update qwen2vl cli tool

This commit is contained in:
HimariO 2024-10-01 23:25:06 +08:00
parent 9d389a051b
commit f661483ea7

View file

@ -1,14 +1,16 @@
#include "ggml.h"
#include "arg.h"
#include "base64.hpp"
#include "log.h"
#include "common.h"
#include "sampling.h"
#include "clip.h"
#include "llava.h"
#include "llama.h"
#include "base64.hpp"
#include "ggml.h"
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <vector>
#include <algorithm>
#include <iostream>
@ -17,23 +19,13 @@
static bool eval_tokens(struct llama_context * ctx_llama, std::vector<llama_token> tokens, int n_batch, int * n_past) {
int N = (int) tokens.size();
std::vector<llama_pos> pos;
for (int i = 0; i < N; i += n_batch) {
int n_eval = (int) tokens.size() - i;
if (n_eval > n_batch) {
n_eval = n_batch;
}
llama_batch batch = llama_batch_get_one(&tokens[i], n_eval, *n_past, 0);
// TODO: add mrope pos ids somewhere else
pos.resize(batch.n_tokens * 3);
for (int j = 0; j < batch.n_tokens * 3; j ++) {
pos[j] = j % batch.n_tokens;
}
batch.pos = pos.data();
if (llama_decode(ctx_llama, batch)) {
LOG_TEE("%s : failed to eval. token %d/%d (batch size %d, n_past %d)\n", __func__, i, N, n_batch, *n_past);
if (llama_decode(ctx_llama, llama_batch_get_one(&tokens[i], n_eval, *n_past, 0))) {
LOG_ERR("%s : failed to eval. token %d/%d (batch size %d, n_past %d)\n", __func__, i, N, n_batch, *n_past);
return false;
}
*n_past += n_eval;
@ -54,11 +46,11 @@ static bool eval_string(struct llama_context * ctx_llama, const char* str, int n
return true;
}
static const char * sample(struct llama_sampling_context * ctx_sampling,
static const char * sample(struct gpt_sampler * smpl,
struct llama_context * ctx_llama,
int * n_past) {
const llama_token id = llama_sampling_sample(ctx_sampling, ctx_llama, NULL);
llama_sampling_accept(ctx_sampling, ctx_llama, id, true);
const llama_token id = gpt_sampler_sample(smpl, ctx_llama, -1);
gpt_sampler_accept(smpl, id, true);
static std::string ret;
if (llama_token_is_eog(llama_get_model(ctx_llama), id)) {
ret = "</s>";
@ -88,7 +80,7 @@ static llava_image_embed * llava_image_embed_make_with_prompt_base64(struct clip
size_t img_base64_str_start, img_base64_str_end;
find_image_tag_in_prompt(prompt, img_base64_str_start, img_base64_str_end);
if (img_base64_str_start == std::string::npos || img_base64_str_end == std::string::npos) {
LOG_TEE("%s: invalid base64 image tag. must be %s<base64 byte string>%s\n", __func__, IMG_BASE64_TAG_BEGIN, IMG_BASE64_TAG_END);
LOG_ERR("%s: invalid base64 image tag. must be %s<base64 byte string>%s\n", __func__, IMG_BASE64_TAG_BEGIN, IMG_BASE64_TAG_END);
return NULL;
}
@ -102,7 +94,7 @@ static llava_image_embed * llava_image_embed_make_with_prompt_base64(struct clip
auto embed = llava_image_embed_make_with_bytes(ctx_clip, n_threads, img_bytes.data(), img_bytes.size());
if (!embed) {
LOG_TEE("%s: could not load image from base64 string.\n", __func__);
LOG_ERR("%s: could not load image from base64 string.\n", __func__);
return NULL;
}
@ -126,12 +118,10 @@ struct llava_context {
struct llama_model * model = NULL;
};
static void print_usage(int argc, char ** argv, const gpt_params & params) {
gpt_params_print_usage(argc, argv, params);
LOG_TEE("\n example usage:\n");
LOG_TEE("\n %s -m <llava-v1.5-7b/ggml-model-q5_k.gguf> --mmproj <llava-v1.5-7b/mmproj-model-f16.gguf> --image <path/to/an/image.jpg> --image <path/to/another/image.jpg> [--temp 0.1] [-p \"describe the image in detail.\"]\n", argv[0]);
LOG_TEE("\n note: a lower temperature value like 0.1 is recommended for better quality.\n");
static void print_usage(int, char ** argv) {
LOG("\n example usage:\n");
LOG("\n %s -m <llava-v1.5-7b/ggml-model-q5_k.gguf> --mmproj <llava-v1.5-7b/mmproj-model-f16.gguf> --image <path/to/an/image.jpg> --image <path/to/another/image.jpg> [--temp 0.1] [-p \"describe the image in detail.\"]\n", argv[0]);
LOG("\n note: a lower temperature value like 0.1 is recommended for better quality.\n");
}
