Merge remote-tracking branch 'origin/master' into opencl-dev
This commit is contained in:
commit
fb638fa817
18 changed files with 785 additions and 435 deletions
2
Makefile
2
Makefile
|
@ -115,7 +115,7 @@ ifndef LLAMA_NO_ACCELERATE
|
|||
endif
|
||||
endif
|
||||
ifdef LLAMA_OPENBLAS
|
||||
CFLAGS += -DGGML_USE_OPENBLAS -I/usr/local/include/openblas
|
||||
CFLAGS += -DGGML_USE_OPENBLAS -I/usr/local/include/openblas -I/usr/include/openblas
|
||||
ifneq ($(shell grep -e "Arch Linux" -e "ID_LIKE=arch" /etc/os-release 2>/dev/null),)
|
||||
LDFLAGS += -lopenblas -lcblas
|
||||
else
|
||||
|
|
22
README.md
22
README.md
|
@ -9,6 +9,7 @@ Inference of [LLaMA](https://arxiv.org/abs/2302.13971) model in pure C/C++
|
|||
|
||||
**Hot topics:**
|
||||
|
||||
- Quantization formats `Q4` and `Q8` have changed again (19 May) - [(info)](https://github.com/ggerganov/llama.cpp/pull/1508)
|
||||
- Quantization formats `Q4` and `Q5` have changed - requantize any old models [(info)](https://github.com/ggerganov/llama.cpp/pull/1405)
|
||||
- [Roadmap May 2023](https://github.com/ggerganov/llama.cpp/discussions/1220)
|
||||
|
||||
|
@ -80,6 +81,7 @@ as the main playground for developing new features for the [ggml](https://github
|
|||
- [X] [Koala](https://bair.berkeley.edu/blog/2023/04/03/koala/)
|
||||
- [X] [OpenBuddy 🐶 (Multilingual)](https://github.com/OpenBuddy/OpenBuddy)
|
||||
- [X] [Pygmalion 7B / Metharme 7B](#using-pygmalion-7b--metharme-7b)
|
||||
- [X] [WizardLM](https://github.com/nlpxucan/WizardLM)
|
||||
|
||||
**Bindings:**
|
||||
|
||||
|
@ -333,16 +335,16 @@ Several quantization methods are supported. They differ in the resulting model d
|
|||
|
||||
| Model | Measure | F16 | Q4_0 | Q4_1 | Q5_0 | Q5_1 | Q8_0 |
|
||||
|------:|--------------|-------:|-------:|-------:|-------:|-------:|-------:|
|
||||
| 7B | perplexity | 5.9066 | 6.1565 | 6.0910 | 5.9862 | 5.9481 | 5.9069 |
|
||||
| 7B | file size | 13.0G | 4.0G | 4.8G | 4.4G | 4.8G | 7.1G |
|
||||
| 7B | ms/tok @ 4th | 128 | 50 | 54 | 75 | 83 | 75 |
|
||||
| 7B | ms/tok @ 8th | 123 | 44 | 52 | 53 | 58 | 72 |
|
||||
| 7B | bits/weight | 16.0 | 5.0 | 6.0 | 5.5 | 6.0 | 9.0 |
|
||||
| 13B | perplexity | 5.2543 | 5.3860 | 5.3607 | 5.2856 | 5.2706 | 5.2548 |
|
||||
| 13B | file size | 25.0G | 7.6G | 9.1G | 8.4G | 9.1G | 14G |
|
||||
| 13B | ms/tok @ 4th | 239 | 93 | 101 | 150 | 164 | 141 |
|
||||
| 13B | ms/tok @ 8th | 240 | 81 | 96 | 96 | 104 | 136 |
|
||||
| 13B | bits/weight | 16.0 | 5.0 | 6.0 | 5.5 | 6.0 | 9.0 |
|
||||
| 7B | perplexity | 5.9066 | 6.1565 | 6.0912 | 5.9862 | 5.9481 | 5.9070 |
|
||||
| 7B | file size | 13.0G | 3.5G | 3.9G | 4.3G | 4.7G | 6.7G |
|
||||
| 7B | ms/tok @ 4th | 127 | 55 | 54 | 76 | 83 | 72 |
|
||||
| 7B | ms/tok @ 8th | 122 | 43 | 45 | 52 | 56 | 67 |
|
||||
| 7B | bits/weight | 16.0 | 4.5 | 5.0 | 5.5 | 6.0 | 8.5 |
|
||||
| 13B | perplexity | 5.2543 | 5.3860 | 5.3608 | 5.2856 | 5.2706 | 5.2548 |
|
||||
| 13B | file size | 25.0G | 6.8G | 7.6G | 8.3G | 9.1G | 13G |
|
||||
| 13B | ms/tok @ 4th | - | 103 | 105 | 148 | 160 | 131 |
|
||||
| 13B | ms/tok @ 8th | - | 73 | 82 | 98 | 105 | 128 |
|
||||
| 13B | bits/weight | 16.0 | 4.5 | 5.0 | 5.5 | 6.0 | 8.5 |
|
||||
|
||||
### Perplexity (measuring model quality)
|
||||
|
||||
|
|
|
@ -121,7 +121,6 @@ def make_tensors_list() -> List[str]:
|
|||
f'layers.{i}.feed_forward.w1.weight',
|
||||
f'layers.{i}.feed_forward.w2.weight',
|
||||
f'layers.{i}.feed_forward.w3.weight',
|
||||
f'layers.{i}.atttention_norm.weight',
|
||||
f'layers.{i}.ffn_norm.weight',
|
||||
]
|
||||
return ret
|
||||
|
@ -1055,7 +1054,7 @@ def load_some_model(path: Path) -> ModelPlus:
|
|||
files = list(path.glob("model-00001-of-*.safetensors"))
|
||||
if not files:
|
||||
# Try the PyTorch patterns too, with lower priority
|
||||
globs = ["consolidated.00.pth", "pytorch_model-00001-of-*.bin", "*.pt"]
|
||||
globs = ["consolidated.00.pth", "pytorch_model-00001-of-*.bin", "*.pt", "pytorch_model.bin" ]
|
||||
files = [file for glob in globs for file in path.glob(glob)]
|
||||
if not files:
|
||||
# Try GGML too, but with lower priority, since if both a non-GGML
|
||||
|
|
|
@ -15,7 +15,7 @@
|
|||
#include <iterator>
|
||||
#include <algorithm>
|
||||
|
||||
float tensor_sum_elements(struct ggml_tensor * tensor) {
|
||||
float tensor_sum_elements(const ggml_tensor * tensor) {
|
||||
float sum = 0;
|
||||
if (tensor->type==GGML_TYPE_F32) {
|
||||
for (int j = 0; j < tensor->ne[1]; j++) {
|
||||
|
@ -27,21 +27,15 @@ float tensor_sum_elements(struct ggml_tensor * tensor) {
|
|||
return sum;
|
||||
}
|
||||
|
||||
void tensor_dump(const ggml_tensor * tensor, const char * name) {
|
||||
printf("%15s: type = %i (%5s) ne = %5d x %5d x %5d, nb = (%5li, %5li, %5li) - ", name,
|
||||
tensor->type, ggml_type_name(tensor->type),
|
||||
(int) tensor->ne[0], (int) tensor->ne[1], (int) tensor->ne[2], tensor->nb[0], tensor->nb[1], tensor->nb[2]);
|
||||
float sum = tensor_sum_elements(tensor);
|
||||
printf("Sum of tensor %s is %6.2f\n", name, sum);
|
||||
}
|
||||
|
||||
/*
|
||||
These are mapping to unknown
|
||||
GGML_TYPE_I8,
|
||||
GGML_TYPE_I16,
|
||||
GGML_TYPE_I32,
|
||||
GGML_TYPE_COUNT,
|
||||
*/
|
||||
|
||||
#define TENSOR_TYPE_AS_STR(TYPE) TYPE == GGML_TYPE_F32 ? "FP32" : TYPE == GGML_TYPE_F16 ? "FP16" : TYPE == GGML_TYPE_Q4_0 ? "Q4_0" : TYPE == GGML_TYPE_Q4_1 ? "Q4_1" : "UNKNOWN"
|
||||
|
||||
#define TENSOR_DUMP(TENSOR) printf("%15s: type = %i (%5s) ne = %5d x %5d x %5d, nb = (%5li, %5li, %5li) - ", #TENSOR, \
|
||||
TENSOR->type,TENSOR_TYPE_AS_STR(TENSOR->type),\
|
||||
(int) TENSOR->ne[0], (int) TENSOR->ne[1], (int) TENSOR->ne[2], TENSOR->nb[0], TENSOR->nb[1], TENSOR->nb[2]); \
|
||||
{ float sum = tensor_sum_elements(TENSOR); printf("Sum of tensor %s is %6.2f\n",#TENSOR, sum); }
|
||||
#define TENSOR_DUMP(tensor) tensor_dump(tensor, #tensor)
|
||||
|
||||
struct benchmark_params_struct {
|
||||
int32_t n_threads = 1;
|
||||
|
@ -59,8 +53,6 @@ void print_usage(int /*argc*/, char ** argv, struct benchmark_params_struct para
|
|||
}
|
||||
|
||||
int main(int argc, char ** argv) {
|
||||
|
||||
|
||||
struct benchmark_params_struct benchmark_params;
|
||||
|
||||
bool invalid_param = false;
|
||||
|
@ -84,12 +76,12 @@ int main(int argc, char ** argv) {
|
|||
print_usage(argc, argv, benchmark_params);
|
||||
exit(0);
|
||||
}
|
||||
}
|
||||
if (invalid_param) {
|
||||
fprintf(stderr, "error: invalid parameter for argument: %s\n", arg.c_str());
|
||||
print_usage(argc, argv, benchmark_params);
|
||||
exit(1);
|
||||
}
|
||||
}
|
||||
|
||||
fprintf(stderr, "%s: build = %d (%s)\n", __func__, BUILD_NUMBER, BUILD_COMMIT);
|
||||
printf("Starting Test\n");
|
||||
|
@ -216,10 +208,10 @@ int main(int argc, char ** argv) {
|
|||
// Let's use the F32 result from above as a reference for the q4_0 multiplication
|
||||
float sum_of_F32_reference = tensor_sum_elements(gf.nodes[0]);
|
||||
|
||||
printf("Iteration;NThreads; SizeX; SizeY; SizeZ; Required_FLOPS; Elapsed_u_Seconds; gigaFLOPS\n");
|
||||
printf("=====================================================================================\n");
|
||||
|
||||
printf("Iteration;NThreads; SizeX; SizeY; SizeZ; Required_FLOPS; Elapsed_u_Seconds; FLOPS_per_u_Second\n");
|
||||
printf("==============================================================================================\n");
|
||||
|
||||
double gflops_sum = 0;
|
||||
for (int i=0;i<benchmark_params.n_iterations ;i++) {
|
||||
|
||||
long long int start = ggml_time_us();
|
||||
|
@ -227,12 +219,13 @@ int main(int argc, char ** argv) {
|
|||
ggml_graph_compute(ctx, &gf31);
|
||||
long long int stop = ggml_time_us();
|
||||
long long int usec = stop-start;
|
||||
float flops_per_usec = (1.0f*flops_per_matrix)/usec;
|
||||
printf("%9i;%8i;%6i;%6i;%6i;%15lli;%18lli;%19.2f\n",
|
||||
double gflops = (double)(flops_per_matrix)/usec/1000.0;
|
||||
gflops_sum += gflops;
|
||||
printf("%9i;%8i;%6i;%6i;%6i;%15lli;%18lli;%10.2f\n",
|
||||
i,
|
||||
gf31.n_threads,
|
||||
sizex, sizey, sizez, flops_per_matrix,
|
||||
usec,flops_per_usec);
|
||||
usec,gflops);
|
||||
|
||||
#ifdef VERBOSE_DEBUGGING
|
||||
TENSOR_DUMP("res",gf31.nodes[0])
|
||||
|
@ -256,7 +249,8 @@ int main(int argc, char ** argv) {
|
|||
|
||||
// Running a different graph computation to make sure we override the CPU cache lines
|
||||
ggml_graph_compute(ctx, &gf32);
|
||||
|
||||
}
|
||||
|
||||
printf("\n");
|
||||
printf("Average%78.2f\n",gflops_sum/((double)benchmark_params.n_iterations));
|
||||
printf("=====================================================================================\n");
|
||||
}
|
||||
|
|
151
examples/chat-persistent.sh
Executable file
151
examples/chat-persistent.sh
Executable file
|
@ -0,0 +1,151 @@
|
|||
#!/bin/bash
|
||||
|
||||
set -euo pipefail
|
||||
|
||||
cd "$(dirname "$0")/.." || exit
|
||||
|
||||
if [[ -z "${PROMPT_CACHE_FILE+x}" || -z "${CHAT_SAVE_DIR+x}" ]]; then
|
||||
echo >&2 "error: PROMPT_CACHE_FILE and CHAT_SAVE_DIR must be provided"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
MODEL="${MODEL:-./models/13B/ggml-model-q4_0.bin}"
|
||||
PROMPT_TEMPLATE="${PROMPT_TEMPLATE:-./prompts/chat.txt}"
|
||||
USER_NAME="${USER_NAME:-User}"
|
||||
AI_NAME="${AI_NAME:-ChatLLaMa}"
|
||||
DATE_TIME="$(date +%H:%M)"
|
||||
DATE_YEAR="$(date +%Y)"
|
||||
|
||||
LOG="${CHAT_SAVE_DIR}/main.log"
|
||||
LOG_BG="${CHAT_SAVE_DIR}/main-bg.log"
|
||||
CUR_PROMPT_FILE="${CHAT_SAVE_DIR}/current-prompt.txt"
|
||||
CUR_PROMPT_CACHE="${CHAT_SAVE_DIR}/current-cache.bin"
|
||||
NEXT_PROMPT_FILE="${CHAT_SAVE_DIR}/next-prompt.txt"
|
||||
NEXT_PROMPT_CACHE="${CHAT_SAVE_DIR}/next-cache.bin"
|
||||
|
||||
SESSION_SIZE_MSG_PATTERN='main: session file matches \d+ / \d+'
|
||||
SAMPLE_TIME_MSG_PATTERN='sample time =\s+\d+.\d+ ms /\s+\d+'
|
||||
SED_DELETE_MESSAGES="/^(${USER_NAME}:|${AI_NAME}:|\\.\\.\\.)/,\$d"
|
||||
|
||||
CTX_SIZE=2048
|
||||
CTX_ROTATE_POINT=$((CTX_SIZE * 3 / 5)) # REVIEW
|
||||
OPTS=(--model "$MODEL" --ctx_size "$CTX_SIZE" --repeat_last_n 256 "$@")
|
||||
|
||||
# An unbuffered `tail -c+N`
|
||||
skip_bytes() {
|
||||
LANG=C IFS= read -r -n "$1" -d '' c
|
||||
while LANG=C IFS= read -r -n 1 -d '' c; do
|
||||
printf '%s' "$c"
|
||||
done
|
||||
}
|
||||
|
||||
mkdir -p "$CHAT_SAVE_DIR"
|
||||
echo >"$LOG"
|
||||
trap "tail -n100 ${LOG}" EXIT
|
||||
|
||||
if [[ ! -e "$CUR_PROMPT_FILE" ]]; then
|
||||
sed -e "s/\[\[USER_NAME\]\]/${USER_NAME}/g" \
|
||||
-e "s/\[\[AI_NAME\]\]/${AI_NAME}/g" \
|
||||
-e "s/\[\[DATE_TIME\]\]/${DATE_TIME}/g" \
|
||||
-e "s/\[\[DATE_YEAR\]\]/${DATE_YEAR}/g" \
|
||||
"$PROMPT_TEMPLATE" >"$CUR_PROMPT_FILE"
|
||||
fi
|
||||
|
||||
if [[ ! -e "$NEXT_PROMPT_FILE" ]]; then
|
||||
sed -r "$SED_DELETE_MESSAGES" "$CUR_PROMPT_FILE" >"$NEXT_PROMPT_FILE"
|
||||
fi
|
||||
|
||||
if [[ "$(tail -c4 "$NEXT_PROMPT_FILE")" != "..." ]]; then
|
||||
echo '...' >>"$NEXT_PROMPT_FILE"
|
||||
fi
|
||||
|
||||
if [[ ! -e "$PROMPT_CACHE_FILE" ]]; then
|
||||
echo 'Prompt cache does not exist, building...'
|
||||
# Default batch_size to 8 here for better user feedback during initial prompt processing
|
||||
./main 2>>"$LOG" \
|
||||
--batch_size 8 \
|
||||
"${OPTS[@]}" \
|
||||
--prompt-cache "$PROMPT_CACHE_FILE" \
|
||||
--file "$CUR_PROMPT_FILE" \
|
||||
--n_predict 1
|
||||
echo
|
||||
echo 'Done!'
|
||||
fi
|
||||
|
||||
if [[ ! -e "$CUR_PROMPT_CACHE" ]]; then
|
||||
cp "$PROMPT_CACHE_FILE" "$CUR_PROMPT_CACHE"
|
||||
fi
|
||||
if [[ ! -e "$NEXT_PROMPT_CACHE" ]]; then
|
||||
cp "$PROMPT_CACHE_FILE" "$NEXT_PROMPT_CACHE"
|
||||
fi
|
||||
|
||||
printf '%s ' "$(< "$CUR_PROMPT_FILE")"
|
||||
n_tokens=0
|
||||
|
||||
while read -e line; do
|
||||
# Limit generation to remaining context, with a buffer and estimating 2 chars/token for input
|
||||
n_predict=$((CTX_SIZE - n_tokens - ${#line} / 2 - 32))
|
||||
|
||||
# Swap prompts when we're about to run out of context
|
||||
if ((n_predict <= 0)); then
|
||||
wait # for background main (below) to finish with next prompt
|
||||
mv "$NEXT_PROMPT_FILE" "$CUR_PROMPT_FILE"
|
||||
mv "$NEXT_PROMPT_CACHE" "$CUR_PROMPT_CACHE"
|
||||
|
||||
sed -r "$SED_DELETE_MESSAGES" "$CUR_PROMPT_FILE" >"$NEXT_PROMPT_FILE"
|
||||
echo '...' >>"$NEXT_PROMPT_FILE"
|
||||
cp "$PROMPT_CACHE_FILE" "$NEXT_PROMPT_CACHE"
|
||||
|
||||
n_tokens=0
|
||||
n_predict=$((CTX_SIZE / 2))
|
||||
fi
|
||||
|
||||
echo " ${line}" >>"$CUR_PROMPT_FILE"
|
||||
if ((n_tokens > CTX_ROTATE_POINT)); then
|
||||
echo " ${line}" >>"$NEXT_PROMPT_FILE"
|
||||
fi
|
||||
|
||||
n_prompt_len_pre=$(($(wc -c <"$CUR_PROMPT_FILE")))
|
||||
|
||||
printf '%s: ' "$AI_NAME" >>"$CUR_PROMPT_FILE"
|
||||
|
||||
./main 2>>"$LOG" "${OPTS[@]}" \
|
||||
--prompt-cache "$CUR_PROMPT_CACHE" \
|
||||
--prompt-cache-all \
|
||||
--file "$CUR_PROMPT_FILE" \
|
||||
--reverse-prompt "${USER_NAME}:" \
|
||||
--n_predict "$n_predict" |
|
||||
skip_bytes 1 | # skip BOS token added by ./main
|
||||
tee "$CUR_PROMPT_FILE.tmp" | # save prompt + generation to tmp file
|
||||
skip_bytes "$n_prompt_len_pre" # print generation
|
||||
|
||||
mv "$CUR_PROMPT_FILE.tmp" "$CUR_PROMPT_FILE"
|
||||
|
||||
# if we hit n_predict instead of reverse-prompt, we need to add the prompt
|
||||
if [[ "$(tail -n1 "$CUR_PROMPT_FILE")" != "${USER_NAME}:" ]]; then
|
||||
printf '\n%s:' "$USER_NAME"
|
||||
printf '\n%s:' "$USER_NAME" >> "$CUR_PROMPT_FILE"
|
||||
fi
|
||||
|
||||
printf ' '
|
||||
|
||||
# HACK get num tokens from debug message
|
||||
# TODO get both messages in one go
|
||||
if ! session_size_msg="$(tail -n30 "$LOG" | grep -oE "$SESSION_SIZE_MSG_PATTERN")" ||
|
||||
! sample_time_msg="$( tail -n10 "$LOG" | grep -oE "$SAMPLE_TIME_MSG_PATTERN")"; then
|
||||
echo >&2 "Couldn't get number of tokens from ./main output!"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
n_tokens=$(($(cut -d/ -f2 <<<"$session_size_msg") + $(cut -d/ -f2 <<<"$sample_time_msg")))
|
||||
|
||||
if ((n_tokens > CTX_ROTATE_POINT)); then
|
||||
tail -c+$((n_prompt_len_pre + 1)) "$CUR_PROMPT_FILE" >>"$NEXT_PROMPT_FILE"
|
||||
fi
|
||||
|
||||
# Update cache for next prompt in background, ideally during user input
|
||||
./main >>"$LOG_BG" 2>&1 "${OPTS[@]}" \
|
||||
--prompt-cache "$NEXT_PROMPT_CACHE" \
|
||||
--file "$NEXT_PROMPT_FILE" \
|
||||
--n_predict 1 &
|
||||
done
|
|
@ -8,6 +8,7 @@
|
|||
#include <iterator>
|
||||
#include <algorithm>
|
||||
#include <sstream>
|
||||
#include <unordered_set>
|
||||
|
||||
#if defined(__APPLE__) && defined(__MACH__)
|
||||
#include <sys/types.h>
|
||||
|
@ -28,21 +29,21 @@
|
|||
|
||||
int32_t get_num_physical_cores() {
|
||||
#ifdef __linux__
|
||||
std::ifstream cpuinfo("/proc/cpuinfo");
|
||||
// enumerate the set of thread siblings, num entries is num cores
|
||||
std::unordered_set<std::string> siblings;
|
||||
for (uint32_t cpu=0; cpu < UINT32_MAX; ++cpu) {
|
||||
std::ifstream thread_siblings("/sys/devices/system/cpu"
|
||||
+ std::to_string(cpu) + "/topology/thread_siblings");
|
||||
if (!thread_siblings.is_open()) {
|
||||
break; // no more cpus
|
||||
}
|
||||
std::string line;
|
||||
while (std::getline(cpuinfo, line)) {
|
||||
std::size_t pos = line.find("cpu cores");
|
||||
if (pos != std::string::npos) {
|
||||
pos = line.find(": ", pos);
|
||||
if (pos != std::string::npos) {
|
||||
try {
|
||||
// Extract the number and return it
|
||||
return static_cast<int32_t>(std::stoul(line.substr(pos + 2)));
|
||||
} catch (const std::invalid_argument &) {
|
||||
// Ignore if we could not parse
|
||||
}
|
||||
if (std::getline(thread_siblings, line)) {
|
||||
siblings.insert(line);
|
||||
}
|
||||
}
|
||||
if (siblings.size() > 0) {
|
||||
return static_cast<int32_t>(siblings.size());
|
||||
}
|
||||
#elif defined(__APPLE__) && defined(__MACH__)
|
||||
int32_t num_physical_cores;
|
||||
|
@ -320,12 +321,6 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) {
|
|||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
} else if (arg == "--n-parts") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
params.n_parts = std::stoi(argv[i]);
|
||||
} else if (arg == "-h" || arg == "--help") {
|
||||
gpt_print_usage(argc, argv, default_params);
|
||||
exit(0);
|
||||
|
@ -356,7 +351,7 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) {
|
|||
}
|
||||
if (params.prompt_cache_all &&
|
||||
(params.interactive || params.interactive_first ||
|
||||
params.instruct || params.antiprompt.size())) {
|
||||
params.instruct)) {
|
||||
fprintf(stderr, "error: --prompt-cache-all not supported in interactive mode yet\n");
|
||||
gpt_print_usage(argc, argv, default_params);
|
||||
exit(1);
|
||||
|
@ -378,8 +373,8 @@ void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) {
|
|||
fprintf(stderr, " -ins, --instruct run in instruction mode (use with Alpaca models)\n");
|
||||
fprintf(stderr, " --multiline-input allows you to write or paste multiple lines without ending each in '\\'\n");
|
||||
fprintf(stderr, " -r PROMPT, --reverse-prompt PROMPT\n");
|
||||
fprintf(stderr, " run in interactive mode and poll user input upon seeing PROMPT (can be\n");
|
||||
fprintf(stderr, " specified more than once for multiple prompts).\n");
|
||||
fprintf(stderr, " halt generation at PROMPT, return control in interactive mode\n");
|
||||
fprintf(stderr, " (can be specified more than once for multiple prompts).\n");
|
||||
fprintf(stderr, " --color colorise output to distinguish prompt and user input from generations\n");
|
||||
fprintf(stderr, " -s SEED, --seed SEED RNG seed (default: -1, use random seed for < 0)\n");
|
||||
fprintf(stderr, " -t N, --threads N number of threads to use during computation (default: %d)\n", params.n_threads);
|
||||
|
@ -417,7 +412,6 @@ void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) {
|
|||
fprintf(stderr, " --no-penalize-nl do not penalize newline token\n");
|
||||
fprintf(stderr, " --memory-f32 use f32 instead of f16 for memory key+value\n");
|
||||
fprintf(stderr, " --temp N temperature (default: %.1f)\n", (double)params.temp);
|
||||
fprintf(stderr, " --n-parts N number of model parts (default: -1 = determine from dimensions)\n");
|
||||
fprintf(stderr, " -b N, --batch-size N batch size for prompt processing (default: %d)\n", params.n_batch);
|
||||
fprintf(stderr, " --perplexity compute perplexity over the prompt\n");
|
||||
fprintf(stderr, " --keep number of tokens to keep from the initial prompt (default: %d, -1 = all)\n", params.n_keep);
|
||||
|
@ -472,7 +466,6 @@ struct llama_context * llama_init_from_gpt_params(const gpt_params & params) {
|
|||
auto lparams = llama_context_default_params();
|
||||
|
||||
lparams.n_ctx = params.n_ctx;
|
||||
lparams.n_parts = params.n_parts;
|
||||
lparams.n_gpu_layers = params.n_gpu_layers;
|
||||
lparams.seed = params.seed;
|
||||
lparams.f16_kv = params.memory_f16;
|
||||
|
@ -756,7 +749,7 @@ bool console_readline(console_state & con_st, std::string & line) {
|
|||
break;
|
||||
}
|
||||
|
||||
if (input_char == WEOF || input_char == 0x04 /* Ctrl+D*/) {
|
||||
if (input_char == (char32_t) WEOF || input_char == 0x04 /* Ctrl+D*/) {
|
||||
end_of_stream = true;
|
||||
break;
|
||||
}
|
||||
|
@ -771,7 +764,7 @@ bool console_readline(console_state & con_st, std::string & line) {
|
|||
char32_t code = getchar32();
|
||||
if (code == '[' || code == 0x1B) {
|
||||
// Discard the rest of the escape sequence
|
||||
while ((code = getchar32()) != WEOF) {
|
||||
while ((code = getchar32()) != (char32_t) WEOF) {
|
||||
if ((code >= 'A' && code <= 'Z') || (code >= 'a' && code <= 'z') || code == '~') {
|
||||
break;
|
||||
}
|
||||
|
|
|
@ -24,7 +24,6 @@ struct gpt_params {
|
|||
int32_t seed = -1; // RNG seed
|
||||
int32_t n_threads = get_num_physical_cores();
|
||||
int32_t n_predict = -1; // new tokens to predict
|
||||
int32_t n_parts = -1; // amount of model parts (-1 = determine from model dimensions)
|
||||
int32_t n_ctx = 512; // context size
|
||||
int32_t n_batch = 512; // batch size for prompt processing (must be >=32 to use BLAS)
|
||||
int32_t n_keep = 0; // number of tokens to keep from initial prompt
|
||||
|
@ -45,7 +44,7 @@ struct gpt_params {
|
|||
float mirostat_tau = 5.00f; // target entropy
|
||||
float mirostat_eta = 0.10f; // learning rate
|
||||
|
||||
std::string model = "models/lamma-7B/ggml-model.bin"; // model path
|
||||
std::string model = "models/7B/ggml-model.bin"; // model path
|
||||
std::string prompt = "";
|
||||
std::string path_prompt_cache = ""; // path to file for saving/loading prompt eval state
|
||||
std::string input_prefix = ""; // string to prefix user inputs with
|
||||
|
|
|
@ -6,7 +6,6 @@
|
|||
|
||||
int main(int argc, char ** argv) {
|
||||
gpt_params params;
|
||||
params.model = "models/llama-7B/ggml-model.bin";
|
||||
|
||||
if (gpt_params_parse(argc, argv, params) == false) {
|
||||
return 1;
|
||||
|
|
|
@ -50,7 +50,6 @@ void sigint_handler(int signo) {
|
|||
|
||||
int main(int argc, char ** argv) {
|
||||
gpt_params params;
|
||||
params.model = "models/llama-7B/ggml-model.bin";
|
||||
|
||||
if (gpt_params_parse(argc, argv, params) == false) {
|
||||
return 1;
|
||||
|
@ -209,8 +208,8 @@ int main(int argc, char ** argv) {
|
|||
params.antiprompt.push_back("### Instruction:\n\n");
|
||||
}
|
||||
|
||||
// enable interactive mode if reverse prompt or interactive start is specified
|
||||
if (params.antiprompt.size() != 0 || params.interactive_first) {
|
||||
// enable interactive mode if interactive start is specified
|
||||
if (params.interactive_first) {
|
||||
params.interactive = true;
|
||||
}
|
||||
|
||||
|
@ -242,7 +241,7 @@ int main(int argc, char ** argv) {
|
|||
sigint_action.sa_flags = 0;
|
||||
sigaction(SIGINT, &sigint_action, NULL);
|
||||
#elif defined (_WIN32)
|
||||
auto console_ctrl_handler = [](DWORD ctrl_type) -> BOOL {
|
||||
auto console_ctrl_handler = +[](DWORD ctrl_type) -> BOOL {
|
||||
return (ctrl_type == CTRL_C_EVENT) ? (sigint_handler(SIGINT), true) : false;
|
||||
};
|
||||
SetConsoleCtrlHandler(static_cast<PHANDLER_ROUTINE>(console_ctrl_handler), true);
|
||||
|
@ -306,7 +305,7 @@ int main(int argc, char ** argv) {
|
|||
|
||||
std::vector<llama_token> embd;
|
||||
|
||||
while (n_remain != 0 || params.interactive) {
|
||||
while ((n_remain != 0 && !is_antiprompt) || params.interactive) {
|
||||
// predict
|
||||
if (embd.size() > 0) {
|
||||
// infinite text generation via context swapping
|
||||
|
@ -504,9 +503,8 @@ int main(int argc, char ** argv) {
|
|||
console_set_color(con_st, CONSOLE_COLOR_DEFAULT);
|
||||
}
|
||||
|
||||
// in interactive mode, and not currently processing queued inputs;
|
||||
// check if we should prompt the user for more
|
||||
if (params.interactive && (int) embd_inp.size() <= n_consumed) {
|
||||
// if not currently processing queued inputs;
|
||||
if ((int) embd_inp.size() <= n_consumed) {
|
||||
|
||||
// check for reverse prompt
|
||||
if (params.antiprompt.size()) {
|
||||
|
@ -517,10 +515,21 @@ int main(int argc, char ** argv) {
|
|||
|
||||
is_antiprompt = false;
|
||||
// Check if each of the reverse prompts appears at the end of the output.
|
||||
// If we're not running interactively, the reverse prompt might be tokenized with some following characters
|
||||
// so we'll compensate for that by widening the search window a bit.
|
||||
for (std::string & antiprompt : params.antiprompt) {
|
||||
if (last_output.find(antiprompt.c_str(), last_output.length() - antiprompt.length(), antiprompt.length()) != std::string::npos) {
|
||||
size_t extra_padding = params.interactive ? 0 : 2;
|
||||
size_t search_start_pos = last_output.length() > static_cast<size_t>(antiprompt.length() + extra_padding)
|
||||
? last_output.length() - static_cast<size_t>(antiprompt.length() + extra_padding)
|
||||
: 0;
|
||||
|
||||
if (last_output.find(antiprompt.c_str(), search_start_pos) != std::string::npos) {
|
||||
if (params.interactive) {
|
||||
is_interacting = true;
|
||||
console_set_color(con_st, CONSOLE_COLOR_USER_INPUT);
|
||||
}
|
||||
is_antiprompt = true;
|
||||
fflush(stdout);
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
|
|
@ -116,7 +116,6 @@ void perplexity(llama_context * ctx, const gpt_params & params) {
|
|||
|
||||
int main(int argc, char ** argv) {
|
||||
gpt_params params;
|
||||
params.model = "models/llama-7B/ggml-model.bin";
|
||||
|
||||
params.n_batch = 512;
|
||||
if (gpt_params_parse(argc, argv, params) == false) {
|
||||
|
|
|
@ -321,7 +321,6 @@ int main(int argc, char ** argv) {
|
|||
auto lparams = llama_context_default_params();
|
||||
|
||||
lparams.n_ctx = 256;
|
||||
lparams.n_parts = 1;
|
||||
lparams.seed = 1;
|
||||
lparams.f16_kv = false;
|
||||
lparams.use_mlock = false;
|
||||
|
|
|
@ -8,7 +8,6 @@
|
|||
|
||||
int main(int argc, char ** argv) {
|
||||
gpt_params params;
|
||||
params.model = "models/llama-7B/ggml-model.bin";
|
||||
params.seed = 42;
|
||||
params.n_threads = 4;
|
||||
params.repeat_last_n = 64;
|
||||
|
@ -27,7 +26,6 @@ int main(int argc, char ** argv) {
|
|||
auto lparams = llama_context_default_params();
|
||||
|
||||
lparams.n_ctx = params.n_ctx;
|
||||
lparams.n_parts = params.n_parts;
|
||||
lparams.seed = params.seed;
|
||||
lparams.f16_kv = params.memory_f16;
|
||||
lparams.use_mmap = params.use_mmap;
|
||||
|
|
168
ggml-cuda.cu
168
ggml-cuda.cu
|
@ -42,19 +42,19 @@ typedef void (*dequantize_mul_mat_vec_cuda_t)(const void * vx, const float * y,
|
|||
#define QK4_0 32
|
||||
#define QR4_0 2
|
||||
typedef struct {
|
||||
float d; // delta
|
||||
half d; // delta
|
||||
uint8_t qs[QK4_0 / 2]; // nibbles / quants
|
||||
} block_q4_0;
|
||||
static_assert(sizeof(block_q4_0) == sizeof(float) + QK4_0 / 2, "wrong q4_0 block size/padding");
|
||||
static_assert(sizeof(block_q4_0) == sizeof(ggml_fp16_t) + QK4_0 / 2, "wrong q4_0 block size/padding");
|
||||
|
||||
#define QK4_1 32
|
||||
#define QR4_1 2
|
||||
typedef struct {
|
||||
float d; // delta
|
||||
float m; // min
|
||||
half d; // delta
|
||||
half m; // min
|
||||
uint8_t qs[QK4_1 / 2]; // nibbles / quants
|
||||
} block_q4_1;
|
||||
static_assert(sizeof(block_q4_1) == sizeof(float) * 2 + QK4_1 / 2, "wrong q4_1 block size/padding");
|
||||
static_assert(sizeof(block_q4_1) == sizeof(ggml_fp16_t) * 2 + QK4_1 / 2, "wrong q4_1 block size/padding");
|
||||
|
||||
#define QK5_0 32
|
||||
#define QR5_0 2
|
||||
|
@ -78,12 +78,13 @@ static_assert(sizeof(block_q5_1) == 2 * sizeof(ggml_fp16_t) + sizeof(uint32_t) +
|
|||
#define QK8_0 32
|
||||
#define QR8_0 1
|
||||
typedef struct {
|
||||
float d; // delta
|
||||
half d; // delta
|
||||
int8_t qs[QK8_0]; // quants
|
||||
} block_q8_0;
|
||||
static_assert(sizeof(block_q8_0) == sizeof(float) + QK8_0, "wrong q8_0 block size/padding");
|
||||
static_assert(sizeof(block_q8_0) == sizeof(ggml_fp16_t) + QK8_0, "wrong q8_0 block size/padding");
|
||||
|
||||
#define CUDA_DMMV_BLOCK_SIZE 32
|
||||
#define CUDA_DEQUANTIZE_BLOCK_SIZE 256
|
||||
#define CUDA_DMMV_BLOCK_SIZE 32 // dmmv = dequantize_mul_mat_vec
|
||||
|
||||
static __device__ void dequantize_q4_0(const void * vx, const int ib, const int iqs, float & v0, float & v1){
|
||||
const block_q4_0 * x = (const block_q4_0 *) vx;
|
||||
|
@ -170,104 +171,23 @@ static __device__ void convert_f16(const void * vx, const int ib, const int iqs,
|
|||
v1 = __half2float(x[ib + 1]);
|
||||
}
|
||||
|
||||
static __global__ void dequantize_block_q4_0(const void * vx, float * y) {
|
||||
static const int qk = QK4_0;
|
||||
template <int qk, int qr, dequantize_kernel_t dequantize_kernel>
|
||||
static __global__ void dequantize_block(const void * vx, float * y, const int k) {
|
||||
const int i = blockDim.x*blockIdx.x + 2*threadIdx.x;
|
||||
|
||||
const block_q4_0 * x = (const block_q4_0 *) vx;
|
||||
|
||||
const int i = blockIdx.x;
|
||||
|
||||
const float d = x[i].d;
|
||||
|
||||
for (int j = 0; j < qk/2; ++j) {
|
||||
const int x0 = (x[i].qs[j] & 0xf) - 8;
|
||||
const int x1 = (x[i].qs[j] >> 4) - 8;
|
||||
|
||||
y[i*qk + j + 0 ] = x0*d;
|
||||
y[i*qk + j + qk/2] = x1*d;
|
||||
if (i >= k) {
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
static __global__ void dequantize_block_q4_1(const void * vx, float * y) {
|
||||
static const int qk = QK4_1;
|
||||
const int ib = i/qk; // block index
|
||||
const int iqs = (i%qk)/qr; // quant index
|
||||
const int iybs = i - i%qk; // y block start index
|
||||
const int y_offset = qr == 1 ? 1 : qk/2;
|
||||
|
||||
const block_q4_1 * x = (const block_q4_1 *) vx;
|
||||
|
||||
const int i = blockIdx.x;
|
||||
|
||||
const float d = x[i].d;
|
||||
const float m = x[i].m;
|
||||
|
||||
for (int j = 0; j < qk/2; ++j) {
|
||||
const int x0 = (x[i].qs[j] & 0xf);
|
||||
const int x1 = (x[i].qs[j] >> 4);
|
||||
|
||||
y[i*qk + j + 0 ] = x0*d + m;
|
||||
y[i*qk + j + qk/2] = x1*d + m;
|
||||
}
|
||||
}
|
||||
|
||||
static __global__ void dequantize_block_q5_0(const void * vx, float * y) {
|
||||
static const int qk = QK5_0;
|
||||
|
||||
const block_q5_0 * x = (const block_q5_0 *) vx;
|
||||
|
||||
const int i = blockIdx.x;
|
||||
|
||||
const float d = x[i].d;
|
||||
|
||||
uint32_t qh;
|
||||
memcpy(&qh, x[i].qh, sizeof(qh));
|
||||
|
||||
for (int j = 0; j < qk/2; ++j) {
|
||||
const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
|
||||
const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
|
||||
|
||||
const int32_t x0 = ((x[i].qs[j] & 0xf) | xh_0) - 16;
|
||||
const int32_t x1 = ((x[i].qs[j] >> 4) | xh_1) - 16;
|
||||
|
||||
y[i*qk + j + 0 ] = x0*d;
|
||||
y[i*qk + j + qk/2] = x1*d;
|
||||
}
|
||||
}
|
||||
|
||||
static __global__ void dequantize_block_q5_1(const void * vx, float * y) {
|
||||
static const int qk = QK5_1;
|
||||
|
||||
const block_q5_1 * x = (const block_q5_1 *) vx;
|
||||
|
||||
const int i = blockIdx.x;
|
||||
|
||||
const float d = x[i].d;
|
||||
const float m = x[i].m;
|
||||
|
||||
uint32_t qh;
|
||||
memcpy(&qh, x[i].qh, sizeof(qh));
|
||||
|
||||
for (int j = 0; j < qk/2; ++j) {
|
||||
const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
|
||||
const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
|
||||
|
||||
const int x0 = (x[i].qs[j] & 0xf) | xh_0;
|
||||
const int x1 = (x[i].qs[j] >> 4) | xh_1;
|
||||
|
||||
y[i*qk + j + 0 ] = x0*d + m;
|
||||
y[i*qk + j + qk/2] = x1*d + m;
|
||||
}
|
||||
}
|
||||
|
||||
static __global__ void dequantize_block_q8_0(const void * vx, float * y) {
|
||||
static const int qk = QK8_0;
|
||||
|
||||
const block_q8_0 * x = (const block_q8_0 *) vx;
|
||||
|
||||
const int i = blockIdx.x;
|
||||
|
||||
const float d = x[i].d;
|
||||
|
||||
for (int j = 0; j < qk; ++j) {
|
||||
y[i*qk + j] = x[i].qs[j]*d;
|
||||
}
|
||||
// dequantize
|
||||
float & v0 = y[iybs + iqs + 0];
|
||||
float & v1 = y[iybs + iqs + y_offset];
|
||||
dequantize_kernel(vx, ib, iqs, v0, v1);
|
||||
}
|
||||
|
||||
template <int block_size, int qk, int qr, dequantize_kernel_t dequantize_kernel>
|
||||
|
@ -308,29 +228,29 @@ static __global__ void dequantize_mul_mat_vec(const void * vx, const float * y,
|
|||
}
|
||||
}
|
||||
|
||||
static void dequantize_row_q4_0_cuda(const void * vx, float * y, int k, cudaStream_t stream) {
|
||||
const int nb = k / QK4_0;
|
||||
dequantize_block_q4_0<<<nb, 1, 0, stream>>>(vx, y);
|
||||
static void dequantize_row_q4_0_cuda(const void * vx, float * y, const int k, cudaStream_t stream) {
|
||||
const int num_blocks = (k + CUDA_DEQUANTIZE_BLOCK_SIZE - 1) / CUDA_DEQUANTIZE_BLOCK_SIZE;
|
||||
dequantize_block<QK4_0, QR4_0, dequantize_q4_0><<<num_blocks, CUDA_DEQUANTIZE_BLOCK_SIZE, 0, stream>>>(vx, y, k);
|
||||
}
|
||||
|
||||
static void dequantize_row_q4_1_cuda(const void * vx, float * y, int k, cudaStream_t stream) {
|
||||
const int nb = k / QK4_1;
|
||||
dequantize_block_q4_1<<<nb, 1, 0, stream>>>(vx, y);
|
||||
static void dequantize_row_q4_1_cuda(const void * vx, float * y, const int k, cudaStream_t stream) {
|
||||
const int num_blocks = (k + CUDA_DEQUANTIZE_BLOCK_SIZE - 1) / CUDA_DEQUANTIZE_BLOCK_SIZE;
|
||||
dequantize_block<QK4_1, QR4_1, dequantize_q4_1><<<num_blocks, CUDA_DEQUANTIZE_BLOCK_SIZE, 0, stream>>>(vx, y, k);
|
||||
}
|
||||
|
||||
static void dequantize_row_q5_0_cuda(const void * vx, float * y, int k, cudaStream_t stream) {
|
||||
const int nb = k / QK5_0;
|
||||
dequantize_block_q5_0<<<nb, 1, 0, stream>>>(vx, y);
|
||||
static void dequantize_row_q5_0_cuda(const void * vx, float * y, const int k, cudaStream_t stream) {
|
||||
const int num_blocks = (k + CUDA_DEQUANTIZE_BLOCK_SIZE - 1) / CUDA_DEQUANTIZE_BLOCK_SIZE;
|
||||
dequantize_block<QK5_0, QR5_0, dequantize_q5_0><<<num_blocks, CUDA_DEQUANTIZE_BLOCK_SIZE, 0, stream>>>(vx, y, k);
|
||||
}
|
||||
|
||||
static void dequantize_row_q5_1_cuda(const void * vx, float * y, int k, cudaStream_t stream) {
|
||||
const int nb = k / QK5_1;
|
||||
dequantize_block_q5_1<<<nb, 1, 0, stream>>>(vx, y);
|
||||
static void dequantize_row_q5_1_cuda(const void * vx, float * y, const int k, cudaStream_t stream) {
|
||||
const int num_blocks = (k + CUDA_DEQUANTIZE_BLOCK_SIZE - 1) / CUDA_DEQUANTIZE_BLOCK_SIZE;
|
||||
dequantize_block<QK5_1, QR5_1, dequantize_q5_1><<<num_blocks, CUDA_DEQUANTIZE_BLOCK_SIZE, 0, stream>>>(vx, y, k);
|
||||
}
|
||||
|
||||
static void dequantize_row_q8_0_cuda(const void * vx, float * y, int k, cudaStream_t stream) {
|
||||
const int nb = k / QK8_0;
|
||||
dequantize_block_q8_0<<<nb, 1, 0, stream>>>(vx, y);
|
||||
static void dequantize_row_q8_0_cuda(const void * vx, float * y, const int k, cudaStream_t stream) {
|
||||
const int num_blocks = (k + CUDA_DEQUANTIZE_BLOCK_SIZE - 1) / CUDA_DEQUANTIZE_BLOCK_SIZE;
|
||||
dequantize_block<QK8_0, QR8_0, dequantize_q8_0><<<num_blocks, CUDA_DEQUANTIZE_BLOCK_SIZE, 0, stream>>>(vx, y, k);
|
||||
}
|
||||
|
||||
static void dequantize_mul_mat_vec_q4_0_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
|
||||
|
@ -363,17 +283,9 @@ static void dequantize_mul_mat_vec_q8_0_cuda(const void * vx, const float * y, f
|
|||
<<<nrows, CUDA_DMMV_BLOCK_SIZE, 0, stream>>>(vx, y, dst, ncols);
|
||||
}
|
||||
|
||||
// TODO: optimize
|
||||
static __global__ void convert_fp16_to_fp32(const void * vx, float * y) {
|
||||
const half * x = (const half *) vx;
|
||||
|
||||
const int i = blockIdx.x;
|
||||
|
||||
y[i] = __half2float(x[i]);
|
||||
}
|
||||
|
||||
static void convert_fp16_to_fp32_cuda(const void * x, float * y, int k, cudaStream_t stream) {
|
||||
convert_fp16_to_fp32<<<k, 1, 0, stream>>>(x, y);
|
||||
static void convert_fp16_to_fp32_cuda(const void * vx, float * y, const int k, cudaStream_t stream) {
|
||||
const int num_blocks = (k + CUDA_DEQUANTIZE_BLOCK_SIZE - 1) / CUDA_DEQUANTIZE_BLOCK_SIZE;
|
||||
dequantize_block<32, 1, convert_f16><<<num_blocks, CUDA_DEQUANTIZE_BLOCK_SIZE, 0, stream>>>(vx, y, k);
|
||||
}
|
||||
|
||||
static void convert_mul_mat_vec_f16_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
|
||||
|
|
4
ggml.h
4
ggml.h
|
@ -190,7 +190,7 @@
|
|||
#define GGML_FILE_MAGIC 0x67676d6c // "ggml"
|
||||
#define GGML_FILE_VERSION 1
|
||||
|
||||
#define GGML_QNT_VERSION 1 // bump this on quantization format changes
|
||||
#define GGML_QNT_VERSION 2 // bump this on quantization format changes
|
||||
#define GGML_QNT_VERSION_FACTOR 1000 // do not change this
|
||||
|
||||
#define GGML_MAX_DIMS 4
|
||||
|
@ -373,7 +373,7 @@ extern "C" {
|
|||
|
||||
char name[32];
|
||||
|
||||
char padding[9]; // TODO: remove and add padding to name?
|
||||
char padding[16];
|
||||
};
|
||||
|
||||
// computation graph
|
||||
|
|
23
llama.cpp
23
llama.cpp
|
@ -408,6 +408,7 @@ enum llama_file_version {
|
|||
LLAMA_FILE_VERSION_GGMF_V1, // added version field and scores in vocab
|
||||
LLAMA_FILE_VERSION_GGJT_V1, // added padding
|
||||
LLAMA_FILE_VERSION_GGJT_V2, // changed quantization format
|
||||
LLAMA_FILE_VERSION_GGJT_V3, // changed Q4 and Q8 quantization format
|
||||
};
|
||||
|
||||
struct llama_file_loader {
|
||||
|
@ -440,6 +441,8 @@ struct llama_file_loader {
|
|||
file_version = LLAMA_FILE_VERSION_GGJT_V1;
|
||||
} else if (magic == 'ggjt' && version == 2) {
|
||||
file_version = LLAMA_FILE_VERSION_GGJT_V2;
|
||||
} else if (magic == 'ggjt' && version == 3) {
|
||||
file_version = LLAMA_FILE_VERSION_GGJT_V3;
|
||||
} else {
|
||||
throw format("unknown (magic, version) combination: %08x, %08x; is this really a GGML file?",
|
||||
magic, version);
|
||||
|
@ -814,10 +817,9 @@ static bool kv_cache_init(
|
|||
struct llama_context_params llama_context_default_params() {
|
||||
struct llama_context_params result = {
|
||||
/*.n_ctx =*/ 512,
|
||||
/*.n_parts =*/ -1,
|
||||
/*.gpu_layers =*/ 0,
|
||||
/*.seed =*/ -1,
|
||||
/*.f16_kv =*/ false,
|
||||
/*.f16_kv =*/ true,
|
||||
/*.logits_all =*/ false,
|
||||
/*.vocab_only =*/ false,
|
||||
/*.use_mmap =*/ true,
|
||||
|
@ -847,7 +849,8 @@ static const char *llama_file_version_name(llama_file_version version) {
|
|||
case LLAMA_FILE_VERSION_GGML: return "'ggml' (old version with low tokenizer quality and no mmap support)";
|
||||
case LLAMA_FILE_VERSION_GGMF_V1: return "ggmf v1 (old version with no mmap support)";
|
||||
case LLAMA_FILE_VERSION_GGJT_V1: return "ggjt v1 (pre #1405)";
|
||||
case LLAMA_FILE_VERSION_GGJT_V2: return "ggjt v2 (latest)";
|
||||
case LLAMA_FILE_VERSION_GGJT_V2: return "ggjt v2 (pre #1508)";
|
||||
case LLAMA_FILE_VERSION_GGJT_V3: return "ggjt v3 (latest)";
|
||||
}
|
||||
|
||||
return "unknown";
|
||||
|
@ -927,11 +930,19 @@ static void llama_model_load_internal(
|
|||
fprintf(stderr, "%s: model size = %s\n", __func__, llama_model_type_name(model.type));
|
||||
}
|
||||
|
||||
if (file_version != LLAMA_FILE_VERSION_GGJT_V2) {
|
||||
if (file_version < LLAMA_FILE_VERSION_GGJT_V2) {
|
||||
if (hparams.ftype != LLAMA_FTYPE_ALL_F32 &&
|
||||
hparams.ftype != LLAMA_FTYPE_MOSTLY_F16 &&
|
||||
hparams.ftype != LLAMA_FTYPE_MOSTLY_Q8_0) {
|
||||
throw format("this format is no longer supported (see https://github.com/ggerganov/llama.cpp/pull/1305)");
|
||||
throw format("this format is no longer supported (see https://github.com/ggerganov/llama.cpp/pull/1405)");
|
||||
}
|
||||
}
|
||||
|
||||
if (file_version < LLAMA_FILE_VERSION_GGJT_V3) {
|
||||
if (hparams.ftype == LLAMA_FTYPE_MOSTLY_Q4_0 ||
|
||||
hparams.ftype == LLAMA_FTYPE_MOSTLY_Q4_1 ||
|
||||
hparams.ftype == LLAMA_FTYPE_MOSTLY_Q8_0) {
|
||||
throw format("this format is no longer supported (see https://github.com/ggerganov/llama.cpp/pull/1508)");
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -944,7 +955,7 @@ static void llama_model_load_internal(
|
|||
size_t ctx_size;
|
||||
size_t mmapped_size;
|
||||
ml->calc_sizes(&ctx_size, &mmapped_size);
|
||||
fprintf(stderr, "%s: ggml ctx size = %6.2f KB\n", __func__, ctx_size/1024.0);
|
||||
fprintf(stderr, "%s: ggml ctx size = %6.2f MB\n", __func__, ctx_size/1024.0/1024.0);
|
||||
|
||||
// print memory requirements
|
||||
{
|
||||
|
|
3
llama.h
3
llama.h
|
@ -19,7 +19,7 @@
|
|||
# define LLAMA_API
|
||||
#endif
|
||||
|
||||
#define LLAMA_FILE_VERSION 2
|
||||
#define LLAMA_FILE_VERSION 3
|
||||
#define LLAMA_FILE_MAGIC 'ggjt'
|
||||
#define LLAMA_FILE_MAGIC_UNVERSIONED 'ggml'
|
||||
#define LLAMA_SESSION_MAGIC 'ggsn'
|
||||
|
@ -55,7 +55,6 @@ extern "C" {
|
|||
|
||||
struct llama_context_params {
|
||||
int n_ctx; // text context
|
||||
int n_parts; // -1 for default
|
||||
int n_gpu_layers; // number of layers to store in VRAM
|
||||
int seed; // RNG seed, -1 for random
|
||||
|
||||
|
|
|
@ -1,6 +1,10 @@
|
|||
#include "llama.h"
|
||||
#include "ggml.h"
|
||||
#include <cassert>
|
||||
#include "llama.h"
|
||||
|
||||
#ifdef NDEBUG
|
||||
#undef NDEBUG
|
||||
#endif
|
||||
|
||||
#include <cmath>
|
||||
#include <numeric>
|
||||
#include <cassert>
|
||||
|
@ -8,7 +12,6 @@
|
|||
#include <vector>
|
||||
#include <algorithm>
|
||||
|
||||
|
||||
void dump(const llama_token_data_array * candidates) {
|
||||
for (size_t i = 0; i < candidates->size; i++) {
|
||||
printf("%d: %f (%f)\n", candidates->data[i].id, candidates->data[i].p, candidates->data[i].logit);
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue