loader: refactor tensor weights storage

This commit is contained in:
zhenweijin 2024-10-18 15:31:10 +08:00
parent 61408e7fad
commit f742e3c0d5

View file

@ -4271,17 +4271,17 @@ struct llama_model_loader {
ggml_tensor * tensor;
llama_tensor_weight(const llama_file * file, uint16_t idx, const char * name, const struct gguf_context * gguf_ctx, ggml_tensor * tensor) : idx(idx), tensor(tensor) {
const int tensor_idx = gguf_find_tensor(gguf_ctx, name);
llama_tensor_weight(const llama_file * file, uint16_t idx, const struct gguf_context * gguf_ctx, ggml_tensor * tensor) : idx(idx), tensor(tensor) {
const int tensor_idx = gguf_find_tensor(gguf_ctx, ggml_get_name(tensor));
offs = gguf_get_data_offset(gguf_ctx) + gguf_get_tensor_offset(gguf_ctx, tensor_idx);
if (offs + ggml_nbytes(tensor) < offs || offs + ggml_nbytes(tensor) > file->size) {
throw std::runtime_error(format("tensor '%s' data is not within the file bounds, model is corrupted or incomplete", name));
throw std::runtime_error(format("tensor '%s' data is not within the file bounds, model is corrupted or incomplete", ggml_get_name(tensor)));
}
}
};
std::vector<llama_tensor_weight> weights;
std::unordered_map<std::string, struct llama_tensor_weight> weights_map;
std::unordered_map<std::string, struct llama_model_kv_override> kv_overrides;
struct gguf_context * meta = NULL;
@ -4323,7 +4323,14 @@ struct llama_model_loader {
// For subsidiary files, `meta` tensor data offset must not be used,
// so we build a unified tensors index for weights.
for (ggml_tensor * cur = ggml_get_first_tensor(ctx); cur; cur = ggml_get_next_tensor(ctx, cur)) {
weights.emplace_back(files.back().get(), 0, cur->name, meta, cur);
std::string tensor_name = std::string(cur->name);
// make sure there is no duplicated tensor names
if (weights_map.find(tensor_name) != weights_map.end()) {
throw std::runtime_error(format("invalid model: tensor '%s' is duplicated", ggml_get_name(cur)));
}
n_elements += ggml_nelements(cur);
n_bytes += ggml_nbytes(cur);
weights_map.emplace(tensor_name, llama_tensor_weight(files.back().get(), 0, meta, cur));
}
uint16_t n_split = 0;
get_key(llm_kv(LLM_KV_SPLIT_COUNT), n_split, false);
@ -4363,7 +4370,14 @@ struct llama_model_loader {
// Save tensors data offset info of the shard.
for (ggml_tensor * cur = ggml_get_first_tensor(ctx); cur; cur = ggml_get_next_tensor(ctx, cur)) {
weights.emplace_back(files.back().get(), idx, cur->name, ctx_gguf, cur);
std::string tensor_name = std::string(cur->name);
// make sure there is no duplicated tensor names
if (weights_map.find(tensor_name) != weights_map.end()) {
throw std::runtime_error(format("invalid model: tensor '%s' is duplicated", ggml_get_name(cur)));
}
n_elements += ggml_nelements(cur);
n_bytes += ggml_nbytes(cur);
weights_map.emplace(tensor_name, llama_tensor_weight(files.back().get(), idx, ctx_gguf, cur));
}
gguf_free(ctx_gguf);
@ -4373,7 +4387,7 @@ struct llama_model_loader {
// sanity check
{
const int n_tensors_loaded = (int) weights.size();
const int n_tensors_loaded = (int) weights_map.size();
if (n_tensors != n_tensors_loaded) {
throw std::runtime_error(format("corrupted model: %d tensors expected but %d found", n_tensors, n_tensors_loaded));
}
@ -4383,23 +4397,10 @@ struct llama_model_loader {
}
n_kv = gguf_get_n_kv(meta);
n_tensors = weights.size();
n_tensors = weights_map.size();
fver = (enum llama_fver) gguf_get_version(meta);
std::set<std::string> tensor_names;
for (auto & w : weights) {
n_elements += ggml_nelements(w.tensor);
n_bytes += ggml_nbytes(w.tensor);
// make sure there is no duplicated tensor names
const std::string name(w.tensor->name);
auto found = tensor_names.find(name);
if (found != tensor_names.end()) {
throw std::runtime_error(format("invalid model: tensor '%s' is duplicated", w.tensor->name));
}
tensor_names.insert(name);
}
LLAMA_LOG_INFO("%s: loaded meta data with %d key-value pairs and %d tensors from %s (version %s)\n",
__func__, n_kv, n_tensors, fname.c_str(), llama_file_version_name(fver));
@ -4411,8 +4412,10 @@ struct llama_model_loader {
uint32_t n_type_max = 0;
enum ggml_type type_max = GGML_TYPE_F32;
for (int i = 0; i < n_tensors; i++) {
const ggml_tensor * tensor = weights.at(i).tensor;
