Add support for RWKV6Qwen2 with cpu and cuda GLA
Signed-off-by: Molly Sophia <mollysophia379@gmail.com>
This commit is contained in:
parent
385b611d45
commit
fab0aa7b1a
9 changed files with 398 additions and 23 deletions
|
@ -513,7 +513,7 @@ extern "C" {
|
|||
GGML_OP_GET_REL_POS,
|
||||
GGML_OP_ADD_REL_POS,
|
||||
GGML_OP_RWKV_WKV6,
|
||||
GGML_OP_GATED_LINEAR_ATTENTION,
|
||||
GGML_OP_GATED_LINEAR_ATTN,
|
||||
|
||||
GGML_OP_UNARY,
|
||||
|
||||
|
@ -1876,11 +1876,12 @@ extern "C" {
|
|||
|
||||
GGML_API struct ggml_tensor * ggml_gated_linear_attn(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * q,
|
||||
struct ggml_tensor * k,
|
||||
struct ggml_tensor * v,
|
||||
struct ggml_tensor * q,
|
||||
struct ggml_tensor * g,
|
||||
struct ggml_tensor * state);
|
||||
struct ggml_tensor * state,
|
||||
float scale);
|
||||
|
||||
// custom operators
|
||||
|
||||
|
|
|
@ -12000,6 +12000,197 @@ static void ggml_compute_forward_rwkv_wkv6(
|
|||
}
|
||||
}
|
||||
|
||||
// ggml_compute_forward_gla
|
||||
|
||||
static void ggml_compute_forward_gla_f32(
|
||||
const struct ggml_compute_params * params,
|
||||
struct ggml_tensor * dst) {
|
||||
const int64_t T = dst->src[1]->ne[2];
|
||||
const int64_t C = dst->ne[0];
|
||||
const int64_t HEADS = dst->src[1]->ne[1];
|
||||
const int64_t n_seqs = dst->src[4]->ne[1];
|
||||
const int64_t head_size = C / HEADS;
|
||||
const float scale = ggml_get_op_params_f32(dst, 0);
|
||||
|
||||
float * dst_data = (float *) dst->data;
|
||||
float * state = ((float *) dst->data) + C * T;
|
||||
|
||||
const int ith = params->ith;
|
||||
const int nth = params->nth;
|
||||
|
||||
if (ith >= HEADS) {
|
||||
return;
|
||||
}
|
||||
|
||||
const int h_start = (HEADS * ith) / nth;
|
||||
const int h_end = ((HEADS * (ith + 1)) / nth < HEADS) ?
|
||||
(HEADS * (ith + 1)) / nth : HEADS;
|
||||
|
||||
float * k = (float *) dst->src[0]->data;
|
||||
float * v = (float *) dst->src[1]->data;
|
||||
float * q = (float *) dst->src[2]->data;
|
||||
float * g = (float *) dst->src[3]->data;
|
||||
|
||||
size_t t_stride = HEADS * head_size; // Same to C
|
||||
|
||||
size_t h_stride = C / HEADS;
|
||||
GGML_ASSERT(C % HEADS == 0); // C must be divisible by HEADS
|
||||
size_t h_stride_2d = head_size * head_size;
|
||||
|
||||
if (ith == 0) {
|
||||
memset(dst_data, 0, T * C * sizeof(float));
|
||||
}
|
||||
ggml_barrier(params->threadpool);
|
||||
|
||||
|
||||
#if defined(__AVX__) && !defined(__AVX512F__)
|
||||
#define GGML_F32X GGML_F32x8
|
||||
#define GGML_F32X_SET1 GGML_F32x8_SET1
|
||||
#define GGML_F32X_LOAD GGML_F32x8_LOAD
|
||||
#define GGML_F32X_STORE GGML_F32x8_STORE
|
||||
#define GGML_F32X_MUL GGML_F32x8_MUL
|
||||
#define GGML_F32X_FMA GGML_F32x8_FMA
|
||||
#define GLA_VECTOR_SIZE 8
|
||||
#elif defined(__AVX512F__)
|
||||
#define GGML_F32X GGML_F32x16
|
||||
#define GGML_F32X_SET1 GGML_F32x16_SET1
|
||||
#define GGML_F32X_LOAD GGML_F32x16_LOAD
|
||||
#define GGML_F32X_STORE GGML_F32x16_STORE
|
||||
#define GGML_F32X_MUL GGML_F32x16_MUL
|
||||
#define GGML_F32X_FMA GGML_F32x16_FMA
|
||||
#define GLA_VECTOR_SIZE 16
|
||||
#elif defined(__ARM_NEON) && defined(__aarch64__)
|
||||
#define GGML_F32X GGML_F32x4
|
||||
#define GGML_F32X_SET1 GGML_F32x4_SET1
|
||||
#define GGML_F32X_LOAD GGML_F32x4_LOAD
|
||||
#define GGML_F32X_STORE GGML_F32x4_STORE
|
||||
#define GGML_F32X_MUL GGML_F32x4_MUL
|
||||
#define GGML_F32X_FMA GGML_F32x4_FMA
|
||||
#define WKV_VECTOR_SIZE 4
|
||||
#endif
|
||||
|
||||
#ifdef GLA_VECTOR_SIZE
|
||||
const int64_t vec_count = head_size / GLA_VECTOR_SIZE;
|
||||
|
||||
for (int64_t t = 0; t < T; t++) {
|
||||
size_t t_offset = t * t_stride;
|
||||
size_t state_offset = head_size * C * (t / (T / n_seqs));
|
||||
float * state_cur = state + state_offset;
|
||||
float * state_prev = t % (T / n_seqs) ? state_cur : (float*)dst->src[4]->data + state_offset;
|
||||
|
||||
for (int64_t h = h_start; h < h_end; h++) {
|
||||
size_t h_offset = h * h_stride;
|
||||
size_t t_h_offset = t_offset + h_offset;
|
||||
size_t h_2d_offset = h * h_stride_2d;
|
||||
|
||||
for (int64_t i = 0; i < head_size; i++) {
|
||||
size_t t_h_i_offset = t_h_offset + i;
|
||||
size_t h_2d_i_offset = h_2d_offset + i * h_stride;
|
||||
|
||||
float k_val = k[t_h_i_offset];
|
||||
float q_val = q[t_h_i_offset] * scale;
|
||||
float g_val = g[t_h_i_offset];
|
||||
|
||||
// Broadcast scalar values to vectors
|
||||
GGML_F32X k_vec = GGML_F32X_SET1(k_val);
|
||||
GGML_F32X q_vec = GGML_F32X_SET1(q_val);
|
||||
GGML_F32X g_vec = GGML_F32X_SET1(g_val);
|
||||
|
||||
for (int64_t j = 0; j < vec_count; j++) {
|
||||
size_t base_j = j * GLA_VECTOR_SIZE;
|
||||
size_t t_h_j_offset = t_h_offset + base_j;
|
||||
size_t h_2d_i_j_offset = h_2d_i_offset + base_j;
|
||||
|
||||
// Load x elements at once
|
||||
GGML_F32X v_vec = GGML_F32X_LOAD(&v[t_h_j_offset]);
|
||||
GGML_F32X prev_state_vec = GGML_F32X_LOAD(&state_prev[h_2d_i_j_offset]);
|
||||
GGML_F32X dst_vec = GGML_F32X_LOAD(&dst_data[t_h_j_offset]);
|
||||
|
||||
// Compute kv = v * k
|
||||
GGML_F32X kv_vec = GGML_F32X_MUL(v_vec, k_vec);
|
||||
|
||||
// Compute temp = prev_state * g + kv
|
||||
GGML_F32X temp_vec = GGML_F32X_FMA(kv_vec, prev_state_vec, g_vec);
|
||||
|
||||
// Update dst: dst += temp * q
|
||||
dst_vec = GGML_F32X_FMA(dst_vec, temp_vec, q_vec);
|
||||
GGML_F32X_STORE(&dst_data[t_h_j_offset], dst_vec);
|
||||
|
||||
// Update state
|
||||
GGML_F32X_STORE(&state_cur[h_2d_i_j_offset], temp_vec);
|
||||
}
|
||||
|
||||
// Handle remaining elements, this will not be used.
|
||||
for (int64_t j = vec_count * WKV_VECTOR_SIZE; j < head_size; j++) {
|
||||
size_t t_h_j_offset = t_h_offset + j;
|
||||
size_t h_2d_i_j_offset = h_2d_i_offset + j;
|
||||
float v_val = v[t_h_j_offset];
|
||||
float kv_val = v_val * k_val;
|
||||
float prev_state_val = state_prev[h_2d_i_j_offset];
|
||||
float temp_val = kv_val + prev_state_val * g_val;
|
||||
dst_data[t_h_j_offset] += temp_val * q_val;
|
||||
state_cur[h_2d_i_j_offset] = temp_val;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#else
|
||||
for (int64_t t = 0; t < T; t++) {
|
||||
size_t t_offset = t * t_stride;
|
||||
size_t state_offset = head_size * C * (t / (T / n_seqs));
|
||||
float * state_cur = state + state_offset;
|
||||
float * state_prev = t % (T / n_seqs) ? state_cur : (float*)dst->src[4]->data + state_offset;
|
||||
|
||||
for (int64_t h = h_start; h < h_end; h++) {
|
||||
size_t h_offset = h * h_stride;
|
||||
size_t t_h_offset = t_offset + h_offset;
|
||||
size_t h_2d_offset = h * h_stride_2d;
|
||||
|
||||
for (int64_t i = 0; i < head_size; i++) {
|
||||
size_t t_h_i_offset = t_h_offset + i;
|
||||
size_t h_2d_i_offset = h_2d_offset + i * h_stride;
|
||||
|
||||
float k_val = k[t_h_i_offset];
|
||||
float q_val = q[t_h_i_offset] * scale;
|
||||
float g_val = g[t_h_i_offset];
|
||||
|
||||
for (int64_t j = 0; j < head_size; j++) {
|
||||
size_t t_h_j_offset = t_h_offset + j;
|
||||
size_t h_2d_i_j_offset = h_2d_i_offset + j;
|
||||
|
||||
float v_val = v[t_h_j_offset];
|
||||
float kv_val = v_val * k_val;
|
||||
float prev_state_val = state_prev[h_2d_i_j_offset];
|
||||
float temp_val = prev_state_val * g_val + kv_val;
|
||||
dst_data[t_h_j_offset] += temp_val * q_val;
|
||||
state_cur[h_2d_i_j_offset] = temp_val;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
|
||||
static void ggml_compute_forward_gla(
|
||||
const struct ggml_compute_params * params,
|
||||
struct ggml_tensor * dst) {
|
||||
|
||||
const struct ggml_tensor * src0 = dst->src[0];
|
||||
|
||||
switch (src0->type) {
|
||||
case GGML_TYPE_F32:
|
||||
{
|
||||
ggml_compute_forward_gla_f32(params, dst);
|
||||
} break;
|
||||
default:
|
||||
{
|
||||
GGML_ABORT("fatal error");
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// ggml_compute_forward_map_unary
|
||||
|
||||
static void ggml_compute_forward_map_unary_f32(
|
||||
|
@ -12749,6 +12940,10 @@ static void ggml_compute_forward(struct ggml_compute_params * params, struct ggm
|
|||
{
|
||||
ggml_compute_forward_rwkv_wkv6(params, tensor);
|
||||
} break;
|
||||
case GGML_OP_GATED_LINEAR_ATTN:
|
||||
{
|
||||
ggml_compute_forward_gla(params, tensor);
|
||||
} break;
|
||||
case GGML_OP_MAP_UNARY:
|
||||
{
|
||||
ggml_unary_op_f32_t fun;
|
||||
|
@ -13047,6 +13242,7 @@ static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads) {
|
|||
case GGML_OP_WIN_UNPART:
|
||||
case GGML_OP_GET_REL_POS:
|
||||
case GGML_OP_RWKV_WKV6:
|
||||
case GGML_OP_GATED_LINEAR_ATTN:
|
||||
case GGML_OP_MAP_UNARY:
|
||||
case GGML_OP_MAP_BINARY:
|
||||
case GGML_OP_MAP_CUSTOM1_F32:
|
||||
|
|
|
@ -37,6 +37,7 @@
|
|||
#include "ggml-cuda/unary.cuh"
|
||||
#include "ggml-cuda/upscale.cuh"
|
||||
#include "ggml-cuda/wkv6.cuh"
|
||||
#include "ggml-cuda/gla.cuh"
|
||||
|
||||
#include <algorithm>
|
||||
#include <array>
|
||||
|
@ -2167,6 +2168,9 @@ static bool ggml_cuda_compute_forward(ggml_backend_cuda_context & ctx, struct gg
|
|||
case GGML_OP_RWKV_WKV6:
|
||||
ggml_cuda_op_rwkv_wkv6(ctx, dst);
|
||||
break;
|
||||
case GGML_OP_GATED_LINEAR_ATTN:
|
||||
ggml_cuda_op_gated_linear_attn(ctx, dst);
|
||||
break;
|
||||
case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
|
||||
ggml_cuda_cross_entropy_loss_back(ctx, dst);
|
||||
break;
|
||||
|
@ -3010,6 +3014,7 @@ static bool ggml_backend_cuda_device_supports_op(ggml_backend_dev_t dev, const g
|
|||
case GGML_OP_TIMESTEP_EMBEDDING:
|
||||
case GGML_OP_LEAKY_RELU:
|
||||
case GGML_OP_RWKV_WKV6:
|
||||
case GGML_OP_GATED_LINEAR_ATTN:
|
||||
return true;
|
||||
case GGML_OP_FLASH_ATTN_EXT: {
|
||||
#ifndef FLASH_ATTN_AVAILABLE
|
||||
|
|
92
ggml/src/ggml-cuda/gla.cu
Normal file
92
ggml/src/ggml-cuda/gla.cu
Normal file
|
@ -0,0 +1,92 @@
|
|||
#include "common.cuh"
|
||||
#include "gla.cuh"
|
||||
|
||||
template<int HEAD_SIZE>
|
||||
static __global__ void gated_linear_attn_f32(const int B, const int T, const int C, const int H, const float scale,
|
||||
const float * k, const float * v, const float * r, const float * td, const float * s, float * dst) {
|
||||
const int tid = threadIdx.x;
|
||||
const int bid = blockIdx.x;
|
||||
|
||||
const int head_size = HEAD_SIZE;
|
||||
const int batch_i = bid / H;
|
||||
const int head_i = bid % H;
|
||||
const int state_size = C * head_size;
|
||||
const int n_seq_tokens = T / B;
|
||||
|
||||
float state[head_size];
|
||||
__shared__ float _k[head_size], _r[head_size], _td[head_size];
|
||||
|
||||
#pragma unroll
|
||||
for (int i = 0; i < head_size; i++) {
|
||||
state[i] = s[batch_i * state_size + head_i * head_size * head_size + i * head_size + tid];
|
||||
}
|
||||
|
||||
for (int t = batch_i * n_seq_tokens * C + head_i * head_size + tid; t < (batch_i + 1) * n_seq_tokens * C + head_i * head_size + tid; t += C) {
|
||||
__syncthreads();
|
||||
_k[tid] = k[t];
|
||||
_r[tid] = r[t];
|
||||
_td[tid] = td[t];
|
||||
__syncthreads();
|
||||
|
||||
const float _v = v[t];
|
||||
float y = 0;
|
||||
for (int j = 0; j < head_size; j += 4) {
|
||||
const float4& k = (float4&)(_k[j]);
|
||||
const float4& r = (float4&)(_r[j]);
|
||||
const float4& td = (float4&)(_td[j]);
|
||||
float4& s = (float4&)(state[j]);
|
||||
float4 kv;
|
||||
|
||||
kv.x = k.x * _v;
|
||||
kv.y = k.y * _v;
|
||||
kv.z = k.z * _v;
|
||||
kv.w = k.w * _v;
|
||||
|
||||
s.x = s.x * td.x + kv.x;
|
||||
s.y = s.y * td.y + kv.y;
|
||||
s.z = s.z * td.z + kv.z;
|
||||
s.w = s.w * td.w + kv.w;
|
||||
|
||||
y += r.x * s.x;
|
||||
y += r.y * s.y;
|
||||
y += r.z * s.z;
|
||||
y += r.w * s.w;
|
||||
}
|
||||
dst[t] = y * scale;
|
||||
}
|
||||
|
||||
#pragma unroll
|
||||
for (int i = 0; i < head_size; i++) {
|
||||
dst[T * C + batch_i * state_size + head_i * head_size * head_size + i * head_size + tid] = state[i];
|
||||
}
|
||||
}
|
||||
|
||||
void ggml_cuda_op_gated_linear_attn(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
const float * k_d = (const float *)dst->src[0]->data;
|
||||
const float * v_d = (const float *)dst->src[1]->data;
|
||||
const float * r_d = (const float *)dst->src[2]->data;
|
||||
const float * td_d = (const float *)dst->src[3]->data;
|
||||
const float * s_d = (const float *)dst->src[4]->data;
|
||||
|
||||
const int64_t B = dst->src[4]->ne[1];
|
||||
const int64_t T = dst->src[0]->ne[2];
|
||||
const int64_t C = dst->ne[0];
|
||||
const int64_t H = dst->src[0]->ne[1];
|
||||
|
||||
const float scale = ((const float*)(dst->op_params))[0];
|
||||
|
||||
float * dst_d = (float *)dst->data;
|
||||
|
||||
cudaStream_t stream = ctx.stream();
|
||||
|
||||
GGML_ASSERT(dst->src[4]->type == GGML_TYPE_F32);
|
||||
GGML_ASSERT(C % H == 0);
|
||||
GGML_ASSERT(C / H == 64 || C / H == 128);
|
||||
|
||||
|
||||
if (C / H == 64) {
|
||||
gated_linear_attn_f32<64><<<B * H, C / H, 0, stream>>>(B, T, C, H, scale, k_d, v_d, r_d, td_d, s_d, dst_d);
|
||||
} else {
|
||||
gated_linear_attn_f32<128><<<B * H, C / H, 0, stream>>>(B, T, C, H, scale, k_d, v_d, r_d, td_d, s_d, dst_d);
|
||||
}
|
||||
}
|
3
ggml/src/ggml-cuda/gla.cuh
Normal file
3
ggml/src/ggml-cuda/gla.cuh
Normal file
|
@ -0,0 +1,3 @@
|
|||
#include "common.cuh"
|
||||
|
||||
void ggml_cuda_op_gated_linear_attn(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
|
@ -1065,7 +1065,7 @@ static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
|
|||
"get_rel_pos(x)",
|
||||
"add_rel_pos(x)",
|
||||
"rwkv_wkv6(k, v, r, tf, td, s)",
|
||||
"gated_linear_attn(k, v, q, decay, s)",
|
||||
"gated_linear_attn(k, v, q, gate, s)",
|
||||
|
||||
"unary(x)",
|
||||
|
||||
|
@ -4667,6 +4667,49 @@ struct ggml_tensor * ggml_rwkv_wkv6(
|
|||
return result;
|
||||
}
|
||||
|
||||
// ggml_gated_linear_attn
|
||||
|
||||
struct ggml_tensor * ggml_gated_linear_attn(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * k,
|
||||
struct ggml_tensor * v,
|
||||
struct ggml_tensor * q,
|
||||
struct ggml_tensor * g,
|
||||
struct ggml_tensor * state,
|
||||
float scale) {
|
||||
GGML_ASSERT(ggml_is_contiguous(k));
|
||||
GGML_ASSERT(ggml_is_contiguous(v));
|
||||
GGML_ASSERT(ggml_is_contiguous(q));
|
||||
GGML_ASSERT(ggml_is_contiguous(g));
|
||||
GGML_ASSERT(ggml_is_contiguous(state));
|
||||
|
||||
const int64_t S = k->ne[0];
|
||||
const int64_t H = k->ne[1];
|
||||
const int64_t n_tokens = k->ne[2];
|
||||
const int64_t n_seqs = state->ne[1];
|
||||
{
|
||||
GGML_ASSERT(v->ne[0] == S && v->ne[1] == H && v->ne[2] == n_tokens);
|
||||
GGML_ASSERT(q->ne[0] == S && q->ne[1] == H && q->ne[2] == n_tokens);
|
||||
GGML_ASSERT(g->ne[0] == S && g->ne[1] == H && g->ne[2] == n_tokens);
|
||||
GGML_ASSERT(ggml_nelements(state) == S * S * H * n_seqs);
|
||||
}
|
||||
|
||||
// concat output and new_state
|
||||
const int64_t ne[4] = { S * H, n_tokens + S * n_seqs, 1, 1 };
|
||||
struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
|
||||
|
||||
ggml_set_op_params_f32(result, 0, scale);
|
||||
|
||||
result->op = GGML_OP_GATED_LINEAR_ATTN;
|
||||
result->src[0] = k;
|
||||
result->src[1] = v;
|
||||
result->src[2] = q;
|
||||
result->src[3] = g;
|
||||
result->src[4] = state;
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
// ggml_unary
|
||||
|
||||
static struct ggml_tensor * ggml_unary_impl(
|
||||
|
|
|
@ -2021,6 +2021,7 @@ enum llama_rope_type llama_rope_type(const struct llama_model * model) {
|
|||
case LLM_ARCH_T5ENCODER:
|
||||
case LLM_ARCH_JAIS:
|
||||
case LLM_ARCH_RWKV6:
|
||||
case LLM_ARCH_RWKV6QWEN2:
|
||||
case LLM_ARCH_WAVTOKENIZER_DEC:
|
||||
return LLAMA_ROPE_TYPE_NONE;
|
||||
|
||||
|
|
|
@ -622,6 +622,7 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
|
|||
qs.n_ffn_down = qs.n_ffn_gate = qs.n_ffn_up = (int)model.hparams.n_layer;
|
||||
|
||||
// sanity checks
|
||||
if (!llama_model_is_recurrent(&model))
|
||||
{
|
||||
const auto & n_head_kv_iter = model.hparams.n_head_kv_arr.begin();
|
||||
// attention layers have a non-zero number of kv heads
|
||||
|
|
|
@ -3296,13 +3296,14 @@ static struct ggml_tensor * llm_build_rwkv6_time_mix(
|
|||
struct ggml_tensor * cur,
|
||||
struct ggml_tensor * x_prev,
|
||||
struct ggml_tensor ** wkv_state,
|
||||
size_t wkv_head_size,
|
||||
size_t head_count_kv) {
|
||||
size_t n_embd = cur->ne[0];
|
||||
size_t n_seq_tokens = cur->ne[1];
|
||||
size_t n_seqs = cur->ne[2];
|
||||
|
||||
size_t head_size = layer->time_mix_first->ne[0];
|
||||
size_t head_count = layer->time_mix_first->ne[1];
|
||||
size_t head_size = wkv_head_size;
|
||||
size_t head_count = n_embd / head_size;
|
||||
|
||||
size_t n_tokens = n_seqs * n_seq_tokens;
|
||||
|
||||
|
@ -3336,11 +3337,21 @@ static struct ggml_tensor * llm_build_rwkv6_time_mix(
|
|||
xxx
|
||||
);
|
||||
|
||||
struct ggml_tensor *mw = ggml_view_2d(ctx, xxx, n_embd, n_tokens, xxx->nb[1], 0);
|
||||
struct ggml_tensor *mk = ggml_view_2d(ctx, xxx, n_embd, n_tokens, xxx->nb[1], n_embd * n_tokens * sizeof(float));
|
||||
struct ggml_tensor *mv = ggml_view_2d(ctx, xxx, n_embd, n_tokens, xxx->nb[1], n_embd * n_tokens * 2 * sizeof(float));
|
||||
struct ggml_tensor *mr = ggml_view_2d(ctx, xxx, n_embd, n_tokens, xxx->nb[1], n_embd * n_tokens * 3 * sizeof(float));
|
||||
struct ggml_tensor *mg = ggml_view_2d(ctx, xxx, n_embd, n_tokens, xxx->nb[1], n_embd * n_tokens * 4 * sizeof(float));
|
||||
struct ggml_tensor *mw, *mk, *mv, *mr, *mg;
|
||||
if (is_qrwkv) {
|
||||
// Why the f*** do they change the order here?
|
||||
mr = ggml_view_2d(ctx, xxx, n_embd, n_tokens, xxx->nb[1], 0);
|
||||
mk = ggml_view_2d(ctx, xxx, n_embd, n_tokens, xxx->nb[1], n_embd * n_tokens * sizeof(float));
|
||||
mv = ggml_view_2d(ctx, xxx, n_embd, n_tokens, xxx->nb[1], n_embd * n_tokens * 2 * sizeof(float));
|
||||
mw = ggml_view_2d(ctx, xxx, n_embd, n_tokens, xxx->nb[1], n_embd * n_tokens * 3 * sizeof(float));
|
||||
mg = ggml_view_2d(ctx, xxx, n_embd, n_tokens, xxx->nb[1], n_embd * n_tokens * 4 * sizeof(float));
|
||||
} else {
|
||||
mw = ggml_view_2d(ctx, xxx, n_embd, n_tokens, xxx->nb[1], 0);
|
||||
mk = ggml_view_2d(ctx, xxx, n_embd, n_tokens, xxx->nb[1], n_embd * n_tokens * sizeof(float));
|
||||
mv = ggml_view_2d(ctx, xxx, n_embd, n_tokens, xxx->nb[1], n_embd * n_tokens * 2 * sizeof(float));
|
||||
mr = ggml_view_2d(ctx, xxx, n_embd, n_tokens, xxx->nb[1], n_embd * n_tokens * 3 * sizeof(float));
|
||||
mg = ggml_view_2d(ctx, xxx, n_embd, n_tokens, xxx->nb[1], n_embd * n_tokens * 4 * sizeof(float));
|
||||
}
|
||||
|
||||
struct ggml_tensor * xw = ggml_add(
|
||||
ctx,
|
||||
|
@ -3404,20 +3415,27 @@ static struct ggml_tensor * llm_build_rwkv6_time_mix(
|
|||
if (layer->time_mix_value_b) {
|
||||
v = ggml_add(ctx, v, layer->time_mix_value_b);
|
||||
}
|
||||
r = ggml_reshape_3d(ctx, llm_build_lora_mm(lctx, ctx, layer->time_mix_receptance, xr), head_size, head_count, n_tokens);
|
||||
k = ggml_reshape_3d(ctx, llm_build_lora_mm(lctx, ctx, layer->time_mix_key, xk), head_size, head_count_kv, n_tokens);
|
||||
v = ggml_reshape_3d(ctx, llm_build_lora_mm(lctx, ctx, layer->time_mix_value, xv), head_size, head_count_kv, n_tokens);
|
||||
struct ggml_tensor * g = ggml_silu(
|
||||
ctx,
|
||||
llm_build_lora_mm(lctx, ctx, layer->time_mix_gate, xg)
|
||||
);
|
||||
|
||||
struct ggml_tensor * g = llm_build_lora_mm(lctx, ctx, layer->time_mix_gate, xg);
|
||||
if (is_qrwkv) {
|
||||
g = ggml_sigmoid(ctx, g);
|
||||
} else {
|
||||
g = ggml_silu(ctx, g);
|
||||
}
|
||||
|
||||
if (head_count_kv != head_count) {
|
||||
GGML_ASSERT(head_count % head_count_kv == 0);
|
||||
k = ggml_repeat(ctx, k, r);
|
||||
v = ggml_repeat(ctx, v, r);
|
||||
k = ggml_reshape_4d(ctx, k, head_size, 1, head_count_kv, n_tokens);
|
||||
v = ggml_reshape_4d(ctx, v, head_size, 1, head_count_kv, n_tokens);
|
||||
struct ggml_tensor * tmp = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, head_size, head_count / head_count_kv, head_count_kv, n_tokens);
|
||||
k = ggml_repeat(ctx, k, tmp);
|
||||
v = ggml_repeat(ctx, v, tmp);
|
||||
}
|
||||
|
||||
k = ggml_reshape_3d(ctx, k, head_size, head_count, n_tokens);
|
||||
v = ggml_reshape_3d(ctx, v, head_size, head_count, n_tokens);
|
||||
r = ggml_reshape_3d(ctx, r, head_size, head_count, n_tokens);
|
||||
|
||||
struct ggml_tensor * w = ggml_mul_mat(
|
||||
ctx,
|
||||
layer->time_mix_decay_w2,
|
||||
|
@ -3438,7 +3456,7 @@ static struct ggml_tensor * llm_build_rwkv6_time_mix(
|
|||
|
||||
struct ggml_tensor * wkv_output;
|
||||
if (!layer->time_mix_first) {
|
||||
// TODO: GatedLinearAttention
|
||||
wkv_output = ggml_gated_linear_attn(ctx, k, v, r, w, *wkv_state, pow(head_size, -0.5f));
|
||||
} else {
|
||||
wkv_output = ggml_rwkv_wkv6(ctx, k, v, r, layer->time_mix_first, w, *wkv_state);
|
||||
}
|
||||
|
@ -9873,7 +9891,7 @@ struct llm_build_context {
|
|||
1
|
||||
);
|
||||
|
||||
cur = ggml_add(ctx0, cur, llm_build_rwkv6_time_mix(lctx, ctx0, layer, x_norm_att, x_prev, &wkv_states, layer->time_mix_first->ne[1]));
|
||||
cur = ggml_add(ctx0, cur, llm_build_rwkv6_time_mix(lctx, ctx0, layer, x_norm_att, x_prev, &wkv_states, hparams.wkv_head_size, n_embd / hparams.wkv_head_size));
|
||||
ggml_build_forward_expand(gf, cur);
|
||||
ggml_build_forward_expand(
|
||||
gf,
|
||||
|
@ -9996,7 +10014,22 @@ struct llm_build_context {
|
|||
)
|
||||
);
|
||||
|
||||
struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, llm_build_rwkv6_time_mix(lctx, ctx0, layer, x_norm_att, x_prev, &wkv_states, hparams.n_head_kv()));
|
||||
struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, llm_build_rwkv6_time_mix(lctx, ctx0, layer, x_norm_att, x_prev, &wkv_states, hparams.wkv_head_size, hparams.n_head_kv()));
|
||||
ggml_build_forward_expand(gf, ffn_inp);
|
||||
ggml_build_forward_expand(
|
||||
gf,
|
||||
ggml_cpy(
|
||||
ctx0,
|
||||
wkv_states,
|
||||
ggml_view_1d(
|
||||
ctx0,
|
||||
kv_self.v_l[il],
|
||||
hparams.n_embd_v_s() * n_seqs,
|
||||
hparams.n_embd_v_s() * kv_head * ggml_element_size(kv_self.v_l[il])
|
||||
)
|
||||
)
|
||||
);
|
||||
|
||||
cb(ffn_inp, "ffn_inp", il);
|
||||
|
||||
// feed-forward network
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue