llama : add jina v2 base code (#7596)
* feat: add changes to handle jina v2 base code * fix: do not complicate things * fix: fix the usage of the code model * fix: fix comments * fix: fix linting issues * fix: remove ollama patches * style : minor --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
This commit is contained in:
parent
2d08b7fbb4
commit
f5d7b268ec
5 changed files with 24 additions and 5 deletions
17
llama.cpp
17
llama.cpp
|
@ -704,6 +704,7 @@ static const std::map<llm_arch, std::map<llm_tensor, std::string>> LLM_TENSOR_NA
|
|||
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
|
||||
{ LLM_TENSOR_TOKEN_EMBD_NORM, "token_embd_norm" },
|
||||
{ LLM_TENSOR_TOKEN_TYPES, "token_types" },
|
||||
{ LLM_TENSOR_ATTN_NORM_2, "blk.%d.attn_norm_2" },
|
||||
{ LLM_TENSOR_ATTN_OUT_NORM, "blk.%d.attn_output_norm" },
|
||||
{ LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
|
||||
{ LLM_TENSOR_ATTN_Q_NORM, "blk.%d.attn_q_norm" },
|
||||
|
@ -4653,8 +4654,7 @@ static void llm_load_vocab(
|
|||
LLAMA_LOG_WARN("%s: ************************************ \n", __func__);
|
||||
LLAMA_LOG_WARN("%s: \n", __func__);
|
||||
vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEFAULT;
|
||||
} else if (
|
||||
tokenizer_pre == "default") {
|
||||
} else if (tokenizer_pre == "default") {
|
||||
vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEFAULT;
|
||||
} else if (
|
||||
tokenizer_pre == "llama3" ||
|
||||
|
@ -4681,7 +4681,8 @@ static void llm_load_vocab(
|
|||
tokenizer_pre == "jina-es" ||
|
||||
tokenizer_pre == "jina-de" ||
|
||||
tokenizer_pre == "jina-v2-es" ||
|
||||
tokenizer_pre == "jina-v2-de") {
|
||||
tokenizer_pre == "jina-v2-de" ||
|
||||
tokenizer_pre == "jina-v2-code") {
|
||||
vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_GPT2;
|
||||
} else if (
|
||||
tokenizer_pre == "refact") {
|
||||
|
@ -5515,7 +5516,7 @@ static bool llm_load_tensors(
|
|||
|
||||
layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
|
||||
} else {
|
||||
layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
|
||||
layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
|
||||
}
|
||||
|
||||
layer.layer_out_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_LAYER_OUT_NORM, "weight", i), {n_embd});
|
||||
|
@ -5556,6 +5557,9 @@ static bool llm_load_tensors(
|
|||
layer.attn_out_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd}); //output_norm
|
||||
layer.attn_out_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT_NORM, "bias", i), {n_embd});
|
||||
|
||||
layer.attn_norm_2 = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM_2, "weight", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
|
||||
layer.attn_norm_2_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM_2, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
|
||||
|
||||
layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
|
||||
layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
|
||||
|
||||
|
@ -8519,6 +8523,11 @@ struct llm_build_context {
|
|||
// attention layer norm
|
||||
cur = llm_build_norm(ctx0, cur, hparams, model.layers[il].attn_out_norm, model.layers[il].attn_out_norm_b, LLM_NORM, cb, il);
|
||||
|
||||
if (model.layers[il].attn_norm_2 != nullptr) {
|
||||
cur = ggml_add(ctx0, cur, inpL); // re-add the layer input
|
||||
cur = llm_build_norm(ctx0, cur, hparams, model.layers[il].attn_norm_2, model.layers[il].attn_norm_2_b, LLM_NORM, cb, il);
|
||||
}
|
||||
|
||||
struct ggml_tensor * ffn_inp = cur;
|
||||
cb(ffn_inp, "ffn_inp", il);
|
||||
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue