Matmul call

This commit is contained in:
0cc4m 2023-06-12 09:57:26 +02:00
parent b0e65855d1
commit fc4f207cfb

View file

@ -17,8 +17,9 @@ vk::Instance vk_instance;
uint32_t vk_compute_queue_family_index;
vk::PhysicalDevice vk_physical_device;
vk::Device vk_device;
vmaAllocator vk_allocator;
VmaAllocator vk_allocator;
vk::DescriptorSetLayout vk_pipeline_matmul_dsl;
vk::PipelineLayout vk_pipeline_matmul_layout;
vk::Pipeline vk_pipeline_matmul;
VmaAllocation vk_buffer_qa_alloc, vk_buffer_a_alloc, vk_buffer_b_alloc, vk_buffer_c_alloc;
vk::Buffer vk_buffer_qa, vk_buffer_a, vk_buffer_b, vk_buffer_c;
@ -86,7 +87,7 @@ void ggml_vk_init(void) {
vk_pipeline_matmul_dsl = vk_device.createDescriptorSetLayout(descriptor_set_layout_create_info);
vk::PipelineLayoutCreateInfo pipeline_layout_create_info(vk::PipelineLayoutCreateFlags(), vk_pipeline_matmul_dsl);
vk::PipelineLayout pipeline_layout = vk_device.createPipelineLayout(pipeline_layout_create_info);
vk_pipeline_matmul_layout = vk_device.createPipelineLayout(pipeline_layout_create_info);
vk::PipelineCache pipeline_cache = vk_device.createPipelineCache(vk::PipelineCacheCreateInfo());
vk::PipelineShaderStageCreateInfo pipeline_shader_create_info(
@ -95,9 +96,9 @@ void ggml_vk_init(void) {
shader_module,
"main");
vk::ComputePipelineCreateInfo compute_pipeline_create_info(
vk::PipelineCreateFlags(), // Flags
pipeline_shader_create_info, // Shader Create Info struct
pipeline_layout); // Pipeline Layout
vk::PipelineCreateFlags(),
pipeline_shader_create_info,
vk_pipeline_matmul_layout);
vk_pipeline_matmul = vk_device.createComputePipeline(pipeline_cache, compute_pipeline_create_info).value;
}
@ -120,7 +121,7 @@ struct scoped_spin_lock {
struct vk_buffer {
vk::Buffer buffer;
vmaAllocation allocation;
VmaAllocation allocation;
size_t size = 0;
};
@ -160,7 +161,6 @@ static void ggml_vk_pool_malloc(size_t size, vk_buffer* buf) {
b.size = 0;
vmaDestroyBuffer(vk_allocator, b.buffer, b.allocation);
}
buf = new vk_buffer;
buf->size = size;
vk::BufferCreateInfo buffer_create_info{
@ -190,7 +190,7 @@ static void ggml_vk_pool_free(vk_buffer* buffer) {
vk_buffer& b = g_vk_buffer_pool[i];
if (b.size == 0) {
b.buffer = buffer->buffer;
b.memory = buffer->memory;
b.allocation = buffer->allocation;
b.size = buffer->size;
return;
}
@ -198,11 +198,9 @@ static void ggml_vk_pool_free(vk_buffer* buffer) {
fprintf(stderr, "WARNING: vk buffer pool full, increase MAX_VK_BUFFERS\n");
buffer->size = 0;
vmaDestroyBuffer(vk_allocator, buffer->buffer, buffer->allocation);
delete buffer;
}
static vk_int ggml_vk_h2d_tensor_2d(vk_command_queue queue, vk_buffer* dst, size_t offset, const struct ggml_tensor * src, uint64_t i3, uint64_t i2, vk_event* ev) {
vk_int err;
static void ggml_vk_h2d_tensor_2d(vk_buffer* dst, size_t offset, const struct ggml_tensor * src, uint64_t i3, uint64_t i2) {
const uint64_t ne0 = src->ne[0];
const uint64_t ne1 = src->ne[1];
const uint64_t nb0 = src->nb[0];
@ -219,7 +217,7 @@ static vk_int ggml_vk_h2d_tensor_2d(vk_command_queue queue, vk_buffer* dst, size
vmaMapMemory(vk_allocator, dst->allocation, &dst_ptr);
memcpy(dst_ptr + offset, x, ne1*nb1);
vmaUnmapMemory(vk_allocator, dst->allocation);
return err;
return;
}
if (nb0 == ts) {
void* dst_ptr = nullptr;
@ -229,16 +227,18 @@ static vk_int ggml_vk_h2d_tensor_2d(vk_command_queue queue, vk_buffer* dst, size
memcpy(dst_ptr + offset + ne0 * i1, x + ts*ne0/bs, ne0*nb0);
}
vmaUnmapMemory(vk_allocator, dst->allocation);
return err;
return;
}
vmaMapMemory(vk_allocator, dst->allocation, &dst_ptr);
uint8_t* dst_ptr = nullptr;
uint8_t* xc = (uint8_t*)x;
vmaMapMemory(vk_allocator, dst->allocation, (void**) &dst_ptr);
for (uint64_t i1 = 0; i1 < ne1; i1++) {
for (uint64_t i0 = 0; i0 < ne0; i0++) {
dst_ptr[offset + i1 * ts*ne0/bs + i0 * ts] = x[i1 * nb1 + i0 * nb0];
dst_ptr[offset + i1 * ts*ne0/bs + i0 * ts] = xc[i1 * nb1 + i0 * nb0];
}
}
vmaUnmapMemory(vk_allocator, dst->allocation);
return err;
return;
}
static void ggml_vk_mul_mat_f32(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
@ -260,13 +260,13 @@ static void ggml_vk_mul_mat_f32(const ggml_tensor * src0, const ggml_tensor * sr
const int d_ne = ne11 * ne01;
vk_buffer d_X;
if (src0->backend == GGML_BACKEND_GPU) { // NOLINT
d_X = (vk_buffer) src0->data;
vk_buffer d_Y;
vk_buffer d_D;
if (src0->backend == GGML_BACKEND_GPU) {
d_X = *(vk_buffer*) src0->data;
} else {
ggml_vk_pool_malloc(sizeof(ggml_fp16_t) * x_ne, &d_X);
}
vk_buffer d_Y;
vk_buffer d_D;
ggml_vk_pool_malloc(sizeof(float) * y_ne, &d_Y);
ggml_vk_pool_malloc(sizeof(float) * d_ne, &d_D);
@ -274,165 +274,200 @@ static void ggml_vk_mul_mat_f32(const ggml_tensor * src0, const ggml_tensor * sr
for (int64_t i02 = 0; i02 < ne02; i02++) {
// copy data to device
if (src0->backend != GGML_BACKEND_GPU) {
ggml_vk_h2d_tensor_2d(queue, &d_X, 0, src0, i03, i02, NULL);
ggml_vk_h2d_tensor_2d(&d_X, 0, src0, i03, i02);
}
ggml_vk_h2d_tensor_2d(queue, &d_Y, 0, src1, i03, i02, NULL);
vkFinish(queue);
ggml_vk_h2d_tensor_2d(&d_Y, 0, src1, i03, i02);
// compute
vk_event ev_sgemm;
vkblast::StatusCode status = vkblast::Gemm<vk_float>(vkblast::Layout::kColMajor,
vkblast::Transpose::kYes, vkblast::Transpose::kNo,
ne01, ne11, ne10,
alpha,
d_X, 0, ne00,
d_Y, 0, ne10,
beta,
d_D, 0, ne01,
&queue, &ev_sgemm);
vk::DescriptorPoolSize descriptor_pool_size(vk::DescriptorType::eStorageBuffer, 3);
vk::DescriptorPoolCreateInfo descriptor_pool_create_info(vk::DescriptorPoolCreateFlags(), 1, descriptor_pool_size);
vk::DescriptorPool descriptor_pool = vk_device.createDescriptorPool(descriptor_pool_create_info);
if (status != vkblast::StatusCode::kSuccess) {
GGML_ASSERT(false);
}
vk::DescriptorSetAllocateInfo descriptor_set_alloc_info(descriptor_pool, 1, &vk_pipeline_matmul_dsl);
const std::vector<vk::DescriptorSet> descriptor_sets = vk_device.allocateDescriptorSets(descriptor_set_alloc_info);
vk::DescriptorSet descriptor_set = descriptor_sets.front();
vk::DescriptorBufferInfo d_X_buffer_info(d_X.buffer, 0, sizeof(float) * x_ne);
vk::DescriptorBufferInfo d_Y_buffer_info(d_Y.buffer, 0, sizeof(float) * y_ne);
vk::DescriptorBufferInfo d_D_buffer_info(d_D.buffer, 0, sizeof(float) * d_ne);
const std::vector<vk::WriteDescriptorSet> write_descriptor_sets = {
{descriptor_set, 0, 0, 1, vk::DescriptorType::eStorageBuffer, nullptr, &d_X_buffer_info},
{descriptor_set, 1, 0, 1, vk::DescriptorType::eStorageBuffer, nullptr, &d_Y_buffer_info},
{descriptor_set, 2, 0, 1, vk::DescriptorType::eStorageBuffer, nullptr, &d_D_buffer_info},
};
vk_device.updateDescriptorSets(write_descriptor_sets, {});
vk::CommandPoolCreateInfo command_pool_create_info(vk::CommandPoolCreateFlags(), vk_compute_queue_family_index);
vk::CommandPool command_pool = vk_device.createCommandPool(command_pool_create_info);
vk::CommandBufferAllocateInfo command_buffer_alloc_info(
command_pool,
vk::CommandBufferLevel::ePrimary,
1);
const std::vector<vk::CommandBuffer> cmd_buffers = vk_device.allocateCommandBuffers(command_buffer_alloc_info);
vk::CommandBuffer cmd_buffer = cmd_buffers.front();
vk::CommandBufferBeginInfo cmd_buffer_begin_info(vk::CommandBufferUsageFlagBits::eOneTimeSubmit);
cmd_buffer.begin(cmd_buffer_begin_info);
cmd_buffer.bindPipeline(vk::PipelineBindPoint::eCompute, vk_pipeline_matmul);
cmd_buffer.bindDescriptorSets(vk::PipelineBindPoint::eCompute,
vk_pipeline_matmul_layout,
0,
{ descriptor_set },
{});
cmd_buffer.dispatch(d_ne, 1, 1);
cmd_buffer.end();
vk::Queue queue = vk_device.getQueue(vk_compute_queue_family_index, 0);
vk::Fence fence = vk_device.createFence(vk::FenceCreateInfo());
vk::SubmitInfo submit_info(0,
nullptr,
nullptr,
1,
&cmd_buffer);
queue.submit({ submit_info }, fence);
vk_device.waitForFences({ fence },
true,
uint64_t(-1));
// copy dst to host
void* src_ptr = nullptr;
float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
vmaMapMemory(vk_allocator, d_D->allocation, &src_ptr);
vmaMapMemory(vk_allocator, d_D.allocation, &src_ptr);
memcpy(d, src_ptr, sizeof(float) * d_ne);
vmaUnmapMemory(vk_allocator, d_D->allocation);
vmaUnmapMemory(vk_allocator, d_D.allocation);
}
}
if (src0->backend != GGML_BACKEND_GPU) {
ggml_vk_pool_free(d_X);
ggml_vk_pool_free(&d_X);
}
ggml_vk_pool_free(d_Y);
ggml_vk_pool_free(d_D);
ggml_vk_pool_free(&d_Y);
ggml_vk_pool_free(&d_D);
}
static void ggml_vk_mul_mat_q_f32(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
const int64_t ne00 = src0->ne[0];
const int64_t ne01 = src0->ne[1];
const int64_t ne02 = src0->ne[2];
const int64_t ne03 = src0->ne[3];
const int64_t ne10 = src1->ne[0];
const int64_t ne11 = src1->ne[1];
const int nb2 = dst->nb[2];
const int nb3 = dst->nb[3];
const ggml_type type = src0->type;
const bool mul_mat_vec = ne11 == 1;
const float alpha = 1.0f;
const float beta = 0.0f;
const int x_ne = ne01 * ne00;
const int y_ne = ne11 * ne10;
const int d_ne = ne11 * ne01;
const size_t q_sz = ggml_type_size(type) * x_ne / ggml_blck_size(type);
size_t x_size;
size_t y_size;
size_t d_size;
size_t q_size;
vk_buffer d_X;
if (!mul_mat_vec) {
d_X = ggml_vk_pool_malloc(sizeof(float) * x_ne, &x_size);
}
vk_buffer d_Y = ggml_vk_pool_malloc(sizeof(float) * y_ne, &y_size);
vk_buffer d_D = ggml_vk_pool_malloc(sizeof(float) * d_ne, &d_size);
vk_buffer d_Q;
if (src0->backend == GGML_BACKEND_CPU) {
d_Q = ggml_vk_pool_malloc(q_sz, &q_size);
}
vk_kernel* to_fp32_vk = ggml_get_to_fp32_vk(type);
vk_kernel* dmmv = ggml_get_dequantize_mul_mat_vec_vk(type);
GGML_ASSERT(to_fp32_vk != nullptr);
size_t ev_idx = 0;
std::vector<vk_event> events;
for (int64_t i03 = 0; i03 < ne03; i03++) {
for (int64_t i02 = 0; i02 < ne02; i02++) {
// copy src0 to device if necessary
if (src0->backend == GGML_BACKEND_CPU) {
events.emplace_back();
VK_CHECK(ggml_vk_h2d_tensor_2d(queue, d_Q, 0, src0, i03, i02, events.data() + ev_idx++));
} else if (src0->backend == GGML_BACKEND_GPU) {
d_Q = (vk_buffer) src0->data;
} else {
GGML_ASSERT(false);
}
if (mul_mat_vec) { // specialized dequantize_mul_mat_vec kernel
// copy src1 to device
events.emplace_back();
VK_CHECK(ggml_vk_h2d_tensor_2d(queue, d_Y, 0, src1, i03, i02, events.data() + ev_idx++));
// compute
const size_t global = ne01 * VK_DMMV_BLOCK_SIZE;
const size_t local = VK_DMMV_BLOCK_SIZE;
const vk_int ncols = ne00;
events.emplace_back();
VK_CHECK(vkSetKernelArg(*dmmv, 0, sizeof(vk_buffer), &d_Q));
VK_CHECK(vkSetKernelArg(*dmmv, 1, sizeof(float) * local, NULL));
VK_CHECK(vkSetKernelArg(*dmmv, 2, sizeof(vk_buffer), &d_Y));
VK_CHECK(vkSetKernelArg(*dmmv, 3, sizeof(vk_buffer), &d_D));
VK_CHECK(vkSetKernelArg(*dmmv, 4, sizeof(vk_int), &ncols));
VK_CHECK(vkEnqueueNDRangeKernel(queue, *dmmv, 1, NULL, &global, &local, events.size() - 1, events.data(), events.data() + ev_idx++));
} else { // general dequantization kernel + VKBlast matrix matrix multiplication
// convert src0 to fp32 on device
const size_t global = x_ne;
VK_CHECK(vkSetKernelArg(*to_fp32_vk, 0, sizeof(vk_buffer), &d_Q));
VK_CHECK(vkSetKernelArg(*to_fp32_vk, 1, sizeof(vk_buffer), &d_X));
VK_CHECK(vkEnqueueNDRangeKernel(queue, *to_fp32_vk, 1, NULL, &global, NULL, events.size(), !events.empty() ? events.data() : NULL, NULL));
// copy src1 to device
VK_CHECK(ggml_vk_h2d_tensor_2d(queue, d_Y, 0, src1, i03, i02, NULL));
events.emplace_back();
// wait for conversion
VK_CHECK(vkFinish(queue));
// compute
vkblast::StatusCode status = vkblast::Gemm<vk_float>(vkblast::Layout::kColMajor,
vkblast::Transpose::kYes, vkblast::Transpose::kNo,
ne01, ne11, ne10,
alpha,
d_X, 0, ne00,
d_Y, 0, ne10,
beta,
d_D, 0, ne01,
&queue, events.data() + ev_idx++);
if (status != vkblast::StatusCode::kSuccess) {
GGML_ASSERT(false);
}
}
// copy dst to host
float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
VK_CHECK(vkEnqueueReadBuffer(queue, d_D, true, 0, sizeof(float) * d_ne, d, 1, &events[events.size() - 1], NULL));
for (auto *event : events) {
vkReleaseEvent(event);
}
ev_idx = 0;
events.vkear();
}
}
if (!mul_mat_vec) {
ggml_vk_pool_free(d_X, x_size);
}
ggml_vk_pool_free(d_Y, y_size);
ggml_vk_pool_free(d_D, d_size);
if (src0->backend == GGML_BACKEND_CPU) {
ggml_vk_pool_free(d_Q, q_size);
}
// const int64_t ne00 = src0->ne[0];
// const int64_t ne01 = src0->ne[1];
// const int64_t ne02 = src0->ne[2];
// const int64_t ne03 = src0->ne[3];
//
// const int64_t ne10 = src1->ne[0];
// const int64_t ne11 = src1->ne[1];
//
// const int nb2 = dst->nb[2];
// const int nb3 = dst->nb[3];
// const ggml_type type = src0->type;
// const bool mul_mat_vec = ne11 == 1;
//
// const float alpha = 1.0f;
// const float beta = 0.0f;
// const int x_ne = ne01 * ne00;
// const int y_ne = ne11 * ne10;
// const int d_ne = ne11 * ne01;
// const size_t q_sz = ggml_type_size(type) * x_ne / ggml_blck_size(type);
//
// size_t x_size;
// size_t y_size;
// size_t d_size;
// size_t q_size;
// vk_buffer d_X;
// if (!mul_mat_vec) {
// d_X = ggml_vk_pool_malloc(sizeof(float) * x_ne, &x_size);
// }
// vk_buffer d_Y = ggml_vk_pool_malloc(sizeof(float) * y_ne, &y_size);
// vk_buffer d_D = ggml_vk_pool_malloc(sizeof(float) * d_ne, &d_size);
// vk_buffer d_Q;
// if (src0->backend == GGML_BACKEND_CPU) {
// d_Q = ggml_vk_pool_malloc(q_sz, &q_size);
// }
//
// vk_kernel* to_fp32_vk = ggml_get_to_fp32_vk(type);
// vk_kernel* dmmv = ggml_get_dequantize_mul_mat_vec_vk(type);
// GGML_ASSERT(to_fp32_vk != nullptr);
//
// size_t ev_idx = 0;
// std::vector<vk_event> events;
//
// for (int64_t i03 = 0; i03 < ne03; i03++) {
// for (int64_t i02 = 0; i02 < ne02; i02++) {
// // copy src0 to device if necessary
// if (src0->backend == GGML_BACKEND_CPU) {
// events.emplace_back();
// VK_CHECK(ggml_vk_h2d_tensor_2d(queue, d_Q, 0, src0, i03, i02, events.data() + ev_idx++));
// } else if (src0->backend == GGML_BACKEND_GPU) {
// d_Q = (vk_buffer) src0->data;
// } else {
// GGML_ASSERT(false);
// }
// if (mul_mat_vec) { // specialized dequantize_mul_mat_vec kernel
// // copy src1 to device
// events.emplace_back();
// VK_CHECK(ggml_vk_h2d_tensor_2d(queue, d_Y, 0, src1, i03, i02, events.data() + ev_idx++));
//
// // compute
// const size_t global = ne01 * VK_DMMV_BLOCK_SIZE;
// const size_t local = VK_DMMV_BLOCK_SIZE;
// const vk_int ncols = ne00;
// events.emplace_back();
// VK_CHECK(vkSetKernelArg(*dmmv, 0, sizeof(vk_buffer), &d_Q));
// VK_CHECK(vkSetKernelArg(*dmmv, 1, sizeof(float) * local, NULL));
// VK_CHECK(vkSetKernelArg(*dmmv, 2, sizeof(vk_buffer), &d_Y));
// VK_CHECK(vkSetKernelArg(*dmmv, 3, sizeof(vk_buffer), &d_D));
// VK_CHECK(vkSetKernelArg(*dmmv, 4, sizeof(vk_int), &ncols));
// VK_CHECK(vkEnqueueNDRangeKernel(queue, *dmmv, 1, NULL, &global, &local, events.size() - 1, events.data(), events.data() + ev_idx++));
// } else { // general dequantization kernel + VKBlast matrix matrix multiplication
// // convert src0 to fp32 on device
// const size_t global = x_ne;
// VK_CHECK(vkSetKernelArg(*to_fp32_vk, 0, sizeof(vk_buffer), &d_Q));
// VK_CHECK(vkSetKernelArg(*to_fp32_vk, 1, sizeof(vk_buffer), &d_X));
// VK_CHECK(vkEnqueueNDRangeKernel(queue, *to_fp32_vk, 1, NULL, &global, NULL, events.size(), !events.empty() ? events.data() : NULL, NULL));
//
// // copy src1 to device
// VK_CHECK(ggml_vk_h2d_tensor_2d(queue, d_Y, 0, src1, i03, i02, NULL));
//
// events.emplace_back();
//
// // wait for conversion
// VK_CHECK(vkFinish(queue));
//
// // compute
// vkblast::StatusCode status = vkblast::Gemm<vk_float>(vkblast::Layout::kColMajor,
// vkblast::Transpose::kYes, vkblast::Transpose::kNo,
// ne01, ne11, ne10,
// alpha,
// d_X, 0, ne00,
// d_Y, 0, ne10,
// beta,
// d_D, 0, ne01,
// &queue, events.data() + ev_idx++);
//
// if (status != vkblast::StatusCode::kSuccess) {
// GGML_ASSERT(false);
// }
// }
//
// // copy dst to host
// float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
// VK_CHECK(vkEnqueueReadBuffer(queue, d_D, true, 0, sizeof(float) * d_ne, d, 1, &events[events.size() - 1], NULL));
// for (auto *event : events) {
// vkReleaseEvent(event);
// }
//
// ev_idx = 0;
// events.vkear();
// }
// }
//
// if (!mul_mat_vec) {
// ggml_vk_pool_free(d_X, x_size);
// }
// ggml_vk_pool_free(d_Y, y_size);
// ggml_vk_pool_free(d_D, d_size);
// if (src0->backend == GGML_BACKEND_CPU) {
// ggml_vk_pool_free(d_Q, q_size);
// }
}