3065, 0x3099},
|
||||
{0x3067, 0x3066}, {0x3067, 0x3099}, {0x3069, 0x3068}, {0x3069, 0x3099}, {0x3070, 0x306F}, {0x3070, 0x3099}, {0x3071, 0x306F}, {0x3071, 0x309A}, {0x3073, 0x3072}, {0x3073, 0x3099}, {0x3074, 0x3072},
|
||||
{0x3074, 0x309A}, {0x3076, 0x3075}, {0x3076, 0x3099}, {0x3077, 0x3075}, {0x3077, 0x309A}, {0x3079, 0x3078}, {0x3079, 0x3099}, {0x307A, 0x3078}, {0x307A, 0x309A}, {0x307C, 0x307B}, {0x307C, 0x3099},
|
||||
{0x307D, 0x307B}, {0x307D, 0x309A}, {0x3094, 0x3046}, {0x3094, 0x3099}, {0x309E, 0x309D}, {0x309E, 0x3099}, {0x30AC, 0x30AB}, {0x30AC, 0x3099}, {0x30AE, 0x30AD}, {0x30AE, 0x3099}, {0x30B0, 0x30AF},
|
||||
{0x30B0, 0x3099}, {0x30B2, 0x30B1}, {0x30B2, 0x3099}, {0x30B4, 0x30B3}, {0x30B4, 0x3099}, {0x30B6, 0x30B5}, {0x30B6, 0x3099}, {0x30B8, 0x30B7}, {0x30B8, 0x3099}, {0x30BA, 0x30B9}, {0x30BA, 0x3099},
|
||||
{0x30BC, 0x30BB}, {0x30BC, 0x3099}, {0x30BE, 0x30BD}, {0x30BE, 0x3099}, {0x30C0, 0x30BF}, {0x30C0, 0x3099}, {0x30C2, 0x30C1}, {0x30C2, 0x3099}, {0x30C5, 0x30C4}, {0x30C5, 0x3099}, {0x30C7, 0x30C6},
|
||||
{0x30C7, 0x3099}, {0x30C9, 0x30C8}, {0x30C9, 0x3099}, {0x30D0, 0x30CF}, {0x30D0, 0x3099}, {0x30D1, 0x30CF}, {0x30D1, 0x309A}, {0x30D3, 0x30D2}, {0x30D3, 0x3099}, {0x30D4, 0x30D2}, {0x30D4, 0x309A},
|
||||
{0x30D6, 0x30D5}, {0x30D6, 0x3099}, {0x30D7, 0x30D5}, {0x30D7, 0x309A}, {0x30D9, 0x30D8}, {0x30D9, 0x3099}, {0x30DA, 0x30D8}, {0x30DA, 0x309A}, {0x30DC, 0x30DB}, {0x30DC, 0x3099}, {0x30DD, 0x30DB},
|
||||
{0x30DD, 0x309A}, {0x30F4, 0x30A6}, {0x30F4, 0x3099}, {0x30F7, 0x30EF}, {0x30F7, 0x3099}, {0x30F8, 0x30F0}, {0x30F8, 0x3099}, {0x30F9, 0x30F1}, {0x30F9, 0x3099}, {0x30FA, 0x30F2}, {0x30FA, 0x3099},
|
||||
{0x30FE, 0x30FD}, {0x30FE, 0x3099}, {0xF900, 0x8C48}, {0xF901, 0x66F4}, {0xF902, 0x8ECA}, {0xF903, 0x8CC8}, {0xF904, 0x6ED1}, {0xF905, 0x4E32}, {0xF906, 0x53E5}, {0xF907, 0x9F9C}, {0xF908, 0x9F9C},
|
||||
{0xF909, 0x5951}, {0xF90A, 0x91D1}, {0xF90B, 0x5587}, {0xF90C, 0x5948}, {0xF90D, 0x61F6}, {0xF90E, 0x7669}, {0xF90F, 0x7F85}, {0xF910, 0x863F}, {0xF911, 0x87BA}, {0xF912, 0x88F8}, {0xF913, 0x908F},
|
||||
{0xF914, 0x6A02}, {0xF915, 0x6D1B}, {0xF916, 0x70D9}, {0xF917, 0x73DE}, {0xF918, 0x843D}, {0xF919, 0x916A}, {0xF91A, 0x99F1}, {0xF91B, 0x4E82}, {0xF91C, 0x5375}, {0xF91D, 0x6B04}, {0xF91E, 0x721B},
|
||||
{0xF91F, 0x862D}, {0xF920, 0x9E1E}, {0xF921, 0x5D50}, {0xF922, 0x6FEB}, {0xF923, 0x85CD}, {0xF924, 0x8964}, {0xF925, 0x62C9}, {0xF926, 0x81D8}, {0xF927, 0x881F}, {0xF928, 0x5ECA}, {0xF929, 0x6717},
|
||||
{0xF92A, 0x6D6A}, {0xF92B, 0x72FC}, {0xF92C, 0x90CE}, {0xF92D, 0x4F86}, {0xF92E, 0x51B7}, {0xF92F, 0x52DE}, {0xF930, 0x64C4}, {0xF931, 0x6AD3}, {0xF932, 0x7210}, {0xF933, 0x76E7}, {0xF934, 0x8001},
|
||||
{0xF935, 0x8606}, {0xF936, 0x865C}, {0xF937, 0x8DEF}, {0xF938, 0x9732}, {0xF939, 0x9B6F}, {0xF93A, 0x9DFA}, {0xF93B, 0x788C}, {0xF93C, 0x797F}, {0xF93D, 0x7DA0}, {0xF93E, 0x83C9}, {0xF93F, 0x9304},
|
||||
{0xF940, 0x9E7F}, {0xF941, 0x8AD6}, {0xF942, 0x58DF}, {0xF943, 0x5F04}, {0xF944, 0x7C60}, {0xF945, 0x807E}, {0xF946, 0x7262}, {0xF947, 0x78CA}, {0xF948, 0x8CC2}, {0xF949, 0x96F7}, {0xF94A, 0x58D8},
|
||||
{0xF94B, 0x5C62}, {0xF94C, 0x6A13}, {0xF94D, 0x6DDA}, {0xF94E, 0x6F0F}, {0xF94F, 0x7D2F}, {0xF950, 0x7E37}, {0xF951, 0x964B}, {0xF952, 0x52D2}, {0xF953, 0x808B}, {0xF954, 0x51DC}, {0xF955, 0x51CC},
|
||||
{0xF956, 0x7A1C}, {0xF957, 0x7DBE}, {0xF958, 0x83F1}, {0xF959, 0x9675}, {0xF95A, 0x8B80}, {0xF95B, 0x62CF}, {0xF95C, 0x6A02}, {0xF95D, 0x8AFE}, {0xF95E, 0x4E39}, {0xF95F, 0x5BE7}, {0xF960, 0x6012},
|
||||
{0xF961, 0x7387}, {0xF962, 0x7570}, {0xF963, 0x5317}, {0xF964, 0x78FB}, {0xF965, 0x4FBF}, {0xF966, 0x5FA9}, {0xF967, 0x4E0D}, {0xF968, 0x6CCC}, {0xF969, 0x6578}, {0xF96A, 0x7D22}, {0xF96B, 0x53C3},
|
||||
{0xF96C, 0x585E}, {0xF96D, 0x7701}, {0xF96E, 0x8449}, {0xF96F, 0x8AAA}, {0xF970, 0x6BBA}, {0xF971, 0x8FB0}, {0xF972, 0x6C88}, {0xF973, 0x62FE}, {0xF974, 0x82E5}, {0xF975, 0x63A0}, {0xF976, 0x7565},
|
||||
{0xF977, 0x4EAE}, {0xF978, 0x5169}, {0xF979, 0x51C9}, {0xF97A, 0x6881}, {0xF97B, 0x7CE7}, {0xF97C, 0x826F}, {0xF97D, 0x8AD2}, {0xF97E, 0x91CF}, {0xF97F, 0x52F5}, {0xF980, 0x5442}, {0xF981, 0x5973},
|
||||
{0xF982, 0x5EEC}, {0xF983, 0x65C5}, {0xF984, 0x6FFE}, {0xF985, 0x792A}, {0xF986, 0x95AD}, {0xF987, 0x9A6A}, {0xF988, 0x9E97}, {0xF989, 0x9ECE}, {0xF98A, 0x529B}, {0xF98B, 0x66C6}, {0xF98C, 0x6B77},
|
||||
{0xF98D, 0x8F62}, {0xF98E, 0x5E74}, {0xF98F, 0x6190}, {0xF990, 0x6200}, {0xF991, 0x649A}, {0xF992, 0x6F23}, {0xF993, 0x7149}, {0xF994, 0x7489}, {0xF995, 0x79CA}, {0xF996, 0x7DF4}, {0xF997, 0x806F},
|
||||
{0xF998, 0x8F26}, {0xF999, 0x84EE}, {0xF99A, 0x9023}, {0xF99B, 0x934A}, {0xF99C, 0x5217}, {0xF99D, 0x52A3}, {0xF99E, 0x54BD}, {0xF99F, 0x70C8}, {0xF9A0, 0x88C2}, {0xF9A1, 0x8AAA}, {0xF9A2, 0x5EC9},
|
||||
{0xF9A3, 0x5FF5}, {0xF9A4, 0x637B}, {0xF9A5, 0x6BAE}, {0xF9A6, 0x7C3E}, {0xF9A7, 0x7375}, {0xF9A8, 0x4EE4}, {0xF9A9, 0x56F9}, {0xF9AA, 0x5BE7}, {0xF9AB, 0x5DBA}, {0xF9AC, 0x601C}, {0xF9AD, 0x73B2},
|
||||
{0xF9AE, 0x7469}, {0xF9AF, 0x7F9A}, {0xF9B0, 0x8046}, {0xF9B1, 0x9234}, {0xF9B2, 0x96F6}, {0xF9B3, 0x9748}, {0xF9B4, 0x9818}, {0xF9B5, 0x4F8B}, {0xF9B6, 0x79AE}, {0xF9B7, 0x91B4}, {0xF9B8, 0x96B8},
|
||||
{0xF9B9, 0x60E1}, {0xF9BA, 0x4E86}, {0xF9BB, 0x50DA}, {0xF9BC, 0x5BEE}, {0xF9BD, 0x5C3F}, {0xF9BE, 0x6599}, {0xF9BF, 0x6A02}, {0xF9C0, 0x71CE}, {0xF9C1, 0x7642}, {0xF9C2, 0x84FC}, {0xF9C3, 0x907C},
|
||||
{0xF9C4, 0x9F8D}, {0xF9C5, 0x6688}, {0xF9C6, 0x962E}, {0xF9C7, 0x5289}, {0xF9C8, 0x677B}, {0xF9C9, 0x67F3}, {0xF9CA, 0x6D41}, {0xF9CB, 0x6E9C}, {0xF9CC, 0x7409}, {0xF9CD, 0x7559}, {0xF9CE, 0x786B},
|
||||
{0xF9CF, 0x7D10}, {0xF9D0, 0x985E}, {0xF9D1, 0x516D}, {0xF9D2, 0x622E}, {0xF9D3, 0x9678}, {0xF9D4, 0x502B}, {0xF9D5, 0x5D19}, {0xF9D6, 0x6DEA}, {0xF9D7, 0x8F2A}, {0xF9D8, 0x5F8B}, {0xF9D9, 0x6144},
|
||||
{0xF9DA, 0x6817}, {0xF9DB, 0x7387}, {0xF9DC, 0x9686}, {0xF9DD, 0x5229}, {0xF9DE, 0x540F}, {0xF9DF, 0x5C65}, {0xF9E0, 0x6613}, {0xF9E1, 0x674E}, {0xF9E2, 0x68A8}, {0xF9E3, 0x6CE5}, {0xF9E4, 0x7406},
|
||||
{0xF9E5, 0x75E2}, {0xF9E6, 0x7F79}, {0xF9E7, 0x88CF}, {0xF9E8, 0x88E1}, {0xF9E9, 0x91CC}, {0xF9EA, 0x96E2}, {0xF9EB, 0x533F}, {0xF9EC, 0x6EBA}, {0xF9ED, 0x541D}, {0xF9EE, 0x71D0}, {0xF9EF, 0x7498},
|
||||
{0xF9F0, 0x85FA}, {0xF9F1, 0x96A3}, {0xF9F2, 0x9C57}, {0xF9F3, 0x9E9F}, {0xF9F4, 0x6797}, {0xF9F5, 0x6DCB}, {0xF9F6, 0x81E8}, {0xF9F7, 0x7ACB}, {0xF9F8, 0x7B20}, {0xF9F9, 0x7C92}, {0xF9FA, 0x72C0},
|
||||
{0xF9FB, 0x7099}, {0xF9FC, 0x8B58}, {0xF9FD, 0x4EC0}, {0xF9FE, 0x8336}, {0xF9FF, 0x523A}, {0xFA00, 0x5207}, {0xFA01, 0x5EA6}, {0xFA02, 0x62D3}, {0xFA03, 0x7CD6}, {0xFA04, 0x5B85}, {0xFA05, 0x6D1E},
|
||||
{0xFA06, 0x66B4}, {0xFA07, 0x8F3B}, {0xFA08, 0x884C}, {0xFA09, 0x964D}, {0xFA0A, 0x898B}, {0xFA0B, 0x5ED3}, {0xFA0C, 0x5140}, {0xFA0D, 0x55C0}, {0xFA10, 0x585A}, {0xFA12, 0x6674}, {0xFA15, 0x51DE},
|
||||
{0xFA16, 0x732A}, {0xFA17, 0x76CA}, {0xFA18, 0x793C}, {0xFA19, 0x795E}, {0xFA1A, 0x7965}, {0xFA1B, 0x798F}, {0xFA1C, 0x9756}, {0xFA1D, 0x7CBE}, {0xFA1E, 0x7FBD}, {0xFA20, 0x8612}, {0xFA22, 0x8AF8},
|
||||
{0xFA25, 0x9038}, {0xFA26, 0x90FD}, {0xFA2A, 0x98EF}, {0xFA2B, 0x98FC}, {0xFA2C, 0x9928}, {0xFA2D, 0x9DB4}, {0xFA2E, 0x90DE}, {0xFA2F, 0x96B7}, {0xFA30, 0x4FAE}, {0xFA31, 0x50E7}, {0xFA32, 0x514D},
|
||||
{0xFA33, 0x52C9}, {0xFA34, 0x52E4}, {0xFA35, 0x5351}, {0xFA36, 0x559D}, {0xFA37, 0x5606}, {0xFA38, 0x5668}, {0xFA39, 0x5840}, {0xFA3A, 0x58A8}, {0xFA3B, 0x5C64}, {0xFA3C, 0x5C6E}, {0xFA3D, 0x6094},
|
||||
{0xFA3E, 0x6168}, {0xFA3F, 0x618E}, {0xFA40, 0x61F2}, {0xFA41, 0x654F}, {0xFA42, 0x65E2}, {0xFA43, 0x6691}, {0xFA44, 0x6885}, {0xFA45, 0x6D77}, {0xFA46, 0x6E1A}, {0xFA47, 0x6F22}, {0xFA48, 0x716E},
|
||||
{0xFA49, 0x722B}, {0xFA4A, 0x7422}, {0xFA4B, 0x7891}, {0xFA4C, 0x793E}, {0xFA4D, 0x7949}, {0xFA4E, 0x7948}, {0xFA4F, 0x7950}, {0xFA50, 0x7956}, {0xFA51, 0x795D}, {0xFA52, 0x798D}, {0xFA53, 0x798E},
|
||||
{0xFA54, 0x7A40}, {0xFA55, 0x7A81}, {0xFA56, 0x7BC0}, {0xFA57, 0x7DF4}, {0xFA58, 0x7E09}, {0xFA59, 0x7E41}, {0xFA5A, 0x7F72}, {0xFA5B, 0x8005}, {0xFA5C, 0x81ED}, {0xFA5D, 0x8279}, {0xFA5E, 0x8279},
|
||||
{0xFA5F, 0x8457}, {0xFA60, 0x8910}, {0xFA61, 0x8996}, {0xFA62, 0x8B01}, {0xFA63, 0x8B39}, {0xFA64, 0x8CD3}, {0xFA65, 0x8D08}, {0xFA66, 0x8FB6}, {0xFA67, 0x9038}, {0xFA68, 0x96E3}, {0xFA69, 0x97FF},
|
||||
{0xFA6A, 0x983B}, {0xFA6B, 0x6075}, {0xFA6C, 0x242EE}, {0xFA6D, 0x8218}, {0xFA70, 0x4E26}, {0xFA71, 0x51B5}, {0xFA72, 0x5168}, {0xFA73, 0x4F80}, {0xFA74, 0x5145}, {0xFA75, 0x5180}, {0xFA76, 0x52C7},
|
||||
{0xFA77, 0x52FA}, {0xFA78, 0x559D}, {0xFA79, 0x5555}, {0xFA7A, 0x5599}, {0xFA7B, 0x55E2}, {0xFA7C, 0x585A}, {0xFA7D, 0x58B3}, {0xFA7E, 0x5944}, {0xFA7F, 0x5954}, {0xFA80, 0x5A62}, {0xFA81, 0x5B28},
|
||||
{0xFA82, 0x5ED2}, {0xFA83, 0x5ED9}, {0xFA84, 0x5F69}, {0xFA85, 0x5FAD}, {0xFA86, 0x60D8}, {0xFA87, 0x614E}, {0xFA88, 0x6108}, {0xFA89, 0x618E}, {0xFA8A, 0x6160}, {0xFA8B, 0x61F2}, {0xFA8C, 0x6234},
|
||||
{0xFA8D, 0x63C4}, {0xFA8E, 0x641C}, {0xFA8F, 0x6452}, {0xFA90, 0x6556}, {0xFA91, 0x6674}, {0xFA92, 0x6717}, {0xFA93, 0x671B}, {0xFA94, 0x6756}, {0xFA95, 0x6B79}, {0xFA96, 0x6BBA}, {0xFA97, 0x6D41},
|
||||
{0xFA98, 0x6EDB}, {0xFA99, 0x6ECB}, {0xFA9A, 0x6F22}, {0xFA9B, 0x701E}, {0xFA9C, 0x716E}, {0xFA9D, 0x77A7}, {0xFA9E, 0x7235}, {0xFA9F, 0x72AF}, {0xFAA0, 0x732A}, {0xFAA1, 0x7471}, {0xFAA2, 0x7506},
|
||||
{0xFAA3, 0x753B}, {0xFAA4, 0x761D}, {0xFAA5, 0x761F}, {0xFAA6, 0x76CA}, {0xFAA7, 0x76DB}, {0xFAA8, 0x76F4}, {0xFAA9, 0x774A}, {0xFAAA, 0x7740}, {0xFAAB, 0x78CC}, {0xFAAC, 0x7AB1}, {0xFAAD, 0x7BC0},
|
||||
{0xFAAE, 0x7C7B}, {0xFAAF, 0x7D5B}, {0xFAB0, 0x7DF4}, {0xFAB1, 0x7F3E}, {0xFAB2, 0x8005}, {0xFAB3, 0x8352}, {0xFAB4, 0x83EF}, {0xFAB5, 0x8779}, {0xFAB6, 0x8941}, {0xFAB7, 0x8986}, {0xFAB8, 0x8996},
|
||||
{0xFAB9, 0x8ABF}, {0xFABA, 0x8AF8}, {0xFABB, 0x8ACB}, {0xFABC, 0x8B01}, {0xFABD, 0x8AFE}, {0xFABE, 0x8AED}, {0xFABF, 0x8B39}, {0xFAC0, 0x8B8A}, {0xFAC1, 0x8D08}, {0xFAC2, 0x8F38}, {0xFAC3, 0x9072},
|
||||
{0xFAC4, 0x9199}, {0xFAC5, 0x9276}, {0xFAC6, 0x967C}, {0xFAC7, 0x96E3}, {0xFAC8, 0x9756}, {0xFAC9, 0x97DB}, {0xFACA, 0x97FF}, {0xFACB, 0x980B}, {0xFACC, 0x983B}, {0xFACD, 0x9B12}, {0xFACE, 0x9F9C},
|
||||
{0xFACF, 0x2284A}, {0xFAD0, 0x22844}, {0xFAD1, 0x233D5}, {0xFAD2, 0x3B9D}, {0xFAD3, 0x4018}, {0xFAD4, 0x4039}, {0xFAD5, 0x25249}, {0xFAD6, 0x25CD0}, {0xFAD7, 0x27ED3}, {0xFAD8, 0x9F43},
|
||||
{0xFAD9, 0x9F8E}, {0xFB1D, 0x5D9}, {0xFB1D, 0x5B4}, {0xFB1F, 0x5F2}, {0xFB1F, 0x5B7}, {0xFB2A, 0x5E9}, {0xFB2A, 0x5C1}, {0xFB2B, 0x5E9}, {0xFB2B, 0x5C2}, {0xFB2C, 0x5E9}, {0xFB2C, 0x5BC},
|
||||
{0xFB2C, 0x5C1}, {0xFB2D, 0x5E9}, {0xFB2D, 0x5BC}, {0xFB2D, 0x5C2}, {0xFB2E, 0x5D0}, {0xFB2E, 0x5B7}, {0xFB2F, 0x5D0}, {0xFB2F, 0x5B8}, {0xFB30, 0x5D0}, {0xFB30, 0x5BC}, {0xFB31, 0x5D1},
|
||||
{0xFB31, 0x5BC}, {0xFB32, 0x5D2}, {0xFB32, 0x5BC}, {0xFB33, 0x5D3}, {0xFB33, 0x5BC}, {0xFB34, 0x5D4}, {0xFB34, 0x5BC}, {0xFB35, 0x5D5}, {0xFB35, 0x5BC}, {0xFB36, 0x5D6}, {0xFB36, 0x5BC},
|
||||
{0xFB38, 0x5D8}, {0xFB38, 0x5BC}, {0xFB39, 0x5D9}, {0xFB39, 0x5BC}, {0xFB3A, 0x5DA}, {0xFB3A, 0x5BC}, {0xFB3B, 0x5DB}, {0xFB3B, 0x5BC}, {0xFB3C, 0x5DC}, {0xFB3C, 0x5BC}, {0xFB3E, 0x5DE},
|
||||
{0xFB3E, 0x5BC}, {0xFB40, 0x5E0}, {0xFB40, 0x5BC}, {0xFB41, 0x5E1}, {0xFB41, 0x5BC}, {0xFB43, 0x5E3}, {0xFB43, 0x5BC}, {0xFB44, 0x5E4}, {0xFB44, 0x5BC}, {0xFB46, 0x5E6}, {0xFB46, 0x5BC},
|
||||
{0xFB47, 0x5E7}, {0xFB47, 0x5BC}, {0xFB48, 0x5E8}, {0xFB48, 0x5BC}, {0xFB49, 0x5E9}, {0xFB49, 0x5BC}, {0xFB4A, 0x5EA}, {0xFB4A, 0x5BC}, {0xFB4B, 0x5D5}, {0xFB4B, 0x5B9}, {0xFB4C, 0x5D1},
|
||||
{0xFB4C, 0x5BF}, {0xFB4D, 0x5DB}, {0xFB4D, 0x5BF}, {0xFB4E, 0x5E4}, {0xFB4E, 0x5BF}, {0x1109A, 0x11099}, {0x1109A, 0x110BA}, {0x1109C, 0x1109B}, {0x1109C, 0x110BA}, {0x110AB, 0x110A5},
|
||||
{0x110AB, 0x110BA}, {0x1112E, 0x11131}, {0x1112E, 0x11127}, {0x1112F, 0x11132}, {0x1112F, 0x11127}, {0x1134B, 0x11347}, {0x1134B, 0x1133E}, {0x1134C, 0x11347}, {0x1134C, 0x11357}, {0x114BB, 0x114B9},
|
||||
{0x114BB, 0x114BA}, {0x114BC, 0x114B9}, {0x114BC, 0x114B0}, {0x114BE, 0x114B9}, {0x114BE, 0x114BD}, {0x115BA, 0x115B8}, {0x115BA, 0x115AF}, {0x115BB, 0x115B9}, {0x115BB, 0x115AF}, {0x1D15E, 0x1D157},
|
||||
