Merge remote-tracking branch 'origin/master' into model-args

This commit is contained in:
ochafik 2024-04-27 16:50:56 +01:00
commit f70e4d6c6d
18 changed files with 707 additions and 303 deletions

View file

@ -32,7 +32,7 @@ on:
- cron: '04 2 * * *'
concurrency:
group: ${{ github.workflow }}-${{ github.ref || github.run_id }}-${{ github.event.inputs.sha }}
group: ${{ github.workflow }}-${{ github.ref }}-${{ github.head_ref || github.run_id }}-${{ github.event.inputs.sha }}
cancel-in-progress: true
jobs:

View file

@ -23,7 +23,7 @@ on:
- cron: '2 4 * * *'
concurrency:
group: ${{ github.workflow }}-${{ github.ref || github.run_id }}
group: ${{ github.workflow }}-${{ github.ref }}-${{ github.head_ref || github.run_id }}
cancel-in-progress: true
jobs:
@ -58,6 +58,7 @@ jobs:
git \
cmake \
python3-pip \
python3-venv \
curl \
wget \
language-pack-en \
@ -100,10 +101,13 @@ jobs:
-DLLAMA_SANITIZE_${{ matrix.sanitizer }}=ON ;
cmake --build . --config ${{ matrix.build_type }} -j $(nproc) --target server
- name: Tests dependencies
id: test_dependencies
- name: Setup python env
id: pipenv
run: |
pip install -r examples/server/tests/requirements.txt
cd examples/server/tests
python3 -m venv venv
. venv/bin/activate
pip install -r requirements.txt
- name: Tests
id: server_integration_tests

View file

@ -768,7 +768,7 @@ batched-bench: examples/batched-bench/batched-bench.cpp build-info.o ggml.
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
quantize: examples/quantize/quantize.cpp build-info.o ggml.o llama.o $(OBJS)
quantize: examples/quantize/quantize.cpp ggml.o llama.o $(COMMON_DEPS) $(OBJS)
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)

View file

@ -233,8 +233,54 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) {
return result;
}
bool parse_kv_override(const char * data, std::vector<llama_model_kv_override> & overrides) {
const char * sep = strchr(data, '=');
if (sep == nullptr || sep - data >= 128) {
fprintf(stderr, "%s: malformed KV override '%s'\n", __func__, data);
return false;
}
llama_model_kv_override kvo;
std::strncpy(kvo.key, data, sep - data);
kvo.key[sep - data] = 0;
sep++;
if (strncmp(sep, "int:", 4) == 0) {
sep += 4;
kvo.tag = LLAMA_KV_OVERRIDE_TYPE_INT;
kvo.val_i64 = std::atol(sep);
} else if (strncmp(sep, "float:", 6) == 0) {
sep += 6;
kvo.tag = LLAMA_KV_OVERRIDE_TYPE_FLOAT;
kvo.val_f64 = std::atof(sep);
} else if (strncmp(sep, "bool:", 5) == 0) {
sep += 5;
kvo.tag = LLAMA_KV_OVERRIDE_TYPE_BOOL;
if (std::strcmp(sep, "true") == 0) {
kvo.val_bool = true;
} else if (std::strcmp(sep, "false") == 0) {
kvo.val_bool = false;
} else {
fprintf(stderr, "%s: invalid boolean value for KV override '%s'\n", __func__, data);
return false;
}
} else if (strncmp(sep, "str:", 4) == 0) {
sep += 4;
kvo.tag = LLAMA_KV_OVERRIDE_TYPE_STR;
if (strlen(sep) > 127) {
fprintf(stderr, "%s: malformed KV override '%s', value cannot exceed 127 chars\n", __func__, data);
return false;
}
strncpy(kvo.val_str, sep, 127);
kvo.val_str[127] = '\0';
} else {
fprintf(stderr, "%s: invalid type for KV override '%s'\n", __func__, data);
return false;
}
overrides.emplace_back(std::move(kvo));
return true;
}
bool gpt_params_find_arg(int argc, char ** argv, const std::string & arg, gpt_params & params, int & i, bool & invalid_param) {
llama_sampling_params& sparams = params.sparams;
llama_sampling_params & sparams = params.sparams;
if (arg == "-s" || arg == "--seed") {
if (++i >= argc) {
@ -1088,6 +1134,10 @@ bool gpt_params_find_arg(int argc, char ** argv, const std::string & arg, gpt_pa
params.n_print = std::stoi(argv[i]);
return true;
}
if (arg == "--check-tensors") {
params.check_tensors = true;
return true;
}
if (arg == "--ppl-output-type") {
if (++i >= argc) {
invalid_param = true;
@ -1239,47 +1289,11 @@ bool gpt_params_find_arg(int argc, char ** argv, const std::string & arg, gpt_pa
invalid_param = true;
return true;
}
char* sep = strchr(argv[i], '=');
if (sep == nullptr || sep - argv[i] >= 128) {
fprintf(stderr, "error: Malformed KV override: %s\n", argv[i]);
invalid_param = true;
return true;
}
struct llama_model_kv_override kvo;
std::strncpy(kvo.key, argv[i], sep - argv[i]);
kvo.key[sep - argv[i]] = 0;
sep++;
if (strncmp(sep, "int:", 4) == 0) {
sep += 4;
kvo.tag = LLAMA_KV_OVERRIDE_TYPE_INT;
kvo.int_value = std::atol(sep);
}
else if (strncmp(sep, "float:", 6) == 0) {
sep += 6;
kvo.tag = LLAMA_KV_OVERRIDE_TYPE_FLOAT;
kvo.float_value = std::atof(sep);
}
else if (strncmp(sep, "bool:", 5) == 0) {
sep += 5;
kvo.tag = LLAMA_KV_OVERRIDE_TYPE_BOOL;
if (std::strcmp(sep, "true") == 0) {
kvo.bool_value = true;
}
else if (std::strcmp(sep, "false") == 0) {
kvo.bool_value = false;
}
else {
fprintf(stderr, "error: Invalid boolean value for KV override: %s\n", argv[i]);
invalid_param = true;
return true;
}
}
else {
if (!parse_kv_override(argv[i], params.kv_overrides)) {
fprintf(stderr, "error: Invalid type for KV override: %s\n", argv[i]);
invalid_param = true;
return true;
}
params.kv_overrides.push_back(kvo);
return true;
}
#ifndef LOG_DISABLE_LOGS
@ -1570,9 +1584,10 @@ void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) {
printf(" path to dynamic lookup cache to use for lookup decoding (updated by generation)\n");
printf(" --override-kv KEY=TYPE:VALUE\n");
printf(" advanced option to override model metadata by key. may be specified multiple times.\n");
printf(" types: int, float, bool. example: --override-kv tokenizer.ggml.add_bos_token=bool:false\n");
printf(" types: int, float, bool, str. example: --override-kv tokenizer.ggml.add_bos_token=bool:false\n");
printf(" -ptc N, --print-token-count N\n");
printf(" print token count every N tokens (default: %d)\n", params.n_print);
printf(" --check-tensors check model tensor data for invalid values\n");
printf("\n");
#ifndef LOG_DISABLE_LOGS
log_print_usage();
@ -1793,6 +1808,7 @@ struct llama_model_params llama_model_params_from_gpt_params(const gpt_params &
mparams.tensor_split = params.tensor_split;
mparams.use_mmap = params.use_mmap;
mparams.use_mlock = params.use_mlock;
mparams.check_tensors = params.check_tensors;
if (params.kv_overrides.empty()) {
mparams.kv_overrides = NULL;
} else {

View file

@ -163,6 +163,7 @@ struct gpt_params {
bool dump_kv_cache = false; // dump the KV cache contents for debugging purposes
bool no_kv_offload = false; // disable KV offloading
bool warmup = true; // warmup run
bool check_tensors = false; // validate tensor data
std::string cache_type_k = "f16"; // KV cache data type for the K
std::string cache_type_v = "f16"; // KV cache data type for the V
@ -174,6 +175,8 @@ struct gpt_params {
void gpt_params_handle_model_default(gpt_params & params);
bool parse_kv_override(const char * data, std::vector<llama_model_kv_override> & overrides);
bool gpt_params_parse_ex(int argc, char ** argv, gpt_params & params);
bool gpt_params_parse(int argc, char ** argv, gpt_params & params);

View file

@ -23,6 +23,7 @@ struct Stats {
};
struct StatParams {
std::string dataset;
std::string ofile = "imatrix.dat";
int n_output_frequency = 10;
int verbosity = 1;
@ -46,7 +47,7 @@ private:
std::vector<float> m_src1_data;
std::vector<char> m_ids; // the expert ids from ggml_mul_mat_id
//
void save_imatrix(const char * file_name) const;
void save_imatrix(const char * file_name, const char * dataset) const;
void keep_imatrix(int ncall) const;
};
@ -199,7 +200,7 @@ bool IMatrixCollector::collect_imatrix(struct ggml_tensor * t, bool ask, void *
}
void IMatrixCollector::save_imatrix() const {
save_imatrix(m_params.ofile.empty() ? "imatrix.dat" : m_params.ofile.c_str());
save_imatrix(m_params.ofile.empty() ? "imatrix.dat" : m_params.ofile.c_str(), m_params.dataset.c_str());
}
void IMatrixCollector::keep_imatrix(int ncall) const {
@ -207,24 +208,33 @@ void IMatrixCollector::keep_imatrix(int ncall) const {
if (file_name.empty()) file_name = "imatrix.dat";
file_name += ".at_";
file_name += std::to_string(ncall);
save_imatrix(file_name.c_str());
save_imatrix(file_name.c_str(), m_params.dataset.c_str());
}
void IMatrixCollector::save_imatrix(const char * fname) const {
void IMatrixCollector::save_imatrix(const char * fname, const char * dataset) const {
std::ofstream out(fname, std::ios::binary);
int n_entries = m_stats.size();
out.write((const char*)&n_entries, sizeof(n_entries));
for (auto& p : m_stats) {
out.write((const char *) &n_entries, sizeof(n_entries));
for (const auto & p : m_stats) {
int len = p.first.size();
out.write((const char*)&len, sizeof(len));
out.write((const char *) &len, sizeof(len));
out.write(p.first.c_str(), len);
out.write((const char*)&p.second.ncall, sizeof(p.second.ncall));
out.write((const char *) &p.second.ncall, sizeof(p.second.ncall));
int nval = p.second.values.size();
out.write((const char*)&nval, sizeof(nval));
if (nval > 0) out.write((const char*)p.second.values.data(), nval*sizeof(float));
out.write((const char *) &nval, sizeof(nval));
if (nval > 0) out.write((const char *) p.second.values.data(), nval * sizeof(float));
}
// Write the number of call the matrix was computed with
out.write((const char *) &m_last_call, sizeof(m_last_call));
// Write the dataset name at the end of the file to later on specify it in quantize
int n_dataset = strlen(dataset);
out.write((const char *) &n_dataset, sizeof(n_dataset));
out.write(dataset, n_dataset);
if (m_params.verbosity > 0) {
fprintf(stderr, "\n%s: stored collected data after %d chunks in %s\n",__func__,m_last_call,fname);
fprintf(stderr, "\n%s: stored collected data after %d chunks in %s\n", __func__, m_last_call, fname);
}
}
@ -547,6 +557,29 @@ int main(int argc, char ** argv) {
}
}
gpt_params params;
params.n_batch = 512;
if (!gpt_params_parse(args.size(), args.data(), params)) {
return 1;
}
params.logits_all = true;
params.n_batch = std::min(params.n_batch, params.n_ctx);
print_build_info();
if (params.seed == LLAMA_DEFAULT_SEED) {
params.seed = time(NULL);
}
fprintf(stderr, "%s: seed = %u\n", __func__, params.seed);
std::mt19937 rng(params.seed);
if (params.random_prompt) {
params.prompt = gpt_random_prompt(rng);
}
sparams.dataset = params.prompt_file;
g_collector.set_parameters(std::move(sparams));
if (!combine_files.empty()) {
@ -585,28 +618,6 @@ int main(int argc, char ** argv) {
}
}
gpt_params params;
params.n_batch = 512;
if (!gpt_params_parse(args.size(), args.data(), params)) {
return 1;
}
params.logits_all = true;
params.n_batch = std::min(params.n_batch, params.n_ctx);
print_build_info();
if (params.seed == LLAMA_DEFAULT_SEED) {
params.seed = time(NULL);
}
fprintf(stderr, "%s: seed = %u\n", __func__, params.seed);
std::mt19937 rng(params.seed);
if (params.random_prompt) {
params.prompt = gpt_random_prompt(rng);
}
llama_backend_init();
llama_numa_init(params.numa);

View file

@ -1,6 +1,6 @@
set(TARGET quantize)
add_executable(${TARGET} quantize.cpp)
install(TARGETS ${TARGET} RUNTIME)
target_link_libraries(${TARGET} PRIVATE llama build_info ${CMAKE_THREAD_LIBS_INIT})
target_link_libraries(${TARGET} PRIVATE llama common ${CMAKE_THREAD_LIBS_INIT})
target_include_directories(${TARGET} PRIVATE ../../common)
target_compile_features(${TARGET} PRIVATE cxx_std_11)

View file

@ -8,7 +8,6 @@
#include <unordered_map>
#include <fstream>
#include <cmath>
#include <algorithm>
struct quant_option {
std::string name;
@ -53,6 +52,10 @@ static const std::vector<struct quant_option> QUANT_OPTIONS = {
{ "COPY", LLAMA_FTYPE_ALL_F32, "only copy tensors, no quantizing", },
};
static const char * const LLM_KV_QUANTIZE_IMATRIX_FILE = "quantize.imatrix.file";
static const char * const LLM_KV_QUANTIZE_IMATRIX_DATASET = "quantize.imatrix.dataset";
static const char * const LLM_KV_QUANTIZE_IMATRIX_N_ENTRIES = "quantize.imatrix.entries_count";
static const char * const LLM_KV_QUANTIZE_IMATRIX_N_CHUNKS = "quantize.imatrix.chunks_count";
static bool try_parse_ftype(const std::string & ftype_str_in, llama_ftype & ftype, std::string & ftype_str_out) {
std::string ftype_str;
@ -113,7 +116,7 @@ static void usage(const char * executable) {
exit(1);
}
static void load_imatrix(const std::string & imatrix_file, std::unordered_map<std::string, std::vector<float>> & imatrix_data) {
static int load_imatrix(const std::string & imatrix_file, std::string & imatrix_dataset, std::unordered_map<std::string, std::vector<float>> & imatrix_data) {
std::ifstream in(imatrix_file.c_str(), std::ios::binary);
if (!in) {
printf("%s: failed to open %s\n",__func__, imatrix_file.c_str());
@ -160,18 +163,33 @@ static void load_imatrix(const std::string & imatrix_file, std::unordered_map<st
printf("%s: loaded data (size = %6d, ncall = %6d) for '%s'\n", __func__, int(e.size()), ncall, name.c_str());
}
}
printf("%s: loaded %d importance matrix entries from %s\n", __func__, int(imatrix_data.size()), imatrix_file.c_str());
// latest imatrix version contains the dataset filename at the end of the file
int m_last_call = 0;
if (in.peek() != EOF) {
in.read((char *)&m_last_call, sizeof(m_last_call));
int dataset_len;
in.read((char *)&dataset_len, sizeof(dataset_len));
std::vector<char> dataset_as_vec(dataset_len);
in.read(dataset_as_vec.data(), dataset_len);
imatrix_dataset.assign(dataset_as_vec.begin(), dataset_as_vec.end());
printf("%s: imatrix dataset='%s'\n", __func__, imatrix_dataset.c_str());
}
printf("%s: loaded %d importance matrix entries from %s computed on %d chunks\n", __func__, int(imatrix_data.size()), imatrix_file.c_str(), m_last_call);
return m_last_call;
}
static void prepare_imatrix(const std::string & imatrix_file,
static int prepare_imatrix(const std::string & imatrix_file,
std::string & imatrix_dataset,
const std::vector<std::string> & included_weights,
const std::vector<std::string> & excluded_weights,
std::unordered_map<std::string, std::vector<float>> & imatrix_data) {
int m_last_call = -1;
if (!imatrix_file.empty()) {
load_imatrix(imatrix_file, imatrix_data);
m_last_call = load_imatrix(imatrix_file, imatrix_dataset, imatrix_data);
}
if (imatrix_data.empty()) {
return;
return m_last_call;
}
if (!excluded_weights.empty()) {
for (auto& name : excluded_weights) {
@ -197,6 +215,7 @@ static void prepare_imatrix(const std::string & imatrix_file,
if (!imatrix_data.empty()) {
printf("%s: have %d importance matrix entries\n", __func__, int(imatrix_data.size()));
}
return m_last_call;
}
static ggml_type parse_ggml_type(const char * arg) {
@ -211,43 +230,6 @@ static ggml_type parse_ggml_type(const char * arg) {
return result;
}
static bool parse_kv_override(const char * data, std::vector<llama_model_kv_override> & overrides) {
const char* sep = strchr(data, '=');
if (sep == nullptr || sep - data >= 128) {
fprintf(stderr, "%s: malformed KV override '%s'\n", __func__, data);
return false;
}
llama_model_kv_override kvo;
std::strncpy(kvo.key, data, sep - data);
kvo.key[sep - data] = 0;
sep++;
if (strncmp(sep, "int:", 4) == 0) {
sep += 4;
kvo.tag = LLAMA_KV_OVERRIDE_TYPE_INT;
kvo.int_value = std::atol(sep);
} else if (strncmp(sep, "float:", 6) == 0) {
sep += 6;
kvo.tag = LLAMA_KV_OVERRIDE_TYPE_FLOAT;
kvo.float_value = std::atof(sep);
} else if (strncmp(sep, "bool:", 5) == 0) {
sep += 5;
kvo.tag = LLAMA_KV_OVERRIDE_TYPE_BOOL;
if (std::strcmp(sep, "true") == 0) {
kvo.bool_value = true;
} else if (std::strcmp(sep, "false") == 0) {
kvo.bool_value = false;
} else {
fprintf(stderr, "%s: invalid boolean value for KV override '%s'\n", __func__, data);
return false;
}
} else {
fprintf(stderr, "%s: invalid type for KV override '%s'\n", __func__, data);
return false;
}
overrides.emplace_back(std::move(kvo));
return true;
}
int main(int argc, char ** argv) {
if (argc < 3) {
usage(argv[0]);
@ -316,10 +298,43 @@ int main(int argc, char ** argv) {
usage(argv[0]);
}
std::string imatrix_dataset;
std::unordered_map<std::string, std::vector<float>> imatrix_data;
prepare_imatrix(imatrix_file, included_weights, excluded_weights, imatrix_data);
int m_last_call = prepare_imatrix(imatrix_file, imatrix_dataset, included_weights, excluded_weights, imatrix_data);
if (!imatrix_data.empty()) {
params.imatrix = &imatrix_data;
{
llama_model_kv_override kvo;
std::strcpy(kvo.key, LLM_KV_QUANTIZE_IMATRIX_FILE);
kvo.tag = LLAMA_KV_OVERRIDE_TYPE_STR;
strncpy(kvo.val_str, imatrix_file.c_str(), 127);
kvo.val_str[127] = '\0';
kv_overrides.emplace_back(std::move(kvo));
}
if (!imatrix_dataset.empty()) {
llama_model_kv_override kvo;
std::strcpy(kvo.key, LLM_KV_QUANTIZE_IMATRIX_DATASET);
kvo.tag = LLAMA_KV_OVERRIDE_TYPE_STR;
strncpy(kvo.val_str, imatrix_dataset.c_str(), 127);
kvo.val_str[127] = '\0';
kv_overrides.emplace_back(std::move(kvo));
}
{
llama_model_kv_override kvo;
std::strcpy(kvo.key, LLM_KV_QUANTIZE_IMATRIX_N_ENTRIES);
kvo.tag = LLAMA_KV_OVERRIDE_TYPE_INT;
kvo.val_i64 = imatrix_data.size();
kv_overrides.emplace_back(std::move(kvo));
}
if (m_last_call > 0) {
llama_model_kv_override kvo;
std::strcpy(kvo.key, LLM_KV_QUANTIZE_IMATRIX_N_CHUNKS);
kvo.tag = LLAMA_KV_OVERRIDE_TYPE_INT;
kvo.val_i64 = m_last_call;
kv_overrides.emplace_back(std::move(kvo));
}
}
if (!kv_overrides.empty()) {
kv_overrides.emplace_back();

