From 7024d59e6a572730626cb11896829d115043a1b1 Mon Sep 17 00:00:00 2001 From: "yuri@FreeBSD" Date: Sun, 22 Dec 2024 16:20:11 -0800 Subject: [PATCH 01/16] ggml : fix run-time on FreeBSD in get_executable_path() (#10948) --- ggml/src/ggml-backend-reg.cpp | 6 +++++- 1 file changed, 5 insertions(+), 1 deletion(-) diff --git a/ggml/src/ggml-backend-reg.cpp b/ggml/src/ggml-backend-reg.cpp index 66927148a..31ee31e39 100644 --- a/ggml/src/ggml-backend-reg.cpp +++ b/ggml/src/ggml-backend-reg.cpp @@ -402,12 +402,16 @@ static std::string get_executable_path() { base_path = base_path.substr(0, last_slash); } return base_path + "/"; -#elif defined(__linux__) +#elif defined(__linux__) || defined(__FreeBSD__) std::string base_path = "."; std::vector path(1024); while (true) { // get executable path +# if defined(__linux__) ssize_t len = readlink("/proc/self/exe", path.data(), path.size()); +# elif defined(__FreeBSD__) + ssize_t len = readlink("/proc/curproc/file", path.data(), path.size()); +# endif if (len == -1) { break; } From dab76c92cc63072d9495ba87f2f3f3a4872d4f57 Mon Sep 17 00:00:00 2001 From: Eric Curtin Date: Mon, 23 Dec 2024 00:21:40 +0000 Subject: [PATCH 02/16] llama-run : include temperature option (#10899) This commit updates the `examples/run/README.md` file to include a new option for setting the temperature and updates the `run.cpp` file to parse this option. Signed-off-by: Eric Curtin --- examples/run/README.md | 2 + examples/run/run.cpp | 111 +++++++++++++++++++++++++++-------------- 2 files changed, 75 insertions(+), 38 deletions(-) diff --git a/examples/run/README.md b/examples/run/README.md index 874293516..a06805441 100644 --- a/examples/run/README.md +++ b/examples/run/README.md @@ -19,6 +19,8 @@ Options: Context size (default: 2048) -n, --ngl Number of GPU layers (default: 0) + --temp + Temperature (default: 0.8) -v, --verbose, --log-verbose Set verbosity level to infinity (i.e. log all messages, useful for debugging) -h, --help diff --git a/examples/run/run.cpp b/examples/run/run.cpp index 03da54ca3..f89d041c4 100644 --- a/examples/run/run.cpp +++ b/examples/run/run.cpp @@ -55,29 +55,51 @@ static int printe(const char * fmt, ...) { class Opt { public: int init(int argc, const char ** argv) { + ctx_params = llama_context_default_params(); + model_params = llama_model_default_params(); + context_size_default = ctx_params.n_batch; + ngl_default = model_params.n_gpu_layers; + common_params_sampling sampling; + temperature_default = sampling.temp; + + if (argc < 2) { + printe("Error: No arguments provided.\n"); + print_help(); + return 1; + } + // Parse arguments if (parse(argc, argv)) { printe("Error: Failed to parse arguments.\n"); - help(); + print_help(); return 1; } // If help is requested, show help and exit - if (help_) { - help(); + if (help) { + print_help(); return 2; } + ctx_params.n_batch = context_size >= 0 ? context_size : context_size_default; + model_params.n_gpu_layers = ngl >= 0 ? ngl : ngl_default; + temperature = temperature >= 0 ? temperature : temperature_default; + return 0; // Success } + llama_context_params ctx_params; + llama_model_params model_params; std::string model_; - std::string user_; - int context_size_ = -1, ngl_ = -1; - bool verbose_ = false; + std::string user; + int context_size = -1, ngl = -1; + float temperature = -1; + bool verbose = false; private: - bool help_ = false; + int context_size_default = -1, ngl_default = -1; + float temperature_default = -1; + bool help = false; bool parse_flag(const char ** argv, int i, const char * short_opt, const char * long_opt) { return strcmp(argv[i], short_opt) == 0 || strcmp(argv[i], long_opt) == 0; @@ -89,6 +111,17 @@ class Opt { } option_value = std::atoi(argv[++i]); + + return 0; + } + + int handle_option_with_value(int argc, const char ** argv, int & i, float & option_value) { + if (i + 1 >= argc) { + return 1; + } + + option_value = std::atof(argv[++i]); + return 0; } @@ -96,18 +129,22 @@ class Opt { bool options_parsing = true; for (int i = 1, positional_args_i = 0; i < argc; ++i) { if (options_parsing && (strcmp(argv[i], "-c") == 0 || strcmp(argv[i], "--context-size") == 0)) { - if (handle_option_with_value(argc, argv, i, context_size_) == 1) { + if (handle_option_with_value(argc, argv, i, context_size) == 1) { return 1; } } else if (options_parsing && (strcmp(argv[i], "-n") == 0 || strcmp(argv[i], "--ngl") == 0)) { - if (handle_option_with_value(argc, argv, i, ngl_) == 1) { + if (handle_option_with_value(argc, argv, i, ngl) == 1) { + return 1; + } + } else if (options_parsing && strcmp(argv[i], "--temp") == 0) { + if (handle_option_with_value(argc, argv, i, temperature) == 1) { return 1; } } else if (options_parsing && (parse_flag(argv, i, "-v", "--verbose") || parse_flag(argv, i, "-v", "--log-verbose"))) { - verbose_ = true; + verbose = true; } else if (options_parsing && parse_flag(argv, i, "-h", "--help")) { - help_ = true; + help = true; return 0; } else if (options_parsing && strcmp(argv[i], "--") == 0) { options_parsing = false; @@ -120,16 +157,16 @@ class Opt { model_ = argv[i]; } else if (positional_args_i == 1) { ++positional_args_i; - user_ = argv[i]; + user = argv[i]; } else { - user_ += " " + std::string(argv[i]); + user += " " + std::string(argv[i]); } } return 0; } - void help() const { + void print_help() const { printf( "Description:\n" " Runs a llm\n" @@ -142,6 +179,8 @@ class Opt { " Context size (default: %d)\n" " -n, --ngl \n" " Number of GPU layers (default: %d)\n" + " --temp \n" + " Temperature (default: %.1f)\n" " -v, --verbose, --log-verbose\n" " Set verbosity level to infinity (i.e. log all messages, useful for debugging)\n" " -h, --help\n" @@ -170,7 +209,7 @@ class Opt { " llama-run file://some-file3.gguf\n" " llama-run --ngl 999 some-file4.gguf\n" " llama-run --ngl 999 some-file5.gguf Hello World\n", - llama_context_default_params().n_batch, llama_model_default_params().n_gpu_layers); + context_size_default, ngl_default, temperature_default); } }; @@ -495,12 +534,12 @@ class LlamaData { return 1; } - context = initialize_context(model, opt.context_size_); + context = initialize_context(model, opt); if (!context) { return 1; } - sampler = initialize_sampler(); + sampler = initialize_sampler(opt); return 0; } @@ -619,14 +658,12 @@ class LlamaData { // Initializes the model and returns a unique pointer to it llama_model_ptr initialize_model(Opt & opt) { ggml_backend_load_all(); - llama_model_params model_params = llama_model_default_params(); - model_params.n_gpu_layers = opt.ngl_ >= 0 ? opt.ngl_ : model_params.n_gpu_layers; resolve_model(opt.model_); printe( "\r%*s" "\rLoading model", get_terminal_width(), " "); - llama_model_ptr model(llama_load_model_from_file(opt.model_.c_str(), model_params)); + llama_model_ptr model(llama_load_model_from_file(opt.model_.c_str(), opt.model_params)); if (!model) { printe("%s: error: unable to load model from file: %s\n", __func__, opt.model_.c_str()); } @@ -636,10 +673,8 @@ class LlamaData { } // Initializes the context with the specified parameters - llama_context_ptr initialize_context(const llama_model_ptr & model, const int n_ctx) { - llama_context_params ctx_params = llama_context_default_params(); - ctx_params.n_ctx = ctx_params.n_batch = n_ctx >= 0 ? n_ctx : ctx_params.n_batch; - llama_context_ptr context(llama_new_context_with_model(model.get(), ctx_params)); + llama_context_ptr initialize_context(const llama_model_ptr & model, const Opt & opt) { + llama_context_ptr context(llama_new_context_with_model(model.get(), opt.ctx_params)); if (!context) { printe("%s: error: failed to create the llama_context\n", __func__); } @@ -648,10 +683,10 @@ class LlamaData { } // Initializes and configures the sampler - llama_sampler_ptr initialize_sampler() { + llama_sampler_ptr initialize_sampler(const Opt & opt) { llama_sampler_ptr sampler(llama_sampler_chain_init(llama_sampler_chain_default_params())); llama_sampler_chain_add(sampler.get(), llama_sampler_init_min_p(0.05f, 1)); - llama_sampler_chain_add(sampler.get(), llama_sampler_init_temp(0.8f)); + llama_sampler_chain_add(sampler.get(), llama_sampler_init_temp(opt.temperature)); llama_sampler_chain_add(sampler.get(), llama_sampler_init_dist(LLAMA_DEFAULT_SEED)); return sampler; @@ -798,9 +833,9 @@ static int apply_chat_template_with_error_handling(LlamaData & llama_data, const } // Helper function to handle user input -static int handle_user_input(std::string & user_input, const std::string & user_) { - if (!user_.empty()) { - user_input = user_; +static int handle_user_input(std::string & user_input, const std::string & user) { + if (!user.empty()) { + user_input = user; return 0; // No need for interactive input } @@ -832,17 +867,17 @@ static bool is_stdout_a_terminal() { } // Function to tokenize the prompt -static int chat_loop(LlamaData & llama_data, const std::string & user_) { +static int chat_loop(LlamaData & llama_data, const std::string & user) { int prev_len = 0; llama_data.fmtted.resize(llama_n_ctx(llama_data.context.get())); static const bool stdout_a_terminal = is_stdout_a_terminal(); while (true) { // Get user input std::string user_input; - while (handle_user_input(user_input, user_)) { + while (handle_user_input(user_input, user)) { } - add_message("user", user_.empty() ? user_input : user_, llama_data); + add_message("user", user.empty() ? user_input : user, llama_data); int new_len; if (apply_chat_template_with_error_handling(llama_data, true, new_len) < 0) { return 1; @@ -854,7 +889,7 @@ static int chat_loop(LlamaData & llama_data, const std::string & user_) { return 1; } - if (!user_.empty()) { + if (!user.empty()) { break; } @@ -869,7 +904,7 @@ static int chat_loop(LlamaData & llama_data, const std::string & user_) { static void log_callback(const enum ggml_log_level level, const char * text, void * p) { const Opt * opt = static_cast(p); - if (opt->verbose_ || level == GGML_LOG_LEVEL_ERROR) { + if (opt->verbose || level == GGML_LOG_LEVEL_ERROR) { printe("%s", text); } } @@ -890,11 +925,11 @@ int main(int argc, const char ** argv) { } if (!is_stdin_a_terminal()) { - if (!opt.user_.empty()) { - opt.user_ += "\n\n"; + if (!opt.user.empty()) { + opt.user += "\n\n"; } - opt.user_ += read_pipe_data(); + opt.user += read_pipe_data(); } llama_log_set(log_callback, &opt); @@ -903,7 +938,7 @@ int main(int argc, const char ** argv) { return 1; } - if (chat_loop(llama_data, opt.user_)) { + if (chat_loop(llama_data, opt.user)) { return 1; } From 6f0c9e034bb398915a6617ee4acc62adb87d387d Mon Sep 17 00:00:00 2001 From: ymcki <84055651+ymcki@users.noreply.github.com> Date: Mon, 23 Dec 2024 08:22:33 +0800 Subject: [PATCH 03/16] llama : support for Llama-3_1-Nemotron-51B (#10669) * conflict resolution * move comments after bracket to its own line --- convert_hf_to_gguf.py | 178 ++++++++++++++++++++++ gguf-py/gguf/constants.py | 26 ++++ gguf-py/gguf/tensor_mapping.py | 1 + src/llama.cpp | 267 ++++++++++++++++++++++++++++++++- 4 files changed, 471 insertions(+), 1 deletion(-) diff --git a/convert_hf_to_gguf.py b/convert_hf_to_gguf.py index 66aa7f5b1..d95fb1296 100755 --- a/convert_hf_to_gguf.py +++ b/convert_hf_to_gguf.py @@ -1692,6 +1692,184 @@ class LlamaModel(Model): raise ValueError(f"Unprocessed experts: {experts}") +@Model.register("DeciLMForCausalLM") +class DeciModel(Model): + model_arch = gguf.MODEL_ARCH.DECI + + @staticmethod + def _ffn_mult_to_intermediate_size(ffn_mult: float, n_embd: int) -> int: + # DeciLM-specific code + intermediate_size = int(2 * ffn_mult * n_embd / 3) + return DeciModel._find_multiple(intermediate_size, 256) + + @staticmethod + def _find_multiple(n: int, k: int) -> int: + # DeciLM-specific code + if n % k == 0: + return n + return n + k - (n % k) + + def __init__(self, *args, **kwargs): + super().__init__(*args, **kwargs) + + if "block_configs" in self.hparams: # Llama-3_1-Nemotron-51B + _block_configs: list[dict[str,Any]] = self.hparams["block_configs"] + assert self.block_count == len(_block_configs) + self._num_kv_heads = list() + self._num_heads = list() + _ffn_multipliers = list() + # ***linear attention layer*** + # if n_heads_in_group is None and replace_with_linear is True + # then _num_kv_heads[il] is 0 and _num_heads[il] is num_attention_heads + # ***attention-free layer*** + # if n_heads_in_group is None and replace_with_linear is False + # then _num_kv_heads[il] is 0 and _num_heads[il] is 0 + # ***normal attention-layer*** + # if n_heads_in_group is not None, then + # _num_kv_heads[il] is num_attention_head // n_heads_in_group and + # _num_heads[il] is num_attention_head + for il in range(len(_block_configs)): + if _block_configs[il]["attention"]["n_heads_in_group"] is None: + if _block_configs[il]["attention"]["replace_with_linear"] is True: + self._num_kv_heads.append(0) + self._num_heads.append(self.hparams["num_attention_heads"]) + else: + self._num_kv_heads.append(0) + self._num_heads.append(0) + else: + self._num_kv_heads.append(self.hparams["num_attention_heads"] // _block_configs[il]["attention"]["n_heads_in_group"]) + self._num_heads.append(self.hparams["num_attention_heads"]) + _ffn_multipliers.append(_block_configs[il]["ffn"]["ffn_mult"]) + assert self.block_count == len(self._num_kv_heads) + assert self.block_count == len(self._num_heads) + assert self.block_count == len(_ffn_multipliers) + assert isinstance(self._num_kv_heads, list) and isinstance(self._num_kv_heads[0], int) + assert isinstance(self._num_heads, list) and isinstance(self._num_heads[0], int) + assert isinstance(_ffn_multipliers, list) and isinstance(_ffn_multipliers[0], float) + self._ffn_dims: list[int] = [ + DeciModel._ffn_mult_to_intermediate_size(multiplier, self.hparams["hidden_size"]) + for multiplier in _ffn_multipliers + ] + + def set_vocab(self): + # Please change tokenizer_config.json of Llama-3_1-Nemotron-51B's + # eos_token from '|eot_id|' to '|end_of_text|' + if self.hparams.get("vocab_size", 128256) == 128256: + tokens, toktypes, tokpre = self.get_vocab_base() + self.gguf_writer.add_tokenizer_model("gpt2") + self.gguf_writer.add_tokenizer_pre(tokpre) + self.gguf_writer.add_token_list(tokens) + self.gguf_writer.add_token_types(toktypes) + + special_vocab = gguf.SpecialVocab( + self.dir_model, load_merges=True, + special_token_types = ['bos', 'eos', 'eom', 'eot'] + ) + special_vocab._set_special_token("bos", 128000) + special_vocab._set_special_token("eos", 128001) + special_vocab._set_special_token("eom", 128008) + special_vocab._set_special_token("eot", 128009) + special_vocab.add_to_gguf(self.gguf_writer) + else: + # DeciLM-7B + self._set_vocab_llama_hf() +# self._set_vocab_gpt2() + + def set_gguf_parameters(self): + if "block_configs" in self.hparams: # Llama-3_1-Nemotron-51B + assert self.block_count == len(self._num_kv_heads) + assert self.block_count == len(self._num_heads) + assert self.block_count == len(self._ffn_dims) + self.gguf_writer.add_head_count_kv(self._num_kv_heads) + self.gguf_writer.add_head_count(self._num_heads) + self.gguf_writer.add_feed_forward_length(self._ffn_dims) + self.gguf_writer.add_block_count(self.block_count) + self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"]) + self.gguf_writer.add_embedding_length(self.hparams["hidden_size"]) + self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"]) + self.gguf_writer.add_key_length(self.hparams["hidden_size"] // self.hparams["num_attention_heads"]) + self.gguf_writer.add_value_length(self.hparams["hidden_size"] // self.hparams["num_attention_heads"]) + self.gguf_writer.add_file_type(self.ftype) + else: # DeciLM-7B + super().set_gguf_parameters() + if "num_key_value_heads_per_layer" in self.hparams: # DeciLM-7B + self._num_kv_heads: list[int] = self.hparams["num_key_value_heads_per_layer"] + assert self.block_count == len(self._num_kv_heads) + self.gguf_writer.add_head_count_kv(self._num_kv_heads) + hparams = self.hparams + self.gguf_writer.add_vocab_size(hparams["vocab_size"]) + + if "head_dim" in hparams: + rope_dim = hparams["head_dim"] + else: + rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"] + self.gguf_writer.add_rope_dimension_count(rope_dim) + + if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]: + if self.hparams["rope_scaling"].get("type") == "linear": + self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR) + self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"]) + + @staticmethod + def permute(weights: Tensor, n_head: int, n_head_kv: int | None): + if n_head_kv is not None and n_head != n_head_kv: + n_head = n_head_kv + return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:]) + .swapaxes(1, 2) + .reshape(weights.shape)) + + def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]: + n_head = self.hparams["num_attention_heads"] + if bid is not None: + if "num_key_value_heads_per_layer" in self.hparams: + n_kv_head = self.hparams["num_key_value_heads_per_layer"][bid] + elif "block_configs" in self.hparams: + n_kv_head = self._num_kv_heads[bid] + n_head = self._num_heads[bid] + else: + n_kv_head = self.hparams.get("num_key_value_heads") + else: + n_kv_head = self.hparams.get("num_key_value_heads") + + if name.endswith(("q_proj.weight", "q_proj.bias")): + data_torch = DeciModel.permute(data_torch, n_head, n_head) + if name.endswith(("k_proj.weight", "k_proj.bias")): + data_torch = DeciModel.permute(data_torch, n_head, n_kv_head) + return [(self.map_tensor_name(name), data_torch)] + + def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]: + if rope_scaling := self.find_hparam(["rope_scaling"], optional=True): + if rope_scaling.get("rope_type", '').lower() == "llama3": + base = self.hparams.get("rope_theta", 10000.0) + dim = self.hparams.get("head_dim", self.hparams["hidden_size"] // self.hparams["num_attention_heads"]) + freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim)) + + factor = rope_scaling.get("factor", 8.0) + low_freq_factor = rope_scaling.get("low_freq_factor", 1.0) + high_freq_factor = rope_scaling.get("high_freq_factor", 4.0) + old_context_len = self.hparams.get("original_max_position_embeddings", 8192) + + low_freq_wavelen = old_context_len / low_freq_factor + high_freq_wavelen = old_context_len / high_freq_factor + assert low_freq_wavelen != high_freq_wavelen + + rope_factors = [] + for freq in freqs: + wavelen = 2 * math.pi / freq + if wavelen < high_freq_wavelen: + rope_factors.append(1) + elif wavelen > low_freq_wavelen: + rope_factors.append(factor) + else: + smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor) + rope_factors.append(1 / ((1 - smooth) / factor + smooth)) + + yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32)) + + def prepare_tensors(self): + super().prepare_tensors() + + @Model.register("BitnetForCausalLM") class BitnetModel(Model): model_arch = gguf.MODEL_ARCH.BITNET diff --git a/gguf-py/gguf/constants.py b/gguf-py/gguf/constants.py index a40df974d..273370370 100644 --- a/gguf-py/gguf/constants.py +++ b/gguf-py/gguf/constants.py @@ -221,6 +221,7 @@ class GGUFType: class MODEL_ARCH(IntEnum): LLAMA = auto() + DECI = auto() FALCON = auto() BAICHUAN = auto() GROK = auto() @@ -402,6 +403,7 @@ class MODEL_TENSOR(IntEnum): MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = { MODEL_ARCH.LLAMA: "llama", + MODEL_ARCH.DECI: "deci", MODEL_ARCH.FALCON: "falcon", MODEL_ARCH.BAICHUAN: "baichuan", MODEL_ARCH.GROK: "grok", @@ -602,6 +604,26 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = { MODEL_TENSOR.FFN_DOWN_EXP, MODEL_TENSOR.FFN_UP_EXP, ], + MODEL_ARCH.DECI: [ + MODEL_TENSOR.TOKEN_EMBD, + MODEL_TENSOR.OUTPUT_NORM, + MODEL_TENSOR.OUTPUT, + MODEL_TENSOR.ROPE_FREQS, + MODEL_TENSOR.ATTN_NORM, + MODEL_TENSOR.ATTN_Q, + MODEL_TENSOR.ATTN_K, + MODEL_TENSOR.ATTN_V, + MODEL_TENSOR.ATTN_OUT, + MODEL_TENSOR.ATTN_ROT_EMBD, + MODEL_TENSOR.FFN_GATE_INP, + MODEL_TENSOR.FFN_NORM, + MODEL_TENSOR.FFN_GATE, + MODEL_TENSOR.FFN_DOWN, + MODEL_TENSOR.FFN_UP, + MODEL_TENSOR.FFN_GATE_EXP, + MODEL_TENSOR.FFN_DOWN_EXP, + MODEL_TENSOR.FFN_UP_EXP, + ], MODEL_ARCH.GROK: [ MODEL_TENSOR.TOKEN_EMBD, MODEL_TENSOR.OUTPUT_NORM, @@ -1448,6 +1470,10 @@ MODEL_TENSOR_SKIP: dict[MODEL_ARCH, list[MODEL_TENSOR]] = { MODEL_TENSOR.ROPE_FREQS, MODEL_TENSOR.ATTN_ROT_EMBD, ], + MODEL_ARCH.DECI: [ + MODEL_TENSOR.ROPE_FREQS, + MODEL_TENSOR.ATTN_ROT_EMBD, + ], MODEL_ARCH.BAICHUAN: [ MODEL_TENSOR.ROPE_FREQS, MODEL_TENSOR.ATTN_ROT_EMBD, diff --git a/gguf-py/gguf/tensor_mapping.py b/gguf-py/gguf/tensor_mapping.py index 82cdb121a..7009a11d4 100644 --- a/gguf-py/gguf/tensor_mapping.py +++ b/gguf-py/gguf/tensor_mapping.py @@ -198,6 +198,7 @@ class TensorNameMap: "transformer.h.{bid}.self_attention.dense", # falcon "h.{bid}.self_attention.dense", # bloom "model.layers.{bid}.self_attn.o_proj", # llama-hf nemotron olmoe olmo2 + "model.layers.{bid}.self_attn.linear_attn", # deci "layers.{bid}.attention.wo", # llama-pth "encoder.layer.{bid}.attention.output.dense", # bert "transformer.h.{bid}.attn.out_proj", # gpt-j diff --git a/src/llama.cpp b/src/llama.cpp index 115ef9080..c1524d06b 100644 --- a/src/llama.cpp +++ b/src/llama.cpp @@ -146,6 +146,7 @@ static std::string format(const char * fmt, ...) { enum llm_arch { LLM_ARCH_LLAMA, + LLM_ARCH_DECI, LLM_ARCH_FALCON, LLM_ARCH_BAICHUAN, LLM_ARCH_GROK, @@ -203,6 +204,7 @@ enum llm_arch { static const std::map LLM_ARCH_NAMES = { { LLM_ARCH_LLAMA, "llama" }, + { LLM_ARCH_DECI, "deci" }, { LLM_ARCH_FALCON, "falcon" }, { LLM_ARCH_GROK, "grok" }, { LLM_ARCH_GPT2, "gpt2" }, @@ -674,6 +676,32 @@ static const std::map> LLM_TENSOR_N { LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" }, }, }, + { + LLM_ARCH_DECI, + { + { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, + { LLM_TENSOR_OUTPUT_NORM, "output_norm" }, + { LLM_TENSOR_OUTPUT, "output" }, + { LLM_TENSOR_ROPE_FREQS, "rope_freqs" }, + { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" }, + { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" }, + { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" }, + { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" }, + { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, + { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" }, + { LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" }, + { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" }, + { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" }, + { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" }, + { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, + { LLM_TENSOR_FFN_GATE_EXP, "blk.%d.ffn_gate.%d" }, + { LLM_TENSOR_FFN_DOWN_EXP, "blk.%d.ffn_down.%d" }, + { LLM_TENSOR_FFN_UP_EXP, "blk.%d.ffn_up.%d" }, + { LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" }, + { LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" }, + { LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" }, + }, + }, { LLM_ARCH_BAICHUAN, { @@ -5694,7 +5722,7 @@ static void llm_load_hparams( ml.get_key(LLM_KV_ROPE_DIMENSION_COUNT, hparams.n_rot, false); - if (model.arch == LLM_ARCH_LLAMA || model.arch == LLM_ARCH_FALCON) { + if (model.arch == LLM_ARCH_LLAMA || model.arch == LLM_ARCH_DECI || model.arch == LLM_ARCH_FALCON) { if (hparams.n_rot != hparams.n_embd_head_k) { throw std::runtime_error(format("invalid n_rot: %u, expected %u", hparams.n_rot, hparams.n_embd_head_k)); } @@ -5734,6 +5762,15 @@ static void llm_load_hparams( } } } break; + case LLM_ARCH_DECI: + { + ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); + switch (hparams.n_layer) { + case 32: model.type = e_model::MODEL_7B; break; + case 80: model.type = e_model::MODEL_70B; break; + default: model.type = e_model::MODEL_UNKNOWN; + } + } break; case LLM_ARCH_MINICPM: { ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); @@ -7939,6 +7976,68 @@ static bool llm_load_tensors( } } } break; + case LLM_ARCH_DECI: + { + model.tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0); + + // output + model.output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0); + model.output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED); + + // if output is NULL, init from the input tok embed + if (model.output == NULL) { + model.output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED); + } + + for (int i = 0; i < n_layer; ++i) { + auto & layer = model.layers[i]; + const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa(i); + const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa(i); + const int64_t n_embd_gqa = hparams.n_embd_v_gqa(i); + const int64_t n_ff = hparams.n_ff(i); + const int64_t n_head = hparams.n_head(i); + const int64_t n_head_kv = hparams.n_head_kv(i); + + if (n_head_kv == 0 && n_head > 0) { + // linear attention for DeciLMCausalModel + layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0); + layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0); + } + else if (n_head_kv > 0) { + layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0); + + layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0); + layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0); + layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0); + layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0); + } + + // optional bias tensors + layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED); + layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, llama_model_loader::TENSOR_NOT_REQUIRED); + layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, llama_model_loader::TENSOR_NOT_REQUIRED); + layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED); + + layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0); + + if (hparams.rope_scaling_type_train == LLAMA_ROPE_SCALING_TYPE_LONGROPE) { + layer.rope_long = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_LONG, "weight", i), {n_rot/2}, llama_model_loader::TENSOR_NOT_REQUIRED | (i != 0 ? llama_model_loader::TENSOR_DUPLICATED : 0)); + layer.rope_short = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_SHORT, "weight", i), {n_rot/2}, llama_model_loader::TENSOR_NOT_REQUIRED | (i != 0 ? llama_model_loader::TENSOR_DUPLICATED : 0)); + } + else { + layer.rope_freqs = create_tensor(tn(LLM_TENSOR_ROPE_FREQS, "weight", i), {n_rot/2}, llama_model_loader::TENSOR_NOT_REQUIRED | (i != 0 ? llama_model_loader::TENSOR_DUPLICATED : 0)); + } + + layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0); + layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0); + layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0); + + // optional MLP bias + layer.ffn_gate_b = create_tensor(tn(LLM_TENSOR_FFN_GATE, "bias", i), {n_ff}, llama_model_loader::TENSOR_NOT_REQUIRED); + layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED); + layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, llama_model_loader::TENSOR_NOT_REQUIRED); + } + } break; case LLM_ARCH_MINICPM3: { const int64_t n_embd_head_qk_rope = hparams.n_rot; @@ -11308,6 +11407,167 @@ struct llm_build_context { return gf; } + struct ggml_cgraph * build_deci() { + struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false); + + // mutable variable, needed during the last layer of the computation to skip unused tokens + int32_t n_tokens = this->n_tokens; + + const int64_t n_embd_head = hparams.n_embd_head_v; + GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); + GGML_ASSERT(n_embd_head == hparams.n_rot); + + struct ggml_tensor * cur; + struct ggml_tensor * inpL; + + inpL = llm_build_inp_embd(ctx0, lctx, hparams, ubatch, model.tok_embd, cb); + + // inp_pos - contains the positions + struct ggml_tensor * inp_pos = build_inp_pos(); + + // KQ_mask (mask for 1 head, it will be broadcasted to all heads) + struct ggml_tensor * KQ_mask = build_inp_KQ_mask(); + + const float kq_scale = hparams.f_attention_scale == 0.0f ? 1.0f/sqrtf(float(n_embd_head)) : hparams.f_attention_scale; + for (int il = 0; il < n_layer; ++il) { + struct ggml_tensor * inpSA = inpL; + const int64_t n_head_kv = hparams.n_head_kv(il); + const int64_t n_head = hparams.n_head(il); + + if (n_head == 0) { + // attention-free layer of Llama-3_1-Nemotron-51B + cur = inpL; + } else { + // norm + cur = llm_build_norm(ctx0, inpL, hparams, + model.layers[il].attn_norm, NULL, + LLM_NORM_RMS, cb, il); + cb(cur, "attn_norm", il); + } + + if (n_head > 0 && n_head_kv == 0) { + // "linear attention" of Llama-3_1-Nemotron-51B + cur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wo, cur); + cb(cur, "wo", il); + } else if (n_head > 0) { + // self-attention + // rope freq factors for llama3; may return nullptr for llama2 and other models + struct ggml_tensor * rope_factors = build_rope_factors(il); + + // compute Q and K and RoPE them + struct ggml_tensor * Qcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wq, cur); + cb(Qcur, "Qcur", il); + if (model.layers[il].bq) { + Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq); + cb(Qcur, "Qcur", il); + } + + struct ggml_tensor * Kcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wk, cur); + cb(Kcur, "Kcur", il); + if (model.layers[il].bk) { + Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk); + cb(Kcur, "Kcur", il); + } + + struct ggml_tensor * Vcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wv, cur); + cb(Vcur, "Vcur", il); + if (model.layers[il].bv) { + Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv); + cb(Vcur, "Vcur", il); + } + + Qcur = ggml_rope_ext( + ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, rope_factors, + n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, + ext_factor, attn_factor, beta_fast, beta_slow + ); + cb(Qcur, "Qcur", il); + + Kcur = ggml_rope_ext( + ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, rope_factors, + n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, + ext_factor, attn_factor, beta_fast, beta_slow + ); + cb(Kcur, "Kcur", il); + + cur = llm_build_kv(ctx0, lctx, kv_self, gf, + model.layers[il].wo, model.layers[il].bo, + Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, kq_scale, cb, il); + } + + if (il == n_layer - 1) { + // skip computing output for unused tokens + struct ggml_tensor * inp_out_ids = build_inp_out_ids(); + n_tokens = n_outputs; + cur = ggml_get_rows(ctx0, cur, inp_out_ids); + inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids); + } + + // For Granite architecture + if (hparams.f_residual_scale) { + cur = ggml_scale(ctx0, cur, hparams.f_residual_scale); + } + + // modified to support attention-free layer of Llama-3_1-Nemotron-51B + struct ggml_tensor * ffn_inp = cur; + if (n_head > 0) { + ffn_inp = ggml_add(ctx0, cur, inpSA); + cb(ffn_inp, "ffn_inp", il); + } + + // feed-forward network + if (model.layers[il].ffn_gate_inp == nullptr) { + cur = llm_build_norm(ctx0, ffn_inp, hparams, + model.layers[il].ffn_norm, NULL, + LLM_NORM_RMS, cb, il); + cb(cur, "ffn_norm", il); + + cur = llm_build_ffn(ctx0, lctx, cur, + model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL, + model.layers[il].ffn_gate, model.layers[il].ffn_gate_b, NULL, + model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL, + NULL, + LLM_FFN_SILU, LLM_FFN_PAR, cb, il); + cb(cur, "ffn_out", il); + } + + // For Granite architecture + if (hparams.f_residual_scale) { + cur = ggml_scale(ctx0, cur, hparams.f_residual_scale); + } + + cur = ggml_add(ctx0, cur, ffn_inp); + cb(cur, "ffn_out", il); + + cur = lctx.cvec.apply_to(ctx0, cur, il); + cb(cur, "l_out", il); + + // input for next layer + inpL = cur; + } + + cur = inpL; + + cur = llm_build_norm(ctx0, cur, hparams, + model.output_norm, NULL, + LLM_NORM_RMS, cb, -1); + cb(cur, "result_norm", -1); + + // lm_head + cur = llm_build_lora_mm(lctx, ctx0, model.output, cur); + + // For Granite architecture + if (hparams.f_logit_scale) { + cur = ggml_scale(ctx0, cur, 1.0f / hparams.f_logit_scale); + } + + cb(cur, "result_output", -1); + + ggml_build_forward_expand(gf, cur); + + return gf; + } + struct ggml_cgraph * build_baichuan() { struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false); @@ -17422,6 +17682,10 @@ static struct ggml_cgraph * llama_build_graph( { result = llm.build_llama(); } break; + case LLM_ARCH_DECI: + { + result = llm.build_deci(); + } break; case LLM_ARCH_BAICHUAN: { result = llm.build_baichuan(); @@ -20797,6 +21061,7 @@ enum llama_rope_type llama_rope_type(const struct llama_model * model) { // use what we call a normal RoPE, operating on pairs of consecutive head values case LLM_ARCH_LLAMA: + case LLM_ARCH_DECI: case LLM_ARCH_BAICHUAN: case LLM_ARCH_STARCODER: case LLM_ARCH_PLAMO: From b92a14a841fb4dfaf27b29d982ec8ba5289a3bff Mon Sep 17 00:00:00 2001 From: Yun Dou Date: Mon, 23 Dec 2024 08:35:44 +0800 Subject: [PATCH 04/16] llama : support InfiniAI Megrez 3b (#10893) * Support InfiniAI Megrez 3b * Fix tokenizer_clean_spaces for megrez --- convert_hf_to_gguf.py | 3 +++ convert_hf_to_gguf_update.py | 1 + src/llama.cpp | 17 +++++++++++++++++ tests/test-chat-template.cpp | 4 ++++ 4 files changed, 25 insertions(+) diff --git a/convert_hf_to_gguf.py b/convert_hf_to_gguf.py index d95fb1296..b6c15da94 100755 --- a/convert_hf_to_gguf.py +++ b/convert_hf_to_gguf.py @@ -684,6 +684,9 @@ class Model: if chkhsh == "ad851be1dba641f2e3711822f816db2c265f788b37c63b4e1aeacb9ee92de8eb": # ref: https://huggingface.co/ai-sage/GigaChat-20B-A3B-instruct res = "gigachat" + if chkhsh == "d4c8f286ea6b520b3d495c4455483cfa2302c0cfcd4be05d781b6a8a0a7cdaf1": + # ref: https://huggingface.co/Infinigence/Megrez-3B-Instruct + res = "megrez" if res is None: logger.warning("\n") diff --git a/convert_hf_to_gguf_update.py b/convert_hf_to_gguf_update.py index 2ba346640..fea23ddb4 100755 --- a/convert_hf_to_gguf_update.py +++ b/convert_hf_to_gguf_update.py @@ -106,6 +106,7 @@ models = [ {"name": "minerva-7b", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/sapienzanlp/Minerva-7B-base-v1.0", }, {"name": "roberta-bpe", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/sentence-transformers/stsb-roberta-base"}, {"name": "gigachat", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/ai-sage/GigaChat-20B-A3B-instruct"}, + {"name": "megrez", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/Infinigence/Megrez-3B-Instruct"}, ] diff --git a/src/llama.cpp b/src/llama.cpp index c1524d06b..4d41602fe 100644 --- a/src/llama.cpp +++ b/src/llama.cpp @@ -1720,6 +1720,7 @@ enum llm_chat_template { LLM_CHAT_TEMPLATE_RWKV_WORLD, LLM_CHAT_TEMPLATE_GRANITE, LLM_CHAT_TEMPLATE_GIGACHAT, + LLM_CHAT_TEMPLATE_MEGREZ, LLM_CHAT_TEMPLATE_UNKNOWN, }; @@ -1753,6 +1754,7 @@ static const std::map LLM_CHAT_TEMPLATES = { { "rwkv-world", LLM_CHAT_TEMPLATE_RWKV_WORLD }, { "granite", LLM_CHAT_TEMPLATE_GRANITE }, { "gigachat", LLM_CHAT_TEMPLATE_GIGACHAT }, + { "megrez", LLM_CHAT_TEMPLATE_MEGREZ }, }; static llm_arch llm_arch_from_string(const std::string & name) { @@ -6703,6 +6705,9 @@ static void llm_load_vocab( } else if ( tokenizer_pre == "minerva-7b") { vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_MINERVA; + } else if ( + tokenizer_pre == "megrez") { + vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_QWEN2; } else { throw std::runtime_error(format("unknown pre-tokenizer type: '%s'", tokenizer_pre.c_str())); } @@ -22931,6 +22936,8 @@ static llm_chat_template llama_chat_detect_template(const std::string & tmpl) { return LLM_CHAT_TEMPLATE_GRANITE; } else if (tmpl_contains("message['role'] + additional_special_tokens[0] + message['content'] + additional_special_tokens[1]")) { return LLM_CHAT_TEMPLATE_GIGACHAT; + } else if (tmpl_contains("<|role_start|>")) { + return LLM_CHAT_TEMPLATE_MEGREZ; } return LLM_CHAT_TEMPLATE_UNKNOWN; } @@ -23289,6 +23296,16 @@ static int32_t llama_chat_apply_template_internal( if (add_ass) { ss << "assistant<|role_sep|>"; } + } else if (tmpl == LLM_CHAT_TEMPLATE_MEGREZ) { + // Megrez template + for (auto message : chat) { + std::string role(message->role); + ss << "<|role_start|>" << role << "<|role_end|>" << message->content << "<|turn_end|>"; + } + + if (add_ass) { + ss << "<|role_start|>assistant<|role_end|>"; + } } else { // template not supported return -1; diff --git a/tests/test-chat-template.cpp b/tests/test-chat-template.cpp index 30a910ad5..51bfb155b 100644 --- a/tests/test-chat-template.cpp +++ b/tests/test-chat-template.cpp @@ -77,6 +77,8 @@ int main(void) { "{{ bos_token }}{% for message in messages %}{% if message['role'] == 'user' %}{{ '[INST] ' + message['content'] + '[/INST]' }}{% elif message['role'] == 'system' %}{{ '[SYSTEM_PROMPT] ' + message['content'] + '[/SYSTEM_PROMPT]' }}{% elif message['role'] == 'assistant' %}{{ ' ' + message['content'] + eos_token }}{% else %}{{ raise_exception('Only user, system and assistant roles are supported!') }}{% endif %}{% endfor %}", // ai-sage/GigaChat-20B-A3B-instruct "{% if messages[0]['role'] == 'system' -%}\n {%- set loop_messages = messages[1:] -%}\n {%- set system_message = bos_token + messages[0]['content'] + additional_special_tokens[1] -%}\n{%- else -%}\n {%- set loop_messages = messages -%}\n {%- set system_message = bos_token + '' -%}\n{%- endif -%}\n{%- for message in loop_messages %}\n {% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}\n {{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}\n {% endif %}\n \n {%- if loop.index0 == 0 -%}\n {{ system_message -}}\n {%- endif -%}\n {%- if message['role'] == 'user' -%}\n {{ message['role'] + additional_special_tokens[0] + message['content'] + additional_special_tokens[1] -}}\n {{ 'available functions' + additional_special_tokens[0] + additional_special_tokens[2] + additional_special_tokens[3] + additional_special_tokens[1] -}}\n {%- endif -%}\n {%- if message['role'] == 'assistant' -%}\n {{ message['role'] + additional_special_tokens[0] + message['content'] + additional_special_tokens[1] -}}\n {%- endif -%}\n {%- if loop.last and add_generation_prompt -%}\n {{ 'assistant' + additional_special_tokens[0] -}}\n {%- endif -%}\n{%- endfor %}", + // Infinigence/Megrez-3B-Instruct + u8"{% for message in messages %}{% if loop.first and messages[0]['role'] != 'system' %}{{ '<|role_start|>system<|role_end|>你是Megrez-3B-Instruct,将针对用户的问题给出详细的、积极的回答。<|turn_end|>' }}{% endif %}{{ '<|role_start|>' + message['role'] + '<|role_end|>' + message['content'] + '<|turn_end|>' }}{% endfor %}{% if add_generation_prompt %}{{ '<|role_start|>assistant<|role_end|>' }}{% endif %}" }; std::vector expected_output = { // teknium/OpenHermes-2.5-Mistral-7B @@ -133,6 +135,8 @@ int main(void) { "[SYSTEM_PROMPT] You are a helpful assistant[/SYSTEM_PROMPT][INST] Hello[/INST] Hi there[INST] Who are you[/INST] I am an assistant [INST] Another question[/INST]", // ai-sage/GigaChat-20B-A3B-instruct "You are a helpful assistant<|message_sep|>user<|role_sep|>Hello<|message_sep|>available functions<|role_sep|>[]<|message_sep|>assistant<|role_sep|>Hi there<|message_sep|>user<|role_sep|>Who are you<|message_sep|>available functions<|role_sep|>[]<|message_sep|>assistant<|role_sep|> I am an assistant <|message_sep|>user<|role_sep|>Another question<|message_sep|>available functions<|role_sep|>[]<|message_sep|>assistant<|role_sep|>", + // Infinigence/Megrez-3B-Instruct + "<|role_start|>system<|role_end|>You are a helpful assistant<|turn_end|><|role_start|>user<|role_end|>Hello<|turn_end|><|role_start|>assistant<|role_end|>Hi there<|turn_end|><|role_start|>user<|role_end|>Who are you<|turn_end|><|role_start|>assistant<|role_end|> I am an assistant <|turn_end|><|role_start|>user<|role_end|>Another question<|turn_end|><|role_start|>assistant<|role_end|>", }; std::vector formatted_chat(1024); int32_t res; From 86bf31cfe684849157f0875b4f0ebccac7034547 Mon Sep 17 00:00:00 2001 From: Radoslav Gerganov Date: Mon, 23 Dec 2024 10:39:30 +0200 Subject: [PATCH 05/16] rpc-server : add support for the SYCL backend (#10934) --- examples/rpc/rpc-server.cpp | 12 ++++++++++++ 1 file changed, 12 insertions(+) diff --git a/examples/rpc/rpc-server.cpp b/examples/rpc/rpc-server.cpp index 5fe70dac7..8b1b23eda 100644 --- a/examples/rpc/rpc-server.cpp +++ b/examples/rpc/rpc-server.cpp @@ -12,6 +12,10 @@ #include "ggml-vulkan.h" #endif +#ifdef GGML_USE_SYCL +#include "ggml-sycl.h" +#endif + #include "ggml-rpc.h" #ifdef _WIN32 # include @@ -91,6 +95,12 @@ static ggml_backend_t create_backend() { if (!backend) { fprintf(stderr, "%s: ggml_backend_vulkan_init() failed\n", __func__); } +#elif GGML_USE_SYCL + fprintf(stderr, "%s: using SYCL backend\n", __func__); + backend = ggml_backend_sycl_init(0); // init device 0 + if (!backend) { + fprintf(stderr, "%s: ggml_backend_sycl_init() failed\n", __func__); + } #endif // if there aren't GPU Backends fallback to CPU backend @@ -106,6 +116,8 @@ static void get_backend_memory(size_t * free_mem, size_t * total_mem) { ggml_backend_cuda_get_device_memory(0, free_mem, total_mem); #elif GGML_USE_VULKAN ggml_backend_vk_get_device_memory(0, free_mem, total_mem); +#elif GGML_USE_SYCL + ggml_backend_sycl_get_device_memory(0, free_mem, total_mem); #else #ifdef _WIN32 MEMORYSTATUSEX status; From 485dc01214f266afff7004bc702498b491abc404 Mon Sep 17 00:00:00 2001 From: Xuan Son Nguyen Date: Mon, 23 Dec 2024 12:02:44 +0100 Subject: [PATCH 06/16] server : add system_fingerprint to chat/completion (#10917) * server : add system_fingerprint to chat/completion * update README --- examples/server/README.md | 3 +- examples/server/server.cpp | 32 +++++++++++-------- .../server/tests/unit/test_chat_completion.py | 3 ++ examples/server/utils.hpp | 2 ++ 4 files changed, 25 insertions(+), 15 deletions(-) diff --git a/examples/server/README.md b/examples/server/README.md index 6d6465692..5e3d6a6e6 100644 --- a/examples/server/README.md +++ b/examples/server/README.md @@ -724,7 +724,8 @@ This endpoint is public (no API key check). By default, it is read-only. To make }, "total_slots": 1, "model_path": "../models/Meta-Llama-3.1-8B-Instruct-Q4_K_M.gguf", - "chat_template": "..." + "chat_template": "...", + "build_info": "b(build number)-(build commit hash)" } ``` diff --git a/examples/server/server.cpp b/examples/server/server.cpp index fa3682a92..c571ed3c1 100644 --- a/examples/server/server.cpp +++ b/examples/server/server.cpp @@ -595,10 +595,11 @@ struct server_task_result_cmpl_final : server_task_result { std::time_t t = std::time(0); json res = json { - {"choices", json::array({choice})}, - {"created", t}, - {"model", oaicompat_model}, - {"object", "chat.completion"}, + {"choices", json::array({choice})}, + {"created", t}, + {"model", oaicompat_model}, + {"system_fingerprint", build_info}, + {"object", "chat.completion"}, {"usage", json { {"completion_tokens", n_decoded}, {"prompt_tokens", n_prompt_tokens}, @@ -632,11 +633,12 @@ struct server_task_result_cmpl_final : server_task_result { }; json ret = json { - {"choices", json::array({choice})}, - {"created", t}, - {"id", oaicompat_cmpl_id}, - {"model", oaicompat_model}, - {"object", "chat.completion.chunk"}, + {"choices", json::array({choice})}, + {"created", t}, + {"id", oaicompat_cmpl_id}, + {"model", oaicompat_model}, + {"system_fingerprint", build_info}, + {"object", "chat.completion.chunk"}, {"usage", json { {"completion_tokens", n_decoded}, {"prompt_tokens", n_prompt_tokens}, @@ -761,11 +763,12 @@ struct server_task_result_cmpl_partial : server_task_result { } json ret = json { - {"choices", choices}, - {"created", t}, - {"id", oaicompat_cmpl_id}, - {"model", oaicompat_model}, - {"object", "chat.completion.chunk"} + {"choices", choices}, + {"created", t}, + {"id", oaicompat_cmpl_id}, + {"model", oaicompat_model}, + {"system_fingerprint", build_info}, + {"object", "chat.completion.chunk"} }; if (timings.prompt_n >= 0) { @@ -3476,6 +3479,7 @@ int main(int argc, char ** argv) { { "total_slots", ctx_server.params_base.n_parallel }, { "model_path", ctx_server.params_base.model }, { "chat_template", llama_get_chat_template(ctx_server.model) }, + { "build_info", build_info }, }; res_ok(res, data); diff --git a/examples/server/tests/unit/test_chat_completion.py b/examples/server/tests/unit/test_chat_completion.py index 0fa1a17c1..885497081 100644 --- a/examples/server/tests/unit/test_chat_completion.py +++ b/examples/server/tests/unit/test_chat_completion.py @@ -31,6 +31,7 @@ def test_chat_completion(model, system_prompt, user_prompt, max_tokens, re_conte }) assert res.status_code == 200 assert "cmpl" in res.body["id"] # make sure the completion id has the expected format + assert res.body["system_fingerprint"].startswith("b") assert res.body["model"] == model if model is not None else server.model_alias assert res.body["usage"]["prompt_tokens"] == n_prompt assert res.body["usage"]["completion_tokens"] == n_predicted @@ -63,6 +64,7 @@ def test_chat_completion_stream(system_prompt, user_prompt, max_tokens, re_conte last_cmpl_id = None for data in res: choice = data["choices"][0] + assert data["system_fingerprint"].startswith("b") assert "gpt-3.5" in data["model"] # DEFAULT_OAICOMPAT_MODEL, maybe changed in the future if last_cmpl_id is None: last_cmpl_id = data["id"] @@ -92,6 +94,7 @@ def test_chat_completion_with_openai_library(): seed=42, temperature=0.8, ) + assert res.system_fingerprint is not None and res.system_fingerprint.startswith("b") assert res.choices[0].finish_reason == "length" assert res.choices[0].message.content is not None assert match_regex("(Suddenly)+", res.choices[0].message.content) diff --git a/examples/server/utils.hpp b/examples/server/utils.hpp index 94bb285b6..1987acac8 100644 --- a/examples/server/utils.hpp +++ b/examples/server/utils.hpp @@ -56,6 +56,8 @@ static T json_value(const json & body, const std::string & key, const T & defaul } } +const static std::string build_info("b" + std::to_string(LLAMA_BUILD_NUMBER) + "-" + LLAMA_COMMIT); + // // tokenizer and input processing utils // From 14b699ecde8f1e9e251ebff9eca39ebc5603b83b Mon Sep 17 00:00:00 2001 From: Xuan Son Nguyen Date: Mon, 23 Dec 2024 12:52:25 +0100 Subject: [PATCH 07/16] server : fix missing model id in /model endpoint (#10957) * server : fix missing model id in /model endpoint * fix ci --- examples/server/server.cpp | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/examples/server/server.cpp b/examples/server/server.cpp index c571ed3c1..476a9225f 100644 --- a/examples/server/server.cpp +++ b/examples/server/server.cpp @@ -3701,7 +3701,7 @@ int main(int argc, char ** argv) { {"object", "list"}, {"data", { { - {"id", params.model_alias}, + {"id", params.model_alias.empty() ? params.model : params.model_alias}, {"object", "model"}, {"created", std::time(0)}, {"owned_by", "llamacpp"}, From 32d6ee6385b3fc908b283f509b845f757a6e7206 Mon Sep 17 00:00:00 2001 From: Diego Devesa Date: Mon, 23 Dec 2024 20:25:52 +0100 Subject: [PATCH 08/16] ggml : fix const usage in SSE path (#10962) --- ggml/src/ggml-cpu/ggml-cpu.c | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/ggml/src/ggml-cpu/ggml-cpu.c b/ggml/src/ggml-cpu/ggml-cpu.c index 67e67a089..18d194479 100644 --- a/ggml/src/ggml-cpu/ggml-cpu.c +++ b/ggml/src/ggml-cpu/ggml-cpu.c @@ -986,7 +986,7 @@ inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) { #define GGML_F16_STEP 32 #define GGML_F16_EPR 4 -static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) { +static inline __m128 __sse_f16x4_load(const ggml_fp16_t * x) { float tmp[4]; tmp[0] = GGML_FP16_TO_FP32(x[0]); @@ -997,7 +997,7 @@ static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) { return _mm_loadu_ps(tmp); } -static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) { +static inline void __sse_f16x4_store(ggml_fp16_t * x, __m128 y) { float arr[4]; _mm_storeu_ps(arr, y); From 3327bb0f8dea381118f8e66c18ea14db56d3b942 Mon Sep 17 00:00:00 2001 From: Diego Devesa Date: Tue, 24 Dec 2024 04:05:17 +0100 Subject: [PATCH 09/16] ggml : fix arm enabled features check (#10961) --- ggml/src/ggml-cpu/CMakeLists.txt | 10 ++++++++-- 1 file changed, 8 insertions(+), 2 deletions(-) diff --git a/ggml/src/ggml-cpu/CMakeLists.txt b/ggml/src/ggml-cpu/CMakeLists.txt index 12d790825..e357860a5 100644 --- a/ggml/src/ggml-cpu/CMakeLists.txt +++ b/ggml/src/ggml-cpu/CMakeLists.txt @@ -135,14 +135,20 @@ function(ggml_add_cpu_backend_variant_impl tag_name) endif() # show enabled features + if (CMAKE_HOST_SYSTEM_NAME STREQUAL "Windows") + set(FEAT_INPUT_FILE "NUL") + else() + set(FEAT_INPUT_FILE "/dev/null") + endif() + execute_process( COMMAND ${CMAKE_C_COMPILER} ${ARCH_FLAGS} -dM -E - - INPUT_FILE "/dev/null" + INPUT_FILE ${FEAT_INPUT_FILE} OUTPUT_VARIABLE ARM_FEATURE RESULT_VARIABLE ARM_FEATURE_RESULT ) if (ARM_FEATURE_RESULT) - message(FATAL_ERROR "Failed to get ARM features") + message(WARNING "Failed to get ARM features") else() foreach(feature DOTPROD SVE MATMUL_INT8 FMA FP16_VECTOR_ARITHMETIC) string(FIND "${ARM_FEATURE}" "__ARM_FEATURE_${feature} 1" feature_pos) From 60cfa728e27c28537657d4e627ed432508eb9537 Mon Sep 17 00:00:00 2001 From: Diego Devesa Date: Tue, 24 Dec 2024 04:05:27 +0100 Subject: [PATCH 10/16] ggml : use wstring for backend search paths (#10960) ggml-ci --- ggml/src/CMakeLists.txt | 1 + ggml/src/ggml-backend-reg.cpp | 117 ++++++++++++++++++------------- ggml/src/ggml-cpu/CMakeLists.txt | 5 ++ 3 files changed, 75 insertions(+), 48 deletions(-) diff --git a/ggml/src/CMakeLists.txt b/ggml/src/CMakeLists.txt index bf5ee5fc2..a5f7f7b5b 100644 --- a/ggml/src/CMakeLists.txt +++ b/ggml/src/CMakeLists.txt @@ -234,6 +234,7 @@ function(ggml_add_backend_library backend) # write the shared library to the output directory set_target_properties(${backend} PROPERTIES LIBRARY_OUTPUT_DIRECTORY ${CMAKE_RUNTIME_OUTPUT_DIRECTORY}) target_compile_definitions(${backend} PRIVATE GGML_BACKEND_DL) + add_dependencies(ggml ${backend}) else() add_library(${backend} ${ARGN}) target_link_libraries(ggml PUBLIC ${backend}) diff --git a/ggml/src/ggml-backend-reg.cpp b/ggml/src/ggml-backend-reg.cpp index 31ee31e39..7ddd178b5 100644 --- a/ggml/src/ggml-backend-reg.cpp +++ b/ggml/src/ggml-backend-reg.cpp @@ -66,6 +66,26 @@ #include "ggml-kompute.h" #endif +// disable C++17 deprecation warning for std::codecvt_utf8 +#if defined(__clang__) +# pragma clang diagnostic push +# pragma clang diagnostic ignored "-Wdeprecated-declarations" +#endif + +static std::wstring utf8_to_utf16(const std::string & str) { + std::wstring_convert> converter; + return converter.from_bytes(str); +} + +static std::string utf16_to_utf8(const std::wstring & str) { + std::wstring_convert> converter; + return converter.to_bytes(str); +} + +#if defined(__clang__) +# pragma clang diagnostic pop +#endif + #ifdef _WIN32 using dl_handle = std::remove_pointer_t; @@ -88,11 +108,6 @@ static dl_handle * dl_load_library(const std::wstring & path) { return handle; } -static dl_handle * dl_load_library(const std::string & path) { - std::wstring_convert> converter; - return dl_load_library(converter.from_bytes(path)); -} - static void * dl_get_sym(dl_handle * handle, const char * name) { DWORD old_mode = SetErrorMode(SEM_FAILCRITICALERRORS); SetErrorMode(old_mode | SEM_FAILCRITICALERRORS); @@ -114,8 +129,8 @@ struct dl_handle_deleter { } }; -static void * dl_load_library(const std::string & path) { - dl_handle * handle = dlopen(path.c_str(), RTLD_NOW | RTLD_LOCAL); +static void * dl_load_library(const std::wstring & path) { + dl_handle * handle = dlopen(utf16_to_utf8(path).c_str(), RTLD_NOW | RTLD_LOCAL); return handle; } @@ -202,11 +217,11 @@ struct ggml_backend_registry { devices.push_back(device); } - ggml_backend_reg_t load_backend(const char * path, bool silent) { + ggml_backend_reg_t load_backend(const std::wstring & path, bool silent) { dl_handle_ptr handle { dl_load_library(path) }; if (!handle) { if (!silent) { - GGML_LOG_ERROR("%s: failed to load %s\n", __func__, path); + GGML_LOG_ERROR("%s: failed to load %s\n", __func__, utf16_to_utf8(path).c_str()); } return nullptr; } @@ -214,7 +229,7 @@ struct ggml_backend_registry { auto score_fn = (ggml_backend_score_t) dl_get_sym(handle.get(), "ggml_backend_score"); if (score_fn && score_fn() == 0) { if (!silent) { - GGML_LOG_INFO("%s: backend %s is not supported on this system\n", __func__, path); + GGML_LOG_INFO("%s: backend %s is not supported on this system\n", __func__, utf16_to_utf8(path).c_str()); } return nullptr; } @@ -222,7 +237,7 @@ struct ggml_backend_registry { auto backend_init_fn = (ggml_backend_init_t) dl_get_sym(handle.get(), "ggml_backend_init"); if (!backend_init_fn) { if (!silent) { - GGML_LOG_ERROR("%s: failed to find ggml_backend_init in %s\n", __func__, path); + GGML_LOG_ERROR("%s: failed to find ggml_backend_init in %s\n", __func__, utf16_to_utf8(path).c_str()); } return nullptr; } @@ -231,16 +246,16 @@ struct ggml_backend_registry { if (!reg || reg->api_version != GGML_BACKEND_API_VERSION) { if (!silent) { if (!reg) { - GGML_LOG_ERROR("%s: failed to initialize backend from %s: ggml_backend_init returned NULL\n", __func__, path); + GGML_LOG_ERROR("%s: failed to initialize backend from %s: ggml_backend_init returned NULL\n", __func__, utf16_to_utf8(path).c_str()); } else { GGML_LOG_ERROR("%s: failed to initialize backend from %s: incompatible API version (backend: %d, current: %d)\n", - __func__, path, reg->api_version, GGML_BACKEND_API_VERSION); + __func__, utf16_to_utf8(path).c_str(), reg->api_version, GGML_BACKEND_API_VERSION); } } return nullptr; } - GGML_LOG_INFO("%s: loaded %s backend from %s\n", __func__, ggml_backend_reg_name(reg), path); + GGML_LOG_INFO("%s: loaded %s backend from %s\n", __func__, ggml_backend_reg_name(reg), utf16_to_utf8(path).c_str()); register_backend(reg, std::move(handle)); @@ -376,14 +391,14 @@ ggml_backend_t ggml_backend_init_best(void) { // Dynamic loading ggml_backend_reg_t ggml_backend_load(const char * path) { - return get_reg().load_backend(path, false); + return get_reg().load_backend(utf8_to_utf16(path), false); } void ggml_backend_unload(ggml_backend_reg_t reg) { get_reg().unload_backend(reg, true); } -static std::string get_executable_path() { +static std::wstring get_executable_path() { #if defined(__APPLE__) // get executable path std::vector path; @@ -401,7 +416,7 @@ static std::string get_executable_path() { if (last_slash != std::string::npos) { base_path = base_path.substr(0, last_slash); } - return base_path + "/"; + return utf8_to_utf16(base_path + "/"); #elif defined(__linux__) || defined(__FreeBSD__) std::string base_path = "."; std::vector path(1024); @@ -427,57 +442,63 @@ static std::string get_executable_path() { path.resize(path.size() * 2); } - return base_path + "/"; + return utf8_to_utf16(base_path + "/"); #elif defined(_WIN32) - std::vector path(MAX_PATH); - DWORD len = GetModuleFileNameA(NULL, path.data(), path.size()); + std::vector path(MAX_PATH); + DWORD len = GetModuleFileNameW(NULL, path.data(), path.size()); if (len == 0) { - return ""; + return {}; } - std::string base_path(path.data(), len); + std::wstring base_path(path.data(), len); // remove executable name auto last_slash = base_path.find_last_of('\\'); if (last_slash != std::string::npos) { base_path = base_path.substr(0, last_slash); } - return base_path + "\\"; + return base_path + L"\\"; +#else + return {}; #endif } -static std::string backend_filename_prefix() { +static std::wstring backend_filename_prefix() { #ifdef _WIN32 - return "ggml-"; + return L"ggml-"; #else - return "libggml-"; + return L"libggml-"; #endif } -static std::string backend_filename_suffix() { +static std::wstring backend_filename_suffix() { #ifdef _WIN32 - return ".dll"; + return L".dll"; #else - return ".so"; + return L".so"; +#endif +} + +static std::wstring path_separator() { +#ifdef _WIN32 + return L"\\"; +#else + return L"/"; #endif } static ggml_backend_reg_t ggml_backend_load_best(const char * name, bool silent, const char * user_search_path) { // enumerate all the files that match [lib]ggml-name-*.[so|dll] in the search paths // TODO: search system paths - std::string file_prefix = backend_filename_prefix() + name + "-"; - std::vector search_paths; + std::wstring file_prefix = backend_filename_prefix() + utf8_to_utf16(name) + L"-"; + std::vector search_paths; if (user_search_path == nullptr) { - search_paths.push_back("./"); + search_paths.push_back(L"." + path_separator()); search_paths.push_back(get_executable_path()); } else { -#if defined(_WIN32) - search_paths.push_back(std::string(user_search_path) + "\\"); -#else - search_paths.push_back(std::string(user_search_path) + "/"); -#endif + search_paths.push_back(utf8_to_utf16(user_search_path) + path_separator()); } int best_score = 0; - std::string best_path; + std::wstring best_path; namespace fs = std::filesystem; for (const auto & search_path : search_paths) { @@ -487,27 +508,27 @@ static ggml_backend_reg_t ggml_backend_load_best(const char * name, bool silent, fs::directory_iterator dir_it(search_path, fs::directory_options::skip_permission_denied); for (const auto & entry : dir_it) { if (entry.is_regular_file()) { - std::string filename = entry.path().filename().string(); - std::string ext = entry.path().extension().string(); + std::wstring filename = entry.path().filename().wstring(); + std::wstring ext = entry.path().extension().wstring(); if (filename.find(file_prefix) == 0 && ext == backend_filename_suffix()) { - dl_handle_ptr handle { dl_load_library(entry.path().c_str()) }; + dl_handle_ptr handle { dl_load_library(entry.path().wstring()) }; if (!handle && !silent) { - GGML_LOG_ERROR("%s: failed to load %s\n", __func__, entry.path().string().c_str()); + GGML_LOG_ERROR("%s: failed to load %s\n", __func__, utf16_to_utf8(entry.path().wstring()).c_str()); } if (handle) { auto score_fn = (ggml_backend_score_t) dl_get_sym(handle.get(), "ggml_backend_score"); if (score_fn) { int s = score_fn(); #ifndef NDEBUG - GGML_LOG_DEBUG("%s: %s score: %d\n", __func__, entry.path().string().c_str(), s); + GGML_LOG_DEBUG("%s: %s score: %d\n", __func__, utf16_to_utf8(entry.path().wstring()).c_str(), s); #endif if (s > best_score) { best_score = s; - best_path = entry.path().string(); + best_path = entry.path().wstring(); } } else { if (!silent) { - GGML_LOG_INFO("%s: failed to find ggml_backend_score in %s\n", __func__, entry.path().string().c_str()); + GGML_LOG_INFO("%s: failed to find ggml_backend_score in %s\n", __func__, utf16_to_utf8(entry.path().wstring()).c_str()); } } } @@ -519,15 +540,15 @@ static ggml_backend_reg_t ggml_backend_load_best(const char * name, bool silent, if (best_score == 0) { // try to load the base backend for (const auto & search_path : search_paths) { - std::string path = search_path + backend_filename_prefix() + name + backend_filename_suffix(); + std::wstring path = search_path + backend_filename_prefix() + utf8_to_utf16(name) + backend_filename_suffix(); if (fs::exists(path)) { - return get_reg().load_backend(path.c_str(), silent); + return get_reg().load_backend(path, silent); } } return nullptr; } - return get_reg().load_backend(best_path.c_str(), silent); + return get_reg().load_backend(best_path, silent); } void ggml_backend_load_all() { diff --git a/ggml/src/ggml-cpu/CMakeLists.txt b/ggml/src/ggml-cpu/CMakeLists.txt index e357860a5..f0aecac1b 100644 --- a/ggml/src/ggml-cpu/CMakeLists.txt +++ b/ggml/src/ggml-cpu/CMakeLists.txt @@ -323,6 +323,11 @@ function(ggml_add_cpu_backend_variant_impl tag_name) target_compile_definitions(${GGML_CPU_NAME} PRIVATE ${ARCH_DEFINITIONS}) if (GGML_BACKEND_DL) + if (GGML_NATIVE) + # the feature check relies on ARCH_DEFINITIONS, but it is not set with GGML_NATIVE + message(FATAL_ERROR "GGML_NATIVE is not compatible with GGML_BACKEND_DL, consider using GGML_CPU_ALL_VARIANTS") + endif() + # The feature detection code is compiled as a separate target so that # it can be built without the architecture flags # Since multiple variants of the CPU backend may be included in the same From 30caac3a68a54de8396b21e20ba972554c587230 Mon Sep 17 00:00:00 2001 From: Georgi Gerganov Date: Tue, 24 Dec 2024 09:44:20 +0200 Subject: [PATCH 11/16] llama : the WPM vocabs use the CLS token as BOS (#10930) * llama : the WPM vocabs use the CLS token as BOS ggml-ci * llama : add comment --- src/llama-vocab.cpp | 2 +- src/llama-vocab.h | 2 +- 2 files changed, 2 insertions(+), 2 deletions(-) diff --git a/src/llama-vocab.cpp b/src/llama-vocab.cpp index 7f2725f94..0a477d6dd 100644 --- a/src/llama-vocab.cpp +++ b/src/llama-vocab.cpp @@ -1657,7 +1657,7 @@ bool llama_token_is_control_impl(const struct llama_vocab & vocab, llama_token t } llama_token llama_token_bos_impl(const struct llama_vocab & vocab) { - return vocab.special_bos_id; + return vocab.type != LLAMA_VOCAB_TYPE_WPM ? vocab.special_bos_id : vocab.special_cls_id; } llama_token llama_token_eos_impl(const struct llama_vocab & vocab) { diff --git a/src/llama-vocab.h b/src/llama-vocab.h index 4bb16d2e4..a9b0da5ef 100644 --- a/src/llama-vocab.h +++ b/src/llama-vocab.h @@ -45,7 +45,7 @@ struct llama_vocab { id special_unk_id = 0; id special_sep_id = LLAMA_TOKEN_NULL; id special_pad_id = LLAMA_TOKEN_NULL; - id special_cls_id = LLAMA_TOKEN_NULL; + id special_cls_id = LLAMA_TOKEN_NULL; // TODO: revisit if this is really needed https://github.com/ggerganov/llama.cpp/pull/10930 id special_mask_id = LLAMA_TOKEN_NULL; id linefeed_id = 13; From 09fe2e76137dde850b13313f720e7ffa17efdefa Mon Sep 17 00:00:00 2001 From: NeverLucky <92274250+nvrxq@users.noreply.github.com> Date: Tue, 24 Dec 2024 19:39:49 +0300 Subject: [PATCH 12/16] server: allow filtering llama server response fields (#10940) * llama_server_response_fields * llama_server_response_fields_fix_issues * params fixes * fix * clarify docs * change to "response_fields" --------- Co-authored-by: Xuan Son Nguyen --- examples/server/README.md | 2 ++ examples/server/server.cpp | 6 +++- examples/server/tests/unit/test_completion.py | 34 +++++++++++++++++++ examples/server/utils.hpp | 22 ++++++++++++ 4 files changed, 63 insertions(+), 1 deletion(-) diff --git a/examples/server/README.md b/examples/server/README.md index 5e3d6a6e6..c7d91be99 100644 --- a/examples/server/README.md +++ b/examples/server/README.md @@ -450,6 +450,8 @@ These words will not be included in the completion, so make sure to add them to `post_sampling_probs`: Returns the probabilities of top `n_probs` tokens after applying sampling chain. +`response_fields`: A list of response fields, for example: `"response_fields": ["content", "generation_settings/n_predict"]`. If the specified field is missing, it will simply be omitted from the response without triggering an error. + **Response format** - Note: In streaming mode (`stream`), only `content`, `tokens` and `stop` will be returned until end of completion. Responses are sent using the [Server-sent events](https://html.spec.whatwg.org/multipage/server-sent-events.html) standard. Note: the browser's `EventSource` interface cannot be used due to its lack of `POST` request support. diff --git a/examples/server/server.cpp b/examples/server/server.cpp index 476a9225f..3fbfb13c4 100644 --- a/examples/server/server.cpp +++ b/examples/server/server.cpp @@ -92,6 +92,7 @@ struct slot_params { int64_t t_max_predict_ms = -1; // if positive, limit the generation phase to this time limit std::vector antiprompt; + std::vector response_fields; bool timings_per_token = false; bool post_sampling_probs = false; bool ignore_eos = false; @@ -209,6 +210,7 @@ struct server_task { params.n_discard = json_value(data, "n_discard", defaults.n_discard); //params.t_max_prompt_ms = json_value(data, "t_max_prompt_ms", defaults.t_max_prompt_ms); // TODO: implement params.t_max_predict_ms = json_value(data, "t_max_predict_ms", defaults.t_max_predict_ms); + params.response_fields = json_value(data, "response_fields", std::vector()); params.sampling.top_k = json_value(data, "top_k", defaults.sampling.top_k); params.sampling.top_p = json_value(data, "top_p", defaults.sampling.top_p); @@ -522,6 +524,7 @@ struct server_task_result_cmpl_final : server_task_result { bool post_sampling_probs; std::vector probs_output; + std::vector response_fields; slot_params generation_params; @@ -568,7 +571,7 @@ struct server_task_result_cmpl_final : server_task_result { if (!stream && !probs_output.empty()) { res["completion_probabilities"] = completion_token_output::probs_vector_to_json(probs_output, post_sampling_probs); } - return res; + return response_fields.empty() ? res : json_get_nested_values(response_fields, res); } json to_json_oaicompat_chat() { @@ -2066,6 +2069,7 @@ struct server_context { res->tokens = slot.generated_tokens; res->timings = slot.get_timings(); res->prompt = common_detokenize(ctx, slot.prompt_tokens, true); + res->response_fields = slot.params.response_fields; res->truncated = slot.truncated; res->n_decoded = slot.n_decoded; diff --git a/examples/server/tests/unit/test_completion.py b/examples/server/tests/unit/test_completion.py index b88d45f18..00d5ce391 100644 --- a/examples/server/tests/unit/test_completion.py +++ b/examples/server/tests/unit/test_completion.py @@ -257,6 +257,40 @@ def test_completion_parallel_slots(n_slots: int, n_requests: int): # assert match_regex(re_content, res.body["content"]) +@pytest.mark.parametrize( + "prompt,n_predict,response_fields", + [ + ("I believe the meaning of life is", 8, []), + ("I believe the meaning of life is", 32, ["content", "generation_settings/n_predict", "prompt"]), + ], +) +def test_completion_response_fields( + prompt: str, n_predict: int, response_fields: list[str] +): + global server + server.start() + res = server.make_request( + "POST", + "/completion", + data={ + "n_predict": n_predict, + "prompt": prompt, + "response_fields": response_fields, + }, + ) + assert res.status_code == 200 + assert "content" in res.body + assert len(res.body["content"]) + if len(response_fields): + assert res.body["generation_settings/n_predict"] == n_predict + assert res.body["prompt"] == " " + prompt + assert isinstance(res.body["content"], str) + assert len(res.body) == len(response_fields) + else: + assert len(res.body) + assert "generation_settings" in res.body + + def test_n_probs(): global server server.start() diff --git a/examples/server/utils.hpp b/examples/server/utils.hpp index 1987acac8..043d8b528 100644 --- a/examples/server/utils.hpp +++ b/examples/server/utils.hpp @@ -90,6 +90,28 @@ static bool json_is_array_of_mixed_numbers_strings(const json & data) { return false; } +// get value by path(key1 / key2) +static json json_get_nested_values(const std::vector & paths, const json & js) { + json result = json::object(); + + for (const std::string & path : paths) { + json current = js; + const auto keys = string_split(path, /*separator*/ '/'); + bool valid_path = true; + for (const std::string & k : keys) { + if (valid_path && current.is_object() && current.contains(k)) { + current = current[k]; + } else { + valid_path = false; + } + } + if (valid_path) { + result[path] = current; + } + } + return result; +} + /** * this handles 2 cases: * - only string, example: "string" From 2cd43f4900ba0e34124fdcbf02a7f9df25a10a3d Mon Sep 17 00:00:00 2001 From: Djip007 <3705339+Djip007@users.noreply.github.com> Date: Tue, 24 Dec 2024 18:54:49 +0100 Subject: [PATCH 13/16] ggml : more perfo with llamafile tinyblas on x86_64 (#10714) * more perfo with llamafile tinyblas on x86_64. - add bf16 suport - change dispache strategie (thanks: https://github.com/ikawrakow/ik_llama.cpp/pull/71 ) - reduce memory bandwidth simple tinyblas dispache and more cache freindly * tinyblas dynamic dispaching * sgemm: add M blocs. * - git 2.47 use short id of len 9. - show-progress is not part of GNU Wget2 * remove not stable test --- examples/server/tests/unit/test_completion.py | 7 +- ggml/src/ggml-cpu/ggml-cpu.c | 8 +- ggml/src/ggml-cpu/llamafile/sgemm.cpp | 522 +++++++++--------- ggml/src/ggml-cpu/llamafile/sgemm.h | 4 +- scripts/compare-llama-bench.py | 22 +- scripts/hf.sh | 2 +- 6 files changed, 287 insertions(+), 278 deletions(-) diff --git a/examples/server/tests/unit/test_completion.py b/examples/server/tests/unit/test_completion.py index 00d5ce391..a6b215944 100644 --- a/examples/server/tests/unit/test_completion.py +++ b/examples/server/tests/unit/test_completion.py @@ -95,7 +95,7 @@ def test_consistent_result_same_seed(n_slots: int): res = server.make_request("POST", "/completion", data={ "prompt": "I believe the meaning of life is", "seed": 42, - "temperature": 1.0, + "temperature": 0.0, "cache_prompt": False, # TODO: remove this once test_cache_vs_nocache_prompt is fixed }) if last_res is not None: @@ -120,9 +120,10 @@ def test_different_result_different_seed(n_slots: int): assert res.body["content"] != last_res.body["content"] last_res = res - +# TODO figure why it don't work with temperature = 1 +# @pytest.mark.parametrize("temperature", [0.0, 1.0]) @pytest.mark.parametrize("n_batch", [16, 32]) -@pytest.mark.parametrize("temperature", [0.0, 1.0]) +@pytest.mark.parametrize("temperature", [0.0]) def test_consistent_result_different_batch_size(n_batch: int, temperature: float): global server server.n_batch = n_batch diff --git a/ggml/src/ggml-cpu/ggml-cpu.c b/ggml/src/ggml-cpu/ggml-cpu.c index 18d194479..b7fefb9dd 100644 --- a/ggml/src/ggml-cpu/ggml-cpu.c +++ b/ggml/src/ggml-cpu/ggml-cpu.c @@ -7419,14 +7419,14 @@ static void ggml_compute_forward_mul_mat( if (src1_cont) { for (int64_t i13 = 0; i13 < ne13; i13++) for (int64_t i12 = 0; i12 < ne12; i12++) - if (!llamafile_sgemm(ne01, ne11, ne00/ggml_blck_size(src0->type), + if (!llamafile_sgemm(params, + ne01, ne11, ne00/ggml_blck_size(src0->type), (const char *)src0->data + i12/r2*nb02 + i13/r3*nb03, nb01/ggml_type_size(src0->type), (const char *)src1->data + i12*nb12 + i13*nb13, nb11/ggml_type_size(src1->type), (char *)dst->data + i12*nb2 + i13*nb3, nb1/ggml_type_size(dst->type), - ith, nth, src0->type, src1->type, dst->type)) @@ -7471,14 +7471,14 @@ UseGgmlGemm1:; for (int64_t i13 = 0; i13 < ne13; i13++) for (int64_t i12 = 0; i12 < ne12; i12++) - if (!llamafile_sgemm(ne01, ne11, ne00/ggml_blck_size(src0->type), + if (!llamafile_sgemm(params, + ne01, ne11, ne00/ggml_blck_size(src0->type), (const char *)src0->data + i12/r2*nb02 + i13/r3*nb03, nb01/ggml_type_size(src0->type), (const char *)wdata + (i12*ne11 + i13*ne12*ne11)*row_size, row_size/ggml_type_size(vec_dot_type), (char *)dst->data + i12*nb2 + i13*nb3, nb1/ggml_type_size(dst->type), - ith, nth, src0->type, vec_dot_type, dst->type)) diff --git a/ggml/src/ggml-cpu/llamafile/sgemm.cpp b/ggml/src/ggml-cpu/llamafile/sgemm.cpp index f80a72781..00f7f1170 100644 --- a/ggml/src/ggml-cpu/llamafile/sgemm.cpp +++ b/ggml/src/ggml-cpu/llamafile/sgemm.cpp @@ -53,6 +53,8 @@ #include "ggml-cpu-impl.h" #include "ggml-quants.h" +#include + #ifdef _MSC_VER #define NOINLINE __declspec(noinline) #else @@ -134,6 +136,16 @@ inline __m512 madd(__m512 a, __m512 b, __m512 c) { return _mm512_fmadd_ps(a, b, c); } #endif +#if defined(__AVX512BF16__) +template <> +inline __m512 madd(__m512bh a, __m512bh b, __m512 c) { + return _mm512_dpbf16_ps(c, a, b); +} +template <> +inline __m256 madd(__m256bh a, __m256bh b, __m256 c) { + return _mm256_dpbf16_ps(c, a, b); +} +#endif #endif #if defined(__ARM_FEATURE_FMA) @@ -226,6 +238,13 @@ template <> inline __m256 load(const float *p) { } #endif // __AVX__ +#if defined(__AVX2__) || defined(__AVX512F__) +template <> inline __m256 load(const ggml_bf16_t *p) { + return _mm256_castsi256_ps( + _mm256_slli_epi32(_mm256_cvtepu16_epi32(_mm_loadu_si128((const __m128i *)p)), 16)); +} +#endif // __AVX2__ + #if defined(__F16C__) template <> inline __m256 load(const ggml_fp16_t *p) { return _mm256_cvtph_ps(_mm_loadu_si128((const __m128i *)p)); @@ -239,8 +258,27 @@ template <> inline __m512 load(const float *p) { template <> inline __m512 load(const ggml_fp16_t *p) { return _mm512_cvtph_ps(_mm256_loadu_si256((const __m256i *)p)); } +template <> inline __m512 load(const ggml_bf16_t *p) { + return _mm512_castsi512_ps( + _mm512_slli_epi32(_mm512_cvtepu16_epi32(_mm256_loadu_si256((const __m256i *)p)), 16)); +} #endif // __AVX512F__ +#if defined(__AVX512BF16__) +template <> inline __m512bh load(const ggml_bf16_t *p) { + return (__m512bh)_mm512_loadu_ps((const float *)p); +} +template <> inline __m256bh load(const ggml_bf16_t *p) { + return (__m256bh)_mm256_loadu_ps((const float *)p); +} +template <> inline __m512bh load(const float *p) { + return _mm512_cvtne2ps_pbh(_mm512_loadu_ps(p + 16), _mm512_loadu_ps(p)); +} +template <> inline __m256bh load(const float *p) { + return _mm512_cvtneps_pbh(_mm512_loadu_ps(p)); +} +#endif + //////////////////////////////////////////////////////////////////////////////////////////////////// // CONSTANTS @@ -252,199 +290,170 @@ static const __m128i iq4nlt = _mm_loadu_si128((const __m128i *) kvalues_iq4nl); //////////////////////////////////////////////////////////////////////////////////////////////////// // FLOATING POINT MATRIX MULTIPLICATION +template +static inline int64_t BLOCK_SIZE(size_t m) { + const int64_t NB_BLOC_M = (m + M - 1) / M; + return (m % NB_BLOC_M == 0) ? m / NB_BLOC_M : (m / NB_BLOC_M) + 1; +} + +static constexpr inline int64_t BLOC_POS(int64_t ib, int64_t ibN, int64_t bloc_size) { + return ib < ibN ? ib * bloc_size : ibN * bloc_size + (ib - ibN) * (bloc_size - 1); +} + template class tinyBLAS { public: - tinyBLAS(int64_t k, + tinyBLAS(const ggml_compute_params * params, int64_t k, const TA *A, int64_t lda, const TB *B, int64_t ldb, - TC *C, int64_t ldc, - int ith, int nth) - : A(A), B(B), C(C), k(k), lda(lda), ldb(ldb), ldc(ldc), ith(ith), nth(nth) { + TC *C, int64_t ldc) + : params(params), A(A), B(B), C(C), k(k), lda(lda), ldb(ldb), ldc(ldc) { } - void matmul(int64_t m, int64_t n) { - mnpack(0, m, 0, n); + bool matmul(int64_t m, int64_t n) { + if (k % KN != 0) + return false; + // compute RM for only need tile with size RM&RM-1 +#if VECTOR_REGISTERS == 32 + if (m % 16 == 0 && (m/16 >= params->nth)) { + const int64_t SIZE_N = BLOCK_SIZE<6>(n); + mnpack<4, 6, 4>(m, n, SIZE_N, 12); + return true; + } + if (m % 8 == 0 ) { + const int64_t SIZE_N = BLOCK_SIZE<6>(n); + mnpack<4, 6, 2>(m, n, SIZE_N, 12); + return true; + } + if (m % 4 == 0) { + const int64_t SIZE_N = BLOCK_SIZE<6>(n); + mnpack<4, 6, 1>(m, n, SIZE_N, 12); + return true; + } +#else // VECTOR_REGISTERS == 16 + if (m % 16 == 0 && (m/16 >= params->nth)) { + const int64_t SIZE_N = BLOCK_SIZE<3>(n); + mnpack<4, 3, 4>(m, n, SIZE_N, 24); + return true; + } + if (m % 8 == 0 ) { + const int64_t SIZE_N = BLOCK_SIZE<3>(n); + mnpack<4, 3, 2>(m, n, SIZE_N, 24); + return true; + } + if (m % 4 == 0) { + const int64_t SIZE_N = BLOCK_SIZE<3>(n); + mnpack<4, 3, 1>(m, n, SIZE_N, 24); + return true; + } +#endif + return false; } private: - NOINLINE void mnpack(int64_t m0, int64_t m, int64_t n0, int64_t n) { - int64_t mc, nc, mp, np; - switch ((MIN(m - m0, 5) << 4) | MIN(n - n0, 5)) { -#if VECTOR_REGISTERS == 32 - case 0x55: - mc = 5; - nc = 5; - gemm<5, 5>(m0, m, n0, n); - break; - case 0x45: - mc = 4; - nc = 5; - gemm<4, 5>(m0, m, n0, n); - break; - case 0x54: - mc = 5; - nc = 4; - gemm<5, 4>(m0, m, n0, n); - break; - case 0x44: - mc = 4; - nc = 4; - gemm<4, 4>(m0, m, n0, n); - break; - case 0x53: - mc = 5; - nc = 3; - gemm<5, 3>(m0, m, n0, n); - break; - case 0x35: - mc = 3; - nc = 5; - gemm<3, 5>(m0, m, n0, n); - break; - case 0x43: - mc = 4; - nc = 3; - gemm<4, 3>(m0, m, n0, n); - break; -#else - case 0x55: - case 0x54: - case 0x53: - case 0x45: - case 0x44: - case 0x43: - mc = 4; - nc = 3; - gemm<4, 3>(m0, m, n0, n); - break; - case 0x35: -#endif - case 0x34: - mc = 3; - nc = 4; - gemm<3, 4>(m0, m, n0, n); - break; - case 0x52: - mc = 5; - nc = 2; - gemm<5, 2>(m0, m, n0, n); - break; - case 0x33: - mc = 3; - nc = 3; - gemm<3, 3>(m0, m, n0, n); - break; - case 0x25: - mc = 2; - nc = 5; - gemm<2, 5>(m0, m, n0, n); - break; - case 0x42: - mc = 4; - nc = 2; - gemm<4, 2>(m0, m, n0, n); - break; - case 0x24: - mc = 2; - nc = 4; - gemm<2, 4>(m0, m, n0, n); - break; - case 0x32: - mc = 3; - nc = 2; - gemm<3, 2>(m0, m, n0, n); - break; - case 0x23: - mc = 2; - nc = 3; - gemm<2, 3>(m0, m, n0, n); - break; - case 0x51: - mc = 5; - nc = 1; - gemm<5, 1>(m0, m, n0, n); - break; - case 0x41: - mc = 4; - nc = 1; - gemm<4, 1>(m0, m, n0, n); - break; - case 0x22: - mc = 2; - nc = 2; - gemm<2, 2>(m0, m, n0, n); - break; - case 0x15: - mc = 1; - nc = 5; - gemm<1, 5>(m0, m, n0, n); - break; - case 0x14: - mc = 1; - nc = 4; - gemm<1, 4>(m0, m, n0, n); - break; - case 0x31: - mc = 3; - nc = 1; - gemm<3, 1>(m0, m, n0, n); - break; - case 0x13: - mc = 1; - nc = 3; - gemm<1, 3>(m0, m, n0, n); - break; - case 0x21: - mc = 2; - nc = 1; - gemm<2, 1>(m0, m, n0, n); - break; - case 0x12: - mc = 1; - nc = 2; - gemm<1, 2>(m0, m, n0, n); - break; - case 0x11: - mc = 1; - nc = 1; - gemm<1, 1>(m0, m, n0, n); - break; - default: - return; + template + inline void mnpack(int64_t m, int64_t n, int64_t SIZE_N, int64_t BN) { + if (SIZE_N == RN) { + return gemm(m, n, BN); + } + if constexpr (RN > 1) { + return mnpack(m, n, SIZE_N, BN); + } else { + GGML_LOG_ERROR("mnpack<%d, %d> bloc size not supported\n", RM, (int)SIZE_N); + GGML_ASSERT(false); // we have miss something. } - mp = m0 + (m - m0) / mc * mc; - np = n0 + (n - n0) / nc * nc; - mnpack(mp, m, n0, np); - mnpack(m0, m, np, n); } template - NOINLINE void gemm(int64_t m0, int64_t m, int64_t n0, int64_t n) { - int64_t ytiles = (m - m0) / RM; - int64_t xtiles = (n - n0) / RN; - int64_t tiles = xtiles * ytiles; - int64_t duty = (tiles + nth - 1) / nth; - int64_t start = duty * ith; - int64_t end = start + duty; - if (end > tiles) - end = tiles; - for (int64_t job = start; job < end; ++job) { - int64_t ii = m0 + job / xtiles * RM; - int64_t jj = n0 + job % xtiles * RN; - D Cv[RN][RM] = {}; - for (int64_t l = 0; l < k; l += KN) - for (int64_t j = 0; j < RN; ++j) - for (int64_t i = 0; i < RM; ++i) - Cv[j][i] = madd(load(A + lda * (ii + i) + l), - load(B + ldb * (jj + j) + l), - Cv[j][i]); - for (int64_t j = 0; j < RN; ++j) - for (int64_t i = 0; i < RM; ++i) - C[ldc * (jj + j) + (ii + i)] = hsum(Cv[j][i]); + inline void gemm_bloc(int64_t ii, int64_t jj) { + D Cv[RN][RM] = {}; + for (int64_t l = 0; l < k; l += KN) { + // help compiler for op order. + if constexpr (RM <= RN) { + V Av[RM]; + for (int64_t i = 0; i < RM; ++i) { + Av[i] = load(A + lda * (ii + i) + l); + } + for (int64_t j = 0; j < RN; ++j) { + V Bv = load(B + ldb * (jj + j) + l); + for (int64_t i = 0; i < RM; ++i) { + Cv[j][i] = madd(Av[i], Bv, Cv[j][i]); + } + } + } else { + V Bv[RN]; + for (int64_t j = 0; j < RN; ++j) { + Bv[j] = load(B + ldb * (jj + j) + l); + } + for (int64_t i = 0; i < RM; ++i) { + V Av = load(A + lda * (ii + i) + l); + for (int64_t j = 0; j < RN; ++j) { + Cv[j][i] = madd(Av, Bv[j], Cv[j][i]); + } + } + } } + for (int64_t j = 0; j < RN; ++j) + for (int64_t i = 0; i < RM; ++i) + C[ldc * (jj + j) + (ii + i)] = hsum(Cv[j][i]); } + template + NOINLINE void gemm(int64_t m, int64_t n, int64_t BN) { + static std::atomic current_chunk; + + GGML_ASSERT(m % (RM * BM) == 0); + const int64_t ytiles = m / (RM * BM); + const int64_t xtiles = (n + RN -1) / RN; + const int64_t jj_RN = (xtiles - (xtiles * RN - n)); + + // "round" bloc_size to "nearest" BN + const int64_t NB_BN = xtiles < BN ? 1 : (xtiles + BN / 2) / BN; + const int64_t SIZE_BN = xtiles % NB_BN == 0 ? xtiles / NB_BN : xtiles / NB_BN + 1; + const int64_t jj_BN = (NB_BN - (NB_BN * SIZE_BN - xtiles)); + const int64_t nb_job = ytiles * NB_BN; + + if (params->ith == 0) { + GGML_ASSERT( jj_BN * SIZE_BN + (NB_BN - jj_BN) * (SIZE_BN - 1) == xtiles); + // Every thread starts at ith, so the first unprocessed chunk is nth. This save a bit of coordination right at the start. + std::atomic_store_explicit(¤t_chunk, (int64_t)params->nth, std::memory_order_relaxed); + } + + ggml_barrier(params->threadpool); + + int64_t job = params->ith; + while (job < nb_job) { + const int64_t ii = (job % ytiles) * RM * BM; + const int64_t jb = job / ytiles; + const int64_t jr0 = BLOC_POS(jb , jj_BN, SIZE_BN); + const int64_t jrN = BLOC_POS(jb+1, jj_BN, SIZE_BN); + + const int64_t jj0 = BLOC_POS(jr0, jj_RN, RN); + const int64_t jj2 = BLOC_POS(jrN, jj_RN, RN); + const int64_t jj1 = jj2 < jj_RN * RN ? jj2 : jj_RN * RN; + + for (int64_t bi = 0; bi < BM * RM; bi += RM) { + int64_t jj = jj0; + for (; jj < jj1; jj += RN) { + gemm_bloc(ii + bi, jj); + } + if constexpr (RN > 1) { + for (; jj < jj2; jj += RN - 1) { + gemm_bloc(ii + bi, jj); + } + } + GGML_ASSERT(jj == jj2); + } + + // next step. + job = std::atomic_fetch_add_explicit(¤t_chunk, (int64_t)1, std::memory_order_relaxed); + } + + ggml_barrier(params->threadpool); + return; + } + + const ggml_compute_params * params; const TA *const A; const TB *const B; TC *const C; @@ -452,8 +461,6 @@ class tinyBLAS { const int64_t lda; const int64_t ldb; const int64_t ldc; - const int ith; - const int nth; }; ////////////////////////////////////////////////////////////////////////////////////////// @@ -1657,8 +1664,9 @@ class tinyBLAS_PPC { * @param Ctype is GGML data type of `C` * @return true if this function was able to service the matmul request */ -bool llamafile_sgemm(int64_t m, int64_t n, int64_t k, const void *A, int64_t lda, const void *B, int64_t ldb, void *C, - int64_t ldc, int ith, int nth, int Atype, int Btype, int Ctype) { +bool llamafile_sgemm(const struct ggml_compute_params * params, int64_t m, int64_t n, int64_t k, + const void *A, int64_t lda, const void *B, int64_t ldb, void *C, + int64_t ldc, int Atype, int Btype, int Ctype) { assert(m >= 0); assert(n >= 0); @@ -1666,8 +1674,8 @@ bool llamafile_sgemm(int64_t m, int64_t n, int64_t k, const void *A, int64_t lda assert(lda >= k); assert(ldb >= k); assert(ldc >= m); - assert(nth > 0); - assert(ith < nth); + assert(params->nth > 0); + assert(params->ith < params->nth); // only enable sgemm for prompt processing if (n < 2) @@ -1682,37 +1690,25 @@ bool llamafile_sgemm(int64_t m, int64_t n, int64_t k, const void *A, int64_t lda if (Btype != GGML_TYPE_F32) return false; #if defined(__AVX512F__) - if (k % 16) - return false; - tinyBLAS<16, __m512, __m512, float, float, float> tb{ + tinyBLAS<16, __m512, __m512, float, float, float> tb{ params, k, (const float *)A, lda, (const float *)B, ldb, - (float *)C, ldc, - ith, nth}; - tb.matmul(m, n); - return true; + (float *)C, ldc}; + return tb.matmul(m, n); #elif defined(__AVX__) || defined(__AVX2__) - if (k % 8) - return false; - tinyBLAS<8, __m256, __m256, float, float, float> tb{ + tinyBLAS<8, __m256, __m256, float, float, float> tb{ params, k, (const float *)A, lda, (const float *)B, ldb, - (float *)C, ldc, - ith, nth}; - tb.matmul(m, n); - return true; + (float *)C, ldc}; + return tb.matmul(m, n); #elif defined(__ARM_NEON) if (n < 4) return false; - if (k % 4) - return false; - tinyBLAS<4, float32x4_t, float32x4_t, float, float, float> tb{ + tinyBLAS<4, float32x4_t, float32x4_t, float, float, float> tb{ params, k, (const float *)A, lda, (const float *)B, ldb, - (float *)C, ldc, - ith, nth}; - tb.matmul(m, n); - return true; + (float *)C, ldc}; + return tb.matmul(m, n); #elif defined(__MMA__) if (k % 8) return false; @@ -1720,7 +1716,7 @@ bool llamafile_sgemm(int64_t m, int64_t n, int64_t k, const void *A, int64_t lda k, (const float *)A, lda, (const float *)B, ldb, (float *)C, ldc, - ith, nth}; + params->ith, params->nth}; tb.matmul(m, n); return true; #else @@ -1728,60 +1724,71 @@ bool llamafile_sgemm(int64_t m, int64_t n, int64_t k, const void *A, int64_t lda #endif } + case GGML_TYPE_BF16: { +#if defined(__AVX512BF16__) + if (Btype == GGML_TYPE_BF16) { + tinyBLAS<32, __m512, __m512bh, ggml_bf16_t, ggml_bf16_t, float> tb{ params, k, + (const ggml_bf16_t *)A, lda, + (const ggml_bf16_t *)B, ldb, + (float *)C, ldc}; + return tb.matmul(m, n); + } +#elif defined(__AVX512F__) + if (Btype == GGML_TYPE_BF16) { + tinyBLAS<16, __m512, __m512, ggml_bf16_t, ggml_bf16_t, float> tb{ params, k, + (const ggml_bf16_t *)A, lda, + (const ggml_bf16_t *)B, ldb, + (float *)C, ldc}; + return tb.matmul(m, n); + } +#elif defined(__AVX2__) + if (Btype == GGML_TYPE_BF16) { + tinyBLAS<8, __m256, __m256, ggml_bf16_t, ggml_bf16_t, float> tb{ params, k, + (const ggml_bf16_t *)A, lda, + (const ggml_bf16_t *)B, ldb, + (float *)C, ldc}; + return tb.matmul(m, n); + } +#endif + return false; + } case GGML_TYPE_F16: { #if defined(__AVX512F__) - if (k % 16) - return false; - if (Btype != GGML_TYPE_F32) - return false; - tinyBLAS<16, __m512, __m512, ggml_fp16_t, float, float> tb{ - k, (const ggml_fp16_t *)A, lda, - (const float *)B, ldb, - (float *)C, ldc, - ith, nth}; - tb.matmul(m, n); - return true; + if (Btype == GGML_TYPE_F16) { + tinyBLAS<16, __m512, __m512, ggml_fp16_t, ggml_fp16_t, float> tb{ params, k, + (const ggml_fp16_t *)A, lda, + (const ggml_fp16_t *)B, ldb, + (float *)C, ldc}; + return tb.matmul(m, n); + } #elif (defined(__AVX__) || defined(__AVX2__)) && defined(__F16C__) - if (k % 8) - return false; - if (Btype != GGML_TYPE_F32) - return false; - tinyBLAS<8, __m256, __m256, ggml_fp16_t, float, float> tb{ - k, (const ggml_fp16_t *)A, lda, - (const float *)B, ldb, - (float *)C, ldc, - ith, nth}; - tb.matmul(m, n); - return true; + if (Btype == GGML_TYPE_F16) { + tinyBLAS<8, __m256, __m256, ggml_fp16_t, ggml_fp16_t, float> tb{ params, k, + (const ggml_fp16_t *)A, lda, + (const ggml_fp16_t *)B, ldb, + (float *)C, ldc}; + return tb.matmul(m, n); + } #elif defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC) && !defined(_MSC_VER) if (n < 8) return false; - if (k % 8) - return false; - if (Btype != GGML_TYPE_F16) - return false; - tinyBLAS<8, float16x8_t, float16x8_t, ggml_fp16_t, ggml_fp16_t, float> tb{ - k, (const ggml_fp16_t *)A, lda, - (const ggml_fp16_t *)B, ldb, - (float *)C, ldc, - ith, nth}; - tb.matmul(m, n); - return true; + if (Btype == GGML_TYPE_F16) { + tinyBLAS<8, float16x8_t, float16x8_t, ggml_fp16_t, ggml_fp16_t, float> tb{ params, + k, (const ggml_fp16_t *)A, lda, + (const ggml_fp16_t *)B, ldb, + (float *)C, ldc}; + return tb.matmul(m, n); + } #elif defined(__ARM_NEON) && !defined(_MSC_VER) - if (k % 4) - return false; - if (Btype != GGML_TYPE_F32) - return false; - tinyBLAS<4, float32x4_t, float32x4_t, ggml_fp16_t, float, float> tb{ - k, (const ggml_fp16_t *)A, lda, - (const float *)B, ldb, - (float *)C, ldc, - ith, nth}; - tb.matmul(m, n); - return true; -#else - return false; + if (Btype == GGML_TYPE_F32) { + tinyBLAS<4, float32x4_t, float32x4_t, ggml_fp16_t, float, float> tb{ params, + k, (const ggml_fp16_t *)A, lda, + (const float *)B, ldb, + (float *)C, ldc}; + return tb.matmul(m, n); + } #endif + return false; } case GGML_TYPE_Q8_0: { @@ -1792,7 +1799,7 @@ bool llamafile_sgemm(int64_t m, int64_t n, int64_t k, const void *A, int64_t lda k, (const block_q8_0 *)A, lda, (const block_q8_0 *)B, ldb, (float *)C, ldc, - ith, nth}; + params->ith, params->nth}; tb.matmul(m, n); return true; #elif defined(__ARM_FEATURE_DOTPROD) @@ -1800,7 +1807,7 @@ bool llamafile_sgemm(int64_t m, int64_t n, int64_t k, const void *A, int64_t lda k, (const block_q8_0 *)A, lda, (const block_q8_0 *)B, ldb, (float *)C, ldc, - ith, nth}; + params->ith, params->nth}; tb.matmul(m, n); return true; #else @@ -1816,7 +1823,7 @@ bool llamafile_sgemm(int64_t m, int64_t n, int64_t k, const void *A, int64_t lda k, (const block_q4_0 *)A, lda, (const block_q8_0 *)B, ldb, (float *)C, ldc, - ith, nth}; + params->ith, params->nth}; tb.matmul(m, n); return true; #elif defined(__ARM_FEATURE_DOTPROD) @@ -1824,7 +1831,7 @@ bool llamafile_sgemm(int64_t m, int64_t n, int64_t k, const void *A, int64_t lda k, (const block_q4_0 *)A, lda, (const block_q8_0 *)B, ldb, (float *)C, ldc, - ith, nth}; + params->ith, params->nth}; tb.matmul(m, n); return true; #else @@ -1840,7 +1847,7 @@ bool llamafile_sgemm(int64_t m, int64_t n, int64_t k, const void *A, int64_t lda k, (const block_q5_0 *)A, lda, (const block_q8_0 *)B, ldb, (float *)C, ldc, - ith, nth}; + params->ith, params->nth}; tb.matmul(m, n); return true; #else @@ -1856,7 +1863,7 @@ bool llamafile_sgemm(int64_t m, int64_t n, int64_t k, const void *A, int64_t lda k, (const block_iq4_nl *)A, lda, (const block_q8_0 *)B, ldb, (float *)C, ldc, - ith, nth}; + params->ith, params->nth}; tb.matmul(m, n); return true; #else @@ -1868,6 +1875,7 @@ bool llamafile_sgemm(int64_t m, int64_t n, int64_t k, const void *A, int64_t lda return false; } + (void)params; (void)m; (void)n; (void)k; @@ -1877,8 +1885,6 @@ bool llamafile_sgemm(int64_t m, int64_t n, int64_t k, const void *A, int64_t lda (void)ldb; (void)C; (void)ldc; - (void)ith; - (void)nth; (void)Atype; (void)Btype; (void)Ctype; diff --git a/ggml/src/ggml-cpu/llamafile/sgemm.h b/ggml/src/ggml-cpu/llamafile/sgemm.h index caf6dd556..3d2909515 100644 --- a/ggml/src/ggml-cpu/llamafile/sgemm.h +++ b/ggml/src/ggml-cpu/llamafile/sgemm.h @@ -5,8 +5,8 @@ extern "C" { #endif -bool llamafile_sgemm(int64_t, int64_t, int64_t, const void *, int64_t, - const void *, int64_t, void *, int64_t, int, int, +bool llamafile_sgemm(const struct ggml_compute_params * params, int64_t, int64_t, int64_t, + const void *, int64_t, const void *, int64_t, void *, int64_t, int, int, int); #ifdef __cplusplus diff --git a/scripts/compare-llama-bench.py b/scripts/compare-llama-bench.py index 5069ae638..239c458d8 100755 --- a/scripts/compare-llama-bench.py +++ b/scripts/compare-llama-bench.py @@ -126,6 +126,8 @@ connection = sqlite3.connect(input_file) cursor = connection.cursor() builds = cursor.execute("SELECT DISTINCT build_commit FROM test;").fetchall() +commit_short_len = len(builds[0][0]) + try: repo = git.Repo(".", search_parent_directories=True) except git.InvalidGitRepositoryError: @@ -138,11 +140,11 @@ def find_parent_in_data(commit: git.Commit): seen_hexsha8 = set() while heap: depth, current_commit = heapq.heappop(heap) - current_hexsha8 = commit.hexsha[:8] + current_hexsha8 = commit.hexsha[:commit_short_len] if (current_hexsha8,) in builds: return current_hexsha8 for parent in commit.parents: - parent_hexsha8 = parent.hexsha[:8] + parent_hexsha8 = parent.hexsha[:commit_short_len] if parent_hexsha8 not in seen_hexsha8: seen_hexsha8.add(parent_hexsha8) heapq.heappush(heap, (depth + 1, parent)) @@ -156,9 +158,9 @@ def get_all_parent_hexsha8s(commit: git.Commit): while unvisited: current_commit = unvisited.pop(0) - visited.append(current_commit.hexsha[:8]) + visited.append(current_commit.hexsha[:commit_short_len]) for parent in current_commit.parents: - if parent.hexsha[:8] not in visited: + if parent.hexsha[:commit_short_len] not in visited: unvisited.append(parent) return visited @@ -169,10 +171,10 @@ def get_commit_name(hexsha8): if repo is None: return hexsha8 for h in repo.heads: - if h.commit.hexsha[:8] == hexsha8: + if h.commit.hexsha[:commit_short_len] == hexsha8: return h.name for t in repo.tags: - if t.commit.hexsha[:8] == hexsha8: + if t.commit.hexsha[:commit_short_len] == hexsha8: return t.name return hexsha8 @@ -183,13 +185,13 @@ def get_commit_hexsha8(name): return None for h in repo.heads: if h.name == name: - return h.commit.hexsha[:8] + return h.commit.hexsha[:commit_short_len] for t in repo.tags: if t.name == name: - return t.commit.hexsha[:8] + return t.commit.hexsha[:commit_short_len] for c in repo.iter_commits("--all"): - if c.hexsha[:8] == name[:8]: - return c.hexsha[:8] + if c.hexsha[:commit_short_len] == name[:commit_short_len]: + return c.hexsha[:commit_short_len] return None diff --git a/scripts/hf.sh b/scripts/hf.sh index 85c2c4d9a..b251925fa 100755 --- a/scripts/hf.sh +++ b/scripts/hf.sh @@ -26,7 +26,7 @@ function has_cmd { } if has_cmd wget; then - cmd="wget -q --show-progress -c -O %s/%s %s" + cmd="wget -q -c -O %s/%s %s" elif has_cmd curl; then cmd="curl -C - -f --output-dir %s -o %s -L %s" else From 9ba399dfa7f115effc63d48e6860a94c9faa31b2 Mon Sep 17 00:00:00 2001 From: Reza Kakhki Date: Tue, 24 Dec 2024 21:33:04 +0100 Subject: [PATCH 14/16] server : add support for "encoding_format": "base64" to the */embeddings endpoints (#10967) * add support for base64 * fix base64 test * improve test --------- Co-authored-by: Xuan Son Nguyen --- examples/server/CMakeLists.txt | 1 + examples/server/server.cpp | 13 ++++++- examples/server/tests/unit/test_embedding.py | 41 ++++++++++++++++++++ examples/server/utils.hpp | 28 ++++++++++--- 4 files changed, 76 insertions(+), 7 deletions(-) diff --git a/examples/server/CMakeLists.txt b/examples/server/CMakeLists.txt index a27597cbc..1b7cc8c13 100644 --- a/examples/server/CMakeLists.txt +++ b/examples/server/CMakeLists.txt @@ -34,6 +34,7 @@ endforeach() add_executable(${TARGET} ${TARGET_SRCS}) install(TARGETS ${TARGET} RUNTIME) +target_include_directories(${TARGET} PRIVATE ${CMAKE_SOURCE_DIR}) target_link_libraries(${TARGET} PRIVATE common ${CMAKE_THREAD_LIBS_INIT}) if (LLAMA_SERVER_SSL) diff --git a/examples/server/server.cpp b/examples/server/server.cpp index 3fbfb13c4..30ff3b149 100644 --- a/examples/server/server.cpp +++ b/examples/server/server.cpp @@ -3790,6 +3790,17 @@ int main(int argc, char ** argv) { return; } + bool use_base64 = false; + if (body.count("encoding_format") != 0) { + const std::string& format = body.at("encoding_format"); + if (format == "base64") { + use_base64 = true; + } else if (format != "float") { + res_error(res, format_error_response("The format to return the embeddings in. Can be either float or base64", ERROR_TYPE_INVALID_REQUEST)); + return; + } + } + std::vector tokenized_prompts = tokenize_input_prompts(ctx_server.ctx, prompt, true, true); for (const auto & tokens : tokenized_prompts) { // this check is necessary for models that do not add BOS token to the input @@ -3841,7 +3852,7 @@ int main(int argc, char ** argv) { } // write JSON response - json root = oaicompat ? format_embeddings_response_oaicompat(body, responses) : json(responses); + json root = oaicompat ? format_embeddings_response_oaicompat(body, responses, use_base64) : json(responses); res_ok(res, root); }; diff --git a/examples/server/tests/unit/test_embedding.py b/examples/server/tests/unit/test_embedding.py index 43e372fc7..8b0eb42b0 100644 --- a/examples/server/tests/unit/test_embedding.py +++ b/examples/server/tests/unit/test_embedding.py @@ -1,3 +1,5 @@ +import base64 +import struct import pytest from openai import OpenAI from utils import * @@ -194,3 +196,42 @@ def test_embedding_usage_multiple(): assert res.status_code == 200 assert res.body['usage']['prompt_tokens'] == res.body['usage']['total_tokens'] assert res.body['usage']['prompt_tokens'] == 2 * 9 + + +def test_embedding_openai_library_base64(): + server.start() + test_input = "Test base64 embedding output" + + # get embedding in default format + res = server.make_request("POST", "/v1/embeddings", data={ + "input": test_input + }) + assert res.status_code == 200 + vec0 = res.body["data"][0]["embedding"] + + # get embedding in base64 format + res = server.make_request("POST", "/v1/embeddings", data={ + "input": test_input, + "encoding_format": "base64" + }) + + assert res.status_code == 200 + assert "data" in res.body + assert len(res.body["data"]) == 1 + + embedding_data = res.body["data"][0] + assert "embedding" in embedding_data + assert isinstance(embedding_data["embedding"], str) + + # Verify embedding is valid base64 + decoded = base64.b64decode(embedding_data["embedding"]) + # Verify decoded data can be converted back to float array + float_count = len(decoded) // 4 # 4 bytes per float + floats = struct.unpack(f'{float_count}f', decoded) + assert len(floats) > 0 + assert all(isinstance(x, float) for x in floats) + assert len(floats) == len(vec0) + + # make sure the decoded data is the same as the original + for x, y in zip(floats, vec0): + assert abs(x - y) < EPSILON diff --git a/examples/server/utils.hpp b/examples/server/utils.hpp index 043d8b528..334f2f192 100644 --- a/examples/server/utils.hpp +++ b/examples/server/utils.hpp @@ -3,6 +3,7 @@ #include "common.h" #include "log.h" #include "llama.h" +#include "common/base64.hpp" #ifndef NDEBUG // crash the server in debug mode, otherwise send an http 500 error @@ -613,16 +614,31 @@ static json oaicompat_completion_params_parse( return llama_params; } -static json format_embeddings_response_oaicompat(const json & request, const json & embeddings) { +static json format_embeddings_response_oaicompat(const json & request, const json & embeddings, bool use_base64 = false) { json data = json::array(); int32_t n_tokens = 0; int i = 0; for (const auto & elem : embeddings) { - data.push_back(json{ - {"embedding", json_value(elem, "embedding", json::array())}, - {"index", i++}, - {"object", "embedding"} - }); + json embedding_obj; + + if (use_base64) { + const auto& vec = json_value(elem, "embedding", json::array()).get>(); + const char* data_ptr = reinterpret_cast(vec.data()); + size_t data_size = vec.size() * sizeof(float); + embedding_obj = { + {"embedding", base64::encode(data_ptr, data_size)}, + {"index", i++}, + {"object", "embedding"}, + {"encoding_format", "base64"} + }; + } else { + embedding_obj = { + {"embedding", json_value(elem, "embedding", json::array())}, + {"index", i++}, + {"object", "embedding"} + }; + } + data.push_back(embedding_obj); n_tokens += json_value(elem, "tokens_evaluated", 0); } From d283d02bf254a7f2991e1502066330cc0d4321a6 Mon Sep 17 00:00:00 2001 From: Peter Date: Fri, 27 Dec 2024 00:59:11 +1100 Subject: [PATCH 15/16] examples, ggml : fix GCC compiler warnings (#10983) Warning types fixed (observed under MSYS2 GCC 14.2.0): * format '%ld' expects argument of type 'long int', but argument has type 'size_t' * llama.cpp/ggml/src/ggml-vulkan/vulkan-shaders/vulkan-shaders-gen.cpp:81:46: warning: missing initializer for member '_STARTUPINFOA::lpDesktop' [-Wmissing-field-initializers] (emitted for all struct field except first) --- examples/cvector-generator/mean.hpp | 2 +- examples/cvector-generator/pca.hpp | 2 +- examples/export-lora/export-lora.cpp | 6 +++--- ggml/src/ggml-vulkan/vulkan-shaders/vulkan-shaders-gen.cpp | 3 ++- 4 files changed, 7 insertions(+), 6 deletions(-) diff --git a/examples/cvector-generator/mean.hpp b/examples/cvector-generator/mean.hpp index 16be5ce3e..4eeac1eeb 100644 --- a/examples/cvector-generator/mean.hpp +++ b/examples/cvector-generator/mean.hpp @@ -15,7 +15,7 @@ static void run( for (size_t il = 0; il < v_input.size(); ++il) { // prepare output vector struct ggml_tensor * ctrl_out = v_output[il]; - ggml_format_name(ctrl_out, "direction.%ld", il+1); + ggml_format_name(ctrl_out, "direction.%zu", il+1); // calculate mean vector struct ggml_tensor * t_layer = v_input[il]; diff --git a/examples/cvector-generator/pca.hpp b/examples/cvector-generator/pca.hpp index f6e307fbc..e88bbdde9 100644 --- a/examples/cvector-generator/pca.hpp +++ b/examples/cvector-generator/pca.hpp @@ -302,7 +302,7 @@ static void run_pca( // prepare output vector struct ggml_tensor * ctrl_out = v_output[il]; - ggml_format_name(ctrl_out, "direction.%ld", il+1); + ggml_format_name(ctrl_out, "direction.%zu", il+1); // run power_iteration params.i_layer = il; diff --git a/examples/export-lora/export-lora.cpp b/examples/export-lora/export-lora.cpp index 67662313d..058b5cc86 100644 --- a/examples/export-lora/export-lora.cpp +++ b/examples/export-lora/export-lora.cpp @@ -265,8 +265,8 @@ struct lora_merge_ctx { fout.write((const char *)data.data(), data.size()); } - printf("%s : merged %ld tensors with lora adapters\n", __func__, n_merged); - printf("%s : wrote %ld tensors to output file\n", __func__, trans.size()); + printf("%s : merged %zu tensors with lora adapters\n", __func__, n_merged); + printf("%s : wrote %zu tensors to output file\n", __func__, trans.size()); } void copy_tensor(struct ggml_tensor * base) { @@ -352,7 +352,7 @@ struct lora_merge_ctx { const float scale = alpha ? adapters[i]->scale * alpha / rank : adapters[i]->scale; delta = ggml_scale(ctx0, delta, scale); cur = ggml_add(ctx0, delta, cur); - printf("%s : + merging from adapter[%ld] type=%s\n", __func__, i, ggml_type_name(inp_a[i]->type)); + printf("%s : + merging from adapter[%zu] type=%s\n", __func__, i, ggml_type_name(inp_a[i]->type)); printf("%s : input_scale=%f calculated_scale=%f rank=%d\n", __func__, adapters[i]->scale, scale, (int) inp_b[i]->ne[0]); } cur = ggml_cast(ctx0, cur, out->type); diff --git a/ggml/src/ggml-vulkan/vulkan-shaders/vulkan-shaders-gen.cpp b/ggml/src/ggml-vulkan/vulkan-shaders/vulkan-shaders-gen.cpp index 7a0d7285d..8111c0638 100644 --- a/ggml/src/ggml-vulkan/vulkan-shaders/vulkan-shaders-gen.cpp +++ b/ggml/src/ggml-vulkan/vulkan-shaders/vulkan-shaders-gen.cpp @@ -78,7 +78,8 @@ void execute_command(const std::string& command, std::string& stdout_str, std::s } PROCESS_INFORMATION pi; - STARTUPINFOA si = { sizeof(STARTUPINFOA) }; + STARTUPINFOA si = {}; + si.cb = sizeof(STARTUPINFOA); si.dwFlags = STARTF_USESTDHANDLES; si.hStdOutput = stdout_write; si.hStdError = stderr_write; From d79d8f39b4da6deca4aea8bf130c6034c482b320 Mon Sep 17 00:00:00 2001 From: Eve <139727413+netrunnereve@users.noreply.github.com> Date: Thu, 26 Dec 2024 10:54:44 -0500 Subject: [PATCH 16/16] vulkan: multi-row k quants (#10846) * multi row k quant shaders! * better row selection * more row choices * readjust row selection * rm_kq=2 by default --- ggml/src/ggml-vulkan/ggml-vulkan.cpp | 81 ++++--- .../vulkan-shaders/mul_mat_vec_q2_k.comp | 126 ++++++---- .../vulkan-shaders/mul_mat_vec_q3_k.comp | 102 ++++---- .../vulkan-shaders/mul_mat_vec_q4_k.comp | 174 ++++++++------ .../vulkan-shaders/mul_mat_vec_q5_k.comp | 226 ++++++++++-------- .../vulkan-shaders/mul_mat_vec_q6_k.comp | 130 +++++----- 6 files changed, 472 insertions(+), 367 deletions(-) diff --git a/ggml/src/ggml-vulkan/ggml-vulkan.cpp b/ggml/src/ggml-vulkan/ggml-vulkan.cpp index 323ce7cf3..c0a43631c 100644 --- a/ggml/src/ggml-vulkan/ggml-vulkan.cpp +++ b/ggml/src/ggml-vulkan/ggml-vulkan.cpp @@ -1855,53 +1855,58 @@ static void ggml_vk_load_shaders(vk_device& device) { // mul mat vec - // AMD GCN and Intel graphics cards perform best when the number of rows per shader is doubled - uint32_t rm = 1; - if ((device->vendor_id == VK_VENDOR_ID_AMD && device->subgroup_min_size == 64 && device->subgroup_max_size == 64) || device->vendor_id == VK_VENDOR_ID_INTEL) - rm = 2; + // the number of rows computed per shader depends on GPU model and quant + uint32_t rm_stdq = 1; + uint32_t rm_kq = 2; + if (device->vendor_id == VK_VENDOR_ID_AMD) { + if (device->subgroup_min_size == 64 && device->subgroup_max_size == 64) { // GCN + rm_stdq = 2; + rm_kq = 4; + } + } else if (device->vendor_id == VK_VENDOR_ID_INTEL) + rm_stdq = 2; - // computing additional rows per workgroup is a benefit for Q4_0 -> Q5_1, but not for Q8_0. ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_F32 ], "mul_mat_vec_f32_f32_f32", mul_mat_vec_f32_f32_f32_len, mul_mat_vec_f32_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2, 1, 1}, {device->subgroup_size, 2}, 1); ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_F16 ], "mul_mat_vec_f16_f32_f32", mul_mat_vec_f16_f32_f32_len, mul_mat_vec_f16_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2, 1, 1}, {device->subgroup_size, 2}, 1); - ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q4_0], "mul_mat_vec_q4_0_f32_f32", mul_mat_vec_q4_0_f32_f32_len, mul_mat_vec_q4_0_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm, 1, 1}, {device->subgroup_size, 2*rm}, 1, true); - ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q4_1], "mul_mat_vec_q4_1_f32_f32", mul_mat_vec_q4_1_f32_f32_len, mul_mat_vec_q4_1_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm, 1, 1}, {device->subgroup_size, 2*rm}, 1, true); - ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q5_0], "mul_mat_vec_q5_0_f32_f32", mul_mat_vec_q5_0_f32_f32_len, mul_mat_vec_q5_0_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm, 1, 1}, {device->subgroup_size, 2*rm}, 1, true); - ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q5_1], "mul_mat_vec_q5_1_f32_f32", mul_mat_vec_q5_1_f32_f32_len, mul_mat_vec_q5_1_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm, 1, 1}, {device->subgroup_size, 2*rm}, 1, true); - ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q8_0], "mul_mat_vec_q8_0_f32_f32", mul_mat_vec_q8_0_f32_f32_len, mul_mat_vec_q8_0_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {1*rm, 1, 1}, {device->subgroup_size, 1*rm}, 1, true); - ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q2_K], "mul_mat_vec_q2_k_f32_f32", mul_mat_vec_q2_k_f32_f32_len, mul_mat_vec_q2_k_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {1, 1, 1}, {subgroup_size_16}, 1, true); - ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q3_K], "mul_mat_vec_q3_k_f32_f32", mul_mat_vec_q3_k_f32_f32_len, mul_mat_vec_q3_k_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {1, 1, 1}, {subgroup_size_16}, 1, true); - ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q4_K], "mul_mat_vec_q4_k_f32_f32", mul_mat_vec_q4_k_f32_f32_len, mul_mat_vec_q4_k_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {1, 1, 1}, {subgroup_size_16}, 1, true); - ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q5_K], "mul_mat_vec_q5_k_f32_f32", mul_mat_vec_q5_k_f32_f32_len, mul_mat_vec_q5_k_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {1, 1, 1}, {subgroup_size_16}, 1, true); - ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q6_K], "mul_mat_vec_q6_k_f32_f32", mul_mat_vec_q6_k_f32_f32_len, mul_mat_vec_q6_k_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {1, 1, 1}, {subgroup_size_16}, 1, true); - ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_IQ4_NL], "mul_mat_vec_iq4_nl_f32_f32", mul_mat_vec_iq4_nl_f32_f32_len, mul_mat_vec_iq4_nl_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm, 1, 1}, {subgroup_size_16, 2*rm}, 1, true); + ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q4_0], "mul_mat_vec_q4_0_f32_f32", mul_mat_vec_q4_0_f32_f32_len, mul_mat_vec_q4_0_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm_stdq, 1, 1}, {device->subgroup_size, 2*rm_stdq}, 1, true); + ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q4_1], "mul_mat_vec_q4_1_f32_f32", mul_mat_vec_q4_1_f32_f32_len, mul_mat_vec_q4_1_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm_stdq, 1, 1}, {device->subgroup_size, 2*rm_stdq}, 1, true); + ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q5_0], "mul_mat_vec_q5_0_f32_f32", mul_mat_vec_q5_0_f32_f32_len, mul_mat_vec_q5_0_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm_stdq, 1, 1}, {device->subgroup_size, 2*rm_stdq}, 1, true); + ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q5_1], "mul_mat_vec_q5_1_f32_f32", mul_mat_vec_q5_1_f32_f32_len, mul_mat_vec_q5_1_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm_stdq, 1, 1}, {device->subgroup_size, 2*rm_stdq}, 1, true); + ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q8_0], "mul_mat_vec_q8_0_f32_f32", mul_mat_vec_q8_0_f32_f32_len, mul_mat_vec_q8_0_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {1*rm_stdq, 1, 1}, {device->subgroup_size, 1*rm_stdq}, 1, true); + ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q2_K], "mul_mat_vec_q2_k_f32_f32", mul_mat_vec_q2_k_f32_f32_len, mul_mat_vec_q2_k_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {rm_kq, 1, 1}, {subgroup_size_16, rm_kq}, 1, true); + ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q3_K], "mul_mat_vec_q3_k_f32_f32", mul_mat_vec_q3_k_f32_f32_len, mul_mat_vec_q3_k_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {rm_kq, 1, 1}, {subgroup_size_16, rm_kq}, 1, true); + ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q4_K], "mul_mat_vec_q4_k_f32_f32", mul_mat_vec_q4_k_f32_f32_len, mul_mat_vec_q4_k_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {rm_kq, 1, 1}, {subgroup_size_16, rm_kq}, 1, true); + ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q5_K], "mul_mat_vec_q5_k_f32_f32", mul_mat_vec_q5_k_f32_f32_len, mul_mat_vec_q5_k_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {rm_kq, 1, 1}, {subgroup_size_16, rm_kq}, 1, true); + ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q6_K], "mul_mat_vec_q6_k_f32_f32", mul_mat_vec_q6_k_f32_f32_len, mul_mat_vec_q6_k_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {rm_kq, 1, 1}, {subgroup_size_16, rm_kq}, 1, true); + ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_IQ4_NL], "mul_mat_vec_iq4_nl_f32_f32", mul_mat_vec_iq4_nl_f32_f32_len, mul_mat_vec_iq4_nl_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm_stdq, 1, 1}, {subgroup_size_16, 2*rm_stdq}, 1, true); ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_F32 ], "mul_mat_vec_f32_f16_f32", mul_mat_vec_f32_f16_f32_len, mul_mat_vec_f32_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2, 1, 1}, {device->subgroup_size, 2}, 1); ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_F16 ], "mul_mat_vec_f16_f16_f32", mul_mat_vec_f16_f16_f32_len, mul_mat_vec_f16_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2, 1, 1}, {device->subgroup_size, 2}, 1); - ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q4_0], "mul_mat_vec_q4_0_f16_f32", mul_mat_vec_q4_0_f16_f32_len, mul_mat_vec_q4_0_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm, 1, 1}, {device->subgroup_size, 2*rm}, 1, true); - ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q4_1], "mul_mat_vec_q4_1_f16_f32", mul_mat_vec_q4_1_f16_f32_len, mul_mat_vec_q4_1_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm, 1, 1}, {device->subgroup_size, 2*rm}, 1, true); - ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q5_0], "mul_mat_vec_q5_0_f16_f32", mul_mat_vec_q5_0_f16_f32_len, mul_mat_vec_q5_0_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm, 1, 1}, {device->subgroup_size, 2*rm}, 1, true); - ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q5_1], "mul_mat_vec_q5_1_f16_f32", mul_mat_vec_q5_1_f16_f32_len, mul_mat_vec_q5_1_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm, 1, 1}, {device->subgroup_size, 2*rm}, 1, true); - ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q8_0], "mul_mat_vec_q8_0_f16_f32", mul_mat_vec_q8_0_f16_f32_len, mul_mat_vec_q8_0_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {1*rm, 1, 1}, {device->subgroup_size, 1*rm}, 1, true); - ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q2_K], "mul_mat_vec_q2_k_f16_f32", mul_mat_vec_q2_k_f16_f32_len, mul_mat_vec_q2_k_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {1, 1, 1}, {subgroup_size_16}, 1, true); - ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q3_K], "mul_mat_vec_q3_k_f16_f32", mul_mat_vec_q3_k_f16_f32_len, mul_mat_vec_q3_k_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {1, 1, 1}, {subgroup_size_16}, 1, true); - ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q4_K], "mul_mat_vec_q4_k_f16_f32", mul_mat_vec_q4_k_f16_f32_len, mul_mat_vec_q4_k_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {1, 1, 1}, {subgroup_size_16}, 1, true); - ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q5_K], "mul_mat_vec_q5_k_f16_f32", mul_mat_vec_q5_k_f16_f32_len, mul_mat_vec_q5_k_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {1, 1, 1}, {subgroup_size_16}, 1, true); - ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q6_K], "mul_mat_vec_q6_k_f16_f32", mul_mat_vec_q6_k_f16_f32_len, mul_mat_vec_q6_k_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {1, 1, 1}, {subgroup_size_16}, 1, true); - ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_IQ4_NL], "mul_mat_vec_iq4_nl_f16_f32", mul_mat_vec_iq4_nl_f16_f32_len, mul_mat_vec_iq4_nl_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm, 1, 1}, {subgroup_size_16, 2*rm}, 1, true); + ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q4_0], "mul_mat_vec_q4_0_f16_f32", mul_mat_vec_q4_0_f16_f32_len, mul_mat_vec_q4_0_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm_stdq, 1, 1}, {device->subgroup_size, 2*rm_stdq}, 1, true); + ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q4_1], "mul_mat_vec_q4_1_f16_f32", mul_mat_vec_q4_1_f16_f32_len, mul_mat_vec_q4_1_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm_stdq, 1, 1}, {device->subgroup_size, 2*rm_stdq}, 1, true); + ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q5_0], "mul_mat_vec_q5_0_f16_f32", mul_mat_vec_q5_0_f16_f32_len, mul_mat_vec_q5_0_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm_stdq, 1, 1}, {device->subgroup_size, 2*rm_stdq}, 1, true); + ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q5_1], "mul_mat_vec_q5_1_f16_f32", mul_mat_vec_q5_1_f16_f32_len, mul_mat_vec_q5_1_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm_stdq, 1, 1}, {device->subgroup_size, 2*rm_stdq}, 1, true); + ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q8_0], "mul_mat_vec_q8_0_f16_f32", mul_mat_vec_q8_0_f16_f32_len, mul_mat_vec_q8_0_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {1*rm_stdq, 1, 1}, {device->subgroup_size, 1*rm_stdq}, 1, true); + ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q2_K], "mul_mat_vec_q2_k_f16_f32", mul_mat_vec_q2_k_f16_f32_len, mul_mat_vec_q2_k_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {rm_kq, 1, 1}, {subgroup_size_16, rm_kq}, 1, true); + ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q3_K], "mul_mat_vec_q3_k_f16_f32", mul_mat_vec_q3_k_f16_f32_len, mul_mat_vec_q3_k_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {rm_kq, 1, 1}, {subgroup_size_16, rm_kq}, 1, true); + ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q4_K], "mul_mat_vec_q4_k_f16_f32", mul_mat_vec_q4_k_f16_f32_len, mul_mat_vec_q4_k_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {rm_kq, 1, 1}, {subgroup_size_16, rm_kq}, 1, true); + ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q5_K], "mul_mat_vec_q5_k_f16_f32", mul_mat_vec_q5_k_f16_f32_len, mul_mat_vec_q5_k_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {rm_kq, 1, 1}, {subgroup_size_16, rm_kq}, 1, true); + ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q6_K], "mul_mat_vec_q6_k_f16_f32", mul_mat_vec_q6_k_f16_f32_len, mul_mat_vec_q6_k_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {rm_kq, 1, 1}, {subgroup_size_16, rm_kq}, 1, true); + ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_IQ4_NL], "mul_mat_vec_iq4_nl_f16_f32", mul_mat_vec_iq4_nl_f16_f32_len, mul_mat_vec_iq4_nl_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm_stdq, 1, 1}, {subgroup_size_16, 2*rm_stdq}, 1, true); ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_F32 ], "mul_mat_vec_id_f32_f32", mul_mat_vec_id_f32_f32_len, mul_mat_vec_id_f32_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {2, 1, 1}, {device->subgroup_size, 2}, 1); ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_F16 ], "mul_mat_vec_id_f16_f32", mul_mat_vec_id_f16_f32_len, mul_mat_vec_id_f16_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {2, 1, 1}, {device->subgroup_size, 2}, 1); - ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q4_0], "mul_mat_vec_id_q4_0_f32", mul_mat_vec_id_q4_0_f32_len, mul_mat_vec_id_q4_0_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {2*rm, 1, 1}, {device->subgroup_size, 2*rm}, 1, true); - ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q4_1], "mul_mat_vec_id_q4_1_f32", mul_mat_vec_id_q4_1_f32_len, mul_mat_vec_id_q4_1_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {2*rm, 1, 1}, {device->subgroup_size, 2*rm}, 1, true); - ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q5_0], "mul_mat_vec_id_q5_0_f32", mul_mat_vec_id_q5_0_f32_len, mul_mat_vec_id_q5_0_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {2*rm, 1, 1}, {device->subgroup_size, 2*rm}, 1, true); - ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q5_1], "mul_mat_vec_id_q5_1_f32", mul_mat_vec_id_q5_1_f32_len, mul_mat_vec_id_q5_1_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {2*rm, 1, 1}, {device->subgroup_size, 2*rm}, 1, true); - ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q8_0], "mul_mat_vec_id_q8_0_f32", mul_mat_vec_id_q8_0_f32_len, mul_mat_vec_id_q8_0_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {1*rm, 1, 1}, {device->subgroup_size, 1*rm}, 1, true); - ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q2_K], "mul_mat_vec_id_q2_k_f32", mul_mat_vec_id_q2_k_f32_len, mul_mat_vec_id_q2_k_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {1, 1, 1}, {subgroup_size_16}, 1, true); - ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q3_K], "mul_mat_vec_id_q3_k_f32", mul_mat_vec_id_q3_k_f32_len, mul_mat_vec_id_q3_k_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {1, 1, 1}, {subgroup_size_16}, 1, true); - ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q4_K], "mul_mat_vec_id_q4_k_f32", mul_mat_vec_id_q4_k_f32_len, mul_mat_vec_id_q4_k_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {1, 1, 1}, {subgroup_size_16}, 1, true); - ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q5_K], "mul_mat_vec_id_q5_k_f32", mul_mat_vec_id_q5_k_f32_len, mul_mat_vec_id_q5_k_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {1, 1, 1}, {subgroup_size_16}, 1, true); - ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q6_K], "mul_mat_vec_id_q6_k_f32", mul_mat_vec_id_q6_k_f32_len, mul_mat_vec_id_q6_k_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {1, 1, 1}, {subgroup_size_16}, 1, true); - ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_IQ4_NL], "mul_mat_vec_id_iq4_nl_f32", mul_mat_vec_id_iq4_nl_f32_len, mul_mat_vec_id_iq4_nl_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {2*rm, 1, 1}, {subgroup_size_16, 2*rm}, 1, true); + ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q4_0], "mul_mat_vec_id_q4_0_f32", mul_mat_vec_id_q4_0_f32_len, mul_mat_vec_id_q4_0_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {2*rm_stdq, 1, 1}, {device->subgroup_size, 2*rm_stdq}, 1, true); + ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q4_1], "mul_mat_vec_id_q4_1_f32", mul_mat_vec_id_q4_1_f32_len, mul_mat_vec_id_q4_1_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {2*rm_stdq, 1, 1}, {device->subgroup_size, 2*rm_stdq}, 1, true); + ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q5_0], "mul_mat_vec_id_q5_0_f32", mul_mat_vec_id_q5_0_f32_len, mul_mat_vec_id_q5_0_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {2*rm_stdq, 1, 1}, {device->subgroup_size, 2*rm_stdq}, 1, true); + ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q5_1], "mul_mat_vec_id_q5_1_f32", mul_mat_vec_id_q5_1_f32_len, mul_mat_vec_id_q5_1_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {2*rm_stdq, 1, 1}, {device->subgroup_size, 2*rm_stdq}, 1, true); + ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q8_0], "mul_mat_vec_id_q8_0_f32", mul_mat_vec_id_q8_0_f32_len, mul_mat_vec_id_q8_0_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {1*rm_stdq, 1, 1}, {device->subgroup_size, 1*rm_stdq}, 1, true); + ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q2_K], "mul_mat_vec_id_q2_k_f32", mul_mat_vec_id_q2_k_f32_len, mul_mat_vec_id_q2_k_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {rm_kq, 1, 1}, {subgroup_size_16, rm_kq}, 1, true); + ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q3_K], "mul_mat_vec_id_q3_k_f32", mul_mat_vec_id_q3_k_f32_len, mul_mat_vec_id_q3_k_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {rm_kq, 1, 1}, {subgroup_size_16, rm_kq}, 1, true); + ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q4_K], "mul_mat_vec_id_q4_k_f32", mul_mat_vec_id_q4_k_f32_len, mul_mat_vec_id_q4_k_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {rm_kq, 1, 1}, {subgroup_size_16, rm_kq}, 1, true); + ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q5_K], "mul_mat_vec_id_q5_k_f32", mul_mat_vec_id_q5_k_f32_len, mul_mat_vec_id_q5_k_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {rm_kq, 1, 1}, {subgroup_size_16, rm_kq}, 1, true); + ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q6_K], "mul_mat_vec_id_q6_k_f32", mul_mat_vec_id_q6_k_f32_len, mul_mat_vec_id_q6_k_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {rm_kq, 1, 1}, {subgroup_size_16, rm_kq}, 1, true); + ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_IQ4_NL], "mul_mat_vec_id_iq4_nl_f32", mul_mat_vec_id_iq4_nl_f32_len, mul_mat_vec_id_iq4_nl_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {2*rm_stdq, 1, 1}, {subgroup_size_16, 2*rm_stdq}, 1, true); // dequant shaders ggml_vk_create_pipeline(device, device->pipeline_dequant[GGML_TYPE_F32 ], "f32_to_f16", dequant_f32_len, dequant_f32_data, "main", 2, 5 * sizeof(uint32_t), {256 * 16, 1, 1}, {}, 1); diff --git a/ggml/src/ggml-vulkan/vulkan-shaders/mul_mat_vec_q2_k.comp b/ggml/src/ggml-vulkan/vulkan-shaders/mul_mat_vec_q2_k.comp index 1a5350d99..138ad0184 100644 --- a/ggml/src/ggml-vulkan/vulkan-shaders/mul_mat_vec_q2_k.comp +++ b/ggml/src/ggml-vulkan/vulkan-shaders/mul_mat_vec_q2_k.comp @@ -6,21 +6,15 @@ layout(local_size_x_id = 0, local_size_y = 1, local_size_z = 1) in; layout (constant_id = 0) const uint BLOCK_SIZE = 32; +layout (constant_id = 1) const uint NUM_ROWS = 1; -shared FLOAT_TYPE tmp[BLOCK_SIZE]; - -void main() { - const uint row = gl_WorkGroupID.x + gl_NumWorkGroups.x * gl_WorkGroupID.z; - - if (row >= p.stride_d) { - return; - } +shared FLOAT_TYPE tmpsh[NUM_ROWS][BLOCK_SIZE]; +void compute_outputs(const uint32_t first_row, const uint32_t num_rows) { uint a_offset, b_offset, d_offset; get_offsets(a_offset, b_offset, d_offset); const uint num_blocks_per_row = p.ncols / QUANT_K; - const uint ib0 = a_offset / QUANT_K + row*num_blocks_per_row; // 16 threads are used to process each block const uint it_size = gl_WorkGroupSize.x/16; @@ -38,15 +32,15 @@ void main() { const uint s_offset = 8*v_im; const uint y_offset = 128*v_im + l0; - FLOAT_TYPE temp = FLOAT_TYPE(0.0); // partial sum for thread in warp + FLOAT_TYPE temp[NUM_ROWS]; + + [[unroll]] for (uint i = 0; i < NUM_ROWS; ++i) { + temp[i] = FLOAT_TYPE(0); + } [[unroll]] for (uint i = ix; i < num_blocks_per_row; i += it_size) { const uint y_idx = i * QUANT_K + y_offset; - f16vec2 d = data_a[ib0 + i].d; - const FLOAT_TYPE dall = d.x; - const FLOAT_TYPE dmin = d.y; - B_TYPE_VEC2 b0 = data_b_v2[(b_offset + y_idx) / 2 + 0]; B_TYPE_VEC2 b16 = data_b_v2[(b_offset + y_idx) / 2 + 8]; B_TYPE_VEC2 b32 = data_b_v2[(b_offset + y_idx) / 2 + 16]; @@ -56,58 +50,84 @@ void main() { B_TYPE_VEC2 b96 = data_b_v2[(b_offset + y_idx) / 2 + 48]; B_TYPE_VEC2 b112 = data_b_v2[(b_offset + y_idx) / 2 + 56]; - uint32_t s0_u32 = data_a_packed32[ib0 + i].scales[s_offset / 4 + 0]; - uint32_t s4_u32 = data_a_packed32[ib0 + i].scales[s_offset / 4 + 1]; + [[unroll]] for (uint n = 0; n < num_rows; ++n) { + const uint ib0 = a_offset / QUANT_K + (first_row+n)*num_blocks_per_row; + f16vec2 d = data_a[ib0 + i].d; + const FLOAT_TYPE dall = d.x; + const FLOAT_TYPE dmin = d.y; - uint32_t s0_lo4_u32 = s0_u32 & 0x0F0F0F0F; - uint32_t s0_hi4_u32 = (s0_u32 >> 4) & 0x0F0F0F0F; - uint32_t s4_lo4_u32 = s4_u32 & 0x0F0F0F0F; - uint32_t s4_hi4_u32 = (s4_u32 >> 4) & 0x0F0F0F0F; + uint32_t s0_u32 = data_a_packed32[ib0 + i].scales[s_offset / 4 + 0]; + uint32_t s4_u32 = data_a_packed32[ib0 + i].scales[s_offset / 4 + 1]; - uvec4 s0_lo4 = uvec4(unpack8(s0_lo4_u32)); - uvec4 s4_lo4 = uvec4(unpack8(s4_lo4_u32)); - uvec4 s0_hi4 = uvec4(unpack8(s0_hi4_u32)); - uvec4 s4_hi4 = uvec4(unpack8(s4_hi4_u32)); + uint32_t s0_lo4_u32 = s0_u32 & 0x0F0F0F0F; + uint32_t s0_hi4_u32 = (s0_u32 >> 4) & 0x0F0F0F0F; + uint32_t s4_lo4_u32 = s4_u32 & 0x0F0F0F0F; + uint32_t s4_hi4_u32 = (s4_u32 >> 4) & 0x0F0F0F0F; - uint16_t qs0_u16 = data_a_packed16[ib0 + i].qs[q_offset / 2 + 0]; - uint16_t qs16_u16 = data_a_packed16[ib0 + i].qs[q_offset / 2 + 8]; - uvec2 qs0 = uvec2(unpack8(qs0_u16)); - uvec2 qs16 = uvec2(unpack8(qs16_u16)); + uvec4 s0_lo4 = uvec4(unpack8(s0_lo4_u32)); + uvec4 s4_lo4 = uvec4(unpack8(s4_lo4_u32)); + uvec4 s0_hi4 = uvec4(unpack8(s0_hi4_u32)); + uvec4 s4_hi4 = uvec4(unpack8(s4_hi4_u32)); - FLOAT_TYPE sum1 = FLOAT_TYPE(0.0); - FLOAT_TYPE sum2 = FLOAT_TYPE(0.0); - [[unroll]] for (int l = 0; l < 2; ++l) { - sum1 = fma(FLOAT_TYPE(b0[l]), FLOAT_TYPE(s0_lo4[0]) * FLOAT_TYPE((qs0[l] >> 0) & 3), - fma(FLOAT_TYPE(b16[l]), FLOAT_TYPE(s0_lo4[1]) * FLOAT_TYPE((qs16[l] >> 0) & 3), - fma(FLOAT_TYPE(b32[l]), FLOAT_TYPE(s0_lo4[2]) * FLOAT_TYPE((qs0[l] >> 2) & 3), - fma(FLOAT_TYPE(b48[l]), FLOAT_TYPE(s0_lo4[3]) * FLOAT_TYPE((qs16[l] >> 2) & 3), - fma(FLOAT_TYPE(b64[l]), FLOAT_TYPE(s4_lo4[0]) * FLOAT_TYPE((qs0[l] >> 4) & 3), - fma(FLOAT_TYPE(b80[l]), FLOAT_TYPE(s4_lo4[1]) * FLOAT_TYPE((qs16[l] >> 4) & 3), - fma(FLOAT_TYPE(b96[l]), FLOAT_TYPE(s4_lo4[2]) * FLOAT_TYPE((qs0[l] >> 6) & 3), - fma(FLOAT_TYPE(b112[l]), FLOAT_TYPE(s4_lo4[3]) * FLOAT_TYPE((qs16[l] >> 6) & 3), sum1)))))))); - sum2 = fma(FLOAT_TYPE(b0[l]), FLOAT_TYPE(s0_hi4[0]), - fma(FLOAT_TYPE(b16[l]), FLOAT_TYPE(s0_hi4[1]), - fma(FLOAT_TYPE(b32[l]), FLOAT_TYPE(s0_hi4[2]), - fma(FLOAT_TYPE(b48[l]), FLOAT_TYPE(s0_hi4[3]), - fma(FLOAT_TYPE(b64[l]), FLOAT_TYPE(s4_hi4[0]), - fma(FLOAT_TYPE(b80[l]), FLOAT_TYPE(s4_hi4[1]), - fma(FLOAT_TYPE(b96[l]), FLOAT_TYPE(s4_hi4[2]), - fma(FLOAT_TYPE(b112[l]), FLOAT_TYPE(s4_hi4[3]), sum2)))))))); + uint16_t qs0_u16 = data_a_packed16[ib0 + i].qs[q_offset / 2 + 0]; + uint16_t qs16_u16 = data_a_packed16[ib0 + i].qs[q_offset / 2 + 8]; + uvec2 qs0 = uvec2(unpack8(qs0_u16)); + uvec2 qs16 = uvec2(unpack8(qs16_u16)); + + FLOAT_TYPE sum1 = FLOAT_TYPE(0.0); + FLOAT_TYPE sum2 = FLOAT_TYPE(0.0); + [[unroll]] for (int l = 0; l < 2; ++l) { + sum1 = fma(FLOAT_TYPE(b0[l]), FLOAT_TYPE(s0_lo4[0]) * FLOAT_TYPE((qs0[l] >> 0) & 3), + fma(FLOAT_TYPE(b16[l]), FLOAT_TYPE(s0_lo4[1]) * FLOAT_TYPE((qs16[l] >> 0) & 3), + fma(FLOAT_TYPE(b32[l]), FLOAT_TYPE(s0_lo4[2]) * FLOAT_TYPE((qs0[l] >> 2) & 3), + fma(FLOAT_TYPE(b48[l]), FLOAT_TYPE(s0_lo4[3]) * FLOAT_TYPE((qs16[l] >> 2) & 3), + fma(FLOAT_TYPE(b64[l]), FLOAT_TYPE(s4_lo4[0]) * FLOAT_TYPE((qs0[l] >> 4) & 3), + fma(FLOAT_TYPE(b80[l]), FLOAT_TYPE(s4_lo4[1]) * FLOAT_TYPE((qs16[l] >> 4) & 3), + fma(FLOAT_TYPE(b96[l]), FLOAT_TYPE(s4_lo4[2]) * FLOAT_TYPE((qs0[l] >> 6) & 3), + fma(FLOAT_TYPE(b112[l]), FLOAT_TYPE(s4_lo4[3]) * FLOAT_TYPE((qs16[l] >> 6) & 3), sum1)))))))); + sum2 = fma(FLOAT_TYPE(b0[l]), FLOAT_TYPE(s0_hi4[0]), + fma(FLOAT_TYPE(b16[l]), FLOAT_TYPE(s0_hi4[1]), + fma(FLOAT_TYPE(b32[l]), FLOAT_TYPE(s0_hi4[2]), + fma(FLOAT_TYPE(b48[l]), FLOAT_TYPE(s0_hi4[3]), + fma(FLOAT_TYPE(b64[l]), FLOAT_TYPE(s4_hi4[0]), + fma(FLOAT_TYPE(b80[l]), FLOAT_TYPE(s4_hi4[1]), + fma(FLOAT_TYPE(b96[l]), FLOAT_TYPE(s4_hi4[2]), + fma(FLOAT_TYPE(b112[l]), FLOAT_TYPE(s4_hi4[3]), sum2)))))))); + } + temp[n] = fma(dall, sum1, fma(-dmin, sum2, temp[n])); } - temp = fma(dall, sum1, fma(-dmin, sum2, temp)); } - tmp[gl_LocalInvocationID.x] = temp; - // sum up partial sums and write back result + [[unroll]] for (uint n = 0; n < num_rows; ++n) { + tmpsh[n][tid] = temp[n]; + } barrier(); - [[unroll]] for (uint s = gl_WorkGroupSize.x/2; s > 0; s >>= 1) { + [[unroll]] for (uint s = BLOCK_SIZE/2; s > 0; s >>= 1) { if (tid < s) { - tmp[tid] += tmp[tid + s]; + [[unroll]] for (uint n = 0; n < num_rows; ++n) { + tmpsh[n][tid] += tmpsh[n][tid + s]; + } } barrier(); } if (tid == 0) { - data_d[d_offset + row] = D_TYPE(tmp[0]); + [[unroll]] for (uint n = 0; n < num_rows; ++n) { + data_d[d_offset + first_row + n] = D_TYPE(tmpsh[n][0]); + } + } +} + +void main() { + const uint first_row = NUM_ROWS * (gl_WorkGroupID.x + gl_NumWorkGroups.x * gl_WorkGroupID.z); + + // do NUM_ROWS at a time, unless there aren't enough remaining rows + if (first_row + NUM_ROWS <= p.stride_d) { + compute_outputs(first_row, NUM_ROWS); + } else { + if (first_row >= p.stride_d) { + return; + } + compute_outputs(first_row, p.stride_d - first_row); } } diff --git a/ggml/src/ggml-vulkan/vulkan-shaders/mul_mat_vec_q3_k.comp b/ggml/src/ggml-vulkan/vulkan-shaders/mul_mat_vec_q3_k.comp index b19c38111..82ec42d25 100644 --- a/ggml/src/ggml-vulkan/vulkan-shaders/mul_mat_vec_q3_k.comp +++ b/ggml/src/ggml-vulkan/vulkan-shaders/mul_mat_vec_q3_k.comp @@ -6,21 +6,15 @@ layout(local_size_x_id = 0, local_size_y = 1, local_size_z = 1) in; layout (constant_id = 0) const uint BLOCK_SIZE = 32; +layout (constant_id = 1) const uint NUM_ROWS = 1; -shared FLOAT_TYPE tmp[BLOCK_SIZE]; - -void main() { - const uint row = gl_WorkGroupID.x + gl_NumWorkGroups.x * gl_WorkGroupID.z; - - if (row >= p.stride_d) { - return; - } +shared FLOAT_TYPE tmpsh[NUM_ROWS][BLOCK_SIZE]; +void compute_outputs(const uint32_t first_row, const uint32_t num_rows) { uint a_offset, b_offset, d_offset; get_offsets(a_offset, b_offset, d_offset); const uint num_blocks_per_row = p.ncols / QUANT_K; - const uint ib0 = a_offset / QUANT_K + row*num_blocks_per_row; // 16 threads are used to process each block const uint it_size = gl_WorkGroupSize.x/16; @@ -35,19 +29,21 @@ void main() { const uint8_t m = uint8_t(1 << (4 * v_im)); - const uint l0 = 2*v_in; // 0...15 + const uint l0 = 2*v_in; // 0...15 const uint q_offset = 32*v_im + l0; const uint y_offset = 128*v_im + l0; - FLOAT_TYPE temp = FLOAT_TYPE(0.0); // partial sum for thread in warp + FLOAT_TYPE temp[NUM_ROWS]; + + [[unroll]] for (uint i = 0; i < NUM_ROWS; ++i) { + temp[i] = FLOAT_TYPE(0); + } const uint s_shift = 4 * v_im; [[unroll]] for (uint i = ix; i < num_blocks_per_row; i += it_size) { const uint y_idx = i * QUANT_K + y_offset; - const FLOAT_TYPE d = FLOAT_TYPE(data_a[ib0 + i].d); - B_TYPE_VEC2 b0 = data_b_v2[(b_offset + y_idx) / 2 + 0]; B_TYPE_VEC2 b16 = data_b_v2[(b_offset + y_idx) / 2 + 8]; B_TYPE_VEC2 b32 = data_b_v2[(b_offset + y_idx) / 2 + 16]; @@ -57,44 +53,68 @@ void main() { B_TYPE_VEC2 b96 = data_b_v2[(b_offset + y_idx) / 2 + 48]; B_TYPE_VEC2 b112 = data_b_v2[(b_offset + y_idx) / 2 + 56]; - uint16_t s0_16 = data_a_packed16[ib0 + i].scales[0]; - uint16_t s2_16 = data_a_packed16[ib0 + i].scales[1]; - uint16_t s4_16 = data_a_packed16[ib0 + i].scales[2]; - uint16_t s6_16 = data_a_packed16[ib0 + i].scales[3]; - uint16_t s8_16 = data_a_packed16[ib0 + i].scales[4]; - uint16_t s10_16 = data_a_packed16[ib0 + i].scales[5]; - u8vec2 s0 = unpack8(s0_16); - u8vec2 s2 = unpack8(s2_16); - u8vec2 s4 = unpack8(s4_16); - u8vec2 s6 = unpack8(s6_16); - u8vec2 s8 = unpack8(s8_16); - u8vec2 s10 = unpack8(s10_16); + [[unroll]] for (uint n = 0; n < num_rows; ++n) { + const uint ib0 = a_offset / QUANT_K + (first_row+n)*num_blocks_per_row; + const FLOAT_TYPE d = FLOAT_TYPE(data_a[ib0 + i].d); - FLOAT_TYPE sum = FLOAT_TYPE(0.0); - [[unroll]] for (int l = 0; l < 2; ++l) { - sum = fma(FLOAT_TYPE(b0[l]) * FLOAT_TYPE(int8_t(((s0[0] >> s_shift) & 0xF) | ((s8[0] >> (s_shift + 0) & 0x3) << 4)) - 32), FLOAT_TYPE(((data_a[ib0 + i].qs[q_offset + l ] ) & 3) - (((data_a[ib0 + i].hmask[l0 + l ] & (m << 0)) != 0) ? 0 : 4)), - fma(FLOAT_TYPE(b32[l]) * FLOAT_TYPE(int8_t(((s2[0] >> s_shift) & 0xF) | ((s10[0] >> (s_shift + 0) & 0x3) << 4)) - 32), FLOAT_TYPE(((data_a[ib0 + i].qs[q_offset + l ] >> 2) & 3) - (((data_a[ib0 + i].hmask[l0 + l ] & (m << 1)) != 0) ? 0 : 4)), - fma(FLOAT_TYPE(b64[l]) * FLOAT_TYPE(int8_t(((s4[0] >> s_shift) & 0xF) | ((s8[0] >> (s_shift + 2) & 0x3) << 4)) - 32), FLOAT_TYPE(((data_a[ib0 + i].qs[q_offset + l ] >> 4) & 3) - (((data_a[ib0 + i].hmask[l0 + l ] & (m << 2)) != 0) ? 0 : 4)), - fma(FLOAT_TYPE(b96[l]) * FLOAT_TYPE(int8_t(((s6[0] >> s_shift) & 0xF) | ((s10[0] >> (s_shift + 2) & 0x3) << 4)) - 32), FLOAT_TYPE(((data_a[ib0 + i].qs[q_offset + l ] >> 6) & 3) - (((data_a[ib0 + i].hmask[l0 + l ] & (m << 3)) != 0) ? 0 : 4)), - fma(FLOAT_TYPE(b16[l]) * FLOAT_TYPE(int8_t(((s0[1] >> s_shift) & 0xF) | ((s8[1] >> (s_shift + 0) & 0x3) << 4)) - 32), FLOAT_TYPE(((data_a[ib0 + i].qs[q_offset + l+16] ) & 3) - (((data_a[ib0 + i].hmask[l0 + l+16] & (m << 0)) != 0) ? 0 : 4)), - fma(FLOAT_TYPE(b48[l]) * FLOAT_TYPE(int8_t(((s2[1] >> s_shift) & 0xF) | ((s10[1] >> (s_shift + 0) & 0x3) << 4)) - 32), FLOAT_TYPE(((data_a[ib0 + i].qs[q_offset + l+16] >> 2) & 3) - (((data_a[ib0 + i].hmask[l0 + l+16] & (m << 1)) != 0) ? 0 : 4)), - fma(FLOAT_TYPE(b80[l]) * FLOAT_TYPE(int8_t(((s4[1] >> s_shift) & 0xF) | ((s8[1] >> (s_shift + 2) & 0x3) << 4)) - 32), FLOAT_TYPE(((data_a[ib0 + i].qs[q_offset + l+16] >> 4) & 3) - (((data_a[ib0 + i].hmask[l0 + l+16] & (m << 2)) != 0) ? 0 : 4)), - fma(FLOAT_TYPE(b112[l]) * FLOAT_TYPE(int8_t(((s6[1] >> s_shift) & 0xF) | ((s10[1] >> (s_shift + 2) & 0x3) << 4)) - 32), FLOAT_TYPE(((data_a[ib0 + i].qs[q_offset + l+16] >> 6) & 3) - (((data_a[ib0 + i].hmask[l0 + l+16] & (m << 3)) != 0) ? 0 : 4)), sum)))))))); + uint16_t s0_16 = data_a_packed16[ib0 + i].scales[0]; + uint16_t s2_16 = data_a_packed16[ib0 + i].scales[1]; + uint16_t s4_16 = data_a_packed16[ib0 + i].scales[2]; + uint16_t s6_16 = data_a_packed16[ib0 + i].scales[3]; + uint16_t s8_16 = data_a_packed16[ib0 + i].scales[4]; + uint16_t s10_16 = data_a_packed16[ib0 + i].scales[5]; + u8vec2 s0 = unpack8(s0_16); + u8vec2 s2 = unpack8(s2_16); + u8vec2 s4 = unpack8(s4_16); + u8vec2 s6 = unpack8(s6_16); + u8vec2 s8 = unpack8(s8_16); + u8vec2 s10 = unpack8(s10_16); + + FLOAT_TYPE sum = FLOAT_TYPE(0.0); + [[unroll]] for (int l = 0; l < 2; ++l) { + sum = fma(FLOAT_TYPE(b0[l]) * FLOAT_TYPE(int8_t(((s0[0] >> s_shift) & 0xF) | ((s8[0] >> (s_shift + 0) & 0x3) << 4)) - 32), FLOAT_TYPE(((data_a[ib0 + i].qs[q_offset + l ] ) & 3) - (((data_a[ib0 + i].hmask[l0 + l ] & (m << 0)) != 0) ? 0 : 4)), + fma(FLOAT_TYPE(b32[l]) * FLOAT_TYPE(int8_t(((s2[0] >> s_shift) & 0xF) | ((s10[0] >> (s_shift + 0) & 0x3) << 4)) - 32), FLOAT_TYPE(((data_a[ib0 + i].qs[q_offset + l ] >> 2) & 3) - (((data_a[ib0 + i].hmask[l0 + l ] & (m << 1)) != 0) ? 0 : 4)), + fma(FLOAT_TYPE(b64[l]) * FLOAT_TYPE(int8_t(((s4[0] >> s_shift) & 0xF) | ((s8[0] >> (s_shift + 2) & 0x3) << 4)) - 32), FLOAT_TYPE(((data_a[ib0 + i].qs[q_offset + l ] >> 4) & 3) - (((data_a[ib0 + i].hmask[l0 + l ] & (m << 2)) != 0) ? 0 : 4)), + fma(FLOAT_TYPE(b96[l]) * FLOAT_TYPE(int8_t(((s6[0] >> s_shift) & 0xF) | ((s10[0] >> (s_shift + 2) & 0x3) << 4)) - 32), FLOAT_TYPE(((data_a[ib0 + i].qs[q_offset + l ] >> 6) & 3) - (((data_a[ib0 + i].hmask[l0 + l ] & (m << 3)) != 0) ? 0 : 4)), + fma(FLOAT_TYPE(b16[l]) * FLOAT_TYPE(int8_t(((s0[1] >> s_shift) & 0xF) | ((s8[1] >> (s_shift + 0) & 0x3) << 4)) - 32), FLOAT_TYPE(((data_a[ib0 + i].qs[q_offset + l+16] ) & 3) - (((data_a[ib0 + i].hmask[l0 + l+16] & (m << 0)) != 0) ? 0 : 4)), + fma(FLOAT_TYPE(b48[l]) * FLOAT_TYPE(int8_t(((s2[1] >> s_shift) & 0xF) | ((s10[1] >> (s_shift + 0) & 0x3) << 4)) - 32), FLOAT_TYPE(((data_a[ib0 + i].qs[q_offset + l+16] >> 2) & 3) - (((data_a[ib0 + i].hmask[l0 + l+16] & (m << 1)) != 0) ? 0 : 4)), + fma(FLOAT_TYPE(b80[l]) * FLOAT_TYPE(int8_t(((s4[1] >> s_shift) & 0xF) | ((s8[1] >> (s_shift + 2) & 0x3) << 4)) - 32), FLOAT_TYPE(((data_a[ib0 + i].qs[q_offset + l+16] >> 4) & 3) - (((data_a[ib0 + i].hmask[l0 + l+16] & (m << 2)) != 0) ? 0 : 4)), + fma(FLOAT_TYPE(b112[l]) * FLOAT_TYPE(int8_t(((s6[1] >> s_shift) & 0xF) | ((s10[1] >> (s_shift + 2) & 0x3) << 4)) - 32), FLOAT_TYPE(((data_a[ib0 + i].qs[q_offset + l+16] >> 6) & 3) - (((data_a[ib0 + i].hmask[l0 + l+16] & (m << 3)) != 0) ? 0 : 4)), sum)))))))); + } + temp[n] = fma(d, sum, temp[n]); } - temp = fma(d, sum, temp); } - tmp[gl_LocalInvocationID.x] = temp; - // sum up partial sums and write back result + [[unroll]] for (uint n = 0; n < num_rows; ++n) { + tmpsh[n][tid] = temp[n]; + } barrier(); - [[unroll]] for (uint s = gl_WorkGroupSize.x/2; s > 0; s >>= 1) { + [[unroll]] for (uint s = BLOCK_SIZE/2; s > 0; s >>= 1) { if (tid < s) { - tmp[tid] += tmp[tid + s]; + [[unroll]] for (uint n = 0; n < num_rows; ++n) { + tmpsh[n][tid] += tmpsh[n][tid + s]; + } } barrier(); } if (tid == 0) { - data_d[d_offset + row] = D_TYPE(tmp[0]); + [[unroll]] for (uint n = 0; n < num_rows; ++n) { + data_d[d_offset + first_row + n] = D_TYPE(tmpsh[n][0]); + } + } +} + +void main() { + const uint first_row = NUM_ROWS * (gl_WorkGroupID.x + gl_NumWorkGroups.x * gl_WorkGroupID.z); + + // do NUM_ROWS at a time, unless there aren't enough remaining rows + if (first_row + NUM_ROWS <= p.stride_d) { + compute_outputs(first_row, NUM_ROWS); + } else { + if (first_row >= p.stride_d) { + return; + } + compute_outputs(first_row, p.stride_d - first_row); } } diff --git a/ggml/src/ggml-vulkan/vulkan-shaders/mul_mat_vec_q4_k.comp b/ggml/src/ggml-vulkan/vulkan-shaders/mul_mat_vec_q4_k.comp index b86d28589..677c207a8 100644 --- a/ggml/src/ggml-vulkan/vulkan-shaders/mul_mat_vec_q4_k.comp +++ b/ggml/src/ggml-vulkan/vulkan-shaders/mul_mat_vec_q4_k.comp @@ -7,21 +7,15 @@ layout(local_size_x_id = 0, local_size_y = 1, local_size_z = 1) in; layout (constant_id = 0) const uint BLOCK_SIZE = 32; +layout (constant_id = 1) const uint NUM_ROWS = 1; -shared FLOAT_TYPE tmp[BLOCK_SIZE]; - -void main() { - const uint row = gl_WorkGroupID.x + gl_NumWorkGroups.x * gl_WorkGroupID.z; - - if (row >= p.stride_d) { - return; - } +shared FLOAT_TYPE tmpsh[NUM_ROWS][BLOCK_SIZE]; +void compute_outputs(const uint32_t first_row, const uint32_t num_rows) { uint a_offset, b_offset, d_offset; get_offsets(a_offset, b_offset, d_offset); const uint num_blocks_per_row = p.ncols / QUANT_K; - const uint ib0 = a_offset / QUANT_K + row*num_blocks_per_row; // 16 threads are used to process each block const uint it_size = gl_WorkGroupSize.x/16; @@ -31,8 +25,8 @@ void main() { const uint step = 4; - const uint il = itid/step; // 0...3 - const uint ir = itid - step*il; // 0...7 or 0...3 + const uint il = itid/step; // 0...3 + const uint ir = itid - step*il; // 0...7 or 0...3 const uint n = 4; const uint v_im = il / 2; // 0 or 1. 0 computes 0,32 + 128,160, 1 computes 64,96 + 192,224 @@ -42,90 +36,116 @@ void main() { const uint q_offset = 32*v_im + l0; const uint y_offset = 64*v_im + l0; - FLOAT_TYPE temp = FLOAT_TYPE(0.0); // partial sum for thread in warp + FLOAT_TYPE temp[NUM_ROWS]; + + [[unroll]] for (uint i = 0; i < NUM_ROWS; ++i) { + temp[i] = FLOAT_TYPE(0); + } [[unroll]] for (uint i = ix; i < num_blocks_per_row; i += it_size) { const uint y1_idx = i * QUANT_K + y_offset; const uint y2_idx = y1_idx + 128; - f16vec2 d = data_a[ib0 + i].d; - const FLOAT_TYPE dall = FLOAT_TYPE(d.x); - const FLOAT_TYPE dmin = FLOAT_TYPE(d.y); - - uint32_t scale0_u32 = data_a_packed16[ib0 + i].scales[v_im ]; - uint32_t scale4_u32 = data_a_packed16[ib0 + i].scales[v_im + 2]; - uint32_t scale8_u32 = data_a_packed16[ib0 + i].scales[v_im + 4]; - uvec4 scale0 = uvec4(unpack8(scale0_u32)); - uvec4 scale4 = uvec4(unpack8(scale4_u32)); - uvec4 scale8 = uvec4(unpack8(scale8_u32)); - - const uint32_t sc0 = ( scale0.x & 0x3f); - const uint32_t sc1 = ( scale0.y & 0x3f); - const uint32_t sc2 = ( scale4.x & 0x3f); - const uint32_t sc3 = ( scale4.y & 0x3f); - const uint32_t sc4 = (( scale8.x & 0x0f) | ((scale0.x & 0xc0) >> 2)); - const uint32_t sc5 = (( scale8.y & 0x0f) | ((scale0.y & 0xc0) >> 2)); - const uint32_t sc6 = (((scale8.x >> 4) & 0x0f) | ((scale4.x & 0xc0) >> 2)); - const uint32_t sc7 = (((scale8.y >> 4) & 0x0f) | ((scale4.y & 0xc0) >> 2)); - - uint32_t qs0_u32 = data_a_packed32[ib0 + i].qs[q_offset / 4]; - uint32_t qs64_u32 = data_a_packed32[ib0 + i].qs[q_offset / 4 + 16]; - - uint32_t qs0_u32_lo4 = qs0_u32 & 0x0F0F0F0F; - uint32_t qs0_u32_hi4 = (qs0_u32 >> 4) & 0x0F0F0F0F; - uint32_t qs64_u32_lo4 = qs64_u32 & 0x0F0F0F0F; - uint32_t qs64_u32_hi4 = (qs64_u32 >> 4) & 0x0F0F0F0F; - - uvec4 qs0_lo4 = uvec4(unpack8(qs0_u32_lo4)); - uvec4 qs64_lo4 = uvec4(unpack8(qs64_u32_lo4)); - uvec4 qs0_hi4 = uvec4(unpack8(qs0_u32_hi4)); - uvec4 qs64_hi4 = uvec4(unpack8(qs64_u32_hi4)); - - const uint32_t q4_0 = qs0_lo4.x; - const uint32_t q4_1 = qs0_lo4.y; - const uint32_t q4_2 = qs0_lo4.z; - const uint32_t q4_3 = qs0_lo4.w; - const uint32_t q4_4 = qs0_hi4.x; - const uint32_t q4_5 = qs0_hi4.y; - const uint32_t q4_6 = qs0_hi4.z; - const uint32_t q4_7 = qs0_hi4.w; - const uint32_t q4_8 = qs64_lo4.x; - const uint32_t q4_9 = qs64_lo4.y; - const uint32_t q4_10 = qs64_lo4.z; - const uint32_t q4_11 = qs64_lo4.w; - const uint32_t q4_12 = qs64_hi4.x; - const uint32_t q4_13 = qs64_hi4.y; - const uint32_t q4_14 = qs64_hi4.z; - const uint32_t q4_15 = qs64_hi4.w; - B_TYPE_VEC4 by10 = data_b_v4[(b_offset + y1_idx) / 4]; B_TYPE_VEC4 by132 = data_b_v4[(b_offset + y1_idx) / 4 + 8]; B_TYPE_VEC4 by20 = data_b_v4[(b_offset + y2_idx) / 4]; B_TYPE_VEC4 by232 = data_b_v4[(b_offset + y2_idx) / 4 + 8]; - const FLOAT_TYPE sx = fma(FLOAT_TYPE(by10.x), q4_0, fma(FLOAT_TYPE(by10.y), q4_1, fma(FLOAT_TYPE(by10.z), q4_2, FLOAT_TYPE(by10.w) * q4_3))); - const FLOAT_TYPE sy = fma(FLOAT_TYPE(by132.x), q4_4, fma(FLOAT_TYPE(by132.y), q4_5, fma(FLOAT_TYPE(by132.z), q4_6, FLOAT_TYPE(by132.w) * q4_7))); - const FLOAT_TYPE sz = fma(FLOAT_TYPE(by20.x), q4_8, fma(FLOAT_TYPE(by20.y), q4_9, fma(FLOAT_TYPE(by20.z), q4_10, FLOAT_TYPE(by20.w) * q4_11))); - const FLOAT_TYPE sw = fma(FLOAT_TYPE(by232.x), q4_12, fma(FLOAT_TYPE(by232.y), q4_13, fma(FLOAT_TYPE(by232.z), q4_14, FLOAT_TYPE(by232.w) * q4_15))); - const FLOAT_TYPE smin = - fma(FLOAT_TYPE(by10.x), sc2, fma(FLOAT_TYPE(by132.x), sc3, fma(FLOAT_TYPE(by20.x), sc6, fma(FLOAT_TYPE(by232.x), sc7, - fma(FLOAT_TYPE(by10.y), sc2, fma(FLOAT_TYPE(by132.y), sc3, fma(FLOAT_TYPE(by20.y), sc6, fma(FLOAT_TYPE(by232.y), sc7, - fma(FLOAT_TYPE(by10.z), sc2, fma(FLOAT_TYPE(by132.z), sc3, fma(FLOAT_TYPE(by20.z), sc6, fma(FLOAT_TYPE(by232.z), sc7, - fma(FLOAT_TYPE(by10.w), sc2, fma(FLOAT_TYPE(by132.w), sc3, fma(FLOAT_TYPE(by20.w), sc6, FLOAT_TYPE(by232.w) * sc7))))))))))))))); - temp = fma(dall, fma(sx, sc0, fma(sy, sc1, fma(sz, sc4, sw * sc5))), fma(-dmin, smin, temp)); + [[unroll]] for (uint n = 0; n < num_rows; ++n) { + const uint ib0 = a_offset / QUANT_K + (first_row+n)*num_blocks_per_row; + f16vec2 d = data_a[ib0 + i].d; + const FLOAT_TYPE dall = FLOAT_TYPE(d.x); + const FLOAT_TYPE dmin = FLOAT_TYPE(d.y); + + uint32_t scale0_u32 = data_a_packed16[ib0 + i].scales[v_im ]; + uint32_t scale4_u32 = data_a_packed16[ib0 + i].scales[v_im + 2]; + uint32_t scale8_u32 = data_a_packed16[ib0 + i].scales[v_im + 4]; + uvec4 scale0 = uvec4(unpack8(scale0_u32)); + uvec4 scale4 = uvec4(unpack8(scale4_u32)); + uvec4 scale8 = uvec4(unpack8(scale8_u32)); + + const uint32_t sc0 = ( scale0.x & 0x3f); + const uint32_t sc1 = ( scale0.y & 0x3f); + const uint32_t sc2 = ( scale4.x & 0x3f); + const uint32_t sc3 = ( scale4.y & 0x3f); + const uint32_t sc4 = (( scale8.x & 0x0f) | ((scale0.x & 0xc0) >> 2)); + const uint32_t sc5 = (( scale8.y & 0x0f) | ((scale0.y & 0xc0) >> 2)); + const uint32_t sc6 = (((scale8.x >> 4) & 0x0f) | ((scale4.x & 0xc0) >> 2)); + const uint32_t sc7 = (((scale8.y >> 4) & 0x0f) | ((scale4.y & 0xc0) >> 2)); + + uint32_t qs0_u32 = data_a_packed32[ib0 + i].qs[q_offset / 4]; + uint32_t qs64_u32 = data_a_packed32[ib0 + i].qs[q_offset / 4 + 16]; + + uint32_t qs0_u32_lo4 = qs0_u32 & 0x0F0F0F0F; + uint32_t qs0_u32_hi4 = (qs0_u32 >> 4) & 0x0F0F0F0F; + uint32_t qs64_u32_lo4 = qs64_u32 & 0x0F0F0F0F; + uint32_t qs64_u32_hi4 = (qs64_u32 >> 4) & 0x0F0F0F0F; + + uvec4 qs0_lo4 = uvec4(unpack8(qs0_u32_lo4)); + uvec4 qs64_lo4 = uvec4(unpack8(qs64_u32_lo4)); + uvec4 qs0_hi4 = uvec4(unpack8(qs0_u32_hi4)); + uvec4 qs64_hi4 = uvec4(unpack8(qs64_u32_hi4)); + + const uint32_t q4_0 = qs0_lo4.x; + const uint32_t q4_1 = qs0_lo4.y; + const uint32_t q4_2 = qs0_lo4.z; + const uint32_t q4_3 = qs0_lo4.w; + const uint32_t q4_4 = qs0_hi4.x; + const uint32_t q4_5 = qs0_hi4.y; + const uint32_t q4_6 = qs0_hi4.z; + const uint32_t q4_7 = qs0_hi4.w; + const uint32_t q4_8 = qs64_lo4.x; + const uint32_t q4_9 = qs64_lo4.y; + const uint32_t q4_10 = qs64_lo4.z; + const uint32_t q4_11 = qs64_lo4.w; + const uint32_t q4_12 = qs64_hi4.x; + const uint32_t q4_13 = qs64_hi4.y; + const uint32_t q4_14 = qs64_hi4.z; + const uint32_t q4_15 = qs64_hi4.w; + + const FLOAT_TYPE sx = fma(FLOAT_TYPE(by10.x), q4_0, fma(FLOAT_TYPE(by10.y), q4_1, fma(FLOAT_TYPE(by10.z), q4_2, FLOAT_TYPE(by10.w) * q4_3))); + const FLOAT_TYPE sy = fma(FLOAT_TYPE(by132.x), q4_4, fma(FLOAT_TYPE(by132.y), q4_5, fma(FLOAT_TYPE(by132.z), q4_6, FLOAT_TYPE(by132.w) * q4_7))); + const FLOAT_TYPE sz = fma(FLOAT_TYPE(by20.x), q4_8, fma(FLOAT_TYPE(by20.y), q4_9, fma(FLOAT_TYPE(by20.z), q4_10, FLOAT_TYPE(by20.w) * q4_11))); + const FLOAT_TYPE sw = fma(FLOAT_TYPE(by232.x), q4_12, fma(FLOAT_TYPE(by232.y), q4_13, fma(FLOAT_TYPE(by232.z), q4_14, FLOAT_TYPE(by232.w) * q4_15))); + const FLOAT_TYPE smin = + fma(FLOAT_TYPE(by10.x), sc2, fma(FLOAT_TYPE(by132.x), sc3, fma(FLOAT_TYPE(by20.x), sc6, fma(FLOAT_TYPE(by232.x), sc7, + fma(FLOAT_TYPE(by10.y), sc2, fma(FLOAT_TYPE(by132.y), sc3, fma(FLOAT_TYPE(by20.y), sc6, fma(FLOAT_TYPE(by232.y), sc7, + fma(FLOAT_TYPE(by10.z), sc2, fma(FLOAT_TYPE(by132.z), sc3, fma(FLOAT_TYPE(by20.z), sc6, fma(FLOAT_TYPE(by232.z), sc7, + fma(FLOAT_TYPE(by10.w), sc2, fma(FLOAT_TYPE(by132.w), sc3, fma(FLOAT_TYPE(by20.w), sc6, FLOAT_TYPE(by232.w) * sc7))))))))))))))); + temp[n] = fma(dall, fma(sx, sc0, fma(sy, sc1, fma(sz, sc4, sw * sc5))), fma(-dmin, smin, temp[n])); + } } - tmp[gl_LocalInvocationID.x] = temp; - // sum up partial sums and write back result + [[unroll]] for (uint n = 0; n < num_rows; ++n) { + tmpsh[n][tid] = temp[n]; + } barrier(); - [[unroll]] for (uint s = gl_WorkGroupSize.x/2; s > 0; s >>= 1) { + [[unroll]] for (uint s = BLOCK_SIZE/2; s > 0; s >>= 1) { if (tid < s) { - tmp[tid] += tmp[tid + s]; + [[unroll]] for (uint n = 0; n < num_rows; ++n) { + tmpsh[n][tid] += tmpsh[n][tid + s]; + } } barrier(); } if (tid == 0) { - data_d[d_offset + row] = D_TYPE(tmp[0]); + [[unroll]] for (uint n = 0; n < num_rows; ++n) { + data_d[d_offset + first_row + n] = D_TYPE(tmpsh[n][0]); + } + } +} + +void main() { + const uint first_row = NUM_ROWS * (gl_WorkGroupID.x + gl_NumWorkGroups.x * gl_WorkGroupID.z); + + // do NUM_ROWS at a time, unless there aren't enough remaining rows + if (first_row + NUM_ROWS <= p.stride_d) { + compute_outputs(first_row, NUM_ROWS); + } else { + if (first_row >= p.stride_d) { + return; + } + compute_outputs(first_row, p.stride_d - first_row); } } diff --git a/ggml/src/ggml-vulkan/vulkan-shaders/mul_mat_vec_q5_k.comp b/ggml/src/ggml-vulkan/vulkan-shaders/mul_mat_vec_q5_k.comp index fd243cf91..ed3c25d89 100644 --- a/ggml/src/ggml-vulkan/vulkan-shaders/mul_mat_vec_q5_k.comp +++ b/ggml/src/ggml-vulkan/vulkan-shaders/mul_mat_vec_q5_k.comp @@ -7,21 +7,15 @@ layout(local_size_x_id = 0, local_size_y = 1, local_size_z = 1) in; layout (constant_id = 0) const uint BLOCK_SIZE = 32; +layout (constant_id = 1) const uint NUM_ROWS = 1; -shared FLOAT_TYPE tmp[BLOCK_SIZE]; - -void main() { - const uint row = gl_WorkGroupID.x + gl_NumWorkGroups.x * gl_WorkGroupID.z; - - if (row >= p.stride_d) { - return; - } +shared FLOAT_TYPE tmpsh[NUM_ROWS][BLOCK_SIZE]; +void compute_outputs(const uint32_t first_row, const uint32_t num_rows) { uint a_offset, b_offset, d_offset; get_offsets(a_offset, b_offset, d_offset); const uint num_blocks_per_row = p.ncols / QUANT_K; - const uint ib0 = a_offset / QUANT_K + row*num_blocks_per_row; // 16 threads are used to process each block const uint it_size = gl_WorkGroupSize.x/16; @@ -39,74 +33,16 @@ void main() { const uint q_offset = 32*v_im + l0; const uint y_offset = 64*v_im + l0; - FLOAT_TYPE temp = FLOAT_TYPE(0.0); // partial sum for thread in warp + FLOAT_TYPE temp[NUM_ROWS]; + + [[unroll]] for (uint i = 0; i < NUM_ROWS; ++i) { + temp[i] = FLOAT_TYPE(0); + } [[unroll]] for (uint i = ix; i < num_blocks_per_row; i += it_size) { const uint y1_idx = i * QUANT_K + y_offset; const uint y2_idx = y1_idx + 128; - f16vec2 d = data_a[ib0 + i].d; - const FLOAT_TYPE dall = FLOAT_TYPE(d.x); - const FLOAT_TYPE dmin = FLOAT_TYPE(d.y); - - uint32_t scale0_u32 = data_a_packed16[ib0 + i].scales[v_im ]; - uint32_t scale4_u32 = data_a_packed16[ib0 + i].scales[v_im + 2]; - uint32_t scale8_u32 = data_a_packed16[ib0 + i].scales[v_im + 4]; - uvec4 scale0 = uvec4(unpack8(scale0_u32)); - uvec4 scale4 = uvec4(unpack8(scale4_u32)); - uvec4 scale8 = uvec4(unpack8(scale8_u32)); - - const uint32_t sc0 = ( scale0.x & 0x3f); - const uint32_t sc1 = ( scale0.y & 0x3f); - const uint32_t sc2 = ( scale4.x & 0x3f); - const uint32_t sc3 = ( scale4.y & 0x3f); - const uint32_t sc4 = (( scale8.x & 0x0f) | ((scale0.x & 0xc0) >> 2)); - const uint32_t sc5 = (( scale8.y & 0x0f) | ((scale0.y & 0xc0) >> 2)); - const uint32_t sc6 = (((scale8.x >> 4) & 0x0f) | ((scale4.x & 0xc0) >> 2)); - const uint32_t sc7 = (((scale8.y >> 4) & 0x0f) | ((scale4.y & 0xc0) >> 2)); - - uint32_t qs0_16_u32 = uint32_t(data_a_packed16[ib0 + i].qs[q_offset / 2]) | (uint32_t(data_a_packed16[ib0 + i].qs[q_offset / 2 + 8]) << 16); - uint32_t qs64_80_u32 = uint32_t(data_a_packed16[ib0 + i].qs[q_offset / 2 + 32]) | (uint32_t(data_a_packed16[ib0 + i].qs[q_offset / 2 + 40]) << 16); - - uint32_t qs0_16_u32_lo4 = qs0_16_u32 & 0x0F0F0F0F; - uint32_t qs0_16_u32_hi4 = (qs0_16_u32 >> 4) & 0x0F0F0F0F; - uint32_t qs64_80_u32_lo4 = qs64_80_u32 & 0x0F0F0F0F; - uint32_t qs64_80_u32_hi4 = (qs64_80_u32 >> 4) & 0x0F0F0F0F; - - uint32_t qh = pack32(u16vec2(data_a_packed16[ib0 + i].qh[l0 / 2], data_a_packed16[ib0 + i].qh[l0 / 2 + 8])); - - uint32_t qs0_16_lo4_offset16 = ((qh >> (2*v_im)) & 0x01010101) << 4; - uint32_t qs0_16_hi4_offset16 = ((qh >> (2*v_im)) & 0x02020202) << 3; - uint32_t qs64_80_lo4_offset16 = ((qh >> (2*v_im)) & 0x10101010) << 0; - uint32_t qs64_80_hi4_offset16 = ((qh >> (2*v_im)) & 0x20202020) >> 1; - - qs0_16_u32_lo4 += qs0_16_lo4_offset16; - qs0_16_u32_hi4 += qs0_16_hi4_offset16; - qs64_80_u32_lo4 += qs64_80_lo4_offset16; - qs64_80_u32_hi4 += qs64_80_hi4_offset16; - - uvec4 qs0_16_lo4 = uvec4(unpack8(qs0_16_u32_lo4)); - uvec4 qs64_80_lo4 = uvec4(unpack8(qs64_80_u32_lo4)); - uvec4 qs0_16_hi4 = uvec4(unpack8(qs0_16_u32_hi4)); - uvec4 qs64_80_hi4 = uvec4(unpack8(qs64_80_u32_hi4)); - - const uint32_t q4_0 = qs0_16_lo4.x; - const uint32_t q4_1 = qs0_16_lo4.y; - const uint32_t q4_2 = qs0_16_lo4.z; - const uint32_t q4_3 = qs0_16_lo4.w; - const uint32_t q4_4 = qs0_16_hi4.x; - const uint32_t q4_5 = qs0_16_hi4.y; - const uint32_t q4_6 = qs0_16_hi4.z; - const uint32_t q4_7 = qs0_16_hi4.w; - const uint32_t q4_8 = qs64_80_lo4.x; - const uint32_t q4_9 = qs64_80_lo4.y; - const uint32_t q4_10 = qs64_80_lo4.z; - const uint32_t q4_11 = qs64_80_lo4.w; - const uint32_t q4_12 = qs64_80_hi4.x; - const uint32_t q4_13 = qs64_80_hi4.y; - const uint32_t q4_14 = qs64_80_hi4.z; - const uint32_t q4_15 = qs64_80_hi4.w; - B_TYPE_VEC2 by10 = data_b_v2[(b_offset + y1_idx) / 2]; B_TYPE_VEC2 by116 = data_b_v2[(b_offset + y1_idx) / 2 + 8]; B_TYPE_VEC2 by132 = data_b_v2[(b_offset + y1_idx) / 2 + 16]; @@ -116,45 +52,129 @@ void main() { B_TYPE_VEC2 by232 = data_b_v2[(b_offset + y2_idx) / 2 + 16]; B_TYPE_VEC2 by248 = data_b_v2[(b_offset + y2_idx) / 2 + 24]; - const FLOAT_TYPE sx = - fma(FLOAT_TYPE(by10.x), q4_0, - fma(FLOAT_TYPE(by10.y), q4_1, - fma(FLOAT_TYPE(by116.x), q4_2, - FLOAT_TYPE(by116.y) * q4_3))); - const FLOAT_TYPE sy = - fma(FLOAT_TYPE(by132.x), q4_4, - fma(FLOAT_TYPE(by132.y), q4_5, - fma(FLOAT_TYPE(by148.x), q4_6, - FLOAT_TYPE(by148.y) * q4_7))); - const FLOAT_TYPE sz = - fma(FLOAT_TYPE(by20.x), q4_8, - fma(FLOAT_TYPE(by20.y), q4_9, - fma(FLOAT_TYPE(by216.x), q4_10, - FLOAT_TYPE(by216.y) * q4_11))); - const FLOAT_TYPE sw = - fma(FLOAT_TYPE(by232.x), q4_12, - fma(FLOAT_TYPE(by232.y), q4_13, - fma(FLOAT_TYPE(by248.x), q4_14, - FLOAT_TYPE(by248.y) * q4_15))); - const FLOAT_TYPE smin = - fma(FLOAT_TYPE(by10.x) + FLOAT_TYPE(by10.y) + FLOAT_TYPE(by116.x) + FLOAT_TYPE(by116.y), sc2, - fma(FLOAT_TYPE(by132.x) + FLOAT_TYPE(by132.y) + FLOAT_TYPE(by148.x) + FLOAT_TYPE(by148.y), sc3, - fma(FLOAT_TYPE(by20.x) + FLOAT_TYPE(by20.y) + FLOAT_TYPE(by216.x) + FLOAT_TYPE(by216.y), sc6, - (FLOAT_TYPE(by232.x) + FLOAT_TYPE(by232.y) + FLOAT_TYPE(by248.x) + FLOAT_TYPE(by248.y)) * sc7))); - temp = fma(dall, fma(sx, sc0, fma(sy, sc1, fma(sz, sc4, sw * sc5))), fma(-dmin, smin, temp)); + [[unroll]] for (uint n = 0; n < num_rows; ++n) { + const uint ib0 = a_offset / QUANT_K + (first_row+n)*num_blocks_per_row; + f16vec2 d = data_a[ib0 + i].d; + const FLOAT_TYPE dall = FLOAT_TYPE(d.x); + const FLOAT_TYPE dmin = FLOAT_TYPE(d.y); + + uint32_t scale0_u32 = data_a_packed16[ib0 + i].scales[v_im ]; + uint32_t scale4_u32 = data_a_packed16[ib0 + i].scales[v_im + 2]; + uint32_t scale8_u32 = data_a_packed16[ib0 + i].scales[v_im + 4]; + uvec4 scale0 = uvec4(unpack8(scale0_u32)); + uvec4 scale4 = uvec4(unpack8(scale4_u32)); + uvec4 scale8 = uvec4(unpack8(scale8_u32)); + + const uint32_t sc0 = ( scale0.x & 0x3f); + const uint32_t sc1 = ( scale0.y & 0x3f); + const uint32_t sc2 = ( scale4.x & 0x3f); + const uint32_t sc3 = ( scale4.y & 0x3f); + const uint32_t sc4 = (( scale8.x & 0x0f) | ((scale0.x & 0xc0) >> 2)); + const uint32_t sc5 = (( scale8.y & 0x0f) | ((scale0.y & 0xc0) >> 2)); + const uint32_t sc6 = (((scale8.x >> 4) & 0x0f) | ((scale4.x & 0xc0) >> 2)); + const uint32_t sc7 = (((scale8.y >> 4) & 0x0f) | ((scale4.y & 0xc0) >> 2)); + + uint32_t qs0_16_u32 = uint32_t(data_a_packed16[ib0 + i].qs[q_offset / 2]) | (uint32_t(data_a_packed16[ib0 + i].qs[q_offset / 2 + 8]) << 16); + uint32_t qs64_80_u32 = uint32_t(data_a_packed16[ib0 + i].qs[q_offset / 2 + 32]) | (uint32_t(data_a_packed16[ib0 + i].qs[q_offset / 2 + 40]) << 16); + + uint32_t qs0_16_u32_lo4 = qs0_16_u32 & 0x0F0F0F0F; + uint32_t qs0_16_u32_hi4 = (qs0_16_u32 >> 4) & 0x0F0F0F0F; + uint32_t qs64_80_u32_lo4 = qs64_80_u32 & 0x0F0F0F0F; + uint32_t qs64_80_u32_hi4 = (qs64_80_u32 >> 4) & 0x0F0F0F0F; + + uint32_t qh = pack32(u16vec2(data_a_packed16[ib0 + i].qh[l0 / 2], data_a_packed16[ib0 + i].qh[l0 / 2 + 8])); + + uint32_t qs0_16_lo4_offset16 = ((qh >> (2*v_im)) & 0x01010101) << 4; + uint32_t qs0_16_hi4_offset16 = ((qh >> (2*v_im)) & 0x02020202) << 3; + uint32_t qs64_80_lo4_offset16 = ((qh >> (2*v_im)) & 0x10101010) << 0; + uint32_t qs64_80_hi4_offset16 = ((qh >> (2*v_im)) & 0x20202020) >> 1; + + qs0_16_u32_lo4 += qs0_16_lo4_offset16; + qs0_16_u32_hi4 += qs0_16_hi4_offset16; + qs64_80_u32_lo4 += qs64_80_lo4_offset16; + qs64_80_u32_hi4 += qs64_80_hi4_offset16; + + uvec4 qs0_16_lo4 = uvec4(unpack8(qs0_16_u32_lo4)); + uvec4 qs64_80_lo4 = uvec4(unpack8(qs64_80_u32_lo4)); + uvec4 qs0_16_hi4 = uvec4(unpack8(qs0_16_u32_hi4)); + uvec4 qs64_80_hi4 = uvec4(unpack8(qs64_80_u32_hi4)); + + const uint32_t q4_0 = qs0_16_lo4.x; + const uint32_t q4_1 = qs0_16_lo4.y; + const uint32_t q4_2 = qs0_16_lo4.z; + const uint32_t q4_3 = qs0_16_lo4.w; + const uint32_t q4_4 = qs0_16_hi4.x; + const uint32_t q4_5 = qs0_16_hi4.y; + const uint32_t q4_6 = qs0_16_hi4.z; + const uint32_t q4_7 = qs0_16_hi4.w; + const uint32_t q4_8 = qs64_80_lo4.x; + const uint32_t q4_9 = qs64_80_lo4.y; + const uint32_t q4_10 = qs64_80_lo4.z; + const uint32_t q4_11 = qs64_80_lo4.w; + const uint32_t q4_12 = qs64_80_hi4.x; + const uint32_t q4_13 = qs64_80_hi4.y; + const uint32_t q4_14 = qs64_80_hi4.z; + const uint32_t q4_15 = qs64_80_hi4.w; + + const FLOAT_TYPE sx = + fma(FLOAT_TYPE(by10.x), q4_0, + fma(FLOAT_TYPE(by10.y), q4_1, + fma(FLOAT_TYPE(by116.x), q4_2, + FLOAT_TYPE(by116.y) * q4_3))); + const FLOAT_TYPE sy = + fma(FLOAT_TYPE(by132.x), q4_4, + fma(FLOAT_TYPE(by132.y), q4_5, + fma(FLOAT_TYPE(by148.x), q4_6, + FLOAT_TYPE(by148.y) * q4_7))); + const FLOAT_TYPE sz = + fma(FLOAT_TYPE(by20.x), q4_8, + fma(FLOAT_TYPE(by20.y), q4_9, + fma(FLOAT_TYPE(by216.x), q4_10, + FLOAT_TYPE(by216.y) * q4_11))); + const FLOAT_TYPE sw = + fma(FLOAT_TYPE(by232.x), q4_12, + fma(FLOAT_TYPE(by232.y), q4_13, + fma(FLOAT_TYPE(by248.x), q4_14, + FLOAT_TYPE(by248.y) * q4_15))); + const FLOAT_TYPE smin = + fma(FLOAT_TYPE(by10.x) + FLOAT_TYPE(by10.y) + FLOAT_TYPE(by116.x) + FLOAT_TYPE(by116.y), sc2, + fma(FLOAT_TYPE(by132.x) + FLOAT_TYPE(by132.y) + FLOAT_TYPE(by148.x) + FLOAT_TYPE(by148.y), sc3, + fma(FLOAT_TYPE(by20.x) + FLOAT_TYPE(by20.y) + FLOAT_TYPE(by216.x) + FLOAT_TYPE(by216.y), sc6, + (FLOAT_TYPE(by232.x) + FLOAT_TYPE(by232.y) + FLOAT_TYPE(by248.x) + FLOAT_TYPE(by248.y)) * sc7))); + temp[n] = fma(dall, fma(sx, sc0, fma(sy, sc1, fma(sz, sc4, sw * sc5))), fma(-dmin, smin, temp[n])); + } } - tmp[gl_LocalInvocationID.x] = temp; - // sum up partial sums and write back result + [[unroll]] for (uint n = 0; n < num_rows; ++n) { + tmpsh[n][tid] = temp[n]; + } barrier(); - [[unroll]] for (uint s = gl_WorkGroupSize.x/2; s > 0; s >>= 1) { + [[unroll]] for (uint s = BLOCK_SIZE/2; s > 0; s >>= 1) { if (tid < s) { - tmp[tid] += tmp[tid + s]; + [[unroll]] for (uint n = 0; n < num_rows; ++n) { + tmpsh[n][tid] += tmpsh[n][tid + s]; + } } barrier(); } if (tid == 0) { - data_d[d_offset + row] = D_TYPE(tmp[0]); + [[unroll]] for (uint n = 0; n < num_rows; ++n) { + data_d[d_offset + first_row + n] = D_TYPE(tmpsh[n][0]); + } + } +} + +void main() { + const uint first_row = NUM_ROWS * (gl_WorkGroupID.x + gl_NumWorkGroups.x * gl_WorkGroupID.z); + + // do NUM_ROWS at a time, unless there aren't enough remaining rows + if (first_row + NUM_ROWS <= p.stride_d) { + compute_outputs(first_row, NUM_ROWS); + } else { + if (first_row >= p.stride_d) { + return; + } + compute_outputs(first_row, p.stride_d - first_row); } } diff --git a/ggml/src/ggml-vulkan/vulkan-shaders/mul_mat_vec_q6_k.comp b/ggml/src/ggml-vulkan/vulkan-shaders/mul_mat_vec_q6_k.comp index 760aff854..fab4ff5ff 100644 --- a/ggml/src/ggml-vulkan/vulkan-shaders/mul_mat_vec_q6_k.comp +++ b/ggml/src/ggml-vulkan/vulkan-shaders/mul_mat_vec_q6_k.comp @@ -7,21 +7,15 @@ layout(local_size_x_id = 0, local_size_y = 1, local_size_z = 1) in; layout (constant_id = 0) const uint BLOCK_SIZE = 32; +layout (constant_id = 1) const uint NUM_ROWS = 1; -shared FLOAT_TYPE tmp[BLOCK_SIZE]; - -void main() { - const uint row = gl_WorkGroupID.x + gl_NumWorkGroups.x * gl_WorkGroupID.z; - - if (row >= p.stride_d) { - return; - } +shared FLOAT_TYPE tmpsh[NUM_ROWS][BLOCK_SIZE]; +void compute_outputs(const uint32_t first_row, const uint32_t num_rows) { uint a_offset, b_offset, d_offset; get_offsets(a_offset, b_offset, d_offset); const uint num_blocks_per_row = p.ncols / QUANT_K; - const uint ib0 = a_offset / QUANT_K + row*num_blocks_per_row; // 16 threads are used to process each block const uint it_size = gl_WorkGroupSize.x/16; @@ -42,69 +36,95 @@ void main() { const uint s_offset = 8*v_im + is; const uint y_offset = 128*v_im + l0; - FLOAT_TYPE temp = FLOAT_TYPE(0.0); // partial sum for thread in warp + FLOAT_TYPE temp[NUM_ROWS]; + + [[unroll]] for (uint i = 0; i < NUM_ROWS; ++i) { + temp[i] = FLOAT_TYPE(0); + } [[unroll]] for (uint i = ix; i < num_blocks_per_row; i += it_size) { - const uint y_idx = i * QUANT_K + y_offset; - - const FLOAT_TYPE d = FLOAT_TYPE(data_a[ib0 + i].d); - - FLOAT_TYPE scales[4]; - scales[0] = FLOAT_TYPE(data_a[ib0 + i].scales[s_offset + 0]); - scales[1] = FLOAT_TYPE(data_a[ib0 + i].scales[s_offset + 2]); - scales[2] = FLOAT_TYPE(data_a[ib0 + i].scales[s_offset + 4]); - scales[3] = FLOAT_TYPE(data_a[ib0 + i].scales[s_offset + 6]); - - uint32_t ql0_u32 = uint32_t(data_a_packed16[ib0 + i].ql[ql_offset / 2]) | (uint32_t(data_a_packed16[ib0 + i].ql[ql_offset / 2 + 1]) << 16); - uint32_t ql32_u32 = uint32_t(data_a_packed16[ib0 + i].ql[ql_offset / 2 + 16]) | (uint32_t(data_a_packed16[ib0 + i].ql[ql_offset / 2 + 17]) << 16); - - uint32_t ql0_u32_lo4 = ql0_u32 & 0x0F0F0F0F; - uint32_t ql0_u32_hi4 = (ql0_u32 >> 4) & 0x0F0F0F0F; - uint32_t ql32_u32_lo4 = ql32_u32 & 0x0F0F0F0F; - uint32_t ql32_u32_hi4 = (ql32_u32 >> 4) & 0x0F0F0F0F; - - uint32_t qh_u32 = uint32_t(data_a_packed16[ib0 + i].qh[qh_offset / 2]) | (uint32_t(data_a_packed16[ib0 + i].qh[qh_offset / 2 + 1]) << 16); - uint32_t qh0_u32 = (qh_u32 & 0x03030303) << 4; - uint32_t qh2_u32 = (qh_u32 & 0x0C0C0C0C) << 2; - uint32_t qh4_u32 = (qh_u32 & 0x30303030) << 0; - uint32_t qh6_u32 = (qh_u32 & 0xC0C0C0C0) >> 2; - - uint32_t q0_u32 = ql0_u32_lo4 | qh0_u32; - uint32_t q1_u32 = ql32_u32_lo4 | qh2_u32; - uint32_t q2_u32 = ql0_u32_hi4 | qh4_u32; - uint32_t q3_u32 = ql32_u32_hi4 | qh6_u32; - - uvec4 q0 = uvec4(unpack8(q0_u32)); - uvec4 q1 = uvec4(unpack8(q1_u32)); - uvec4 q2 = uvec4(unpack8(q2_u32)); - uvec4 q3 = uvec4(unpack8(q3_u32)); + const uint y_idx = i * QUANT_K + y_offset; B_TYPE_VEC4 by0 = data_b_v4[(b_offset + y_idx) / 4]; B_TYPE_VEC4 by32 = data_b_v4[(b_offset + y_idx) / 4 + 8]; B_TYPE_VEC4 by64 = data_b_v4[(b_offset + y_idx) / 4 + 16]; B_TYPE_VEC4 by96 = data_b_v4[(b_offset + y_idx) / 4 + 24]; - FLOAT_TYPE sum = FLOAT_TYPE(0.0); - [[unroll]] for (int l = 0; l < 4; ++l) { - sum = fma(FLOAT_TYPE(by0[l]) * scales[0], FLOAT_TYPE(int8_t(q0[l]) - 32), - fma(FLOAT_TYPE(by32[l]) * scales[1], FLOAT_TYPE(int8_t(q1[l]) - 32), - fma(FLOAT_TYPE(by64[l]) * scales[2], FLOAT_TYPE(int8_t(q2[l]) - 32), - fma(FLOAT_TYPE(by96[l]) * scales[3], FLOAT_TYPE(int8_t(q3[l]) - 32), sum)))); + [[unroll]] for (uint n = 0; n < num_rows; ++n) { + const uint ib0 = a_offset / QUANT_K + (first_row+n)*num_blocks_per_row; + const FLOAT_TYPE d = FLOAT_TYPE(data_a[ib0 + i].d); + + FLOAT_TYPE scales[4]; + scales[0] = FLOAT_TYPE(data_a[ib0 + i].scales[s_offset + 0]); + scales[1] = FLOAT_TYPE(data_a[ib0 + i].scales[s_offset + 2]); + scales[2] = FLOAT_TYPE(data_a[ib0 + i].scales[s_offset + 4]); + scales[3] = FLOAT_TYPE(data_a[ib0 + i].scales[s_offset + 6]); + + uint32_t ql0_u32 = uint32_t(data_a_packed16[ib0 + i].ql[ql_offset / 2]) | (uint32_t(data_a_packed16[ib0 + i].ql[ql_offset / 2 + 1]) << 16); + uint32_t ql32_u32 = uint32_t(data_a_packed16[ib0 + i].ql[ql_offset / 2 + 16]) | (uint32_t(data_a_packed16[ib0 + i].ql[ql_offset / 2 + 17]) << 16); + + uint32_t ql0_u32_lo4 = ql0_u32 & 0x0F0F0F0F; + uint32_t ql0_u32_hi4 = (ql0_u32 >> 4) & 0x0F0F0F0F; + uint32_t ql32_u32_lo4 = ql32_u32 & 0x0F0F0F0F; + uint32_t ql32_u32_hi4 = (ql32_u32 >> 4) & 0x0F0F0F0F; + + uint32_t qh_u32 = uint32_t(data_a_packed16[ib0 + i].qh[qh_offset / 2]) | (uint32_t(data_a_packed16[ib0 + i].qh[qh_offset / 2 + 1]) << 16); + uint32_t qh0_u32 = (qh_u32 & 0x03030303) << 4; + uint32_t qh2_u32 = (qh_u32 & 0x0C0C0C0C) << 2; + uint32_t qh4_u32 = (qh_u32 & 0x30303030) << 0; + uint32_t qh6_u32 = (qh_u32 & 0xC0C0C0C0) >> 2; + + uint32_t q0_u32 = ql0_u32_lo4 | qh0_u32; + uint32_t q1_u32 = ql32_u32_lo4 | qh2_u32; + uint32_t q2_u32 = ql0_u32_hi4 | qh4_u32; + uint32_t q3_u32 = ql32_u32_hi4 | qh6_u32; + + uvec4 q0 = uvec4(unpack8(q0_u32)); + uvec4 q1 = uvec4(unpack8(q1_u32)); + uvec4 q2 = uvec4(unpack8(q2_u32)); + uvec4 q3 = uvec4(unpack8(q3_u32)); + + FLOAT_TYPE sum = FLOAT_TYPE(0.0); + [[unroll]] for (int l = 0; l < 4; ++l) { + sum = fma(FLOAT_TYPE(by0[l]) * scales[0], FLOAT_TYPE(int8_t(q0[l]) - 32), + fma(FLOAT_TYPE(by32[l]) * scales[1], FLOAT_TYPE(int8_t(q1[l]) - 32), + fma(FLOAT_TYPE(by64[l]) * scales[2], FLOAT_TYPE(int8_t(q2[l]) - 32), + fma(FLOAT_TYPE(by96[l]) * scales[3], FLOAT_TYPE(int8_t(q3[l]) - 32), sum)))); + } + temp[n] += sum * d; } - temp += sum * d; } - tmp[gl_LocalInvocationID.x] = temp; // sum up partial sums and write back result - + [[unroll]] for (uint n = 0; n < num_rows; ++n) { + tmpsh[n][tid] = temp[n]; + } barrier(); - [[unroll]] for (uint s = gl_WorkGroupSize.x/2; s > 0; s >>= 1) { + [[unroll]] for (uint s = BLOCK_SIZE/2; s > 0; s >>= 1) { if (tid < s) { - tmp[tid] += tmp[tid + s]; + [[unroll]] for (uint n = 0; n < num_rows; ++n) { + tmpsh[n][tid] += tmpsh[n][tid + s]; + } } barrier(); } if (tid == 0) { - data_d[d_offset + row] = D_TYPE(tmp[0]); + [[unroll]] for (uint n = 0; n < num_rows; ++n) { + data_d[d_offset + first_row + n] = D_TYPE(tmpsh[n][0]); + } + } +} + +void main() { + const uint first_row = NUM_ROWS * (gl_WorkGroupID.x + gl_NumWorkGroups.x * gl_WorkGroupID.z); + + // do NUM_ROWS at a time, unless there aren't enough remaining rows + if (first_row + NUM_ROWS <= p.stride_d) { + compute_outputs(first_row, NUM_ROWS); + } else { + if (first_row >= p.stride_d) { + return; + } + compute_outputs(first_row, p.stride_d - first_row); } }