diff --git a/examples/server/server.cpp b/examples/server/server.cpp index b02c2546e..338e60f28 100644 --- a/examples/server/server.cpp +++ b/examples/server/server.cpp @@ -847,9 +847,16 @@ struct server_context { slot.sparams.penalize_nl = json_value(data, "penalize_nl", default_sparams.penalize_nl); slot.params.n_keep = json_value(data, "n_keep", slot.params.n_keep); slot.params.seed = json_value(data, "seed", default_params.seed); - if (data.contains("json_schema") && !data.contains("grammar")) { + slot.sparams.n_probs = json_value(data, "n_probs", default_sparams.n_probs); + slot.sparams.min_keep = json_value(data, "min_keep", default_sparams.min_keep); + + // process "json_schema" and "grammar" + if (data.contains("json_schema") && data.contains("grammar")) { + send_error(task, "Either \"json_schema\" or \"grammar\" can be specified, but not both", ERROR_TYPE_INVALID_REQUEST); + return false; + } else if (data.contains("json_schema") && !data.contains("grammar")) { try { - auto schema = json_value(data, "json_schema", json::object()); + auto schema = json_value(data, "json_schema", json::object()); slot.sparams.grammar = json_schema_to_grammar(schema); } catch (const std::exception & e) { send_error(task, std::string("\"json_schema\": ") + e.what(), ERROR_TYPE_INVALID_REQUEST); @@ -858,8 +865,6 @@ struct server_context { } else { slot.sparams.grammar = json_value(data, "grammar", default_sparams.grammar); } - slot.sparams.n_probs = json_value(data, "n_probs", default_sparams.n_probs); - slot.sparams.min_keep = json_value(data, "min_keep", default_sparams.min_keep); if (slot.params.cache_prompt && slot.ga_n != 1) { LOG_WARNING("cache_prompt is not supported with group-attention", {}); diff --git a/examples/server/utils.hpp b/examples/server/utils.hpp index 8f20ff614..89c3038ef 100644 --- a/examples/server/utils.hpp +++ b/examples/server/utils.hpp @@ -49,6 +49,34 @@ extern bool server_log_json; #define LOG_WARNING(MSG, ...) server_log("WARN", __func__, __LINE__, MSG, __VA_ARGS__) #define LOG_INFO( MSG, ...) server_log("INFO", __func__, __LINE__, MSG, __VA_ARGS__) +// GRAMMAR_JSON is used by OAI "response_format" field +static const std::string GRAMMAR_JSON = R"(root ::= object +value ::= object | array | string | number | ("true" | "false" | "null") ws + +object ::= + "{" ws ( + string ":" ws value + ("," ws string ":" ws value)* + )? "}" ws + +array ::= + "[" ws ( + value + ("," ws value)* + )? "]" ws + +string ::= + "\"" ( + [^"\\\x7F\x00-\x1F] | + "\\" (["\\/bfnrt] | "u" [0-9a-fA-F] [0-9a-fA-F] [0-9a-fA-F] [0-9a-fA-F]) # escapes + )* "\"" ws + +number ::= ("-"? ([0-9] | [1-9] [0-9]*)) ("." [0-9]+)? ([eE] [-+]? [0-9]+)? ws + +# Optional space: by convention, applied in this grammar after literal chars when allowed +ws ::= ([ \t\n] ws)? +)"; + template static T json_value(const json &body, const std::string &key, const T &default_value) { // Fallback null to default value @@ -352,52 +380,65 @@ static json oaicompat_completion_params_parse( // https://platform.openai.com/docs/api-reference/chat/create llama_sampling_params default_sparams; llama_params["model"] = json_value(body, "model", std::string("unknown")); - llama_params["prompt"] = format_chat(model, chat_template, body["messages"]); - llama_params["cache_prompt"] = json_value(body, "cache_prompt", false); - llama_params["temperature"] = json_value(body, "temperature", 0.0); - llama_params["top_k"] = json_value(body, "top_k", default_sparams.top_k); - llama_params["top_p"] = json_value(body, "top_p", 1.0); - llama_params["n_predict"] = json_value(body, "max_tokens", -1); - llama_params["logit_bias"] = json_value(body, "logit_bias", json::object()); llama_params["frequency_penalty"] = json_value(body, "frequency_penalty", 0.0); + llama_params["logit_bias"] = json_value(body, "logit_bias", json::object()); + llama_params["n_predict"] = json_value(body, "max_tokens", -1); llama_params["presence_penalty"] = json_value(body, "presence_penalty", 0.0); llama_params["seed"] = json_value(body, "seed", LLAMA_DEFAULT_SEED); llama_params["stream"] = json_value(body, "stream", false); - llama_params["mirostat"] = json_value(body, "mirostat", default_sparams.mirostat); - llama_params["mirostat_tau"] = json_value(body, "mirostat_tau", default_sparams.mirostat_tau); - llama_params["mirostat_eta"] = json_value(body, "mirostat_eta", default_sparams.mirostat_eta); - llama_params["penalize_nl"] = json_value(body, "penalize_nl", default_sparams.penalize_nl); - llama_params["typical_p"] = json_value(body, "typical_p", default_sparams.typical_p); - llama_params["repeat_last_n"] = json_value(body, "repeat_last_n", default_sparams.penalty_last_n); - llama_params["ignore_eos"] = json_value(body, "ignore_eos", false); - llama_params["tfs_z"] = json_value(body, "tfs_z", default_sparams.tfs_z); - llama_params["n_keep"] = json_value(body, "n_keep", 0); + llama_params["temperature"] = json_value(body, "temperature", 0.0); + llama_params["top_p"] = json_value(body, "top_p", 1.0); - if (body.contains("grammar")) { - llama_params["grammar"] = json_value(body, "grammar", json::object()); - } + // Apply chat template to the list of messages + llama_params["prompt"] = format_chat(model, chat_template, body["messages"]); - if (body.contains("response_format")) { - auto response_format = json_value(body, "response_format", json::object()); - if (response_format.contains("type")) { - if (response_format["type"] == "json_object") { - llama_params["json_schema"] = json_value(response_format, "schema", json::object()); - } else { - throw std::runtime_error("response_format type not supported: " + response_format["type"].dump()); - } - } - } - - // Handle 'stop' field + // Handle "stop" field if (body.contains("stop") && body["stop"].is_string()) { llama_params["stop"] = json::array({body["stop"].get()}); } else { llama_params["stop"] = json_value(body, "stop", json::array()); } - // Ensure there is ChatML-specific end sequence among stop words llama_params["stop"].push_back("<|im_end|>"); + // Handle "response_format" field + if (body.contains("response_format")) { + json response_format = json_value(body, "response_format", json::object()); + std::string response_type = json_value(response_format, "type", std::string()); + if (response_type == "json_object") { + // "json_object" guarantees the message the model generates is valid JSON. + llama_params["grammar"] = GRAMMAR_JSON; + } else { + throw std::runtime_error("response_format type not supported: " + response_type); + } + } + + // Handle "n" field + int n_choices = json_value(body, "n", 1); + if (n_choices != 1) { + throw std::runtime_error("Only one completion choice is supported"); + } + + // Params supported by OAI but unsupported by llama.cpp + static const std::vector unsupported_params{ + "logprobs", "top_logprobs", "tools", "tool_choice" + }; + for (auto & param : unsupported_params) { + if (llama_params.contains(param)) { + throw std::runtime_error("Unsupported param: " + param); + } + } + + // Copy remaining properties to llama_params + // This allows user to use llama.cpp-specific params like "mirostat", "tfs_z",... via OAI endpoint. + // See "launch_slot_with_task()" for a complete list of params supported by llama.cpp + for (const auto & item : body.items()) { + // Exception: if "n_predict" is present, we overwrite the value specified by "max_tokens" + if (!llama_params.contains(item.key()) || item.key() == "n_predict") { + llama_params[item.key()] = item.value(); + } + } + return llama_params; }