View file

@ -90,7 +90,8 @@ export default function () {
"model": model,
"stream": true,
"seed": 42,
"max_tokens": max_tokens
"max_tokens": max_tokens,
"stop": ["<|im_end|>"] // This is temporary for phi-2 base (i.e. not instructed) since the server expects that the model always to emit BOS
}
const params = {method: 'POST', body: JSON.stringify(payload)};

View file

@ -1207,6 +1207,27 @@ struct server_context {
LOG_VERBOSE("eos token found", {});
}
auto n_ctx_train = llama_n_ctx_train(model);
if (slot.params.n_predict < 1 && slot.ga_n == 1
&& slot.n_prompt_tokens + slot.n_decoded >= n_ctx_train) {
LOG_WARNING("n_predict is not set and self-context extend is disabled."
" Limiting generated tokens to n_ctx_train to avoid EOS-less generation infinite loop", {
{ "id_slot", slot.id },
{ "params.n_predict", slot.params.n_predict },
{ "slot.n_prompt_tokens", slot.n_prompt_tokens },
{ "slot.n_decoded", slot.n_decoded },
{ "slot.n_predict", slot.n_predict },
{ "n_slots", params.n_parallel },
{ "slot.n_ctx", slot.n_ctx },
{ "n_ctx", n_ctx },
{ "n_ctx_train", n_ctx_train },
{ "ga_n", slot.ga_n },
});
slot.truncated = true;
slot.stopped_limit = true;
slot.has_next_token = false; // stop prediction
}
LOG_VERBOSE("next token", {
{"id_slot", slot.id},
{"id_task", slot.id_task},
@ -2141,7 +2162,7 @@ struct server_context {
});
// process the created batch of tokens
for (int32_t i = 0; i < (int32_t) batch.n_tokens; i += n_batch) {
for (int32_t i = 0; i < batch.n_tokens; i += n_batch) {
const int32_t n_tokens = std::min(n_batch, batch.n_tokens - i);
for (auto & slot : slots) {
@ -2371,7 +2392,7 @@ static void server_print_usage(const char * argv0, const gpt_params & params, co
printf(" -n, --n-predict maximum tokens to predict (default: %d)\n", params.n_predict);
printf(" --override-kv KEY=TYPE:VALUE\n");
printf(" advanced option to override model metadata by key. may be specified multiple times.\n");
printf(" types: int, float, bool. example: --override-kv tokenizer.ggml.add_bos_token=bool:false\n");
printf(" types: int, float, bool, str. example: --override-kv tokenizer.ggml.add_bos_token=bool:false\n");
printf(" -gan N, --grp-attn-n N set the group attention factor to extend context size through self-extend(default: 1=disabled), used together with group attention width `--grp-attn-w`\n");
printf(" -gaw N, --grp-attn-w N set the group attention width to extend context size through self-extend(default: 512), used together with group attention factor `--grp-attn-n`\n");
printf(" --chat-template JINJA_TEMPLATE\n");
@ -2802,43 +2823,11 @@ static void server_params_parse(int argc, char ** argv, server_params & sparams,
invalid_param = true;
break;
}
char * sep = strchr(argv[i], '=');
if (sep == nullptr || sep - argv[i] >= 128) {
fprintf(stderr, "error: Malformed KV override: %s\n", argv[i]);
invalid_param = true;
break;
}
struct llama_model_kv_override kvo;
std::strncpy(kvo.key, argv[i], sep - argv[i]);
kvo.key[sep - argv[i]] = 0;
sep++;
if (strncmp(sep, "int:", 4) == 0) {
sep += 4;
kvo.tag = LLAMA_KV_OVERRIDE_TYPE_INT;
kvo.int_value = std::atol(sep);
} else if (strncmp(sep, "float:", 6) == 0) {
sep += 6;
kvo.tag = LLAMA_KV_OVERRIDE_TYPE_FLOAT;
kvo.float_value = std::atof(sep);
} else if (strncmp(sep, "bool:", 5) == 0) {
sep += 5;
kvo.tag = LLAMA_KV_OVERRIDE_TYPE_BOOL;
if (std::strcmp(sep, "true") == 0) {
kvo.bool_value = true;
} else if (std::strcmp(sep, "false") == 0) {
kvo.bool_value = false;
} else {
fprintf(stderr, "error: Invalid boolean value for KV override: %s\n", argv[i]);
invalid_param = true;
break;
}
} else {
if (!parse_kv_override(argv[i], params.kv_overrides)) {
fprintf(stderr, "error: Invalid type for KV override: %s\n", argv[i]);
invalid_param = true;
break;
}
params.kv_overrides.push_back(kvo);
} else {
fprintf(stderr, "error: unknown argument: %s\n", arg.c_str());
server_print_usage(argv[0], default_params, default_sparams);

View file

@ -1784,12 +1784,14 @@ void ggml_backend_sched_free(ggml_backend_sched_t sched) {
void ggml_backend_sched_reset(ggml_backend_sched_t sched) {
// reset state for the next run
size_t hash_size = sched->hash_set.size;
memset(sched->hash_set.keys, 0, sizeof(sched->hash_set.keys[0]) * hash_size); // NOLINT
memset(sched->tensor_backend_id, -1, sizeof(sched->tensor_backend_id[0]) * hash_size);
memset(sched->tensor_copies, 0, sizeof(sched->tensor_copies[0]) * hash_size);
if (!sched->is_reset) {
size_t hash_size = sched->hash_set.size;
memset(sched->hash_set.keys, 0, sizeof(sched->hash_set.keys[0]) * hash_size); // NOLINT
memset(sched->tensor_backend_id, -1, sizeof(sched->tensor_backend_id[0]) * hash_size);
memset(sched->tensor_copies, 0, sizeof(sched->tensor_copies[0]) * hash_size);
sched->is_reset = true;
sched->is_reset = true;
}
sched->is_alloc = false;
}

View file

@ -12383,3 +12383,287 @@ void quantize_row_iq2_s(const float * restrict x, void * restrict vy, int64_t k)
block_iq2_s * restrict y = vy;
quantize_row_iq2_s_reference(x, y, k);
}
static bool validate_float(float f, size_t i) {
if (isinf(f)) {
fprintf(stderr, "ggml_validate_row_data: found inf value at block %zu\n", i);
return false;
}
if (isnan(f)) {
fprintf(stderr, "ggml_validate_row_data: found nan value at block %zu\n", i);
return false;
}
return true;
}
static bool isinf_fp16(ggml_fp16_t f) {
return (f & 0x7c00) == 0x7c00 && (f & 0x03ff) == 0;
}
static bool isnan_fp16(ggml_fp16_t f) {
return (f & 0x7c00) == 0x7c00 && (f & 0x03ff) != 0;
}
static bool validate_fp16(ggml_fp16_t f, size_t i) {
if (isinf_fp16(f)) {
fprintf(stderr, "ggml_validate_row_data: found inf value at block %zu\n", i);
return false;
}
if (isnan_fp16(f)) {
fprintf(stderr, "ggml_validate_row_data: found nan value at block %zu\n", i);
return false;
}
return true;
}
#define VALIDATE_ROW_DATA_D_F16_IMPL(type, data, nb) \
const type * q = (const type *) (data); \
for (size_t i = 0; i < (nb); ++i) { \
if (!validate_fp16(q[i].d, i)) { \
return false; \
} \
}
#define VALIDATE_ROW_DATA_DM_F16_IMPL(type, data, nb, d, m) \
const type * q = (const type *) (data); \
for (size_t i = 0; i < (nb); ++i) { \
if (!validate_fp16(q[i].d, i) || !validate_fp16(q[i].m, i)) { \
return false; \
} \
}
bool ggml_validate_row_data(enum ggml_type type, const void * data, size_t nbytes) {
if (type < 0 || type >= GGML_TYPE_COUNT) {
fprintf(stderr, "%s: invalid type %d\n", __func__, type);
return false;
}
if (nbytes % ggml_type_size(type) != 0) {
fprintf(stderr, "%s: invalid size %zu for type %d\n", __func__, nbytes, type);
return false;
}
const size_t nb = nbytes/ggml_type_size(type);
switch (type) {
case GGML_TYPE_F16:
{
const ggml_fp16_t * f = (const ggml_fp16_t *) data;
size_t i = 0;
#if defined(__AVX2__)
for (; i + 15 < nb; i += 16) {
__m256i v = _mm256_loadu_si256((const __m256i *)(f + i));
__m256i vexp = _mm256_and_si256(v, _mm256_set1_epi16(0x7c00));
__m256i cmp = _mm256_cmpeq_epi16(vexp, _mm256_set1_epi16(0x7c00));
int mask = _mm256_movemask_epi8(cmp);
if (mask) {
for (size_t j = 0; j < 16; ++j) {
if (!validate_fp16(f[i + j], i + j)) {
return false;
}
}
GGML_UNREACHABLE();
}
}
#elif defined(__ARM_NEON)
for (; i + 7 < nb; i += 8) {
uint16x8_t v = vld1q_u16(f + i);
uint16x8_t vexp = vandq_u16(v, vdupq_n_u16(0x7c00));
uint16x8_t cmp = vceqq_u16(vexp, vdupq_n_u16(0x7c00));
uint64_t mask = vget_lane_u64(vreinterpret_u64_u8(vshrn_n_u16(cmp, 4)), 0);
if (mask) {
for (size_t j = 0; j < 8; ++j) {
if (!validate_fp16(f[i + j], i + j)) {
return false;
}
}
GGML_UNREACHABLE();
}
}
#endif
for (; i < nb; ++i) {
if (!validate_fp16(f[i], i)) {
return false;
}
}
} break;
case GGML_TYPE_F32:
{
const float * f = (const float *) data;
size_t i = 0;
#if defined(__AVX2__)
for (; i + 7 < nb; i += 8) {
__m256i v = _mm256_loadu_si256((const __m256i *)(f + i));
__m256i vexp = _mm256_and_si256(v, _mm256_set1_epi32(0x7f800000));
__m256i cmp = _mm256_cmpeq_epi32(vexp, _mm256_set1_epi32(0x7f800000));
int mask = _mm256_movemask_epi8(cmp);
if (mask) {
for (size_t j = 0; j < 8; ++j) {
if (!validate_float(f[i + j], i + j)) {
return false;
}
}
GGML_UNREACHABLE();
}
}
#elif defined(__ARM_NEON)
for (; i + 3 < nb; i += 4) {
uint32x4_t v = vld1q_u32((const uint32_t *)f + i);
uint32x4_t vexp = vandq_u32(v, vdupq_n_u32(0x7f800000));
uint32x4_t cmp = vceqq_u32(vexp, vdupq_n_u32(0x7f800000));
uint64_t mask = vget_lane_u64(vreinterpret_u64_u16(vshrn_n_u32(cmp, 8)), 0);
if (mask) {
for (size_t j = 0; j < 4; ++j) {
if (!validate_float(f[i + j], i + j)) {
return false;
}
}
GGML_UNREACHABLE();
}
}
#endif
for (; i < nb; ++i) {
if (!validate_float(f[i], i)) {
return false;
}
}
} break;
case GGML_TYPE_F64:
{
const double * f = (const double *) data;
for (size_t i = 0; i < nb; ++i) {
if (!validate_float(f[i], i)) {
return false;
}
}
} break;
case GGML_TYPE_Q4_0:
{
VALIDATE_ROW_DATA_D_F16_IMPL(block_q4_0, data, nb);
} break;
case GGML_TYPE_Q4_1:
{
VALIDATE_ROW_DATA_DM_F16_IMPL(block_q4_1, data, nb, d, m);
} break;
case GGML_TYPE_Q5_0:
{
VALIDATE_ROW_DATA_D_F16_IMPL(block_q5_0, data, nb);
} break;
case GGML_TYPE_Q5_1:
{
VALIDATE_ROW_DATA_DM_F16_IMPL(block_q5_1, data, nb, d, m);
} break;
case GGML_TYPE_Q8_0:
{
VALIDATE_ROW_DATA_D_F16_IMPL(block_q8_0, data, nb);
} break;
case GGML_TYPE_Q2_K:
{
VALIDATE_ROW_DATA_DM_F16_IMPL(block_q2_K, data, nb, d, dmin);
} break;
case GGML_TYPE_Q3_K:
{
VALIDATE_ROW_DATA_D_F16_IMPL(block_q3_K, data, nb);
} break;
case GGML_TYPE_Q4_K:
{
#ifdef GGML_QKK_64
VALIDATE_ROW_DATA_DM_F16_IMPL(block_q4_K, data, nb, d[0], d[1]);
#else
VALIDATE_ROW_DATA_DM_F16_IMPL(block_q4_K, data, nb, d, dmin);
#endif
} break;
case GGML_TYPE_Q5_K:
{
#ifdef GGML_QKK_64
VALIDATE_ROW_DATA_D_F16_IMPL(block_q5_K, data, nb);
#else
VALIDATE_ROW_DATA_DM_F16_IMPL(block_q5_K, data, nb, d, dmin);
#endif
} break;
case GGML_TYPE_Q6_K:
{
VALIDATE_ROW_DATA_D_F16_IMPL(block_q6_K, data, nb);
} break;
case GGML_TYPE_Q8_K:
{
const block_q8_K * q = (const block_q8_K *) data;
for (size_t i = 0; i < nb; ++i) {
if (!validate_float(q[i].d, i)) {
return false;
}
}
} break;
case GGML_TYPE_IQ1_S:
{
VALIDATE_ROW_DATA_D_F16_IMPL(block_iq1_s, data, nb);
} break;
case GGML_TYPE_IQ1_M:
{
const block_iq1_m * q = (const block_iq1_m *) data;
for (size_t i = 0; i < nb; ++i) {
#if QK_K == 64
if (!validate_fp16(q[i].d, i)) {
return false;
}
#else
iq1m_scale_t scale;
const uint16_t * sc = (const uint16_t *)q[i].scales;
scale.u16 = (sc[0] >> 12) | ((sc[1] >> 8) & 0x00f0) | ((sc[2] >> 4) & 0x0f00) | (sc[3] & 0xf000);
if (!validate_fp16(scale.f16, i)) {
return false;
}
#endif
}
} break;
case GGML_TYPE_IQ2_XXS:
{
VALIDATE_ROW_DATA_D_F16_IMPL(block_iq2_xxs, data, nb);
} break;
case GGML_TYPE_IQ2_XS:
{
VALIDATE_ROW_DATA_D_F16_IMPL(block_iq2_xs, data, nb);
} break;
case GGML_TYPE_IQ2_S:
{
VALIDATE_ROW_DATA_D_F16_IMPL(block_iq2_s, data, nb);
} break;
case GGML_TYPE_IQ3_XXS:
{
VALIDATE_ROW_DATA_D_F16_IMPL(block_iq3_xxs, data, nb);
} break;
case GGML_TYPE_IQ3_S:
{
VALIDATE_ROW_DATA_D_F16_IMPL(block_iq3_s, data, nb);
} break;
case GGML_TYPE_IQ4_XS:
#if QK_K != 64
{
VALIDATE_ROW_DATA_D_F16_IMPL(block_iq4_xs, data, nb);
} break;
#endif
// with QK_K == 64, iq4_xs is iq4_nl
case GGML_TYPE_IQ4_NL:
{
VALIDATE_ROW_DATA_D_F16_IMPL(block_iq4_nl, data, nb);
} break;
case GGML_TYPE_I8:
case GGML_TYPE_I16:
case GGML_TYPE_I32:
case GGML_TYPE_I64:
// nothing to validate
break;
default:
{
fprintf(stderr, "%s: invalid type %d\n", __func__, type);
return false;
}
}
return true;
}

31
ggml.c
View file

@ -20614,7 +20614,7 @@ static void gguf_free_kv(struct gguf_kv * kv) {
}
struct gguf_context * gguf_init_empty(void) {
struct gguf_context * ctx = GGML_ALIGNED_MALLOC(sizeof(struct gguf_context));
struct gguf_context * ctx = GGML_CALLOC(1, sizeof(struct gguf_context));
memcpy(ctx->header.magic, GGUF_MAGIC, sizeof(ctx->header.magic));
ctx->header.version = GGUF_VERSION;
@ -20659,7 +20659,7 @@ struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_p
bool ok = true;
struct gguf_context * ctx = GGML_ALIGNED_MALLOC(sizeof(struct gguf_context));
struct gguf_context * ctx = GGML_CALLOC(1, sizeof(struct gguf_context));
// read the header
{
@ -20696,9 +20696,13 @@ struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_p
// read the kv pairs
{
ctx->kv = GGML_MALLOC(ctx->header.n_kv * sizeof(struct gguf_kv));
const uint64_t n_kv = ctx->header.n_kv;
for (uint64_t i = 0; i < ctx->header.n_kv; ++i) {
// header.n_kv will hold the actual value of pairs that were successfully read in the loop below
ctx->header.n_kv = 0;
ctx->kv = GGML_CALLOC(n_kv, sizeof(struct gguf_kv));
for (uint64_t i = 0; i < n_kv; ++i) {
struct gguf_kv * kv = &ctx->kv[i];
//fprintf(stderr, "%s: reading kv %d\n", __func__, i);
@ -20747,7 +20751,7 @@ struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_p
return NULL;
}
kv->value.arr.data = GGML_MALLOC(kv->value.arr.n * gguf_type_size(kv->value.arr.type));
kv->value.arr.data = GGML_CALLOC(kv->value.arr.n, gguf_type_size(kv->value.arr.type));
ok = ok && gguf_fread_el(file, kv->value.arr.data, kv->value.arr.n * gguf_type_size(kv->value.arr.type), &offset);
} break;
@ -20761,7 +20765,7 @@ struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_p
return NULL;
}
kv->value.arr.data = GGML_MALLOC(kv->value.arr.n * sizeof(struct gguf_str));
kv->value.arr.data = GGML_CALLOC(kv->value.arr.n, sizeof(struct gguf_str));
for (uint64_t j = 0; j < kv->value.arr.n; ++j) {
ok = ok && gguf_fread_str(file, &((struct gguf_str *) kv->value.arr.data)[j], &offset);
@ -20777,6 +20781,8 @@ struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_p
if (!ok) {
break;
}
ctx->header.n_kv++;
}
if (!ok) {
@ -20789,7 +20795,7 @@ struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_p
// read the tensor infos
{
ctx->infos = GGML_MALLOC(ctx->header.n_tensors * sizeof(struct gguf_tensor_info));
ctx->infos = GGML_CALLOC(ctx->header.n_tensors, sizeof(struct gguf_tensor_info));
for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
struct gguf_tensor_info * info = &ctx->infos[i];
@ -20810,6 +20816,7 @@ struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_p
ok = ok && gguf_fread_el (file, &info->type, sizeof(info->type), &offset);
ok = ok && gguf_fread_el (file, &info->offset, sizeof(info->offset), &offset);
// TODO: return an error instead of crashing with GGML_ASSERT
gguf_tensor_info_sanitize(info);
if (!ok) {
@ -20980,7 +20987,7 @@ void gguf_free(struct gguf_context * ctx) {
GGML_FREE(ctx->infos);
}
GGML_ALIGNED_FREE(ctx);
GGML_FREE(ctx);
}
const char * gguf_type_name(enum gguf_type type) {
@ -21291,7 +21298,7 @@ void gguf_set_arr_data(struct gguf_context * ctx, const char * key, enum gguf_ty
ctx->kv[idx].type = GGUF_TYPE_ARRAY;
ctx->kv[idx].value.arr.type = type;
ctx->kv[idx].value.arr.n = n;
ctx->kv[idx].value.arr.data = GGML_MALLOC(n*gguf_type_size(type));
ctx->kv[idx].value.arr.data = GGML_CALLOC(n, gguf_type_size(type));
memcpy(ctx->kv[idx].value.arr.data, data, n*gguf_type_size(type));
}
@ -21301,7 +21308,7 @@ void gguf_set_arr_str(struct gguf_context * ctx, const char * key, const char **
ctx->kv[idx].type = GGUF_TYPE_ARRAY;
ctx->kv[idx].value.arr.type = GGUF_TYPE_STRING;
ctx->kv[idx].value.arr.n = n;
ctx->kv[idx].value.arr.data = GGML_MALLOC(n*sizeof(struct gguf_str));
ctx->kv[idx].value.arr.data = GGML_CALLOC(n, sizeof(struct gguf_str));
for (int i = 0; i < n; i++) {
struct gguf_str * str = &((struct gguf_str *)ctx->kv[idx].value.arr.data)[i];
str->n = strlen(data[i]);
@ -21328,7 +21335,7 @@ void gguf_set_kv(struct gguf_context * ctx, struct gguf_context * src) {
case GGUF_TYPE_ARRAY:
{
if (src->kv[i].value.arr.type == GGUF_TYPE_STRING) {
const char ** data = GGML_MALLOC(src->kv[i].value.arr.n*sizeof(char *));
const char ** data = GGML_CALLOC(src->kv[i].value.arr.n, sizeof(char *));
for (uint32_t j = 0; j < src->kv[i].value.arr.n; j++) {
data[j] = ((struct gguf_str *)src->kv[i].value.arr.data)[j].data;
}
@ -21416,7 +21423,7 @@ struct gguf_buf {
static struct gguf_buf gguf_buf_init(size_t size) {
struct gguf_buf buf = {
/*buf.data =*/ size == 0 ? NULL : GGML_MALLOC(size),
/*buf.data =*/ size == 0 ? NULL : GGML_CALLOC(1, size),
/*buf.size =*/ size,
/*buf.offset =*/ 0,
};

2
ggml.h
View file

@ -762,6 +762,8 @@ extern "C" {
// use this to compute the memory overhead of a tensor
GGML_API size_t ggml_tensor_overhead(void);
GGML_API bool ggml_validate_row_data(enum ggml_type type, const void * data, size_t nbytes);
// main
GGML_API struct ggml_context * ggml_init(struct ggml_init_params params);

129
llama.cpp
View file

@ -75,6 +75,7 @@
#include <forward_list>
#include <fstream>
#include <functional>
#include <future>
#include <initializer_list>
#include <locale>
#include <map>
@ -2882,6 +2883,7 @@ namespace GGUFMeta {
case LLAMA_KV_OVERRIDE_TYPE_BOOL: return "bool";
case LLAMA_KV_OVERRIDE_TYPE_INT: return "int";
case LLAMA_KV_OVERRIDE_TYPE_FLOAT: return "float";
case LLAMA_KV_OVERRIDE_TYPE_STR: return "str";
}
return "unknown";
}
@ -2893,13 +2895,16 @@ namespace GGUFMeta {
__func__, override_type_to_str(ovrd->tag), ovrd->key);
switch (ovrd->tag) {
case LLAMA_KV_OVERRIDE_TYPE_BOOL: {
LLAMA_LOG_INFO("%s\n", ovrd->bool_value ? "true" : "false");
LLAMA_LOG_INFO("%s\n", ovrd->val_bool ? "true" : "false");
} break;
case LLAMA_KV_OVERRIDE_TYPE_INT: {
LLAMA_LOG_INFO("%" PRId64 "\n", ovrd->int_value);
LLAMA_LOG_INFO("%" PRId64 "\n", ovrd->val_i64);
} break;
case LLAMA_KV_OVERRIDE_TYPE_FLOAT: {
LLAMA_LOG_INFO("%.6f\n", ovrd->float_value);
LLAMA_LOG_INFO("%.6f\n", ovrd->val_f64);
} break;
case LLAMA_KV_OVERRIDE_TYPE_STR: {
LLAMA_LOG_INFO("%s\n", ovrd->val_str);
} break;
default:
// Shouldn't be possible to end up here, but just in case...
@ -2918,7 +2923,7 @@ namespace GGUFMeta {
static typename std::enable_if<std::is_same<OT, bool>::value, bool>::type
try_override(OT & target, const struct llama_model_kv_override * ovrd) {
if (validate_override(LLAMA_KV_OVERRIDE_TYPE_BOOL, ovrd)) {
target = ovrd->bool_value;
target = ovrd->val_bool;
return true;
}
return false;
@ -2928,7 +2933,7 @@ namespace GGUFMeta {
static typename std::enable_if<!std::is_same<OT, bool>::value && std::is_integral<OT>::value, bool>::type
try_override(OT & target, const struct llama_model_kv_override * ovrd) {
if (validate_override(LLAMA_KV_OVERRIDE_TYPE_INT, ovrd)) {
target = ovrd->int_value;
target = ovrd->val_i64;
return true;
}
return false;
@ -2938,7 +2943,7 @@ namespace GGUFMeta {
static typename std::enable_if<std::is_floating_point<OT>::value, bool>::type
try_override(T & target, const struct llama_model_kv_override * ovrd) {
if (validate_override(LLAMA_KV_OVERRIDE_TYPE_FLOAT, ovrd)) {
target = ovrd->float_value;
target = ovrd->val_f64;
return true;
}
return false;
@ -2947,12 +2952,11 @@ namespace GGUFMeta {
template<typename OT>
static typename std::enable_if<std::is_same<OT, std::string>::value, bool>::type
try_override(T & target, const struct llama_model_kv_override * ovrd) {
(void)target;
(void)ovrd;
if (!ovrd) { return false; }
// Currently, we should never end up here so it would be a bug if we do.
throw std::runtime_error(format("Unsupported attempt to override string type for metadata key %s\n",
ovrd ? ovrd->key : "NULL"));
if (validate_override(LLAMA_KV_OVERRIDE_TYPE_STR, ovrd)) {
target = ovrd->val_str;
return true;
}
return false;
}
static bool set(const gguf_context * ctx, const int k, T & target, const struct llama_model_kv_override * ovrd = nullptr) {
@ -2985,6 +2989,7 @@ struct llama_model_loader {
size_t n_bytes = 0;
bool use_mmap = false;
bool check_tensors;
llama_files files;
llama_ftype ftype;
@ -3018,7 +3023,7 @@ struct llama_model_loader {
std::string arch_name;
LLM_KV llm_kv = LLM_KV(LLM_ARCH_UNKNOWN);
llama_model_loader(const std::string & fname, bool use_mmap, const struct llama_model_kv_override * param_overrides_p) {
llama_model_loader(const std::string & fname, bool use_mmap, bool check_tensors, const struct llama_model_kv_override * param_overrides_p) {
int trace = 0;
if (getenv("LLAMA_TRACE")) {
trace = atoi(getenv("LLAMA_TRACE"));
@ -3223,6 +3228,7 @@ struct llama_model_loader {
}
this->use_mmap = use_mmap;
this->check_tensors = check_tensors;
}
~llama_model_loader() {
@ -3481,6 +3487,10 @@ struct llama_model_loader {
file->seek(w.offs, SEEK_SET);
file->read_raw(cur->data, ggml_nbytes(cur));
}
if (check_tensors && !ggml_validate_row_data(cur->type, cur->data, ggml_nbytes(cur))) {
throw std::runtime_error(format("tensor '%s' has invalid data", ggml_get_name(cur)));
}
}
size_t size_done = 0;
@ -3497,6 +3507,8 @@ struct llama_model_loader {
GGML_ASSERT(size_data != 0 && "call init_mappings() first");
std::vector<no_init<uint8_t>> read_buf;
std::vector<std::future<std::pair<ggml_tensor *, bool>>> validation_result;
for (struct ggml_tensor * cur = ggml_get_first_tensor(ctx); cur != NULL; cur = ggml_get_next_tensor(ctx, cur)) {
const auto * weight = get_weight(ggml_get_name(cur));
if (weight == nullptr) {
@ -3518,37 +3530,66 @@ struct llama_model_loader {
if (bufs_mmap.count(weight->idx)) {
buf_mmap = bufs_mmap.at(weight->idx);
}
uint8_t * data = (uint8_t *) mapping->addr + weight->offs;
if (check_tensors) {
validation_result.emplace_back(std::async(std::launch::async, [cur, data, n_size] {
return std::make_pair(cur, ggml_validate_row_data(cur->type, data, n_size));
}));
}
GGML_ASSERT(buf_mmap || cur->data); // either we have a buffer to allocate the tensor in, or it is already allocated
if (buf_mmap && cur->data == nullptr) {
ggml_backend_tensor_alloc(buf_mmap, cur, (uint8_t *) mapping->addr + weight->offs);
ggml_backend_tensor_alloc(buf_mmap, cur, data);
if (lmlocks) {
const auto & lmlock = lmlocks->at(weight->idx);
lmlock->grow_to(weight->offs + ggml_nbytes(cur));
lmlock->grow_to(weight->offs + n_size);
}
auto & mmap_used = mmaps_used[weight->idx];
mmap_used.first = std::min(mmap_used.first, weight->offs);
mmap_used.second = std::max(mmap_used.second, weight->offs + n_size);
} else {
ggml_backend_tensor_set(cur, (uint8_t *) mapping->addr + weight->offs, 0, n_size);
ggml_backend_tensor_set(cur, data, 0, n_size);
}
} else {
GGML_ASSERT(weight->idx < files.size());
const auto & file = files.at(weight->idx);
if (ggml_backend_buffer_is_host(cur->buffer)) {
file->seek(weight->offs, SEEK_SET);
file->read_raw(cur->data, ggml_nbytes(cur));
file->read_raw(cur->data, n_size);
if (check_tensors) {
validation_result.emplace_back(std::async(std::launch::async, [cur, n_size] {
return std::make_pair(cur, ggml_validate_row_data(cur->type, cur->data, n_size));
}));
}
} else {
read_buf.resize(ggml_nbytes(cur));
read_buf.resize(n_size);
file->seek(weight->offs, SEEK_SET);
file->read_raw(read_buf.data(), ggml_nbytes(cur));
file->read_raw(read_buf.data(), n_size);
ggml_backend_tensor_set(cur, read_buf.data(), 0, n_size);
if (check_tensors && !ggml_validate_row_data(cur->type, read_buf.data(), n_size)) {
throw std::runtime_error(format("tensor '%s' has invalid data", ggml_get_name(cur)));
}
}
}
size_done += n_size;
}
// check validation results
bool validation_failed = false;
for (auto & future : validation_result) {
auto result = future.get();
if (!result.second) {
LLAMA_LOG_ERROR("%s: tensor '%s' has invalid data\n", __func__, ggml_get_name(result.first));
validation_failed = true;
}
}
if (validation_failed) {
throw std::runtime_error("found tensors with invalid data");
}
// check if this is the last call and do final cleanup
if (size_done >= size_data) {
// unmap offloaded tensors and metadata
@ -5975,7 +6016,7 @@ static bool llm_load_tensors(
// Returns 0 on success, -1 on error, and -2 on cancellation via llama_progress_callback
static int llama_model_load(const std::string & fname, llama_model & model, llama_model_params & params) {
try {
llama_model_loader ml(fname, params.use_mmap, params.kv_overrides);
llama_model_loader ml(fname, params.use_mmap, params.check_tensors, params.kv_overrides);
model.hparams.vocab_only = params.vocab_only;
@ -11432,6 +11473,10 @@ static int llama_decode_internal(
}
}
// Reset state for the next token before backend sync, to allow the CPU activities in the reset to
// overlap with device computation.
ggml_backend_sched_reset(lctx.sched);
return 0;
}
@ -14360,14 +14405,20 @@ static ggml_type llama_tensor_get_type(quantize_state_internal & qs, ggml_type n
}
static size_t llama_tensor_quantize_internal(enum ggml_type new_type, const float * f32_data, void * new_data, const int64_t chunk_size, int64_t nrows, int64_t n_per_row, const float * imatrix, std::vector<std::thread> & workers, const int nthread) {
if (nthread < 2) {
// single-thread
size_t new_size = ggml_quantize_chunk(new_type, f32_data, new_data, 0, nrows, n_per_row, imatrix);
if (!ggml_validate_row_data(new_type, new_data, new_size)) {
throw std::runtime_error("quantized data validation failed");
}
return new_size;
}
std::mutex mutex;
int64_t counter = 0;
size_t new_size = 0;
if (nthread < 2) {
// single-thread
return ggml_quantize_chunk(new_type, f32_data, new_data, 0, nrows, n_per_row, imatrix);
}
auto compute = [&mutex, &counter, &new_size, new_type, f32_data, new_data, chunk_size,
bool valid = true;
auto compute = [&mutex, &counter, &new_size, &valid, new_type, f32_data, new_data, chunk_size,
nrows, n_per_row, imatrix]() {
const int64_t nrows_per_chunk = chunk_size / n_per_row;
size_t local_size = 0;
@ -14382,7 +14433,17 @@ static size_t llama_tensor_quantize_internal(enum ggml_type new_type, const floa
}
lock.unlock();
const int64_t this_nrow = std::min(nrows - first_row, nrows_per_chunk);
local_size += ggml_quantize_chunk(new_type, f32_data, new_data, first_row * n_per_row, this_nrow, n_per_row, imatrix);
size_t this_size = ggml_quantize_chunk(new_type, f32_data, new_data, first_row * n_per_row, this_nrow, n_per_row, imatrix);
local_size += this_size;
// validate the quantized data
const size_t row_size = ggml_row_size(new_type, n_per_row);
void * this_data = (char *) new_data + first_row * row_size;
if (!ggml_validate_row_data(new_type, this_data, this_size)) {
std::unique_lock<std::mutex> lock(mutex);
valid = false;
break;
}
}
};
for (int it = 0; it < nthread - 1; ++it) {
@ -14391,6 +14452,9 @@ static size_t llama_tensor_quantize_internal(enum ggml_type new_type, const floa
compute();
for (auto & w : workers) { w.join(); }
workers.clear();
if (!valid) {
throw std::runtime_error("quantized data validation failed");
}
return new_size;
}
@ -14453,7 +14517,7 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
auto v = (std::vector<llama_model_kv_override>*)params->kv_overrides;
kv_overrides = v->data();
}
llama_model_loader ml(fname_inp, use_mmap, kv_overrides);
llama_model_loader ml(fname_inp, use_mmap, /*check_tensors*/ true, kv_overrides);
ml.init_mappings(false); // no prefetching
llama_model model;
@ -14491,11 +14555,13 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
for (auto & o : overrides) {
if (o.key[0] == 0) break;
if (o.tag == LLAMA_KV_OVERRIDE_TYPE_FLOAT) {
gguf_set_val_f32(ctx_out, o.key, o.float_value);
gguf_set_val_f32(ctx_out, o.key, o.val_f64);
} else if (o.tag == LLAMA_KV_OVERRIDE_TYPE_INT) {
gguf_set_val_i32(ctx_out, o.key, o.int_value);
gguf_set_val_i32(ctx_out, o.key, o.val_i64);
} else if (o.tag == LLAMA_KV_OVERRIDE_TYPE_BOOL) {
gguf_set_val_bool(ctx_out, o.key, o.bool_value);
gguf_set_val_bool(ctx_out, o.key, o.val_bool);
} else if (o.tag == LLAMA_KV_OVERRIDE_TYPE_STR) {
gguf_set_val_str(ctx_out, o.key, o.val_str);
} else {
LLAMA_LOG_WARN("%s: unknown KV override type for key %s\n", __func__, o.key);
}
@ -14814,7 +14880,7 @@ static int llama_apply_lora_from_file_internal(
std::unique_ptr<llama_model_loader> ml;
if (path_base_model) {
LLAMA_LOG_INFO("%s: loading base model from '%s'\n", __func__, path_base_model);
ml.reset(new llama_model_loader(path_base_model, /*use_mmap*/ true, /*kv_overrides*/ nullptr));
ml.reset(new llama_model_loader(path_base_model, /*use_mmap*/ true, /*check_tensors*/ false, /*kv_overrides*/ nullptr));
ml->init_mappings(/*prefetch*/ false); // no prefetching
}
@ -15073,6 +15139,7 @@ struct llama_model_params llama_model_default_params() {
/*.vocab_only =*/ false,
/*.use_mmap =*/ true,
/*.use_mlock =*/ false,
/*.check_tensors =*/ false,
};
#ifdef GGML_USE_METAL

19
llama.h
View file

@ -195,15 +195,19 @@ extern "C" {
LLAMA_KV_OVERRIDE_TYPE_INT,
LLAMA_KV_OVERRIDE_TYPE_FLOAT,
LLAMA_KV_OVERRIDE_TYPE_BOOL,
LLAMA_KV_OVERRIDE_TYPE_STR,
};
struct llama_model_kv_override {
char key[128];
enum llama_model_kv_override_type tag;
char key[128];
union {
int64_t int_value;
double float_value;
bool bool_value;
int64_t val_i64;
double val_f64;
bool val_bool;
char val_str[128];
};
};
@ -232,9 +236,10 @@ extern "C" {
const struct llama_model_kv_override * kv_overrides;
// Keep the booleans together to avoid misalignment during copy-by-value.
bool vocab_only; // only load the vocabulary, no weights
bool use_mmap; // use mmap if possible
bool use_mlock; // force system to keep model in RAM
bool vocab_only; // only load the vocabulary, no weights
bool use_mmap; // use mmap if possible
bool use_mlock; // force system to keep model in RAM
bool check_tensors; // validate model tensor data
};
struct llama_context_params {

170
sgemm.cpp
View file

@ -50,7 +50,6 @@
#pragma GCC diagnostic ignored "-Wignored-attributes"
#include "sgemm.h"
#include <algorithm>
#include "ggml-impl.h"
#include "ggml-quants.h"
@ -243,23 +242,23 @@ template <> inline __m512 load(const ggml_fp16_t *p) {
template <int KN, typename D, typename V, typename TA, typename TB, typename TC>
class tinyBLAS {
public:
tinyBLAS(int k,
const TA *A, int lda,
const TB *B, int ldb,
TC *C, int ldc,
tinyBLAS(int64_t k,
const TA *A, int64_t lda,
const TB *B, int64_t ldb,
TC *C, int64_t ldc,
int ith, int nth)
: A(A), B(B), C(C), k(k), lda(lda), ldb(ldb), ldc(ldc), ith(ith), nth(nth) {
}
void matmul(int m, int n, int task) {
void matmul(int64_t m, int64_t n, int task) {
if (task == GGML_TASK_TYPE_COMPUTE)
mnpack(0, m, 0, n);
}
private:
NOINLINE void mnpack(int m0, int m, int n0, int n) {
int mc, nc, mp, np;
switch ((std::min(m - m0, 5) << 4) | std::min(n - n0, 5)) {
NOINLINE void mnpack(int64_t m0, int64_t m, int64_t n0, int64_t n) {
int64_t mc, nc, mp, np;
switch ((MIN(m - m0, 5) << 4) | MIN(n - n0, 5)) {
#if VECTOR_REGISTERS == 32
case 0x55:
mc = 5;
@ -409,27 +408,27 @@ class tinyBLAS {
}
template <int RM, int RN>
NOINLINE void gemm(int m0, int m, int n0, int n) {
int ytiles = (m - m0) / RM;
int xtiles = (n - n0) / RN;
int tiles = xtiles * ytiles;
int duty = (tiles + nth - 1) / nth;
int start = duty * ith;
int end = start + duty;
NOINLINE void gemm(int64_t m0, int64_t m, int64_t n0, int64_t n) {
int64_t ytiles = (m - m0) / RM;
int64_t xtiles = (n - n0) / RN;
int64_t tiles = xtiles * ytiles;
int64_t duty = (tiles + nth - 1) / nth;
int64_t start = duty * ith;
int64_t end = start + duty;
if (end > tiles)
end = tiles;
for (int job = start; job < end; ++job) {
int ii = m0 + job / xtiles * RM;
int jj = n0 + job % xtiles * RN;
for (int64_t job = start; job < end; ++job) {
int64_t ii = m0 + job / xtiles * RM;
int64_t jj = n0 + job % xtiles * RN;
D Cv[RN][RM] = {};
for (int l = 0; l < k; l += KN)
for (int j = 0; j < RN; ++j)
for (int i = 0; i < RM; ++i)
for (int64_t l = 0; l < k; l += KN)
for (int64_t j = 0; j < RN; ++j)
for (int64_t i = 0; i < RM; ++i)
Cv[j][i] = madd(load<V>(A + lda * (ii + i) + l),
load<V>(B + ldb * (jj + j) + l),
Cv[j][i]);
for (int j = 0; j < RN; ++j)
for (int i = 0; i < RM; ++i)
for (int64_t j = 0; j < RN; ++j)
for (int64_t i = 0; i < RM; ++i)
C[ldc * (jj + j) + (ii + i)] = hsum(Cv[j][i]);
}
}
@ -437,10 +436,10 @@ class tinyBLAS {
const TA *const A;
const TB *const B;
TC *const C;
const int k;
const int lda;
const int ldb;
const int ldc;
const int64_t k;
const int64_t lda;
const int64_t ldb;
const int64_t ldc;
const int ith;
const int nth;
};
@ -452,23 +451,23 @@ class tinyBLAS {
template <typename TA>
class tinyBLAS_Q0_ARM {
public:
tinyBLAS_Q0_ARM(int k,
const TA *A, int lda,
const block_q8_0 *B, int ldb,
float *C, int ldc,
tinyBLAS_Q0_ARM(int64_t k,
const TA *A, int64_t lda,
const block_q8_0 *B, int64_t ldb,
float *C, int64_t ldc,
int ith, int nth)
: A(A), B(B), C(C), k(k), lda(lda), ldb(ldb), ldc(ldc), ith(ith), nth(nth) {
}
void matmul(int m, int n, int task) {
void matmul(int64_t m, int64_t n, int task) {
if (task == GGML_TASK_TYPE_COMPUTE)
mnpack(0, m, 0, n);
}
private:
NOINLINE void mnpack(int m0, int m, int n0, int n) {
int mc, nc, mp, np;
switch ((std::min(m - m0, 3) << 4) | std::min(n - n0, 3)) {
NOINLINE void mnpack(int64_t m0, int64_t m, int64_t n0, int64_t n) {
int64_t mc, nc, mp, np;
switch ((MIN(m - m0, 3) << 4) | MIN(n - n0, 3ll)) {
case 0x33:
mc = 3;
nc = 3;
@ -524,22 +523,22 @@ class tinyBLAS_Q0_ARM {
}
template <int RM, int RN>
NOINLINE void gemm(int m0, int m, int n0, int n) {
int ytiles = (m - m0) / RM;
int xtiles = (n - n0) / RN;
int tiles = xtiles * ytiles;
int duty = (tiles + nth - 1) / nth;
int start = duty * ith;
int end = start + duty;
NOINLINE void gemm(int64_t m0, int64_t m, int64_t n0, int64_t n) {
int64_t ytiles = (m - m0) / RM;
int64_t xtiles = (n - n0) / RN;
int64_t tiles = xtiles * ytiles;
int64_t duty = (tiles + nth - 1) / nth;
int64_t start = duty * ith;
int64_t end = start + duty;
if (end > tiles)
end = tiles;
for (int job = start; job < end; ++job) {
int ii = m0 + job / xtiles * RM;
int jj = n0 + job % xtiles * RN;
for (int64_t job = start; job < end; ++job) {
int64_t ii = m0 + job / xtiles * RM;
int64_t jj = n0 + job % xtiles * RN;
float32x4_t Cv[RN][RM] = {};
for (int l = 0; l < k; ++l)
for (int j = 0; j < RN; ++j)
for (int i = 0; i < RM; ++i)
for (int64_t l = 0; l < k; ++l)
for (int64_t j = 0; j < RN; ++j)
for (int64_t i = 0; i < RM; ++i)
Cv[j][i] = vmlaq_n_f32(Cv[j][i],
vcvtq_f32_s32(vdotq_s32(
vdotq_s32(vdupq_n_s32(0),
@ -549,8 +548,8 @@ class tinyBLAS_Q0_ARM {
load_hi(B + ldb * (jj + j) + l))),
unhalf(A[lda * (ii + i) + l].d) *
unhalf(B[ldb * (jj + j) + l].d));
for (int j = 0; j < RN; ++j)
for (int i = 0; i < RM; ++i)
for (int64_t j = 0; j < RN; ++j)
for (int64_t i = 0; i < RM; ++i)
C[ldc * (jj + j) + (ii + i)] = hsum(Cv[j][i]);
}
}
@ -577,10 +576,10 @@ class tinyBLAS_Q0_ARM {
const TA *const A;
const block_q8_0 *const B;
float *const C;
const int k;
const int lda;
const int ldb;
const int ldc;
const int64_t k;
const int64_t lda;
const int64_t ldb;
const int64_t ldc;
const int ith;
const int nth;
};
@ -590,23 +589,23 @@ class tinyBLAS_Q0_ARM {
template <typename TA, typename TB, typename TC>
class tinyBLAS_Q0_AVX2 {
public:
tinyBLAS_Q0_AVX2(int k,
const TA *A, int lda,
const TB *B, int ldb,
TC *C, int ldc,
tinyBLAS_Q0_AVX2(int64_t k,
const TA *A, int64_t lda,
const TB *B, int64_t ldb,
TC *C, int64_t ldc,
int ith, int nth)
: A(A), B(B), C(C), k(k), lda(lda), ldb(ldb), ldc(ldc), ith(ith), nth(nth) {
}
void matmul(int m, int n, int task) {
void matmul(int64_t m, int64_t n, int task) {
if (task == GGML_TASK_TYPE_COMPUTE)
mnpack(0, m, 0, n);
}
private:
void mnpack(int m0, int m, int n0, int n) {
int mc, nc, mp, np;
switch ((std::min(m - m0, 4) << 4) | std::min(n - n0, 4)) {
void mnpack(int64_t m0, int64_t m, int64_t n0, int64_t n) {
int64_t mc, nc, mp, np;
switch ((MIN(m - m0, 4) << 4) | MIN(n - n0, 4)) {
#if VECTOR_REGISTERS == 32
case 0x44:
mc = 4;
@ -714,22 +713,22 @@ class tinyBLAS_Q0_AVX2 {
}
template <int RM, int RN>
NOINLINE void gemm(int m0, int m, int n0, int n) {
int ytiles = (m - m0) / RM;
int xtiles = (n - n0) / RN;
int tiles = xtiles * ytiles;
int duty = (tiles + nth - 1) / nth;
int start = duty * ith;
int end = start + duty;
NOINLINE void gemm(int64_t m0, int64_t m, int64_t n0, int64_t n) {
int64_t ytiles = (m - m0) / RM;
int64_t xtiles = (n - n0) / RN;
int64_t tiles = xtiles * ytiles;
int64_t duty = (tiles + nth - 1) / nth;
int64_t start = duty * ith;
int64_t end = start + duty;
if (end > tiles)
end = tiles;
for (int job = start; job < end; ++job) {
int ii = m0 + job / xtiles * RM;
int jj = n0 + job % xtiles * RN;
for (int64_t job = start; job < end; ++job) {
int64_t ii = m0 + job / xtiles * RM;
int64_t jj = n0 + job % xtiles * RN;
__m256 Cv[RN][RM] = {};
for (int l = 0; l < k; ++l)
for (int j = 0; j < RN; ++j)
for (int i = 0; i < RM; ++i)
for (int64_t l = 0; l < k; ++l)
for (int64_t j = 0; j < RN; ++j)
for (int64_t i = 0; i < RM; ++i)
Cv[j][i] = madd(_mm256_set1_ps(unhalf(A[lda * (ii + i) + l].d) *
unhalf(B[ldb * (jj + j) + l].d)),
updot(_mm256_sign_epi8(load(A + lda * (ii + i) + l),
@ -737,8 +736,8 @@ class tinyBLAS_Q0_AVX2 {
_mm256_sign_epi8(load(B + ldb * (jj + j) + l),
load(A + lda * (ii + i) + l))),
Cv[j][i]);
for (int j = 0; j < RN; ++j)
for (int i = 0; i < RM; ++i)
for (int64_t j = 0; j < RN; ++j)
for (int64_t i = 0; i < RM; ++i)
C[ldc * (jj + j) + (ii + i)] = hsum(Cv[j][i]);
}
}
@ -771,10 +770,10 @@ class tinyBLAS_Q0_AVX2 {
const TA *const A;
const TB *const B;
TC *const C;
const int k;
const int lda;
const int ldb;
const int ldc;
const int64_t k;
const int64_t lda;
const int64_t ldb;
const int64_t ldc;
const int ith;
const int nth;
};
@ -813,8 +812,8 @@ class tinyBLAS_Q0_AVX2 {
* @param Ctype is GGML data type of `C`
* @return true if this function was able to service the matmul request
*/
bool llamafile_sgemm(int m, int n, int k, const void *A, int lda, const void *B, int ldb, void *C,
int ldc, int ith, int nth, int task, int Atype, int Btype, int Ctype) {
bool llamafile_sgemm(int64_t m, int64_t n, int64_t k, const void *A, int64_t lda, const void *B, int64_t ldb, void *C,
int64_t ldc, int ith, int nth, int task, int Atype, int Btype, int Ctype) {
assert(m >= 0);
assert(n >= 0);
@ -824,9 +823,6 @@ bool llamafile_sgemm(int m, int n, int k, const void *A, int lda, const void *B,
assert(ldc >= m);
assert(nth > 0);
assert(ith < nth);
assert(1ll * lda * m <= 0x7fffffff);
assert(1ll * ldb * n <= 0x7fffffff);
assert(1ll * ldc * n <= 0x7fffffff);
if (Ctype != GGML_TYPE_F32)
return false;

View file

@ -1,11 +1,13 @@
#pragma once
#include <stdint.h>
#include <stdbool.h>
#ifdef __cplusplus
extern "C" {
#endif
bool llamafile_sgemm(int, int, int, const void *, int, const void *, int,
void *, int, int, int, int, int, int, int);
bool llamafile_sgemm(int64_t, int64_t, int64_t, const void *, int64_t,
const void *, int64_t, void *, int64_t, int, int,
int, int, int, int);
#ifdef __cplusplus
}