further cleanup; move llava-cli into its own file and rename

This commit is contained in:
Damian Stewart 2023-10-14 12:58:40 +02:00
parent 0889117573
commit f83c0606bd
8 changed files with 128 additions and 110 deletions

View file

@ -11,9 +11,21 @@ if(TARGET BUILD_INFO)
endif() endif()
set(TARGET llava) set(TARGET llava)
add_executable(${TARGET} llava.cpp) add_library(${TARGET} llava.cpp llava.h)
install(TARGETS ${TARGET} LIBRARY)
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
target_compile_features(${TARGET} PRIVATE cxx_std_11)
if (NOT MSVC)
target_compile_options(${TARGET} PRIVATE -Wno-cast-qual) # stb_image.h
endif()
if(TARGET BUILD_INFO)
add_dependencies(${TARGET} BUILD_INFO)
endif()
set(TARGET llava-cli)
add_executable(${TARGET} llava-cli.cpp)
install(TARGETS ${TARGET} RUNTIME) install(TARGETS ${TARGET} RUNTIME)
target_link_libraries(${TARGET} PRIVATE common llama clip ${CMAKE_THREAD_LIBS_INIT}) target_link_libraries(${TARGET} PRIVATE common llama clip llava ${CMAKE_THREAD_LIBS_INIT})
target_compile_features(${TARGET} PRIVATE cxx_std_11) target_compile_features(${TARGET} PRIVATE cxx_std_11)
if(TARGET BUILD_INFO) if(TARGET BUILD_INFO)
add_dependencies(${TARGET} BUILD_INFO) add_dependencies(${TARGET} BUILD_INFO)

View file

@ -9,12 +9,12 @@ models are available.
After API is confirmed, more models will be supported / uploaded. After API is confirmed, more models will be supported / uploaded.
## Usage ## Usage
Build with cmake or run `make llava` to build it. Build with cmake or run `make llava-cli` to build it.
After building, run: `./llava` to see the usage. For example: After building, run: `./llava-cli` to see the usage. For example:
```sh ```sh
./llava -m llava-v1.5-7b/ggml-model-q5_k.gguf --mmproj llava-v1.5-7b/mmproj-model-f16.gguf --image path/to/an/image.jpg ./llava-cli -m llava-v1.5-7b/ggml-model-q5_k.gguf --mmproj llava-v1.5-7b/mmproj-model-f16.gguf --image path/to/an/image.jpg
``` ```
**note**: A lower temperature like 0.1 is recommended for better quality. add `--temp 0.1` to the command to do so. **note**: A lower temperature like 0.1 is recommended for better quality. add `--temp 0.1` to the command to do so.

View file

@ -690,7 +690,7 @@ static void build_clip_img_from_data(const stbi_uc * data, int nx, int ny, clip_
memcpy(img->data, data, img->size); memcpy(img->data, data, img->size);
} }
bool clip_image_load_from_bytes(const unsigned char * bytes, int bytes_length, clip_image_u8 * img) { bool clip_image_load_from_bytes(const unsigned char * bytes, size_t bytes_length, clip_image_u8 * img) {
int nx, ny, nc; int nx, ny, nc;
auto data = stbi_load_from_memory(bytes, bytes_length, &nx, &ny, &nc, 3); auto data = stbi_load_from_memory(bytes, bytes_length, &nx, &ny, &nc, 3);
if (!data) { if (!data) {

View file

@ -58,7 +58,7 @@ struct clip_image_f32_batch {
struct clip_image_u8 * make_clip_image_u8(); struct clip_image_u8 * make_clip_image_u8();
struct clip_image_f32 * make_clip_image_f32(); struct clip_image_f32 * make_clip_image_f32();
bool clip_image_load_from_file(const char * fname, struct clip_image_u8 * img); bool clip_image_load_from_file(const char * fname, struct clip_image_u8 * img);
bool clip_image_load_from_bytes(const unsigned char * bytes, int bytes_length, clip_image_u8 * img); bool clip_image_load_from_bytes(const unsigned char * bytes, size_t bytes_length, clip_image_u8 * img);
bool clip_image_preprocess(const struct clip_ctx * ctx, const struct clip_image_u8 * img, struct clip_image_f32 * res, const bool pad2square); bool clip_image_preprocess(const struct clip_ctx * ctx, const struct clip_image_u8 * img, struct clip_image_f32 * res, const bool pad2square);
bool clip_image_encode(const struct clip_ctx * ctx, const int n_threads, struct clip_image_f32 * img, float * vec); bool clip_image_encode(const struct clip_ctx * ctx, const int n_threads, struct clip_image_f32 * img, float * vec);

View file

@ -0,0 +1,101 @@
#include <cstdio>
#include <cstdlib>
#include "ggml.h"
#include "common.h"
#include "clip.h"
#include "llava.h"
#include "llava-utils.h"
static void show_additional_info(int /*argc*/, char ** argv) {
printf("\n example usage: %s -m <llava-v1.5-7b/ggml-model-q5_k.gguf> --mmproj <llava-v1.5-7b/mmproj-model-f16.gguf> --image <path/to/an/image.jpg> [--temp 0.1] [-p \"describe the image in detail.\"]\n", argv[0]);
printf(" note: a lower temperature value like 0.1 is recommended for better quality.\n");
}
static bool load_image(llava_context * ctx_llava, gpt_params * params, float **image_embd, int * n_image_pos) {
// load and preprocess the image
clip_image_u8 img;
auto prompt = params->prompt;
if (prompt_contains_image(prompt)) {
if (!params->image.empty()) {
printf("using base64 encoded image instead of command line image path\n");
}
if (!clip_image_load_from_prompt(prompt, &img)) {
fprintf(stderr, "%s: can't load image from prompt\n", __func__);
return false;
}
prompt = remove_image_from_prompt(prompt);
} else {
if (!clip_image_load_from_file(params->image.c_str(), &img)) {
fprintf(stderr, "%s: is %s really an image file?\n", __func__, params->image.c_str());
return false;
}
}
llava_build_img_embed(ctx_llava, params->n_threads, &img, image_embd, n_image_pos);
return true;
}
static void process_prompt(struct llava_context * ctx_llava, float * image_embd, int n_img_pos, gpt_params * params, const char * prompt) {
int n_past = 0;
const int max_tgt_len = params->n_predict < 0 ? 256 : params->n_predict;
// llava chat format is "<system_prompt>USER: <image_embeddings>\n<textual_prompt>\nASSISTANT:"
// GG: are we sure that the should be a trailing whitespace at the end of this string?
eval_string(ctx_llava->ctx_llama, "A chat between a curious human and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the human's questions.\nUSER: ", params->n_batch, &n_past);
eval_image_embd(ctx_llava->ctx_llama, image_embd, n_img_pos, params->n_batch, &n_past);
eval_string(ctx_llava->ctx_llama, prompt, params->n_batch, &n_past);
eval_string(ctx_llava->ctx_llama, "\nASSISTANT:", params->n_batch, &n_past);
// generate the response
printf("\n");
for (int i = 0; i < max_tgt_len; i++) {
const char * tmp = sample(ctx_llava->ctx_llama, *params, &n_past);
if (strcmp(tmp, "</s>") == 0) break;
printf("%s", tmp);
fflush(stdout);
}
printf("\n");
}
int main(int argc, char ** argv) {
ggml_time_init();
gpt_params params;
if (!gpt_params_parse(argc, argv, params)) {
show_additional_info(argc, argv);
return 1;
}
if (params.mmproj.empty() || (params.image.empty() && !prompt_contains_image(params.prompt))) {
gpt_print_usage(argc, argv, params);
show_additional_info(argc, argv);
return 1;
}
auto ctx_llava = llava_init(&params);
if (ctx_llava == NULL) {
fprintf(stderr, "%s: error: failed to init llava\n", __func__);
return 1;
}
float * image_embd;
int n_image_pos;
load_image(ctx_llava, &params, &image_embd, &n_image_pos);
// process the prompt
process_prompt(ctx_llava, image_embd, n_image_pos, &params, params.prompt.c_str());
llama_print_timings(ctx_llava->ctx_llama);
free(image_embd);
llava_free(ctx_llava);
return 0;
}

View file

@ -149,19 +149,19 @@ inline const char * sample(struct llama_context * ctx_llama, gpt_params & params
static const char* IMG_BASE64_TAG_BEGIN = "<img src=\"data:image/jpeg;base64,"; static const char* IMG_BASE64_TAG_BEGIN = "<img src=\"data:image/jpeg;base64,";
static const char* IMG_BASE64_TAG_END = "\">"; static const char* IMG_BASE64_TAG_END = "\">";
static void find_image_tag_in_prompt(const std::string& prompt, size_t& begin_out, size_t& end_out) { inline void find_image_tag_in_prompt(const std::string& prompt, size_t& begin_out, size_t& end_out) {
begin_out = prompt.find(IMG_BASE64_TAG_BEGIN); begin_out = prompt.find(IMG_BASE64_TAG_BEGIN);
end_out = prompt.find(IMG_BASE64_TAG_END, (begin_out == std::string::npos) ? 0UL : begin_out); end_out = prompt.find(IMG_BASE64_TAG_END, (begin_out == std::string::npos) ? 0UL : begin_out);
} }
static bool prompt_contains_image(const std::string& prompt) { inline bool prompt_contains_image(const std::string& prompt) {
size_t begin, end; size_t begin, end;
find_image_tag_in_prompt(prompt, begin, end); find_image_tag_in_prompt(prompt, begin, end);
return (begin != std::string::npos); return (begin != std::string::npos);
} }
// replaces the base64 image tag in the prompt with `replacement` // replaces the base64 image tag in the prompt with `replacement`
static bool get_image_from_prompt(const std::string& prompt, clip_image_u8 * img) { inline bool clip_image_load_from_prompt(const std::string& prompt, clip_image_u8 * img) {
size_t img_base64_str_start, img_base64_str_end; size_t img_base64_str_start, img_base64_str_end;
find_image_tag_in_prompt(prompt, img_base64_str_start, img_base64_str_end); find_image_tag_in_prompt(prompt, img_base64_str_start, img_base64_str_end);
if (img_base64_str_start == std::string::npos || img_base64_str_end == std::string::npos) { if (img_base64_str_start == std::string::npos || img_base64_str_end == std::string::npos) {
@ -176,7 +176,7 @@ static bool get_image_from_prompt(const std::string& prompt, clip_image_u8 * img
auto required_bytes = base64::required_encode_size(base64_str.size()); auto required_bytes = base64::required_encode_size(base64_str.size());
auto img_bytes = std::vector<unsigned char>(required_bytes); auto img_bytes = std::vector<unsigned char>(required_bytes);
auto img_bytes_end = base64::decode(base64_str.begin(), base64_str.end(), img_bytes.begin()); auto img_bytes_end = base64::decode(base64_str.begin(), base64_str.end(), img_bytes.begin());
auto img_bytes_len = img_bytes_end - img_bytes.begin(); size_t img_bytes_len = img_bytes_end - img_bytes.begin();
auto img_loaded_ok = clip_image_load_from_bytes(img_bytes.data(), img_bytes_len, img); auto img_loaded_ok = clip_image_load_from_bytes(img_bytes.data(), img_bytes_len, img);
if (!img_loaded_ok) { if (!img_loaded_ok) {
@ -187,7 +187,7 @@ static bool get_image_from_prompt(const std::string& prompt, clip_image_u8 * img
return true; return true;
} }
static std::string remove_image_from_prompt(const std::string& prompt, const char * replacement = "") { inline std::string remove_image_from_prompt(const std::string& prompt, const char * replacement = "") {
size_t begin, end; size_t begin, end;
find_image_tag_in_prompt(prompt, begin, end); find_image_tag_in_prompt(prompt, begin, end);
if (begin == std::string::npos || end == std::string::npos) { if (begin == std::string::npos || end == std::string::npos) {

View file

@ -10,11 +10,6 @@
#include "base64.hpp" #include "base64.hpp"
static void show_additional_info(int /*argc*/, char ** argv) {
printf("\n example usage: %s -m <llava-v1.5-7b/ggml-model-q5_k.gguf> --mmproj <llava-v1.5-7b/mmproj-model-f16.gguf> --image <path/to/an/image.jpg> [--temp 0.1] [-p \"describe the image in detail.\"]\n", argv[0]);
printf(" note: a lower temperature value like 0.1 is recommended for better quality.\n");
}
static bool encode_image_with_clip(llava_context * ctx_llava, int n_threads, const clip_image_u8 * img, float * image_embd, int * n_img_embd, int * n_img_pos) { static bool encode_image_with_clip(llava_context * ctx_llava, int n_threads, const clip_image_u8 * img, float * image_embd, int * n_img_embd, int * n_img_pos) {
auto ctx_clip = ctx_llava->ctx_clip; auto ctx_clip = ctx_llava->ctx_clip;
clip_image_f32 img_res; clip_image_f32 img_res;
@ -51,7 +46,7 @@ static bool encode_image_with_clip(llava_context * ctx_llava, int n_threads, con
return true; return true;
} }
static bool llava_build_img_embed(struct llava_context * ctx_llava, int n_threads, const clip_image_u8 * img, float ** image_embd_out, int * n_image_pos_out) { bool llava_build_img_embed(struct llava_context * ctx_llava, int n_threads, const clip_image_u8 * img, float ** image_embd_out, int * n_image_pos_out) {
auto ctx_clip = ctx_llava->ctx_clip; auto ctx_clip = ctx_llava->ctx_clip;
float * image_embd = (float *)malloc(clip_embd_nbytes(ctx_clip)); float * image_embd = (float *)malloc(clip_embd_nbytes(ctx_clip));
@ -128,91 +123,3 @@ void llava_free(struct llava_context * ctx_llava) {
llama_backend_free(); llama_backend_free();
} }
static bool load_image(llava_context * ctx_llava, gpt_params * params, float **image_embd, int * n_image_pos) {
// load and preprocess the image
clip_image_u8 img;
auto prompt = params->prompt;
if (prompt_contains_image(prompt)) {
if (!params->image.empty()) {
printf("using base64 encoded image instead of command line image path\n");
}
if (!get_image_from_prompt(prompt, &img)) {
fprintf(stderr, "%s: can't load image from prompt\n", __func__);
return false;
}
prompt = remove_image_from_prompt(prompt);
} else {
if (!clip_image_load_from_file(params->image.c_str(), &img)) {
fprintf(stderr, "%s: is %s really an image file?\n", __func__, params->image.c_str());
return false;
}
}
llava_build_img_embed(ctx_llava, params->n_threads, &img, image_embd, n_image_pos);
return true;
}
static void process_prompt(struct llava_context * ctx_llava, float * image_embd, int n_img_pos, gpt_params * params, const char * prompt) {
int n_past = 0;
const int max_tgt_len = params->n_predict < 0 ? 256 : params->n_predict;
// llava chat format is "<system_prompt>USER: <image_embeddings>\n<textual_prompt>\nASSISTANT:"
// GG: are we sure that the should be a trailing whitespace at the end of this string?
eval_string(ctx_llava->ctx_llama, "A chat between a curious human and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the human's questions.\nUSER: ", params->n_batch, &n_past);
eval_image_embd(ctx_llava->ctx_llama, image_embd, n_img_pos, params->n_batch, &n_past);
eval_string(ctx_llava->ctx_llama, prompt, params->n_batch, &n_past);
eval_string(ctx_llava->ctx_llama, "\nASSISTANT:", params->n_batch, &n_past);
// generate the response
printf("\n");
for (int i = 0; i < max_tgt_len; i++) {
const char * tmp = sample(ctx_llava->ctx_llama, *params, &n_past);
if (strcmp(tmp, "</s>") == 0) break;
printf("%s", tmp);
fflush(stdout);
}
printf("\n");
}
int main(int argc, char ** argv) {
ggml_time_init();
gpt_params params;
if (!gpt_params_parse(argc, argv, params)) {
show_additional_info(argc, argv);
return 1;
}
if (params.mmproj.empty() || (params.image.empty() && !prompt_contains_image(params.prompt))) {
gpt_print_usage(argc, argv, params);
show_additional_info(argc, argv);
return 1;
}
auto ctx_llava = llava_init(&params);
if (ctx_llava == NULL) {
fprintf(stderr, "%s: error: failed to init llava\n", __func__);
return 1;
}
float * image_embd;
int n_image_pos;
load_image(ctx_llava, &params, &image_embd, &n_image_pos);
// process the prompt
process_prompt(ctx_llava, image_embd, n_image_pos, &params, params.prompt.c_str());
llama_print_timings(ctx_llava->ctx_llama);
free(image_embd);
llava_free(ctx_llava);
return 0;
}

View file

@ -2,6 +2,7 @@
#define LLAVA_H #define LLAVA_H
#include "ggml.h" #include "ggml.h"
#include "common.h"
struct clip_ctx; struct clip_ctx;
@ -13,15 +14,12 @@ struct llava_context {
struct clip_ctx * ctx_clip = NULL; struct clip_ctx * ctx_clip = NULL;
struct llama_context * ctx_llama = NULL; struct llama_context * ctx_llama = NULL;
struct llama_model * model = NULL; struct llama_model * model = NULL;
// int n_img_pos = 0;
// float * image_embd = NULL;
}; };
struct llava_context * llava_init(gpt_params * params); struct llava_context * llava_init(gpt_params * params);
void llava_free(struct llava_context * ctx_llava); void llava_free(struct llava_context * ctx_llava);
//void llava_process_prompt(struct llava_context * ctx_llava, gpt_params * params, const char * prompt); bool llava_build_img_embed(struct llava_context * ctx_llava, int n_threads, const clip_image_u8 * img, float ** image_embd_out, int * n_image_pos_out);
#ifdef __cplusplus #ifdef __cplusplus