static struct llava_image_embed * load_image(llava_context * ctx_llava, gpt_params * params, const std::string & fname) {
@ -141,11 +131,11 @@ static struct llava_image_embed * load_image(llava_context * ctx_llava, gpt_para
auto prompt = params->prompt;
if (prompt_contains_image(prompt)) {
if (!params->image.empty()) {
LOG_TEE("using base64 encoded image instead of command line image path\n");
LOG_INF("using base64 encoded image instead of command line image path\n");
}
embed = llava_image_embed_make_with_prompt_base64(ctx_llava->ctx_clip, params->cpuparams.n_threads, prompt);
if (!embed) {
LOG_TEE("%s: can't load image from prompt\n", __func__);
LOG_ERR("%s: can't load image from prompt\n", __func__);
return NULL;
}
params->prompt = remove_image_from_prompt(prompt);
@ -171,18 +161,18 @@ static void process_prompt(struct llava_context * ctx_llava, struct llava_image_
// new templating mode: Provide the full prompt including system message and use <image> as a placeholder for the image
system_prompt = prompt.substr(0, image_pos);
user_prompt = prompt.substr(image_pos + std::string("<image>").length());
LOG_TEE("system_prompt: %s\n", system_prompt.c_str());
LOG_INF("system_prompt: %s\n", system_prompt.c_str());
if (params->verbose_prompt) {
auto tmp = ::llama_tokenize(ctx_llava->ctx_llama, system_prompt, true, true);
for (int i = 0; i < (int) tmp.size(); i++) {
LOG_TEE("%6d -> '%s'\n", tmp[i], llama_token_to_piece(ctx_llava->ctx_llama, tmp[i]).c_str());
LOG_INF("%6d -> '%s'\n", tmp[i], llama_token_to_piece(ctx_llava->ctx_llama, tmp[i]).c_str());
}
}
LOG_TEE("user_prompt: %s\n", user_prompt.c_str());
LOG_INF("user_prompt: %s\n", user_prompt.c_str());
if (params->verbose_prompt) {
auto tmp = ::llama_tokenize(ctx_llava->ctx_llama, user_prompt, true, true);
for (int i = 0; i < (int) tmp.size(); i++) {
LOG_TEE("%6d -> '%s'\n", tmp[i], llama_token_to_piece(ctx_llava->ctx_llama, tmp[i]).c_str());
LOG_INF("%6d -> '%s'\n", tmp[i], llama_token_to_piece(ctx_llava->ctx_llama, tmp[i]).c_str());
}
}
} else {
@ -192,7 +182,7 @@ static void process_prompt(struct llava_context * ctx_llava, struct llava_image_
if (params->verbose_prompt) {
auto tmp = ::llama_tokenize(ctx_llava->ctx_llama, user_prompt, true, true);
for (int i = 0; i < (int) tmp.size(); i++) {
LOG_TEE("%6d -> '%s'\n", tmp[i], llama_token_to_piece(ctx_llava->ctx_llama, tmp[i]).c_str());
LOG_INF("%6d -> '%s'\n", tmp[i], llama_token_to_piece(ctx_llava->ctx_llama, tmp[i]).c_str());
}
}
}
@ -204,21 +194,21 @@ static void process_prompt(struct llava_context * ctx_llava, struct llava_image_
// generate the response
LOG_TEE("\n");
LOG("\n");
struct llama_sampling_context * ctx_sampling = llama_sampling_init(params->sparams);
if (!ctx_sampling) {
fprintf(stderr, "%s: failed to initialize sampling subsystem\n", __func__);
struct gpt_sampler * smpl = gpt_sampler_init(ctx_llava->model, params->sparams);
if (!smpl) {
LOG_ERR("%s: failed to initialize sampling subsystem\n", __func__);
exit(1);
}
std::string response = "";
for (int i = 0; i < max_tgt_len; i++) {
const char * tmp = sample(ctx_sampling, ctx_llava->ctx_llama, &n_past);
const char * tmp = sample(smpl, ctx_llava->ctx_llama, &n_past);
response += tmp;
if (strcmp(tmp, "</s>") == 0) break;
if (strstr(tmp, "###")) break; // Yi-VL behavior
printf("%s", tmp);
LOG("%s", tmp);
if (strstr(response.c_str(), "<|im_end|>")) break; // Yi-34B llava-1.6 - for some reason those decode not as the correct token (tokenizer works)
if (strstr(response.c_str(), "<|im_start|>")) break; // Yi-34B llava-1.6
if (strstr(response.c_str(), "USER:")) break; // mistral llava-1.6
@ -226,8 +216,8 @@ static void process_prompt(struct llava_context * ctx_llava, struct llava_image_
fflush(stdout);
}
llama_sampling_free(ctx_sampling);
printf("\n");
gpt_sampler_free(smpl);
LOG("\n");
}
static struct llama_model * llava_init(gpt_params * params) {
@ -238,7 +228,7 @@ static struct llama_model * llava_init(gpt_params * params) {
llama_model * model = llama_load_model_from_file(params->model.c_str(), model_params);
if (model == NULL) {
LOG_TEE("%s: error: unable to load model\n" , __func__);
LOG_ERR("%s: unable to load model\n" , __func__);
return NULL;
}
return model;
@ -261,11 +251,11 @@ static struct llava_context * llava_init_context(gpt_params * params, llama_mode
llama_context * ctx_llama = llama_new_context_with_model(model, ctx_params);
if (ctx_llama == NULL) {
LOG_TEE("%s: error: failed to create the llama_context\n" , __func__);
LOG_ERR("%s: failed to create the llama_context\n" , __func__);
return NULL;
}
auto ctx_llava = (struct llava_context *)malloc(sizeof(llava_context));
auto * ctx_llava = (struct llava_context *)malloc(sizeof(llava_context));
ctx_llava->ctx_llama = ctx_llama;
ctx_llava->ctx_clip = ctx_clip;
@ -284,12 +274,6 @@ static void llava_free(struct llava_context * ctx_llava) {
llama_backend_free();
}
static void llama_log_callback_logTee(ggml_log_level level, const char * text, void * user_data) {
(void) level;
(void) user_data;
LOG_TEE("%s", text);
}
static void tmp_test_conv2d_reshape(struct llava_context * ctx_llava, gpt_params * params) {
int image_size_width = 256;
int image_size_height = 256;
@ -564,43 +548,36 @@ int main(int argc, char ** argv) {
gpt_params params;
if (!gpt_params_parse(argc, argv, params)) {
print_usage(argc, argv, params);
if (!gpt_params_parse(argc, argv, params, LLAMA_EXAMPLE_LLAVA, print_usage)) {
return 1;
}
#ifndef LOG_DISABLE_LOGS
log_set_target(log_filename_generator("llava", "log"));
LOG_TEE("Log start\n");
log_dump_cmdline(argc, argv);
llama_log_set(llama_log_callback_logTee, nullptr);
#endif // LOG_DISABLE_LOGS
gpt_init();
if (params.mmproj.empty() || (params.image.empty() && !prompt_contains_image(params.prompt))) {
print_usage(argc, argv, {});
print_usage(argc, argv);
return 1;
}
auto model = llava_init(&params);
auto * model = llava_init(&params);
if (model == NULL) {
fprintf(stderr, "%s: error: failed to init llava model\n", __func__);
return 1;
}
params.image.clear();
if (prompt_contains_image(params.prompt)) {
auto ctx_llava = llava_init_context(&params, model);
auto * ctx_llava = llava_init_context(&params, model);
auto image_embed = load_image(ctx_llava, &params, "");
auto * image_embed = load_image(ctx_llava, &params, "");
// process the prompt
process_prompt(ctx_llava, image_embed, &params, params.prompt);
llama_print_timings(ctx_llava->ctx_llama);
llama_perf_context_print(ctx_llava->ctx_llama);
llava_image_embed_free(image_embed);
ctx_llava->model = NULL;
llava_free(ctx_llava);
} else if (params.image.empty()) {
} else if (params.image.empty() | true) {
// This section is for testing LLM parts of the model during development phase!
auto ctx_llava = llava_init_context(&params, model);
@ -609,31 +586,30 @@ int main(int argc, char ** argv) {
// tmp_test_rope(ctx_llava, &params);
// tmp_test_mrope(ctx_llava, &params);
tmp_test_mrope_2d(ctx_llava, &params);
// process_prompt(ctx_llava, nullptr, &params, params.prompt);
process_prompt(ctx_llava, nullptr, &params, params.prompt);
llama_print_timings(ctx_llava->ctx_llama);
llama_perf_context_print(ctx_llava->ctx_llama);
ctx_llava->model = NULL;
llava_free(ctx_llava);
} else {
for (auto & image : params.image) {
auto ctx_llava = llava_init_context(&params, model);
auto * ctx_llava = llava_init_context(&params, model);
auto image_embed = load_image(ctx_llava, &params, image);
auto * image_embed = load_image(ctx_llava, &params, image);
if (!image_embed) {
std::cerr << "error: failed to load image " << image << ". Terminating\n\n";
LOG_ERR("%s: failed to load image %s. Terminating\n\n", __func__, image.c_str());
return 1;
}
// process the prompt
process_prompt(ctx_llava, image_embed, &params, params.prompt);
llama_print_timings(ctx_llava->ctx_llama);
llama_perf_context_print(ctx_llava->ctx_llama);
llava_image_embed_free(image_embed);
ctx_llava->model = NULL;
llava_free(ctx_llava);
}
}
llama_free_model(model);