for (auto it = weights_map.begin(); it != weights_map.end(); it++) {
const llama_tensor_weight & w = it->second;
const ggml_tensor * tensor = w.tensor;
enum ggml_type type = tensor->type;
n_type[type]++;
@ -4423,8 +4426,8 @@ struct llama_model_loader {
}
if (trace > 0) {
const uint16_t sid = weights.at(i).idx;
LLAMA_LOG_INFO("%s: - tensor %4d, split %2d: %32s %-8s [ %s ]\n", __func__, i, sid, ggml_get_name(tensor), ggml_type_name(type), llama_format_tensor_shape(tensor).c_str());
const uint16_t sid = w.idx;
LLAMA_LOG_INFO("%s: - tensor split %2d: %32s %-8s [ %s ]\n", __func__, sid, ggml_get_name(tensor), ggml_type_name(type), llama_format_tensor_shape(tensor).c_str());
}
}
@ -4688,21 +4691,15 @@ struct llama_model_loader {
return llm_kv.arch;
}
const char * get_tensor_name(int i) const {
return weights.at(i).tensor->name;
}
const llama_tensor_weight * get_weight(const char * name) const {
for (const auto & weight : weights) {
if (strcmp(name, weight.tensor->name) == 0) {
return &weight;
}
}
return nullptr;
}
std::string tensor_name(name);
const llama_tensor_weight * get_weight(int i) const {
return get_weight(get_tensor_name(i));
auto pos = weights_map.find(tensor_name);
if (pos != weights_map.end()) {
return &pos->second;
}
return nullptr;
}
const llama_tensor_weight & require_weight(const char * name) const {
@ -4729,10 +4726,6 @@ struct llama_model_loader {
return tensor;
}
struct ggml_tensor * get_tensor_meta(int i) const {
return get_tensor_meta(get_tensor_name(i));
}
const struct ggml_tensor * check_tensor_dims(const std::string & name, const std::vector<int64_t> & ne, bool required) const {
const struct ggml_tensor * cur = get_tensor_meta(name.c_str());
@ -4839,8 +4832,8 @@ struct llama_model_loader {
}
// compute the total size of all tensors for progress reporting
for (auto & w : weights) {
size_data += ggml_nbytes(w.tensor);
for (auto it = weights_map.begin(); it != weights_map.end(); it++) {
size_data += ggml_nbytes(it->second.tensor);
}
}
@ -18595,10 +18588,10 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
}
}
for (int i = 0; i < ml.n_tensors; ++i) {
const struct ggml_tensor * meta = ml.get_tensor_meta(i);
for (auto it = ml.weights_map.begin(); it != ml.weights_map.end(); ++it) {
const struct ggml_tensor * tensor = it->second.tensor;
const std::string name = ggml_get_name(meta);
const std::string name = ggml_get_name(tensor);
// TODO: avoid hardcoded tensor names - use the TN_* constants
if (name.find("attn_v.weight") != std::string::npos ||
@ -18636,20 +18629,22 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
std::vector<no_init<float>> f32_conv_buf;
uint16_t n_split = 1;
const auto & weights_map = ml.weights_map;
// Assume split index is continuous
if (params->keep_split) {
for (int i = 0; i < ml.n_tensors; ++i) {
n_split = std::max(uint16_t(ml.get_weight(i)->idx+1), n_split);
for (auto it = weights_map.begin(); it != weights_map.end(); ++it) {
n_split = std::max(uint16_t(it->second.idx+1), n_split);
}
}
std::vector<gguf_context*> ctx_outs(n_split, NULL);
ctx_outs[0] = ctx_out;
// populate the original tensors so we get an initial meta data
for (int i = 0; i < ml.n_tensors; ++i) {
auto weight = ml.get_weight(i);
uint16_t i_split = params->keep_split ? weight->idx : 0;
struct ggml_tensor * tensor = weight->tensor;
for (auto it = weights_map.begin(); it != weights_map.end(); ++it) {
uint16_t i_split = params->keep_split ? it->second.idx : 0;
struct ggml_tensor * tensor = it->second.tensor;
if (ctx_outs[i_split] == NULL) {
ctx_outs[i_split] = gguf_init_empty();
}
@ -18696,12 +18691,12 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
const auto tn = LLM_TN(model.arch);
new_ofstream(0);
for (int i = 0; i < ml.n_tensors; ++i) {
auto weight = ml.get_weight(i);
struct ggml_tensor * tensor = weight->tensor;
if (weight->idx != cur_split && params->keep_split) {
for (auto it = weights_map.begin(); it != weights_map.end(); ++it) {
auto weight = it->second;
struct ggml_tensor * tensor = weight.tensor;
if (weight.idx != cur_split && params->keep_split) {
close_ofstream();
new_ofstream(weight->idx);
new_ofstream(weight.idx);
}
const std::string name = ggml_get_name(tensor);