diff --git a/convert-hf-to-gguf.py b/convert-hf-to-gguf.py index 18a720874..9bdfce07a 100755 --- a/convert-hf-to-gguf.py +++ b/convert-hf-to-gguf.py @@ -218,6 +218,8 @@ class Model: return BertModel if model_architecture == "NomicBertModel": return NomicBertModel + if model_architecture == "GemmaForCausalLM": + return GemmaModel return Model def _is_model_safetensors(self) -> bool: @@ -277,6 +279,8 @@ class Model: return gguf.MODEL_ARCH.BERT if arch == "NomicBertModel": return gguf.MODEL_ARCH.NOMIC_BERT + if arch == "GemmaForCausalLM": + return gguf.MODEL_ARCH.GEMMA raise NotImplementedError(f'Architecture "{arch}" not supported!') @@ -1781,6 +1785,62 @@ class NomicBertModel(BertModel): yield name, data +class GemmaModel(Model): + def set_vocab(self): + self._set_vocab_sentencepiece() + + def set_gguf_parameters(self): + hparams = self.hparams + block_count = hparams["num_hidden_layers"] + + self.gguf_writer.add_name(self.dir_model.name) + self.gguf_writer.add_context_length(hparams["max_position_embeddings"]) + self.gguf_writer.add_embedding_length(hparams["hidden_size"]) + self.gguf_writer.add_block_count(block_count) + self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"]) + self.gguf_writer.add_head_count(hparams["num_attention_heads"]) + self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"]) + self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"]) + self.gguf_writer.add_key_length(hparams["head_dim"]) + self.gguf_writer.add_value_length(hparams["head_dim"]) + + def write_tensors(self): + block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer"))) + tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count) + + for name, data_torch in self.get_tensors(): + # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89 + if name.endswith("norm.weight"): + data_torch = data_torch + 1 + + old_dtype = data_torch.dtype + + # convert any unsupported data types to float32 + if data_torch.dtype not in (torch.float16, torch.float32): + data_torch = data_torch.to(torch.float32) + + data = data_torch.squeeze().numpy() + + # map tensor names + new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias")) + if new_name is None: + print(f"Can not map tensor {name!r}") + sys.exit() + + n_dims = len(data.shape) + data_dtype = data.dtype + + data = data.astype(np.float32) + + # if f16 desired, convert any float32 2-dim weight tensors to float16 + if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2: + data = data.astype(np.float16) + + print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}") + + self.gguf_writer.add_tensor(new_name, data) + + ###### CONVERSION LOGIC ###### diff --git a/ggml-cuda.cu b/ggml-cuda.cu index e7c211d7d..b0e454e02 100644 --- a/ggml-cuda.cu +++ b/ggml-cuda.cu @@ -1,3 +1,7 @@ +#include "ggml-cuda.h" +#include "ggml.h" +#include "ggml-backend-impl.h" + #include #include #include @@ -121,11 +125,6 @@ #endif // defined(GGML_USE_HIPBLAS) -// ggml-cuda need half type so keep ggml headers include at last -#include "ggml-cuda.h" -#include "ggml.h" -#include "ggml-backend-impl.h" - #define CUDART_HMAX 11070 // CUDA 11.7, min. ver. for which __hmax and __hmax2 are known to work (may be higher than needed) #define CC_PASCAL 600 diff --git a/ggml-impl.h b/ggml-impl.h index 19df66bce..c5637e4d4 100644 --- a/ggml-impl.h +++ b/ggml-impl.h @@ -53,11 +53,23 @@ extern "C" { // #include -#define GGML_COMPUTE_FP16_TO_FP32(x) ((float) (x)) -#define GGML_COMPUTE_FP32_TO_FP16(x) (x) +#define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x) +#define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x) -#define GGML_FP16_TO_FP32(x) ((float) (x)) -#define GGML_FP32_TO_FP16(x) (x) +#define GGML_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x) + +static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) { + __fp16 tmp; + memcpy(&tmp, &h, sizeof(ggml_fp16_t)); + return (float)tmp; +} + +static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) { + ggml_fp16_t res; + __fp16 tmp = f; + memcpy(&res, &tmp, sizeof(ggml_fp16_t)); + return res; +} #else @@ -214,8 +226,7 @@ extern float ggml_table_f32_f16[1 << 16]; // On ARM NEON, it's quicker to directly convert x -> x instead of calling into ggml_lookup_fp16_to_fp32, // so we define GGML_FP16_TO_FP32 and GGML_FP32_TO_FP16 elsewhere for NEON. // This is also true for POWER9. -#if !defined(GGML_FP16_TO_FP32) || !defined(GGML_FP32_TO_FP16) - +#if !defined(GGML_FP16_TO_FP32) inline static float ggml_lookup_fp16_to_fp32(ggml_fp16_t f) { uint16_t s; memcpy(&s, &f, sizeof(uint16_t)); @@ -223,8 +234,10 @@ inline static float ggml_lookup_fp16_to_fp32(ggml_fp16_t f) { } #define GGML_FP16_TO_FP32(x) ggml_lookup_fp16_to_fp32(x) -#define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x) +#endif +#if !defined(GGML_FP32_TO_FP16) +#define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x) #endif #define GGML_HASHTABLE_FULL ((size_t)-1) diff --git a/ggml-quants.c b/ggml-quants.c index 6336538f0..b15977f53 100644 --- a/ggml-quants.c +++ b/ggml-quants.c @@ -438,6 +438,30 @@ inline static ggml_int8x16x4_t ggml_vld1q_s8_x4(const int8_t * ptr) { return res; } +// NOTE: not tested +inline static int8x16_t ggml_vqtbl1q_s8(int8x16_t a, uint8x16_t b) { + int8x16_t res; + + res[ 0] = a[b[ 0]]; + res[ 1] = a[b[ 1]]; + res[ 2] = a[b[ 2]]; + res[ 3] = a[b[ 3]]; + res[ 4] = a[b[ 4]]; + res[ 5] = a[b[ 5]]; + res[ 6] = a[b[ 6]]; + res[ 7] = a[b[ 7]]; + res[ 8] = a[b[ 8]]; + res[ 9] = a[b[ 9]]; + res[10] = a[b[10]]; + res[11] = a[b[11]]; + res[12] = a[b[12]]; + res[13] = a[b[13]]; + res[14] = a[b[14]]; + res[15] = a[b[15]]; + + return res; +} + #else #define ggml_int16x8x2_t int16x8x2_t @@ -451,6 +475,7 @@ inline static ggml_int8x16x4_t ggml_vld1q_s8_x4(const int8_t * ptr) { #define ggml_vld1q_u8_x4 vld1q_u8_x4 #define ggml_vld1q_s8_x2 vld1q_s8_x2 #define ggml_vld1q_s8_x4 vld1q_s8_x4 +#define ggml_vqtbl1q_s8 vqtbl1q_s8 #endif @@ -5629,8 +5654,8 @@ void ggml_vec_dot_q2_K_q8_K(int n, float * restrict s, size_t bs, const void * r for (int i = 0; i < nb; ++i) { - const float d = y[i].d * (float)x[i].d; - const float dmin = -y[i].d * (float)x[i].dmin; + const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d); + const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin); const uint8_t * restrict q2 = x[i].qs; const int8_t * restrict q8 = y[i].qs; @@ -5779,8 +5804,8 @@ void ggml_vec_dot_q2_K_q8_K(int n, float * restrict s, size_t bs, const void * r for (int i = 0; i < nb; ++i) { - const float d = y[i].d * (float)x[i].d; - const float dmin = -y[i].d * (float)x[i].dmin; + const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d); + const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin); const uint8_t * restrict q2 = x[i].qs; const int8_t * restrict q8 = y[i].qs; @@ -6433,7 +6458,7 @@ void ggml_vec_dot_q3_K_q8_K(int n, float * restrict s, size_t bs, const void * r int32_t isum = -4*(scales[0] * y[i].bsums[0] + scales[2] * y[i].bsums[1] + scales[1] * y[i].bsums[2] + scales[3] * y[i].bsums[3]); - const float d = y[i].d * (float)x[i].d; + const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d); const uint8x16_t htmp = vcombine_u8(hbits, vshr_n_u8(hbits, 1)); q3h.val[0] = vandq_u8(mh, vshlq_n_u8(htmp, 2)); @@ -6635,7 +6660,7 @@ void ggml_vec_dot_q3_K_q8_K(int n, float * restrict s, size_t bs, const void * r int32_t isum = -4*(scales[0] * y[i].bsums[0] + scales[2] * y[i].bsums[1] + scales[1] * y[i].bsums[2] + scales[3] * y[i].bsums[3]); - const float d = y[i].d * (float)x[i].d; + const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d); vint32m1_t vzero = __riscv_vmv_v_x_i32m1(0, 1); @@ -7138,9 +7163,9 @@ void ggml_vec_dot_q4_K_q8_K(int n, float * restrict s, size_t bs, const void * r aux16[1] = (a[0] >> 4) & 0x0f0f; const int32_t summi = scales[2] * (y[i].bsums[0] + y[i].bsums[1]) + scales[3] * (y[i].bsums[2] + y[i].bsums[3]); - sum_mins += y[i].d * (float)x[i].d[1] * summi; + sum_mins += y[i].d * GGML_FP16_TO_FP32(x[i].d[1]) * summi; - const float d = y[i].d * (float)x[i].d[0]; + const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d[0]); const ggml_uint8x16x2_t q4bits = ggml_vld1q_u8_x2(q4); @@ -7798,7 +7823,7 @@ void ggml_vec_dot_q5_K_q8_K(int n, float * restrict s, size_t bs, const void * r for (int i = 0; i < nb; ++i) { - const float d = y[i].d * (float)x[i].d; + const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d); const int8_t * sc = x[i].scales; const uint8_t * restrict q5 = x[i].qs; @@ -7940,7 +7965,7 @@ void ggml_vec_dot_q5_K_q8_K(int n, float * restrict s, size_t bs, const void * r for (int i = 0; i < nb; ++i) { - const float d = y[i].d * (float)x[i].d; + const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d); const int8_t * sc = x[i].scales; const uint8_t * restrict q5 = x[i].qs; @@ -8508,7 +8533,7 @@ void ggml_vec_dot_q6_K_q8_K(int n, float * restrict s, size_t bs, const void * r for (int i = 0; i < nb; ++i) { - const float d_all = (float)x[i].d; + const float d_all = GGML_FP16_TO_FP32(x[i].d); const uint8_t * restrict q6 = x[i].ql; const uint8_t * restrict qh = x[i].qh; @@ -8679,7 +8704,7 @@ void ggml_vec_dot_q6_K_q8_K(int n, float * restrict s, size_t bs, const void * r for (int i = 0; i < nb; ++i) { - const float d_all = (float)x[i].d; + const float d_all = GGML_FP16_TO_FP32(x[i].d); const uint8_t * restrict q6 = x[i].ql; const uint8_t * restrict qh = x[i].qh; @@ -9333,7 +9358,7 @@ void ggml_vec_dot_iq1_s_q8_K (int n, float * GGML_RESTRICT s, size_t bs, const uint16_t gindex[8]; uint16x8x2_t vindex; int8x16x4_t q1b; - int8x16x4_t q8b; + ggml_int8x16x4_t q8b; uint16x8x4_t scales; int32x4x2_t sumi; int32x4x2_t dotq; @@ -9498,7 +9523,6 @@ void ggml_vec_dot_iq4_nl_q8_0(int n, float * restrict s, size_t bs, const void * float sumf = 0; for (int ib = 0; ib < nb; ib += 2) { - q4bits.val[0] = vld1q_u8(x[ib+0].qs); q4bits.val[1] = vld1q_u8(x[ib+1].qs); q8b.val[0] = vld1q_s8(y[ib+0].qs); @@ -9506,16 +9530,17 @@ void ggml_vec_dot_iq4_nl_q8_0(int n, float * restrict s, size_t bs, const void * q8b.val[2] = vld1q_s8(y[ib+1].qs); q8b.val[3] = vld1q_s8(y[ib+1].qs + 16); - q4b.val[0] = vqtbl1q_s8(values, vandq_u8(q4bits.val[0], m4b)); - q4b.val[1] = vqtbl1q_s8(values, vshrq_n_u8(q4bits.val[0], 4)); - q4b.val[2] = vqtbl1q_s8(values, vandq_u8(q4bits.val[1], m4b)); - q4b.val[3] = vqtbl1q_s8(values, vshrq_n_u8(q4bits.val[1], 4)); + q4b.val[0] = ggml_vqtbl1q_s8(values, vandq_u8 (q4bits.val[0], m4b)); + q4b.val[1] = ggml_vqtbl1q_s8(values, vshrq_n_u8(q4bits.val[0], 4)); + q4b.val[2] = ggml_vqtbl1q_s8(values, vandq_u8 (q4bits.val[1], m4b)); + q4b.val[3] = ggml_vqtbl1q_s8(values, vshrq_n_u8(q4bits.val[1], 4)); prod_1 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), q4b.val[0], q8b.val[0]), q4b.val[1], q8b.val[1]); prod_2 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), q4b.val[2], q8b.val[2]), q4b.val[3], q8b.val[3]); - sumf += (float)x[ib+0].d * (float)y[ib+0].d * vaddvq_s32(prod_1) + (float)x[ib+1].d * (float)y[ib+1].d * vaddvq_s32(prod_2); - + sumf += + GGML_FP16_TO_FP32(x[ib+0].d) * GGML_FP16_TO_FP32(y[ib+0].d) * vaddvq_s32(prod_1) + + GGML_FP16_TO_FP32(x[ib+1].d) * GGML_FP16_TO_FP32(y[ib+1].d) * vaddvq_s32(prod_2); } *s = sumf; diff --git a/ggml.c b/ggml.c index 5b9fa741a..d710fe702 100644 --- a/ggml.c +++ b/ggml.c @@ -323,7 +323,7 @@ float ggml_table_f32_f16[1 << 16]; // note: do not use these inside ggml.c // these are meant to be used via the ggml.h API float ggml_fp16_to_fp32(ggml_fp16_t x) { - return (float) GGML_FP16_TO_FP32(x); + return GGML_FP16_TO_FP32(x); } ggml_fp16_t ggml_fp32_to_fp16(float x) { @@ -798,7 +798,7 @@ inline static float vaddvq_f32(float32x4_t v) { #define GGML_F16x8 float16x8_t #define GGML_F16x8_ZERO vdupq_n_f16(0.0f) #define GGML_F16x8_SET1(x) vdupq_n_f16(x) - #define GGML_F16x8_LOAD vld1q_f16 + #define GGML_F16x8_LOAD(x) vld1q_f16((const __fp16 *)(x)) #define GGML_F16x8_STORE vst1q_f16 #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c) #define GGML_F16x8_ADD vaddq_f16 @@ -841,7 +841,7 @@ inline static float vaddvq_f32(float32x4_t v) { #define GGML_F32Cx4 float32x4_t #define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f) #define GGML_F32Cx4_SET1(x) vdupq_n_f32(x) - #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16(x)) + #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16((const __fp16 *)(x))) #define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y)) #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c) #define GGML_F32Cx4_ADD vaddq_f32 diff --git a/ggml.h b/ggml.h index bed7a36a0..37eff6279 100644 --- a/ggml.h +++ b/ggml.h @@ -315,13 +315,7 @@ extern "C" { #endif -#if defined(__ARM_NEON) && defined(__CUDACC__) - typedef half ggml_fp16_t; -#elif defined(__ARM_NEON) && !defined(_MSC_VER) - typedef __fp16 ggml_fp16_t; -#else typedef uint16_t ggml_fp16_t; -#endif // convert FP16 <-> FP32 GGML_API float ggml_fp16_to_fp32(ggml_fp16_t x); diff --git a/llama.cpp b/llama.cpp index 3b1eb6398..19d0e3601 100644 --- a/llama.cpp +++ b/llama.cpp @@ -7453,6 +7453,7 @@ struct llm_build_context { inpL = llm_build_inp_embd(ctx0, hparams, batch, model.tok_embd, lctx.inp_tokens, lctx.inp_embd, cb); cb(inpL, "inp_embd", -1); + inpL = ggml_scale(ctx0, inpL, sqrtf(n_embd)); cb(inpL, "inp_scaled", -1); @@ -7494,6 +7495,7 @@ struct llm_build_context { n_embd_head_k, 2, 0, n_orig_ctx, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow); cb(Qcur, "Qcur", il); + Qcur = ggml_scale(ctx0, Qcur, 1.0f / sqrtf(float(n_embd_head_k))); cb(Qcur, "Qcur_scaled", il); @@ -7508,6 +7510,7 @@ struct llm_build_context { Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f, cb, il); cb(cur, "kqv_out", il); } + struct ggml_tensor * sa_out = ggml_add(ctx0, cur, inpL); cb(sa_out, "sa_out", il); @@ -10498,7 +10501,10 @@ static ggml_type get_k_quant_type(quantize_state_internal & qs, ggml_type new_ty return std::make_pair(i_layer, n_layer); }; - if (name == tn(LLM_TENSOR_OUTPUT, "weight")) { + // for arches that share the same tensor between the token embeddings and the output, we quantize the token embeddings + // with the quantization of the output tensor + if (name == tn(LLM_TENSOR_OUTPUT, "weight") || + (LLM_TENSOR_NAMES.at(arch).find(LLM_TENSOR_OUTPUT) == LLM_TENSOR_NAMES.at(arch).end() && name == "token_embd.weight")) { int nx = tensor->ne[0]; if (arch == LLM_ARCH_FALCON || nx % QK_K != 0) { new_type = GGML_TYPE_Q8_0; diff --git a/scripts/sync-ggml.last b/scripts/sync-ggml.last index bbbf88d9d..59de34370 100644 --- a/scripts/sync-ggml.last +++ b/scripts/sync-ggml.last @@ -1 +1 @@ -30805514e1bf389a59d30a54a0525cbdc30d5bd1 +8cdf783f288a98eddf521b0ab1b4d405be9e18ba