{0x1D15E, 0x1D165}, {0x1D15F, 0x1D158}, {0x1D15F, 0x1D165}, {0x1D160, 0x1D158}, {0x1D160, 0x1D165}, {0x1D160, 0x1D16E}, {0x1D161, 0x1D158}, {0x1D161, 0x1D165}, {0x1D161, 0x1D16F}, {0x1D162, 0x1D158},
|
||||
{0x1D162, 0x1D165}, {0x1D162, 0x1D170}, {0x1D163, 0x1D158}, {0x1D163, 0x1D165}, {0x1D163, 0x1D171}, {0x1D164, 0x1D158}, {0x1D164, 0x1D165}, {0x1D164, 0x1D172}, {0x1D1BB, 0x1D1B9}, {0x1D1BB, 0x1D165},
|
||||
{0x1D1BC, 0x1D1BA}, {0x1D1BC, 0x1D165}, {0x1D1BD, 0x1D1B9}, {0x1D1BD, 0x1D165}, {0x1D1BD, 0x1D16E}, {0x1D1BE, 0x1D1BA}, {0x1D1BE, 0x1D165}, {0x1D1BE, 0x1D16E}, {0x1D1BF, 0x1D1B9}, {0x1D1BF, 0x1D165},
|
||||
{0x1D1BF, 0x1D16F}, {0x1D1C0, 0x1D1BA}, {0x1D1C0, 0x1D165}, {0x1D1C0, 0x1D16F}, {0x2F800, 0x4E3D}, {0x2F801, 0x4E38}, {0x2F802, 0x4E41}, {0x2F803, 0x20122}, {0x2F804, 0x4F60}, {0x2F805, 0x4FAE},
|
||||
{0x2F806, 0x4FBB}, {0x2F807, 0x5002}, {0x2F808, 0x507A}, {0x2F809, 0x5099}, {0x2F80A, 0x50E7}, {0x2F80B, 0x50CF}, {0x2F80C, 0x349E}, {0x2F80D, 0x2063A}, {0x2F80E, 0x514D}, {0x2F80F, 0x5154},
|
||||
{0x2F810, 0x5164}, {0x2F811, 0x5177}, {0x2F812, 0x2051C}, {0x2F813, 0x34B9}, {0x2F814, 0x5167}, {0x2F815, 0x518D}, {0x2F816, 0x2054B}, {0x2F817, 0x5197}, {0x2F818, 0x51A4}, {0x2F819, 0x4ECC},
|
||||
{0x2F81A, 0x51AC}, {0x2F81B, 0x51B5}, {0x2F81C, 0x291DF}, {0x2F81D, 0x51F5}, {0x2F81E, 0x5203}, {0x2F81F, 0x34DF}, {0x2F820, 0x523B}, {0x2F821, 0x5246}, {0x2F822, 0x5272}, {0x2F823, 0x5277},
|
||||
{0x2F824, 0x3515}, {0x2F825, 0x52C7}, {0x2F826, 0x52C9}, {0x2F827, 0x52E4}, {0x2F828, 0x52FA}, {0x2F829, 0x5305}, {0x2F82A, 0x5306}, {0x2F82B, 0x5317}, {0x2F82C, 0x5349}, {0x2F82D, 0x5351},
|
||||
{0x2F82E, 0x535A}, {0x2F82F, 0x5373}, {0x2F830, 0x537D}, {0x2F831, 0x537F}, {0x2F832, 0x537F}, {0x2F833, 0x537F}, {0x2F834, 0x20A2C}, {0x2F835, 0x7070}, {0x2F836, 0x53CA}, {0x2F837, 0x53DF},
|
||||
{0x2F838, 0x20B63}, {0x2F839, 0x53EB}, {0x2F83A, 0x53F1}, {0x2F83B, 0x5406}, {0x2F83C, 0x549E}, {0x2F83D, 0x5438}, {0x2F83E, 0x5448}, {0x2F83F, 0x5468}, {0x2F840, 0x54A2}, {0x2F841, 0x54F6},
|
||||
{0x2F842, 0x5510}, {0x2F843, 0x5553}, {0x2F844, 0x5563}, {0x2F845, 0x5584}, {0x2F846, 0x5584}, {0x2F847, 0x5599}, {0x2F848, 0x55AB}, {0x2F849, 0x55B3}, {0x2F84A, 0x55C2}, {0x2F84B, 0x5716},
|
||||
{0x2F84C, 0x5606}, {0x2F84D, 0x5717}, {0x2F84E, 0x5651}, {0x2F84F, 0x5674}, {0x2F850, 0x5207}, {0x2F851, 0x58EE}, {0x2F852, 0x57CE}, {0x2F853, 0x57F4}, {0x2F854, 0x580D}, {0x2F855, 0x578B},
|
||||
{0x2F856, 0x5832}, {0x2F857, 0x5831}, {0x2F858, 0x58AC}, {0x2F859, 0x214E4}, {0x2F85A, 0x58F2}, {0x2F85B, 0x58F7}, {0x2F85C, 0x5906}, {0x2F85D, 0x591A}, {0x2F85E, 0x5922}, {0x2F85F, 0x5962},
|
||||
{0x2F860, 0x216A8}, {0x2F861, 0x216EA}, {0x2F862, 0x59EC}, {0x2F863, 0x5A1B}, {0x2F864, 0x5A27}, {0x2F865, 0x59D8}, {0x2F866, 0x5A66}, {0x2F867, 0x36EE}, {0x2F868, 0x36FC}, {0x2F869, 0x5B08},
|
||||
{0x2F86A, 0x5B3E}, {0x2F86B, 0x5B3E}, {0x2F86C, 0x219C8}, {0x2F86D, 0x5BC3}, {0x2F86E, 0x5BD8}, {0x2F86F, 0x5BE7}, {0x2F870, 0x5BF3}, {0x2F871, 0x21B18}, {0x2F872, 0x5BFF}, {0x2F873, 0x5C06},
|
||||
{0x2F874, 0x5F53}, {0x2F875, 0x5C22}, {0x2F876, 0x3781}, {0x2F877, 0x5C60}, {0x2F878, 0x5C6E}, {0x2F879, 0x5CC0}, {0x2F87A, 0x5C8D}, {0x2F87B, 0x21DE4}, {0x2F87C, 0x5D43}, {0x2F87D, 0x21DE6},
|
||||
{0x2F87E, 0x5D6E}, {0x2F87F, 0x5D6B}, {0x2F880, 0x5D7C}, {0x2F881, 0x5DE1}, {0x2F882, 0x5DE2}, {0x2F883, 0x382F}, {0x2F884, 0x5DFD}, {0x2F885, 0x5E28}, {0x2F886, 0x5E3D}, {0x2F887, 0x5E69},
|
||||
{0x2F888, 0x3862}, {0x2F889, 0x22183}, {0x2F88A, 0x387C}, {0x2F88B, 0x5EB0}, {0x2F88C, 0x5EB3}, {0x2F88D, 0x5EB6}, {0x2F88E, 0x5ECA}, {0x2F88F, 0x2A392}, {0x2F890, 0x5EFE}, {0x2F891, 0x22331},
|
||||
{0x2F892, 0x22331}, {0x2F893, 0x8201}, {0x2F894, 0x5F22}, {0x2F895, 0x5F22}, {0x2F896, 0x38C7}, {0x2F897, 0x232B8}, {0x2F898, 0x261DA}, {0x2F899, 0x5F62}, {0x2F89A, 0x5F6B}, {0x2F89B, 0x38E3},
|
||||
{0x2F89C, 0x5F9A}, {0x2F89D, 0x5FCD}, {0x2F89E, 0x5FD7}, {0x2F89F, 0x5FF9}, {0x2F8A0, 0x6081}, {0x2F8A1, 0x393A}, {0x2F8A2, 0x391C}, {0x2F8A3, 0x6094}, {0x2F8A4, 0x226D4}, {0x2F8A5, 0x60C7},
|
||||
{0x2F8A6, 0x6148}, {0x2F8A7, 0x614C}, {0x2F8A8, 0x614E}, {0x2F8A9, 0x614C}, {0x2F8AA, 0x617A}, {0x2F8AB, 0x618E}, {0x2F8AC, 0x61B2}, {0x2F8AD, 0x61A4}, {0x2F8AE, 0x61AF}, {0x2F8AF, 0x61DE},
|
||||
{0x2F8B0, 0x61F2}, {0x2F8B1, 0x61F6}, {0x2F8B2, 0x6210}, {0x2F8B3, 0x621B}, {0x2F8B4, 0x625D}, {0x2F8B5, 0x62B1}, {0x2F8B6, 0x62D4}, {0x2F8B7, 0x6350}, {0x2F8B8, 0x22B0C}, {0x2F8B9, 0x633D},
|
||||
{0x2F8BA, 0x62FC}, {0x2F8BB, 0x6368}, {0x2F8BC, 0x6383}, {0x2F8BD, 0x63E4}, {0x2F8BE, 0x22BF1}, {0x2F8BF, 0x6422}, {0x2F8C0, 0x63C5}, {0x2F8C1, 0x63A9}, {0x2F8C2, 0x3A2E}, {0x2F8C3, 0x6469},
|
||||
{0x2F8C4, 0x647E}, {0x2F8C5, 0x649D}, {0x2F8C6, 0x6477}, {0x2F8C7, 0x3A6C}, {0x2F8C8, 0x654F}, {0x2F8C9, 0x656C}, {0x2F8CA, 0x2300A}, {0x2F8CB, 0x65E3}, {0x2F8CC, 0x66F8}, {0x2F8CD, 0x6649},
|
||||
{0x2F8CE, 0x3B19}, {0x2F8CF, 0x6691}, {0x2F8D0, 0x3B08}, {0x2F8D1, 0x3AE4}, {0x2F8D2, 0x5192}, {0x2F8D3, 0x5195}, {0x2F8D4, 0x6700}, {0x2F8D5, 0x669C}, {0x2F8D6, 0x80AD}, {0x2F8D7, 0x43D9},
|
||||
{0x2F8D8, 0x6717}, {0x2F8D9, 0x671B}, {0x2F8DA, 0x6721}, {0x2F8DB, 0x675E}, {0x2F8DC, 0x6753}, {0x2F8DD, 0x233C3}, {0x2F8DE, 0x3B49}, {0x2F8DF, 0x67FA}, {0x2F8E0, 0x6785}, {0x2F8E1, 0x6852},
|
||||
{0x2F8E2, 0x6885}, {0x2F8E3, 0x2346D}, {0x2F8E4, 0x688E}, {0x2F8E5, 0x681F}, {0x2F8E6, 0x6914}, {0x2F8E7, 0x3B9D}, {0x2F8E8, 0x6942}, {0x2F8E9, 0x69A3}, {0x2F8EA, 0x69EA}, {0x2F8EB, 0x6AA8},
|
||||
{0x2F8EC, 0x236A3}, {0x2F8ED, 0x6ADB}, {0x2F8EE, 0x3C18}, {0x2F8EF, 0x6B21}, {0x2F8F0, 0x238A7}, {0x2F8F1, 0x6B54}, {0x2F8F2, 0x3C4E}, {0x2F8F3, 0x6B72}, {0x2F8F4, 0x6B9F}, {0x2F8F5, 0x6BBA},
|
||||
{0x2F8F6, 0x6BBB}, {0x2F8F7, 0x23A8D}, {0x2F8F8, 0x21D0B}, {0x2F8F9, 0x23AFA}, {0x2F8FA, 0x6C4E}, {0x2F8FB, 0x23CBC}, {0x2F8FC, 0x6CBF}, {0x2F8FD, 0x6CCD}, {0x2F8FE, 0x6C67}, {0x2F8FF, 0x6D16},
|
||||
{0x2F900, 0x6D3E}, {0x2F901, 0x6D77}, {0x2F902, 0x6D41}, {0x2F903, 0x6D69}, {0x2F904, 0x6D78}, {0x2F905, 0x6D85}, {0x2F906, 0x23D1E}, {0x2F907, 0x6D34}, {0x2F908, 0x6E2F}, {0x2F909, 0x6E6E},
|
||||
{0x2F90A, 0x3D33}, {0x2F90B, 0x6ECB}, {0x2F90C, 0x6EC7}, {0x2F90D, 0x23ED1}, {0x2F90E, 0x6DF9}, {0x2F90F, 0x6F6E}, {0x2F910, 0x23F5E}, {0x2F911, 0x23F8E}, {0x2F912, 0x6FC6}, {0x2F913, 0x7039},
|
||||
{0x2F914, 0x701E}, {0x2F915, 0x701B}, {0x2F916, 0x3D96}, {0x2F917, 0x704A}, {0x2F918, 0x707D}, {0x2F919, 0x7077}, {0x2F91A, 0x70AD}, {0x2F91B, 0x20525}, {0x2F91C, 0x7145}, {0x2F91D, 0x24263},
|
||||
{0x2F91E, 0x719C}, {0x2F91F, 0x243AB}, {0x2F920, 0x7228}, {0x2F921, 0x7235}, {0x2F922, 0x7250}, {0x2F923, 0x24608}, {0x2F924, 0x7280}, {0x2F925, 0x7295}, {0x2F926, 0x24735}, {0x2F927, 0x24814},
|
||||
{0x2F928, 0x737A}, {0x2F929, 0x738B}, {0x2F92A, 0x3EAC}, {0x2F92B, 0x73A5}, {0x2F92C, 0x3EB8}, {0x2F92D, 0x3EB8}, {0x2F92E, 0x7447}, {0x2F92F, 0x745C}, {0x2F930, 0x7471}, {0x2F931, 0x7485},
|
||||
{0x2F932, 0x74CA}, {0x2F933, 0x3F1B}, {0x2F934, 0x7524}, {0x2F935, 0x24C36}, {0x2F936, 0x753E}, {0x2F937, 0x24C92}, {0x2F938, 0x7570}, {0x2F939, 0x2219F}, {0x2F93A, 0x7610}, {0x2F93B, 0x24FA1},
|
||||
{0x2F93C, 0x24FB8}, {0x2F93D, 0x25044}, {0x2F93E, 0x3FFC}, {0x2F93F, 0x4008}, {0x2F940, 0x76F4}, {0x2F941, 0x250F3}, {0x2F942, 0x250F2}, {0x2F943, 0x25119}, {0x2F944, 0x25133}, {0x2F945, 0x771E},
|
||||
{0x2F946, 0x771F}, {0x2F947, 0x771F}, {0x2F948, 0x774A}, {0x2F949, 0x4039}, {0x2F94A, 0x778B}, {0x2F94B, 0x4046}, {0x2F94C, 0x4096}, {0x2F94D, 0x2541D}, {0x2F94E, 0x784E}, {0x2F94F, 0x788C},
|
||||
{0x2F950, 0x78CC}, {0x2F951, 0x40E3}, {0x2F952, 0x25626}, {0x2F953, 0x7956}, {0x2F954, 0x2569A}, {0x2F955, 0x256C5}, {0x2F956, 0x798F}, {0x2F957, 0x79EB}, {0x2F958, 0x412F}, {0x2F959, 0x7A40},
|
||||
{0x2F95A, 0x7A4A}, {0x2F95B, 0x7A4F}, {0x2F95C, 0x2597C}, {0x2F95D, 0x25AA7}, {0x2F95E, 0x25AA7}, {0x2F95F, 0x7AEE}, {0x2F960, 0x4202}, {0x2F961, 0x25BAB}, {0x2F962, 0x7BC6}, {0x2F963, 0x7BC9},
|
||||
{0x2F964, 0x4227}, {0x2F965, 0x25C80}, {0x2F966, 0x7CD2}, {0x2F967, 0x42A0}, {0x2F968, 0x7CE8}, {0x2F969, 0x7CE3}, {0x2F96A, 0x7D00}, {0x2F96B, 0x25F86}, {0x2F96C, 0x7D63}, {0x2F96D, 0x4301},
|
||||
{0x2F96E, 0x7DC7}, {0x2F96F, 0x7E02}, {0x2F970, 0x7E45}, {0x2F971, 0x4334}, {0x2F972, 0x26228}, {0x2F973, 0x26247}, {0x2F974, 0x4359}, {0x2F975, 0x262D9}, {0x2F976, 0x7F7A}, {0x2F977, 0x2633E},
|
||||
{0x2F978, 0x7F95}, {0x2F979, 0x7FFA}, {0x2F97A, 0x8005}, {0x2F97B, 0x264DA}, {0x2F97C, 0x26523}, {0x2F97D, 0x8060}, {0x2F97E, 0x265A8}, {0x2F97F, 0x8070}, {0x2F980, 0x2335F}, {0x2F981, 0x43D5},
|
||||
{0x2F982, 0x80B2}, {0x2F983, 0x8103}, {0x2F984, 0x440B}, {0x2F985, 0x813E}, {0x2F986, 0x5AB5}, {0x2F987, 0x267A7}, {0x2F988, 0x267B5}, {0x2F989, 0x23393}, {0x2F98A, 0x2339C}, {0x2F98B, 0x8201},
|
||||
{0x2F98C, 0x8204}, {0x2F98D, 0x8F9E}, {0x2F98E, 0x446B}, {0x2F98F, 0x8291}, {0x2F990, 0x828B}, {0x2F991, 0x829D}, {0x2F992, 0x52B3}, {0x2F993, 0x82B1}, {0x2F994, 0x82B3}, {0x2F995, 0x82BD},
|
||||
{0x2F996, 0x82E6}, {0x2F997, 0x26B3C}, {0x2F998, 0x82E5}, {0x2F999, 0x831D}, {0x2F99A, 0x8363}, {0x2F99B, 0x83AD}, {0x2F99C, 0x8323}, {0x2F99D, 0x83BD}, {0x2F99E, 0x83E7}, {0x2F99F, 0x8457},
|
||||
{0x2F9A0, 0x8353}, {0x2F9A1, 0x83CA}, {0x2F9A2, 0x83CC}, {0x2F9A3, 0x83DC}, {0x2F9A4, 0x26C36}, {0x2F9A5, 0x26D6B}, {0x2F9A6, 0x26CD5}, {0x2F9A7, 0x452B}, {0x2F9A8, 0x84F1}, {0x2F9A9, 0x84F3},
|
||||
{0x2F9AA, 0x8516}, {0x2F9AB, 0x273CA}, {0x2F9AC, 0x8564}, {0x2F9AD, 0x26F2C}, {0x2F9AE, 0x455D}, {0x2F9AF, 0x4561}, {0x2F9B0, 0x26FB1}, {0x2F9B1, 0x270D2}, {0x2F9B2, 0x456B}, {0x2F9B3, 0x8650},
|
||||
{0x2F9B4, 0x865C}, {0x2F9B5, 0x8667}, {0x2F9B6, 0x8669}, {0x2F9B7, 0x86A9}, {0x2F9B8, 0x8688}, {0x2F9B9, 0x870E}, {0x2F9BA, 0x86E2}, {0x2F9BB, 0x8779}, {0x2F9BC, 0x8728}, {0x2F9BD, 0x876B},
|
||||
{0x2F9BE, 0x8786}, {0x2F9BF, 0x45D7}, {0x2F9C0, 0x87E1}, {0x2F9C1, 0x8801}, {0x2F9C2, 0x45F9}, {0x2F9C3, 0x8860}, {0x2F9C4, 0x8863}, {0x2F9C5, 0x27667}, {0x2F9C6, 0x88D7}, {0x2F9C7, 0x88DE},
|
||||
{0x2F9C8, 0x4635}, {0x2F9C9, 0x88FA}, {0x2F9CA, 0x34BB}, {0x2F9CB, 0x278AE}, {0x2F9CC, 0x27966}, {0x2F9CD, 0x46BE}, {0x2F9CE, 0x46C7}, {0x2F9CF, 0x8AA0}, {0x2F9D0, 0x8AED}, {0x2F9D1, 0x8B8A},
|
||||
{0x2F9D2, 0x8C55}, {0x2F9D3, 0x27CA8}, {0x2F9D4, 0x8CAB}, {0x2F9D5, 0x8CC1}, {0x2F9D6, 0x8D1B}, {0x2F9D7, 0x8D77}, {0x2F9D8, 0x27F2F}, {0x2F9D9, 0x20804}, {0x2F9DA, 0x8DCB}, {0x2F9DB, 0x8DBC},
|
||||
{0x2F9DC, 0x8DF0}, {0x2F9DD, 0x208DE}, {0x2F9DE, 0x8ED4}, {0x2F9DF, 0x8F38}, {0x2F9E0, 0x285D2}, {0x2F9E1, 0x285ED}, {0x2F9E2, 0x9094}, {0x2F9E3, 0x90F1}, {0x2F9E4, 0x9111}, {0x2F9E5, 0x2872E},
|
||||
{0x2F9E6, 0x911B}, {0x2F9E7, 0x9238}, {0x2F9E8, 0x92D7}, {0x2F9E9, 0x92D8}, {0x2F9EA, 0x927C}, {0x2F9EB, 0x93F9}, {0x2F9EC, 0x9415}, {0x2F9ED, 0x28BFA}, {0x2F9EE, 0x958B}, {0x2F9EF, 0x4995},
|
||||
{0x2F9F0, 0x95B7}, {0x2F9F1, 0x28D77}, {0x2F9F2, 0x49E6}, {0x2F9F3, 0x96C3}, {0x2F9F4, 0x5DB2}, {0x2F9F5, 0x9723}, {0x2F9F6, 0x29145}, {0x2F9F7, 0x2921A}, {0x2F9F8, 0x4A6E}, {0x2F9F9, 0x4A76},
|
||||
{0x2F9FA, 0x97E0}, {0x2F9FB, 0x2940A}, {0x2F9FC, 0x4AB2}, {0x2F9FD, 0x29496}, {0x2F9FE, 0x980B}, {0x2F9FF, 0x980B}, {0x2FA00, 0x9829}, {0x2FA01, 0x295B6}, {0x2FA02, 0x98E2}, {0x2FA03, 0x4B33},
|
||||
{0x2FA04, 0x9929}, {0x2FA05, 0x99A7}, {0x2FA06, 0x99C2}, {0x2FA07, 0x99FE}, {0x2FA08, 0x4BCE}, {0x2FA09, 0x29B30}, {0x2FA0A, 0x9B12}, {0x2FA0B, 0x9C40}, {0x2FA0C, 0x9CFD}, {0x2FA0D, 0x4CCE},
|
||||
{0x2FA0E, 0x4CED}, {0x2FA0F, 0x9D67}, {0x2FA10, 0x2A0CE}, {0x2FA11, 0x4CF8}, {0x2FA12, 0x2A105}, {0x2FA13, 0x2A20E}, {0x2FA14, 0x2A291}, {0x2FA15, 0x9EBB}, {0x2FA16, 0x4D56}, {0x2FA17, 0x9EF9},
|
||||
{0x2FA18, 0x9EFE}, {0x2FA19, 0x9F05}, {0x2FA1A, 0x9F0F}, {0x2FA1B, 0x9F16}, {0x2FA1D, 0x2A600},
|
||||
};
|
||||
|
||||
static std::string codepoint_to_utf8(uint32_t cp) {
|
||||
std::string result;
|
||||
if (/* 0x00 <= cp && */ cp <= 0x7f) {
|
||||
|
@ -404,7 +712,8 @@ static std::unordered_map<uint32_t, int> codepoint_type_map() {
|
|||
|
||||
static int codepoint_type(uint32_t cp) {
|
||||
static std::unordered_map<uint32_t, int> codepoint_types = codepoint_type_map();
|
||||
return codepoint_types.find(cp) == codepoint_types.end() ? CODEPOINT_TYPE_UNIDENTIFIED : codepoint_types.at(cp);
|
||||
const auto it = codepoint_types.find(cp);
|
||||
return it == codepoint_types.end() ? CODEPOINT_TYPE_UNIDENTIFIED : it->second;
|
||||
}
|
||||
|
||||
static int codepoint_type(const std::string & utf8) {
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue