Merge branch 'ggerganov:master' into master
This commit is contained in:
commit
fc78910bc3
16 changed files with 565 additions and 264 deletions
4
.github/workflows/build.yml
vendored
4
.github/workflows/build.yml
vendored
|
@ -10,10 +10,10 @@ on:
|
||||||
push:
|
push:
|
||||||
branches:
|
branches:
|
||||||
- master
|
- master
|
||||||
paths: ['.github/workflows/**', '**/CMakeLists.txt', '**/Makefile', '**/*.h', '**/*.hpp', '**/*.c', '**/*.cpp']
|
paths: ['.github/workflows/**', '**/CMakeLists.txt', '**/Makefile', '**/*.h', '**/*.hpp', '**/*.c', '**/*.cpp', '**/*.cu']
|
||||||
pull_request:
|
pull_request:
|
||||||
types: [opened, synchronize, reopened]
|
types: [opened, synchronize, reopened]
|
||||||
paths: ['**/CMakeLists.txt', '**/Makefile', '**/*.h', '**/*.hpp', '**/*.c', '**/*.cpp']
|
paths: ['**/CMakeLists.txt', '**/Makefile', '**/*.h', '**/*.hpp', '**/*.c', '**/*.cpp', '**/*.cu']
|
||||||
|
|
||||||
env:
|
env:
|
||||||
BRANCH_NAME: ${{ github.head_ref || github.ref_name }}
|
BRANCH_NAME: ${{ github.head_ref || github.ref_name }}
|
||||||
|
|
|
@ -432,6 +432,9 @@ target_link_libraries(llama PRIVATE
|
||||||
if (BUILD_SHARED_LIBS)
|
if (BUILD_SHARED_LIBS)
|
||||||
set_target_properties(llama PROPERTIES POSITION_INDEPENDENT_CODE ON)
|
set_target_properties(llama PROPERTIES POSITION_INDEPENDENT_CODE ON)
|
||||||
target_compile_definitions(llama PRIVATE LLAMA_SHARED LLAMA_BUILD)
|
target_compile_definitions(llama PRIVATE LLAMA_SHARED LLAMA_BUILD)
|
||||||
|
if (LLAMA_METAL)
|
||||||
|
set_target_properties(llama PROPERTIES RESOURCE "${CMAKE_CURRENT_SOURCE_DIR}/ggml-metal.metal")
|
||||||
|
endif()
|
||||||
endif()
|
endif()
|
||||||
|
|
||||||
if (GGML_SOURCES_CUDA)
|
if (GGML_SOURCES_CUDA)
|
||||||
|
|
|
@ -308,7 +308,7 @@ Building the program with BLAS support may lead to some performance improvements
|
||||||
|
|
||||||
- #### BLIS
|
- #### BLIS
|
||||||
|
|
||||||
Check [BLIS.md](BLIS.md) for more information.
|
Check [BLIS.md](docs/BLIS.md) for more information.
|
||||||
|
|
||||||
- #### Intel MKL
|
- #### Intel MKL
|
||||||
|
|
||||||
|
|
|
@ -1,6 +1,6 @@
|
||||||
700df0d3013b703a806d2ae7f1bfb8e59814e3d06ae78be0c66368a50059f33d models/7B/consolidated.00.pth
|
700df0d3013b703a806d2ae7f1bfb8e59814e3d06ae78be0c66368a50059f33d models/7B/consolidated.00.pth
|
||||||
666a4bb533b303bdaf89e1b6a3b6f93535d868de31d903afdc20983dc526c847 models/7B/ggml-model-f16.bin
|
666a4bb533b303bdaf89e1b6a3b6f93535d868de31d903afdc20983dc526c847 models/7B/ggml-model-f16.bin
|
||||||
ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff models/7B/ggml-model-q4_0.bin
|
ec2f2d1f0dfb73b72a4cbac7fa121abbe04c37ab327125a38248f930c0f09ddf models/7B/ggml-model-q4_0.bin
|
||||||
ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff models/7B/ggml-model-q4_1.bin
|
ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff models/7B/ggml-model-q4_1.bin
|
||||||
ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff models/7B/ggml-model-q5_0.bin
|
ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff models/7B/ggml-model-q5_0.bin
|
||||||
ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff models/7B/ggml-model-q5_1.bin
|
ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff models/7B/ggml-model-q5_1.bin
|
||||||
|
@ -8,7 +8,7 @@ ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff models/7B/ggml
|
||||||
745bf4e29a4dd6f411e72976d92b452da1b49168a4f41c951cfcc8051823cf08 models/13B/consolidated.00.pth
|
745bf4e29a4dd6f411e72976d92b452da1b49168a4f41c951cfcc8051823cf08 models/13B/consolidated.00.pth
|
||||||
d5ccbcc465c71c0de439a5aeffebe8344c68a519bce70bc7f9f92654ee567085 models/13B/consolidated.01.pth
|
d5ccbcc465c71c0de439a5aeffebe8344c68a519bce70bc7f9f92654ee567085 models/13B/consolidated.01.pth
|
||||||
2b206e9b21fb1076f11cafc624e2af97c9e48ea09312a0962153acc20d45f808 models/13B/ggml-model-f16.bin
|
2b206e9b21fb1076f11cafc624e2af97c9e48ea09312a0962153acc20d45f808 models/13B/ggml-model-f16.bin
|
||||||
ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff models/13B/ggml-model-q4_0.bin
|
fad169e6f0f575402cf75945961cb4a8ecd824ba4da6be2af831f320c4348fa5 models/13B/ggml-model-q4_0.bin
|
||||||
ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff models/13B/ggml-model-q4_1.bin
|
ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff models/13B/ggml-model-q4_1.bin
|
||||||
ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff models/13B/ggml-model-q5_0.bin
|
ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff models/13B/ggml-model-q5_0.bin
|
||||||
ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff models/13B/ggml-model-q5_1.bin
|
ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff models/13B/ggml-model-q5_1.bin
|
||||||
|
@ -18,7 +18,7 @@ e23294a58552d8cdec5b7e8abb87993b97ea6eced4178ff2697c02472539d067 models/30B/con
|
||||||
24a87f01028cbd3a12de551dcedb712346c0b5cbdeff1454e0ddf2df9b675378 models/30B/consolidated.02.pth
|
24a87f01028cbd3a12de551dcedb712346c0b5cbdeff1454e0ddf2df9b675378 models/30B/consolidated.02.pth
|
||||||
1adfcef71420886119544949767f6a56cb6339b4d5fcde755d80fe68b49de93b models/30B/consolidated.03.pth
|
1adfcef71420886119544949767f6a56cb6339b4d5fcde755d80fe68b49de93b models/30B/consolidated.03.pth
|
||||||
7e1b524061a9f4b27c22a12d6d2a5bf13b8ebbea73e99f218809351ed9cf7d37 models/30B/ggml-model-f16.bin
|
7e1b524061a9f4b27c22a12d6d2a5bf13b8ebbea73e99f218809351ed9cf7d37 models/30B/ggml-model-f16.bin
|
||||||
ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff models/30B/ggml-model-q4_0.bin
|
d2a441403944819492ec8c2002cc36fa38468149bfb4b7b4c52afc7bd9a7166d models/30B/ggml-model-q4_0.bin
|
||||||
ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff models/30B/ggml-model-q4_1.bin
|
ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff models/30B/ggml-model-q4_1.bin
|
||||||
ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff models/30B/ggml-model-q5_0.bin
|
ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff models/30B/ggml-model-q5_0.bin
|
||||||
ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff models/30B/ggml-model-q5_1.bin
|
ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff models/30B/ggml-model-q5_1.bin
|
||||||
|
@ -32,7 +32,7 @@ a287c0dfe49081626567c7fe87f74cce5831f58e459b427b5e05567641f47b78 models/65B/con
|
||||||
72b4eba67a1a3b18cb67a85b70f8f1640caae9b40033ea943fb166bd80a7b36b models/65B/consolidated.06.pth
|
72b4eba67a1a3b18cb67a85b70f8f1640caae9b40033ea943fb166bd80a7b36b models/65B/consolidated.06.pth
|
||||||
d27f5b0677d7ff129ceacd73fd461c4d06910ad7787cf217b249948c3f3bc638 models/65B/consolidated.07.pth
|
d27f5b0677d7ff129ceacd73fd461c4d06910ad7787cf217b249948c3f3bc638 models/65B/consolidated.07.pth
|
||||||
60758f2384d74e423dffddfd020ffed9d3bb186ebc54506f9c4a787d0f5367b0 models/65B/ggml-model-f16.bin
|
60758f2384d74e423dffddfd020ffed9d3bb186ebc54506f9c4a787d0f5367b0 models/65B/ggml-model-f16.bin
|
||||||
ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff models/65B/ggml-model-q4_0.bin
|
cde053439fa4910ae454407e2717cc46cc2c2b4995c00c93297a2b52e790fa92 models/65B/ggml-model-q4_0.bin
|
||||||
ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff models/65B/ggml-model-q4_1.bin
|
ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff models/65B/ggml-model-q4_1.bin
|
||||||
ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff models/65B/ggml-model-q5_0.bin
|
ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff models/65B/ggml-model-q5_0.bin
|
||||||
ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff models/65B/ggml-model-q5_1.bin
|
ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff models/65B/ggml-model-q5_1.bin
|
||||||
|
|
|
@ -632,6 +632,9 @@ void console_set_color(console_state & con_st, console_color_t color) {
|
||||||
case CONSOLE_COLOR_USER_INPUT:
|
case CONSOLE_COLOR_USER_INPUT:
|
||||||
fprintf(con_st.out, ANSI_BOLD ANSI_COLOR_GREEN);
|
fprintf(con_st.out, ANSI_BOLD ANSI_COLOR_GREEN);
|
||||||
break;
|
break;
|
||||||
|
case CONSOLE_COLOR_ERROR:
|
||||||
|
fprintf(con_st.out, ANSI_BOLD ANSI_COLOR_RED);
|
||||||
|
break;
|
||||||
}
|
}
|
||||||
con_st.color = color;
|
con_st.color = color;
|
||||||
fflush(con_st.out);
|
fflush(con_st.out);
|
||||||
|
|
|
@ -112,7 +112,8 @@ struct llama_context * llama_init_from_gpt_params(const gpt_params & params);
|
||||||
enum console_color_t {
|
enum console_color_t {
|
||||||
CONSOLE_COLOR_DEFAULT=0,
|
CONSOLE_COLOR_DEFAULT=0,
|
||||||
CONSOLE_COLOR_PROMPT,
|
CONSOLE_COLOR_PROMPT,
|
||||||
CONSOLE_COLOR_USER_INPUT
|
CONSOLE_COLOR_USER_INPUT,
|
||||||
|
CONSOLE_COLOR_ERROR
|
||||||
};
|
};
|
||||||
|
|
||||||
struct console_state {
|
struct console_state {
|
||||||
|
|
|
@ -81,6 +81,9 @@ int main(int argc, char ** argv) {
|
||||||
if (params.n_ctx > 2048) {
|
if (params.n_ctx > 2048) {
|
||||||
fprintf(stderr, "%s: warning: model does not support context sizes greater than 2048 tokens (%d specified);"
|
fprintf(stderr, "%s: warning: model does not support context sizes greater than 2048 tokens (%d specified);"
|
||||||
"expect poor results\n", __func__, params.n_ctx);
|
"expect poor results\n", __func__, params.n_ctx);
|
||||||
|
} else if (params.n_ctx < 8) {
|
||||||
|
fprintf(stderr, "%s: warning: minimum context size is 8, using minimum size.\n", __func__);
|
||||||
|
params.n_ctx = 8;
|
||||||
}
|
}
|
||||||
|
|
||||||
fprintf(stderr, "%s: build = %d (%s)\n", __func__, BUILD_NUMBER, BUILD_COMMIT);
|
fprintf(stderr, "%s: build = %d (%s)\n", __func__, BUILD_NUMBER, BUILD_COMMIT);
|
||||||
|
@ -331,6 +334,19 @@ int main(int argc, char ** argv) {
|
||||||
while ((n_remain != 0 && !is_antiprompt) || params.interactive) {
|
while ((n_remain != 0 && !is_antiprompt) || params.interactive) {
|
||||||
// predict
|
// predict
|
||||||
if (embd.size() > 0) {
|
if (embd.size() > 0) {
|
||||||
|
// Note: n_ctx - 4 here is to match the logic for commandline prompt handling via
|
||||||
|
// --prompt or --file which uses the same value.
|
||||||
|
auto max_embd_size = n_ctx - 4;
|
||||||
|
// Ensure the input doesn't exceed the context size by truncating embd if necessary.
|
||||||
|
if ((int)embd.size() > max_embd_size) {
|
||||||
|
auto skipped_tokens = embd.size() - max_embd_size;
|
||||||
|
console_set_color(con_st, CONSOLE_COLOR_ERROR);
|
||||||
|
printf("<<input too long: skipped %ld token%s>>", skipped_tokens, skipped_tokens != 1 ? "s" : "");
|
||||||
|
console_set_color(con_st, CONSOLE_COLOR_DEFAULT);
|
||||||
|
fflush(stdout);
|
||||||
|
embd.resize(max_embd_size);
|
||||||
|
}
|
||||||
|
|
||||||
// infinite text generation via context swapping
|
// infinite text generation via context swapping
|
||||||
// if we run out of context:
|
// if we run out of context:
|
||||||
// - take the n_keep first tokens from the original prompt (via n_past)
|
// - take the n_keep first tokens from the original prompt (via n_past)
|
||||||
|
|
|
@ -28,7 +28,7 @@
|
||||||
postPatch =
|
postPatch =
|
||||||
if isM1 then ''
|
if isM1 then ''
|
||||||
substituteInPlace ./ggml-metal.m \
|
substituteInPlace ./ggml-metal.m \
|
||||||
--replace '[[NSBundle mainBundle] pathForResource:@"ggml-metal" ofType:@"metal"];' "@\"$out/ggml-metal.metal\";"
|
--replace '[bundle pathForResource:@"ggml-metal" ofType:@"metal"];' "@\"$out/ggml-metal.metal\";"
|
||||||
'' else "";
|
'' else "";
|
||||||
nativeBuildInputs = with pkgs; [ cmake ];
|
nativeBuildInputs = with pkgs; [ cmake ];
|
||||||
buildInputs = osSpecific;
|
buildInputs = osSpecific;
|
||||||
|
|
26
ggml-cuda.cu
26
ggml-cuda.cu
|
@ -1105,6 +1105,9 @@ void * ggml_cuda_host_malloc(size_t size) {
|
||||||
void * ptr = nullptr;
|
void * ptr = nullptr;
|
||||||
cudaError_t err = cudaMallocHost((void **) &ptr, size);
|
cudaError_t err = cudaMallocHost((void **) &ptr, size);
|
||||||
if (err != cudaSuccess) {
|
if (err != cudaSuccess) {
|
||||||
|
// The allocation error can be bypassed. A null ptr will assigned out of this function.
|
||||||
|
// This can fixed the OOM error in WSL.
|
||||||
|
cudaGetLastError();
|
||||||
fprintf(stderr, "WARNING: failed to allocate %.2f MB of pinned memory: %s\n",
|
fprintf(stderr, "WARNING: failed to allocate %.2f MB of pinned memory: %s\n",
|
||||||
size/1024.0/1024.0, cudaGetErrorString(err));
|
size/1024.0/1024.0, cudaGetErrorString(err));
|
||||||
return nullptr;
|
return nullptr;
|
||||||
|
@ -1710,8 +1713,7 @@ void ggml_cuda_nop(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tens
|
||||||
(void) dst;
|
(void) dst;
|
||||||
}
|
}
|
||||||
|
|
||||||
void ggml_cuda_load_data(const char * fname, struct ggml_tensor * tensor, const size_t offset) {
|
void ggml_cuda_transform_tensor(void * data, struct ggml_tensor * tensor) {
|
||||||
FILE * fp = fopen(fname, "rb");
|
|
||||||
int nrows = ggml_nrows(tensor);
|
int nrows = ggml_nrows(tensor);
|
||||||
const size_t nb1 = tensor->nb[1];
|
const size_t nb1 = tensor->nb[1];
|
||||||
ggml_backend backend = tensor->backend;
|
ggml_backend backend = tensor->backend;
|
||||||
|
@ -1745,35 +1747,19 @@ void ggml_cuda_load_data(const char * fname, struct ggml_tensor * tensor, const
|
||||||
|
|
||||||
int64_t nrows_split = row_high - row_low;
|
int64_t nrows_split = row_high - row_low;
|
||||||
|
|
||||||
const size_t offset_split = offset + row_low*nb1;
|
const size_t offset_split = row_low*nb1;
|
||||||
const size_t size = ggml_nbytes_split(tensor, nrows_split);
|
const size_t size = ggml_nbytes_split(tensor, nrows_split);
|
||||||
|
|
||||||
void * buf;
|
void * buf;
|
||||||
CUDA_CHECK(cudaMalloc(&buf, size));
|
CUDA_CHECK(cudaMalloc(&buf, size));
|
||||||
void * buf_host = malloc(size);
|
void * buf_host = (char*)data + offset_split;
|
||||||
|
|
||||||
#ifdef _WIN32
|
|
||||||
int ret = _fseeki64(fp, (__int64) offset_split, SEEK_SET);
|
|
||||||
#else
|
|
||||||
int ret = fseek(fp, (long) offset_split, SEEK_SET);
|
|
||||||
#endif
|
|
||||||
GGML_ASSERT(ret == 0); // same
|
|
||||||
|
|
||||||
size_t ret2 = fread(buf_host, size, 1, fp);
|
|
||||||
if (ret2 != 1) {
|
|
||||||
fprintf(stderr, "unexpectedly reached end of file");
|
|
||||||
exit(1);
|
|
||||||
}
|
|
||||||
|
|
||||||
cudaMemcpy(buf, buf_host, size, cudaMemcpyHostToDevice);
|
cudaMemcpy(buf, buf_host, size, cudaMemcpyHostToDevice);
|
||||||
cudaDeviceSynchronize();
|
|
||||||
|
|
||||||
free(buf_host);
|
|
||||||
extra->data_device[id] = buf;
|
extra->data_device[id] = buf;
|
||||||
}
|
}
|
||||||
|
|
||||||
tensor->extra = extra;
|
tensor->extra = extra;
|
||||||
fclose(fp);
|
|
||||||
}
|
}
|
||||||
|
|
||||||
void ggml_cuda_free_data(struct ggml_tensor * tensor) {
|
void ggml_cuda_free_data(struct ggml_tensor * tensor) {
|
||||||
|
|
|
@ -24,7 +24,8 @@ void ggml_cuda_mul_mat(const struct ggml_tensor * src0, const struct ggml_tens
|
||||||
void * ggml_cuda_host_malloc(size_t size);
|
void * ggml_cuda_host_malloc(size_t size);
|
||||||
void ggml_cuda_host_free(void * ptr);
|
void ggml_cuda_host_free(void * ptr);
|
||||||
|
|
||||||
void ggml_cuda_load_data(const char * fname, struct ggml_tensor * tensors, size_t offset);
|
void ggml_cuda_transform_tensor(void * data, struct ggml_tensor * tensor);
|
||||||
|
|
||||||
void ggml_cuda_free_data(struct ggml_tensor * tensor);
|
void ggml_cuda_free_data(struct ggml_tensor * tensor);
|
||||||
void ggml_cuda_assign_buffers(struct ggml_tensor * tensor);
|
void ggml_cuda_assign_buffers(struct ggml_tensor * tensor);
|
||||||
void ggml_cuda_set_main_device(int main_device);
|
void ggml_cuda_set_main_device(int main_device);
|
||||||
|
|
51
ggml-metal.m
51
ggml-metal.m
|
@ -52,14 +52,18 @@ struct ggml_metal_context {
|
||||||
GGML_METAL_DECL_KERNEL(get_rows_q4_0);
|
GGML_METAL_DECL_KERNEL(get_rows_q4_0);
|
||||||
GGML_METAL_DECL_KERNEL(get_rows_q4_1);
|
GGML_METAL_DECL_KERNEL(get_rows_q4_1);
|
||||||
GGML_METAL_DECL_KERNEL(get_rows_q2_k);
|
GGML_METAL_DECL_KERNEL(get_rows_q2_k);
|
||||||
|
GGML_METAL_DECL_KERNEL(get_rows_q3_k);
|
||||||
GGML_METAL_DECL_KERNEL(get_rows_q4_k);
|
GGML_METAL_DECL_KERNEL(get_rows_q4_k);
|
||||||
|
GGML_METAL_DECL_KERNEL(get_rows_q5_k);
|
||||||
GGML_METAL_DECL_KERNEL(get_rows_q6_k);
|
GGML_METAL_DECL_KERNEL(get_rows_q6_k);
|
||||||
GGML_METAL_DECL_KERNEL(rms_norm);
|
GGML_METAL_DECL_KERNEL(rms_norm);
|
||||||
GGML_METAL_DECL_KERNEL(mul_mat_f16_f32);
|
GGML_METAL_DECL_KERNEL(mul_mat_f16_f32);
|
||||||
GGML_METAL_DECL_KERNEL(mul_mat_q4_0_f32);
|
GGML_METAL_DECL_KERNEL(mul_mat_q4_0_f32);
|
||||||
GGML_METAL_DECL_KERNEL(mul_mat_q4_1_f32);
|
GGML_METAL_DECL_KERNEL(mul_mat_q4_1_f32);
|
||||||
GGML_METAL_DECL_KERNEL(mul_mat_q2_k_f32);
|
GGML_METAL_DECL_KERNEL(mul_mat_q2_k_f32);
|
||||||
|
GGML_METAL_DECL_KERNEL(mul_mat_q3_k_f32);
|
||||||
GGML_METAL_DECL_KERNEL(mul_mat_q4_k_f32);
|
GGML_METAL_DECL_KERNEL(mul_mat_q4_k_f32);
|
||||||
|
GGML_METAL_DECL_KERNEL(mul_mat_q5_k_f32);
|
||||||
GGML_METAL_DECL_KERNEL(mul_mat_q6_k_f32);
|
GGML_METAL_DECL_KERNEL(mul_mat_q6_k_f32);
|
||||||
GGML_METAL_DECL_KERNEL(rope);
|
GGML_METAL_DECL_KERNEL(rope);
|
||||||
GGML_METAL_DECL_KERNEL(cpy_f32_f16);
|
GGML_METAL_DECL_KERNEL(cpy_f32_f16);
|
||||||
|
@ -73,6 +77,12 @@ struct ggml_metal_context {
|
||||||
// for now it is easier to work in a separate file
|
// for now it is easier to work in a separate file
|
||||||
static NSString * const msl_library_source = @"see metal.metal";
|
static NSString * const msl_library_source = @"see metal.metal";
|
||||||
|
|
||||||
|
// Here to assist with NSBundle Path Hack
|
||||||
|
@interface GGMLMetalClass : NSObject
|
||||||
|
@end
|
||||||
|
@implementation GGMLMetalClass
|
||||||
|
@end
|
||||||
|
|
||||||
struct ggml_metal_context * ggml_metal_init(void) {
|
struct ggml_metal_context * ggml_metal_init(void) {
|
||||||
fprintf(stderr, "%s: allocating\n", __func__);
|
fprintf(stderr, "%s: allocating\n", __func__);
|
||||||
|
|
||||||
|
@ -80,6 +90,7 @@ struct ggml_metal_context * ggml_metal_init(void) {
|
||||||
|
|
||||||
ctx->device = MTLCreateSystemDefaultDevice();
|
ctx->device = MTLCreateSystemDefaultDevice();
|
||||||
ctx->queue = [ctx->device newCommandQueue];
|
ctx->queue = [ctx->device newCommandQueue];
|
||||||
|
ctx->n_buffers = 0;
|
||||||
|
|
||||||
// determine if we can use MPS
|
// determine if we can use MPS
|
||||||
if (MPSSupportsMTLDevice(ctx->device)) {
|
if (MPSSupportsMTLDevice(ctx->device)) {
|
||||||
|
@ -108,7 +119,8 @@ struct ggml_metal_context * ggml_metal_init(void) {
|
||||||
NSError * error = nil;
|
NSError * error = nil;
|
||||||
|
|
||||||
//NSString * path = [[NSBundle mainBundle] pathForResource:@"../../examples/metal/metal" ofType:@"metal"];
|
//NSString * path = [[NSBundle mainBundle] pathForResource:@"../../examples/metal/metal" ofType:@"metal"];
|
||||||
NSString * path = [[NSBundle mainBundle] pathForResource:@"ggml-metal" ofType:@"metal"];
|
NSBundle * bundle = [NSBundle bundleForClass:[GGMLMetalClass class]];
|
||||||
|
NSString * path = [bundle pathForResource:@"ggml-metal" ofType:@"metal"];
|
||||||
fprintf(stderr, "%s: loading '%s'\n", __func__, [path UTF8String]);
|
fprintf(stderr, "%s: loading '%s'\n", __func__, [path UTF8String]);
|
||||||
|
|
||||||
NSString * src = [NSString stringWithContentsOfFile:path encoding:NSUTF8StringEncoding error:&error];
|
NSString * src = [NSString stringWithContentsOfFile:path encoding:NSUTF8StringEncoding error:&error];
|
||||||
|
@ -145,14 +157,18 @@ struct ggml_metal_context * ggml_metal_init(void) {
|
||||||
GGML_METAL_ADD_KERNEL(get_rows_q4_0);
|
GGML_METAL_ADD_KERNEL(get_rows_q4_0);
|
||||||
GGML_METAL_ADD_KERNEL(get_rows_q4_1);
|
GGML_METAL_ADD_KERNEL(get_rows_q4_1);
|
||||||
GGML_METAL_ADD_KERNEL(get_rows_q2_k);
|
GGML_METAL_ADD_KERNEL(get_rows_q2_k);
|
||||||
|
GGML_METAL_ADD_KERNEL(get_rows_q3_k);
|
||||||
GGML_METAL_ADD_KERNEL(get_rows_q4_k);
|
GGML_METAL_ADD_KERNEL(get_rows_q4_k);
|
||||||
|
GGML_METAL_ADD_KERNEL(get_rows_q5_k);
|
||||||
GGML_METAL_ADD_KERNEL(get_rows_q6_k);
|
GGML_METAL_ADD_KERNEL(get_rows_q6_k);
|
||||||
GGML_METAL_ADD_KERNEL(rms_norm);
|
GGML_METAL_ADD_KERNEL(rms_norm);
|
||||||
GGML_METAL_ADD_KERNEL(mul_mat_f16_f32);
|
GGML_METAL_ADD_KERNEL(mul_mat_f16_f32);
|
||||||
GGML_METAL_ADD_KERNEL(mul_mat_q4_0_f32);
|
GGML_METAL_ADD_KERNEL(mul_mat_q4_0_f32);
|
||||||
GGML_METAL_ADD_KERNEL(mul_mat_q4_1_f32);
|
GGML_METAL_ADD_KERNEL(mul_mat_q4_1_f32);
|
||||||
GGML_METAL_ADD_KERNEL(mul_mat_q2_k_f32);
|
GGML_METAL_ADD_KERNEL(mul_mat_q2_k_f32);
|
||||||
|
GGML_METAL_ADD_KERNEL(mul_mat_q3_k_f32);
|
||||||
GGML_METAL_ADD_KERNEL(mul_mat_q4_k_f32);
|
GGML_METAL_ADD_KERNEL(mul_mat_q4_k_f32);
|
||||||
|
GGML_METAL_ADD_KERNEL(mul_mat_q5_k_f32);
|
||||||
GGML_METAL_ADD_KERNEL(mul_mat_q6_k_f32);
|
GGML_METAL_ADD_KERNEL(mul_mat_q6_k_f32);
|
||||||
GGML_METAL_ADD_KERNEL(rope);
|
GGML_METAL_ADD_KERNEL(rope);
|
||||||
GGML_METAL_ADD_KERNEL(cpy_f32_f16);
|
GGML_METAL_ADD_KERNEL(cpy_f32_f16);
|
||||||
|
@ -567,6 +583,15 @@ void ggml_metal_graph_compute(
|
||||||
nth1 = 16;
|
nth1 = 16;
|
||||||
[encoder setComputePipelineState:ctx->pipeline_mul_mat_q2_k_f32];
|
[encoder setComputePipelineState:ctx->pipeline_mul_mat_q2_k_f32];
|
||||||
} break;
|
} break;
|
||||||
|
case GGML_TYPE_Q3_K:
|
||||||
|
{
|
||||||
|
GGML_ASSERT(ne02 == 1);
|
||||||
|
GGML_ASSERT(ne12 == 1);
|
||||||
|
|
||||||
|
nth0 = 4;
|
||||||
|
nth1 = 16;
|
||||||
|
[encoder setComputePipelineState:ctx->pipeline_mul_mat_q3_k_f32];
|
||||||
|
} break;
|
||||||
case GGML_TYPE_Q4_K:
|
case GGML_TYPE_Q4_K:
|
||||||
{
|
{
|
||||||
GGML_ASSERT(ne02 == 1);
|
GGML_ASSERT(ne02 == 1);
|
||||||
|
@ -576,6 +601,15 @@ void ggml_metal_graph_compute(
|
||||||
nth1 = 16;
|
nth1 = 16;
|
||||||
[encoder setComputePipelineState:ctx->pipeline_mul_mat_q4_k_f32];
|
[encoder setComputePipelineState:ctx->pipeline_mul_mat_q4_k_f32];
|
||||||
} break;
|
} break;
|
||||||
|
case GGML_TYPE_Q5_K:
|
||||||
|
{
|
||||||
|
GGML_ASSERT(ne02 == 1);
|
||||||
|
GGML_ASSERT(ne12 == 1);
|
||||||
|
|
||||||
|
nth0 = 4;
|
||||||
|
nth1 = 16;
|
||||||
|
[encoder setComputePipelineState:ctx->pipeline_mul_mat_q5_k_f32];
|
||||||
|
} break;
|
||||||
case GGML_TYPE_Q6_K:
|
case GGML_TYPE_Q6_K:
|
||||||
{
|
{
|
||||||
GGML_ASSERT(ne02 == 1);
|
GGML_ASSERT(ne02 == 1);
|
||||||
|
@ -612,15 +646,14 @@ void ggml_metal_graph_compute(
|
||||||
if (src0t == GGML_TYPE_Q4_0 || src0t == GGML_TYPE_Q4_1) {
|
if (src0t == GGML_TYPE_Q4_0 || src0t == GGML_TYPE_Q4_1) {
|
||||||
[encoder setThreadgroupMemoryLength:nth0*nth1*sizeof(float) atIndex:0];
|
[encoder setThreadgroupMemoryLength:nth0*nth1*sizeof(float) atIndex:0];
|
||||||
[encoder dispatchThreadgroups:MTLSizeMake(ne01, ne11, 1) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
[encoder dispatchThreadgroups:MTLSizeMake(ne01, ne11, 1) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
||||||
} else if (src0t == GGML_TYPE_Q2_K) {
|
}
|
||||||
|
else if (src0t == GGML_TYPE_Q2_K ||
|
||||||
|
src0t == GGML_TYPE_Q3_K ||
|
||||||
|
src0t == GGML_TYPE_Q4_K ||
|
||||||
|
src0t == GGML_TYPE_Q5_K ||
|
||||||
|
src0t == GGML_TYPE_Q6_K) {
|
||||||
[encoder setThreadgroupMemoryLength:nth0*nth1*sizeof(float) atIndex:0];
|
[encoder setThreadgroupMemoryLength:nth0*nth1*sizeof(float) atIndex:0];
|
||||||
[encoder dispatchThreadgroups:MTLSizeMake(ne01, 1, 1) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
[encoder dispatchThreadgroups:MTLSizeMake(ne01, 1, 1) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
||||||
} else if (src0t == GGML_TYPE_Q4_K) {
|
|
||||||
[encoder setThreadgroupMemoryLength:nth0*nth1*sizeof(float) atIndex:0];
|
|
||||||
[encoder dispatchThreadgroups:MTLSizeMake(ne01, ne11, 1) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
|
||||||
} else if (src0t == GGML_TYPE_Q6_K) {
|
|
||||||
[encoder setThreadgroupMemoryLength:nth0*nth1*sizeof(float) atIndex:0];
|
|
||||||
[encoder dispatchThreadgroups:MTLSizeMake(ne01, ne11, 1) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
|
||||||
} else {
|
} else {
|
||||||
[encoder setThreadgroupMemoryLength:nth0*sizeof(float) atIndex:0];
|
[encoder setThreadgroupMemoryLength:nth0*sizeof(float) atIndex:0];
|
||||||
[encoder dispatchThreadgroups:MTLSizeMake(ne01, ne11, ne12) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
[encoder dispatchThreadgroups:MTLSizeMake(ne01, ne11, ne12) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
||||||
|
@ -638,7 +671,9 @@ void ggml_metal_graph_compute(
|
||||||
case GGML_TYPE_Q4_0: [encoder setComputePipelineState:ctx->pipeline_get_rows_q4_0]; break;
|
case GGML_TYPE_Q4_0: [encoder setComputePipelineState:ctx->pipeline_get_rows_q4_0]; break;
|
||||||
case GGML_TYPE_Q4_1: [encoder setComputePipelineState:ctx->pipeline_get_rows_q4_1]; break;
|
case GGML_TYPE_Q4_1: [encoder setComputePipelineState:ctx->pipeline_get_rows_q4_1]; break;
|
||||||
case GGML_TYPE_Q2_K: [encoder setComputePipelineState:ctx->pipeline_get_rows_q2_k]; break;
|
case GGML_TYPE_Q2_K: [encoder setComputePipelineState:ctx->pipeline_get_rows_q2_k]; break;
|
||||||
|
case GGML_TYPE_Q3_K: [encoder setComputePipelineState:ctx->pipeline_get_rows_q3_k]; break;
|
||||||
case GGML_TYPE_Q4_K: [encoder setComputePipelineState:ctx->pipeline_get_rows_q4_k]; break;
|
case GGML_TYPE_Q4_K: [encoder setComputePipelineState:ctx->pipeline_get_rows_q4_k]; break;
|
||||||
|
case GGML_TYPE_Q5_K: [encoder setComputePipelineState:ctx->pipeline_get_rows_q5_k]; break;
|
||||||
case GGML_TYPE_Q6_K: [encoder setComputePipelineState:ctx->pipeline_get_rows_q6_k]; break;
|
case GGML_TYPE_Q6_K: [encoder setComputePipelineState:ctx->pipeline_get_rows_q6_k]; break;
|
||||||
default: GGML_ASSERT(false && "not implemented");
|
default: GGML_ASSERT(false && "not implemented");
|
||||||
}
|
}
|
||||||
|
|
549
ggml-metal.metal
549
ggml-metal.metal
|
@ -304,34 +304,22 @@ kernel void kernel_mul_mat_q4_0_f32(
|
||||||
device const float * src1,
|
device const float * src1,
|
||||||
device float * dst,
|
device float * dst,
|
||||||
constant int64_t & ne00,
|
constant int64_t & ne00,
|
||||||
constant int64_t & ne01,
|
|
||||||
constant uint64_t & nb00,
|
|
||||||
constant uint64_t & nb01,
|
|
||||||
constant uint64_t & nb02,
|
|
||||||
constant int64_t & ne10,
|
constant int64_t & ne10,
|
||||||
constant int64_t & ne11,
|
|
||||||
constant uint64_t & nb10,
|
|
||||||
constant uint64_t & nb11,
|
|
||||||
constant uint64_t & nb12,
|
|
||||||
constant int64_t & ne0,
|
constant int64_t & ne0,
|
||||||
constant int64_t & ne1,
|
|
||||||
threadgroup float * sum [[threadgroup(0)]],
|
threadgroup float * sum [[threadgroup(0)]],
|
||||||
uint2 tgpig[[threadgroup_position_in_grid]],
|
uint2 tgpig[[threadgroup_position_in_grid]],
|
||||||
uint2 tpig[[thread_position_in_grid]],
|
|
||||||
uint2 tpitg[[thread_position_in_threadgroup]],
|
uint2 tpitg[[thread_position_in_threadgroup]],
|
||||||
uint2 tptg[[threads_per_threadgroup]]) {
|
uint2 tptg[[threads_per_threadgroup]]) {
|
||||||
const int nb = ne00/QK4_0;
|
const int nb = ne00/QK4_0;
|
||||||
|
|
||||||
const int8_t m8 = 8;
|
|
||||||
|
|
||||||
const int64_t r0 = tgpig.x;
|
const int64_t r0 = tgpig.x;
|
||||||
const int64_t r1 = tgpig.y;
|
const int64_t r1 = tgpig.y;
|
||||||
|
|
||||||
device const block_q4_0 * x = (device const block_q4_0 *) src0 + r0*nb;
|
device const block_q4_0 * x = (device const block_q4_0 *) src0 + r0*nb;
|
||||||
device const float * y = (device const float *) src1 + r1*ne10;
|
device const float * y = (device const float *) src1 + r1*ne10;
|
||||||
|
|
||||||
const uint nth = tptg.x*tptg.y;
|
const int nth = tptg.x*tptg.y;
|
||||||
const uint ith = tptg.y*tpitg.x + tpitg.y;
|
const int ith = tptg.y*tpitg.x + tpitg.y;
|
||||||
|
|
||||||
const int ix = tpitg.y/4; // 0 or 1
|
const int ix = tpitg.y/4; // 0 or 1
|
||||||
const int iy = tpitg.y - 4*ix; // 0...3
|
const int iy = tpitg.y - 4*ix; // 0...3
|
||||||
|
@ -351,47 +339,32 @@ kernel void kernel_mul_mat_q4_0_f32(
|
||||||
|
|
||||||
for (int j = 0; j < 4; ++j) {
|
for (int j = 0; j < 4; ++j) {
|
||||||
|
|
||||||
acc[0] += yl[j+ 0] * ((int8_t)(xl[j] & 0xF) - m8);
|
acc[0] += yl[j] * (xl[j] & 0xF) + yl[j+16] * (xl[j] >> 4);
|
||||||
acc[1] += yl[j+16] * ((int8_t)(xl[j] >> 4) - m8);
|
acc[1] += yl[j] + yl[j+16];
|
||||||
|
|
||||||
}
|
}
|
||||||
|
|
||||||
sumf += d * (acc[0] + acc[1]);
|
sumf += d * (acc[0] - 8.f*acc[1]);
|
||||||
}
|
}
|
||||||
|
|
||||||
sum[ith] = sumf;
|
sum[ith] = sumf;
|
||||||
|
|
||||||
//
|
//
|
||||||
// Accumulate the sum from all threads in the threadgroup
|
// Accumulate the sum from all threads in the threadgroup
|
||||||
// This version is slightly faster than the commented out one below,
|
|
||||||
// which I copy-pasted from ggerganov's q4_0 dot product for metal.
|
|
||||||
//
|
//
|
||||||
threadgroup_barrier(mem_flags::mem_threadgroup);
|
threadgroup_barrier(mem_flags::mem_threadgroup);
|
||||||
if (ith%4 == 0) {
|
if (ith%4 == 0) {
|
||||||
for (int i = 1; i < 4; ++i) sum[ith] += sum[ith + i];
|
sum[ith] += sum[ith+1] + sum[ith+2] + sum[ith+3];
|
||||||
}
|
}
|
||||||
threadgroup_barrier(mem_flags::mem_threadgroup);
|
threadgroup_barrier(mem_flags::mem_threadgroup);
|
||||||
if (ith%16 == 0) {
|
if (ith%16 == 0) {
|
||||||
for (int i = 4; i < 16; i += 4) sum[ith] += sum[ith + i];
|
sum[ith] += sum[ith+4] + sum[ith+8] + sum[ith+12];
|
||||||
}
|
}
|
||||||
threadgroup_barrier(mem_flags::mem_threadgroup);
|
threadgroup_barrier(mem_flags::mem_threadgroup);
|
||||||
if (ith == 0) {
|
if (ith == 0) {
|
||||||
for (int i = 16; i < nth; i += 16) sum[0] += sum[i];
|
for (uint i = 16; i < nth; i += 16) sum[0] += sum[i];
|
||||||
dst[r1*ne0 + r0] = sum[0];
|
dst[r1*ne0 + r0] = sum[0];
|
||||||
}
|
}
|
||||||
|
|
||||||
//// accumulate the sum from all threads in the threadgroup
|
|
||||||
//threadgroup_barrier(mem_flags::mem_threadgroup);
|
|
||||||
//for (uint i = nth/2; i > 0; i /= 2) {
|
|
||||||
// if (ith < i) {
|
|
||||||
// sum[ith] += sum[ith + i];
|
|
||||||
// }
|
|
||||||
// threadgroup_barrier(mem_flags::mem_threadgroup);
|
|
||||||
//}
|
|
||||||
|
|
||||||
//if (ith == 0) {
|
|
||||||
// dst[r1*ne0 + r0] = sum[0];
|
|
||||||
//}
|
|
||||||
}
|
}
|
||||||
|
|
||||||
kernel void kernel_mul_mat_q4_1_f32(
|
kernel void kernel_mul_mat_q4_1_f32(
|
||||||
|
@ -399,20 +372,10 @@ kernel void kernel_mul_mat_q4_1_f32(
|
||||||
device const float * src1,
|
device const float * src1,
|
||||||
device float * dst,
|
device float * dst,
|
||||||
constant int64_t & ne00,
|
constant int64_t & ne00,
|
||||||
constant int64_t & ne01,
|
|
||||||
constant uint64_t & nb00,
|
|
||||||
constant uint64_t & nb01,
|
|
||||||
constant uint64_t & nb02,
|
|
||||||
constant int64_t & ne10,
|
constant int64_t & ne10,
|
||||||
constant int64_t & ne11,
|
|
||||||
constant uint64_t & nb10,
|
|
||||||
constant uint64_t & nb11,
|
|
||||||
constant uint64_t & nb12,
|
|
||||||
constant int64_t & ne0,
|
constant int64_t & ne0,
|
||||||
constant int64_t & ne1,
|
|
||||||
threadgroup float * sum [[threadgroup(0)]],
|
threadgroup float * sum [[threadgroup(0)]],
|
||||||
uint2 tgpig[[threadgroup_position_in_grid]],
|
uint2 tgpig[[threadgroup_position_in_grid]],
|
||||||
uint2 tpig[[thread_position_in_grid]],
|
|
||||||
uint2 tpitg[[thread_position_in_threadgroup]],
|
uint2 tpitg[[thread_position_in_threadgroup]],
|
||||||
uint2 tptg[[threads_per_threadgroup]]) {
|
uint2 tptg[[threads_per_threadgroup]]) {
|
||||||
const int nb = ne00/QK4_1;
|
const int nb = ne00/QK4_1;
|
||||||
|
@ -460,11 +423,11 @@ kernel void kernel_mul_mat_q4_1_f32(
|
||||||
//
|
//
|
||||||
threadgroup_barrier(mem_flags::mem_threadgroup);
|
threadgroup_barrier(mem_flags::mem_threadgroup);
|
||||||
if (ith%4 == 0) {
|
if (ith%4 == 0) {
|
||||||
for (int i = 1; i < 4; ++i) sum[ith] += sum[ith + i];
|
sum[ith] += sum[ith+1] + sum[ith+2] + sum[ith+3];
|
||||||
}
|
}
|
||||||
threadgroup_barrier(mem_flags::mem_threadgroup);
|
threadgroup_barrier(mem_flags::mem_threadgroup);
|
||||||
if (ith%16 == 0) {
|
if (ith%16 == 0) {
|
||||||
for (int i = 4; i < 16; i += 4) sum[ith] += sum[ith + i];
|
sum[ith] += sum[ith+4] + sum[ith+8] + sum[ith+12];
|
||||||
}
|
}
|
||||||
threadgroup_barrier(mem_flags::mem_threadgroup);
|
threadgroup_barrier(mem_flags::mem_threadgroup);
|
||||||
if (ith == 0) {
|
if (ith == 0) {
|
||||||
|
@ -671,6 +634,15 @@ typedef struct {
|
||||||
half d; // super-block scale for quantized scales
|
half d; // super-block scale for quantized scales
|
||||||
half dmin; // super-block scale for quantized mins
|
half dmin; // super-block scale for quantized mins
|
||||||
} block_q2_k;
|
} block_q2_k;
|
||||||
|
// 84 bytes / block
|
||||||
|
|
||||||
|
typedef struct {
|
||||||
|
uint8_t hmask[QK_K/8]; // quants - high bit
|
||||||
|
uint8_t qs[QK_K/4]; // quants - low 2 bits
|
||||||
|
uint8_t scales[3*QK_K/64]; // scales, quantized with 6 bits
|
||||||
|
half d; // super-block scale
|
||||||
|
} block_q3_k;
|
||||||
|
// 110 bytes / block
|
||||||
|
|
||||||
typedef struct {
|
typedef struct {
|
||||||
half d; // super-block scale for quantized scales
|
half d; // super-block scale for quantized scales
|
||||||
|
@ -678,6 +650,16 @@ typedef struct {
|
||||||
uint8_t scales[3*QK_K/64]; // scales and mins, quantized with 6 bits
|
uint8_t scales[3*QK_K/64]; // scales and mins, quantized with 6 bits
|
||||||
uint8_t qs[QK_K/2]; // 4--bit quants
|
uint8_t qs[QK_K/2]; // 4--bit quants
|
||||||
} block_q4_k;
|
} block_q4_k;
|
||||||
|
// 144 bytes / block
|
||||||
|
|
||||||
|
typedef struct {
|
||||||
|
half d; // super-block scale for quantized scales
|
||||||
|
half dmin; // super-block scale for quantized mins
|
||||||
|
uint8_t scales[3*QK_K/64]; // scales and mins, quantized with 6 bits
|
||||||
|
uint8_t qh[QK_K/8]; // quants, high bit
|
||||||
|
uint8_t qs[QK_K/2]; // quants, low 4 bits
|
||||||
|
} block_q5_k;
|
||||||
|
// 176 bytes / block
|
||||||
|
|
||||||
typedef struct {
|
typedef struct {
|
||||||
uint8_t ql[QK_K/2]; // quants, lower 4 bits
|
uint8_t ql[QK_K/2]; // quants, lower 4 bits
|
||||||
|
@ -685,16 +667,19 @@ typedef struct {
|
||||||
int8_t scales[QK_K/16]; // scales, quantized with 8 bits
|
int8_t scales[QK_K/16]; // scales, quantized with 8 bits
|
||||||
half d; // super-block scale
|
half d; // super-block scale
|
||||||
} block_q6_k;
|
} block_q6_k;
|
||||||
|
// 210 bytes / block
|
||||||
|
|
||||||
static inline uchar4 get_scale_min_k4(int j, device const uint8_t * q) {
|
static inline uchar4 get_scale_min_k4(int j, device const uint8_t * q) {
|
||||||
uchar4 r;
|
uchar4 r;
|
||||||
if (j < 4) {
|
if (j < 4) {
|
||||||
r[0] = q[j+0] & 63; r[1] = q[j+4] & 63;
|
r[0] = q[j+0] & 63;
|
||||||
r[2] = q[j+1] & 63; r[3] = q[j+5] & 63;
|
r[2] = q[j+1] & 63;
|
||||||
|
r[1] = q[j+4] & 63;
|
||||||
|
r[3] = q[j+5] & 63;
|
||||||
} else {
|
} else {
|
||||||
r[0] = (q[j+4] & 0xF) | ((q[j-4] >> 6) << 4);
|
r[0] = (q[j+4] & 0xF) | ((q[j-4] >> 6) << 4);
|
||||||
r[1] = (q[j+4] >> 4) | ((q[j-0] >> 6) << 4);
|
|
||||||
r[2] = (q[j+5] & 0xF) | ((q[j-3] >> 6) << 4);
|
r[2] = (q[j+5] & 0xF) | ((q[j-3] >> 6) << 4);
|
||||||
|
r[1] = (q[j+4] >> 4) | ((q[j-0] >> 6) << 4);
|
||||||
r[3] = (q[j+5] >> 4) | ((q[j+1] >> 6) << 4);
|
r[3] = (q[j+5] >> 4) | ((q[j+1] >> 6) << 4);
|
||||||
}
|
}
|
||||||
return r;
|
return r;
|
||||||
|
@ -735,10 +720,65 @@ static void dequantize_row_q2_k(device const block_q2_k * x, device float * y, i
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
static void dequantize_row_q3_k(device const block_q3_k * x, device float * y, int k) {
|
||||||
|
assert(k % QK_K == 0);
|
||||||
|
const int nb = k / QK_K;
|
||||||
|
|
||||||
|
const uint16_t kmask1 = 0x0303;
|
||||||
|
const uint16_t kmask2 = 0x0f0f;
|
||||||
|
|
||||||
|
uint16_t aux[8];
|
||||||
|
thread const int8_t * scales = (thread const int8_t*)aux;
|
||||||
|
|
||||||
|
for (int i = 0; i < nb; i++) {
|
||||||
|
|
||||||
|
const float d_all = (float)(x[i].d);
|
||||||
|
|
||||||
|
device const uint8_t * q = x[i].qs;
|
||||||
|
device const uint8_t * h = x[i].hmask;
|
||||||
|
uint8_t m = 1;
|
||||||
|
|
||||||
|
device const uint16_t * a = (device const uint16_t *)x[i].scales;
|
||||||
|
aux[0] = (a[0] & kmask2) | (((a[4] >> 0) & kmask1) << 4);
|
||||||
|
aux[1] = (a[1] & kmask2) | (((a[5] >> 0) & kmask1) << 4);
|
||||||
|
aux[2] = (a[2] & kmask2) | (((a[4] >> 2) & kmask1) << 4);
|
||||||
|
aux[3] = (a[3] & kmask2) | (((a[5] >> 2) & kmask1) << 4);
|
||||||
|
aux[4] = ((a[0] >> 4) & kmask2) | (((a[4] >> 4) & kmask1) << 4);
|
||||||
|
aux[5] = ((a[1] >> 4) & kmask2) | (((a[5] >> 4) & kmask1) << 4);
|
||||||
|
aux[6] = ((a[2] >> 4) & kmask2) | (((a[4] >> 6) & kmask1) << 4);
|
||||||
|
aux[7] = ((a[3] >> 4) & kmask2) | (((a[5] >> 6) & kmask1) << 4);
|
||||||
|
|
||||||
|
int is = 0;
|
||||||
|
float dl;
|
||||||
|
for (int n = 0; n < QK_K; n += 128) {
|
||||||
|
int shift = 0;
|
||||||
|
for (int j = 0; j < 4; ++j) {
|
||||||
|
|
||||||
|
dl = d_all * (scales[is++] - 32);
|
||||||
|
for (int l = 0; l < 16; ++l) {
|
||||||
|
*y++ = dl * ((int8_t)((q[l+ 0] >> shift) & 3) - ((h[l+ 0] & m) ? 0 : 4));
|
||||||
|
}
|
||||||
|
|
||||||
|
dl = d_all * (scales[is++] - 32);
|
||||||
|
for (int l = 0; l < 16; ++l) {
|
||||||
|
*y++ = dl * ((int8_t)((q[l+16] >> shift) & 3) - ((h[l+16] & m) ? 0 : 4));
|
||||||
|
}
|
||||||
|
|
||||||
|
shift += 2;
|
||||||
|
m <<= 1;
|
||||||
|
}
|
||||||
|
q += 32;
|
||||||
|
}
|
||||||
|
|
||||||
|
}
|
||||||
|
|
||||||
|
}
|
||||||
|
|
||||||
static void dequantize_row_q4_k(device const block_q4_k * x, device float * y, int k) {
|
static void dequantize_row_q4_k(device const block_q4_k * x, device float * y, int k) {
|
||||||
assert(k % QK_K == 0);
|
assert(k % QK_K == 0);
|
||||||
const int nb = k / QK_K;
|
const int nb = k / QK_K;
|
||||||
|
|
||||||
|
|
||||||
for (int i = 0; i < nb; i++) {
|
for (int i = 0; i < nb; i++) {
|
||||||
|
|
||||||
const float d = x[i].d;
|
const float d = x[i].d;
|
||||||
|
@ -760,6 +800,33 @@ static void dequantize_row_q4_k(device const block_q4_k * x, device float * y, i
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
static void dequantize_row_q5_k(device const block_q5_k * x, device float * y, int k) {
|
||||||
|
assert(k % QK_K == 0);
|
||||||
|
const int nb = k / QK_K;
|
||||||
|
|
||||||
|
for (int i = 0; i < nb; i++) {
|
||||||
|
|
||||||
|
const float d = (float)(x[i].d);
|
||||||
|
const float min = (float)(x[i].dmin);
|
||||||
|
|
||||||
|
device const uint8_t * ql = x[i].qs;
|
||||||
|
device const uint8_t * qh = x[i].qh;
|
||||||
|
|
||||||
|
int is = 0;
|
||||||
|
uint8_t u1 = 1, u2 = 2;
|
||||||
|
for (int j = 0; j < QK_K; j += 64) {
|
||||||
|
const uchar4 sc = get_scale_min_k4(is, x[i].scales);
|
||||||
|
const float d1 = d * sc[0]; const float m1 = min * sc[1];
|
||||||
|
const float d2 = d * sc[2]; const float m2 = min * sc[3];
|
||||||
|
for (int l = 0; l < 32; ++l) *y++ = d1 * ((ql[l] & 0xF) + (qh[l] & u1 ? 16 : 0)) - m1;
|
||||||
|
for (int l = 0; l < 32; ++l) *y++ = d2 * ((ql[l] >> 4) + (qh[l] & u2 ? 16 : 0)) - m2;
|
||||||
|
ql += 32; is += 2;
|
||||||
|
u1 <<= 2; u2 <<= 2;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
}
|
||||||
|
|
||||||
static void dequantize_row_q6_k(device const block_q6_k * x, device float * y, int k) {
|
static void dequantize_row_q6_k(device const block_q6_k * x, device float * y, int k) {
|
||||||
assert(k % QK_K == 0);
|
assert(k % QK_K == 0);
|
||||||
const int nb = k / QK_K;
|
const int nb = k / QK_K;
|
||||||
|
@ -808,6 +875,22 @@ kernel void kernel_get_rows_q2_k(
|
||||||
(device float *) ((device char *) dst + i*nb1), ne00);
|
(device float *) ((device char *) dst + i*nb1), ne00);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
kernel void kernel_get_rows_q3_k(
|
||||||
|
device const void * src0,
|
||||||
|
device const int * src1,
|
||||||
|
device float * dst,
|
||||||
|
constant int64_t & ne00,
|
||||||
|
constant uint64_t & nb01,
|
||||||
|
constant uint64_t & nb1,
|
||||||
|
uint tpig[[thread_position_in_grid]]) {
|
||||||
|
const int i = tpig;
|
||||||
|
const int r = ((device int32_t *) src1)[i];
|
||||||
|
|
||||||
|
dequantize_row_q3_k(
|
||||||
|
(device const block_q3_k *) ((device char *) src0 + r*nb01),
|
||||||
|
(device float *) ((device char *) dst + i*nb1), ne00);
|
||||||
|
}
|
||||||
|
|
||||||
kernel void kernel_get_rows_q4_k(
|
kernel void kernel_get_rows_q4_k(
|
||||||
device const void * src0,
|
device const void * src0,
|
||||||
device const int * src1,
|
device const int * src1,
|
||||||
|
@ -824,6 +907,22 @@ kernel void kernel_get_rows_q4_k(
|
||||||
(device float *) ((device char *) dst + i*nb1), ne00);
|
(device float *) ((device char *) dst + i*nb1), ne00);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
kernel void kernel_get_rows_q5_k(
|
||||||
|
device const void * src0,
|
||||||
|
device const int * src1,
|
||||||
|
device float * dst,
|
||||||
|
constant int64_t & ne00,
|
||||||
|
constant uint64_t & nb01,
|
||||||
|
constant uint64_t & nb1,
|
||||||
|
uint tpig[[thread_position_in_grid]]) {
|
||||||
|
const int i = tpig;
|
||||||
|
const int r = ((device int32_t *) src1)[i];
|
||||||
|
|
||||||
|
dequantize_row_q5_k(
|
||||||
|
(device const block_q5_k *) ((device char *) src0 + r*nb01),
|
||||||
|
(device float *) ((device char *) dst + i*nb1), ne00);
|
||||||
|
}
|
||||||
|
|
||||||
kernel void kernel_get_rows_q6_k(
|
kernel void kernel_get_rows_q6_k(
|
||||||
device const void * src0,
|
device const void * src0,
|
||||||
device const int * src1,
|
device const int * src1,
|
||||||
|
@ -847,20 +946,10 @@ kernel void kernel_mul_mat_q2_k_f32(
|
||||||
device const float * src1,
|
device const float * src1,
|
||||||
device float * dst,
|
device float * dst,
|
||||||
constant int64_t & ne00,
|
constant int64_t & ne00,
|
||||||
constant int64_t & ne01,
|
|
||||||
constant uint64_t & nb00,
|
|
||||||
constant uint64_t & nb01,
|
|
||||||
constant uint64_t & nb02,
|
|
||||||
constant int64_t & ne10,
|
constant int64_t & ne10,
|
||||||
constant int64_t & ne11,
|
|
||||||
constant uint64_t & nb10,
|
|
||||||
constant uint64_t & nb11,
|
|
||||||
constant uint64_t & nb12,
|
|
||||||
constant int64_t & ne0,
|
constant int64_t & ne0,
|
||||||
constant int64_t & ne1,
|
|
||||||
threadgroup float * sum [[threadgroup(0)]],
|
threadgroup float * sum [[threadgroup(0)]],
|
||||||
uint2 tgpig[[threadgroup_position_in_grid]],
|
uint2 tgpig[[threadgroup_position_in_grid]],
|
||||||
uint2 tpig[[thread_position_in_grid]], // we don't use this for now
|
|
||||||
uint2 tpitg[[thread_position_in_threadgroup]],
|
uint2 tpitg[[thread_position_in_threadgroup]],
|
||||||
uint2 tptg[[threads_per_threadgroup]]) {
|
uint2 tptg[[threads_per_threadgroup]]) {
|
||||||
|
|
||||||
|
@ -875,7 +964,6 @@ kernel void kernel_mul_mat_q2_k_f32(
|
||||||
const int nth = tptg.x*tptg.y;
|
const int nth = tptg.x*tptg.y;
|
||||||
const int ith = tptg.y*tpitg.x + tpitg.y;
|
const int ith = tptg.y*tpitg.x + tpitg.y;
|
||||||
|
|
||||||
|
|
||||||
const int tid = tpitg.y; // 0...16
|
const int tid = tpitg.y; // 0...16
|
||||||
const int il = tid/4; // 0...3
|
const int il = tid/4; // 0...3
|
||||||
const int ir = tid%4; // 0...3
|
const int ir = tid%4; // 0...3
|
||||||
|
@ -885,35 +973,54 @@ kernel void kernel_mul_mat_q2_k_f32(
|
||||||
const int n = 8;
|
const int n = 8;
|
||||||
const int is = 4*il + (n*ir)/16;
|
const int is = 4*il + (n*ir)/16;
|
||||||
|
|
||||||
|
const int y_offset = 64*il + n*ir;
|
||||||
|
const int q_offset = 32*ip + n*ir;
|
||||||
|
|
||||||
sum[ith] = 0.0f;
|
sum[ith] = 0.0f;
|
||||||
|
|
||||||
float sumf = 0;
|
float sumf = 0;
|
||||||
for (int i = tpitg.x; i < nb; i += tptg.x) {
|
for (int i = tpitg.x; i < nb; i += tptg.x) {
|
||||||
|
|
||||||
device const uint8_t * q = x[i].qs + 32*ip + n*ir;
|
device const uint8_t * q = x[i].qs + q_offset;
|
||||||
device const uint8_t * scales = x[i].scales + is;
|
device const uint8_t * scales = x[i].scales + is;
|
||||||
|
|
||||||
uint8_t d1 = scales[0] & 0xF;
|
uint8_t d1 = scales[0] & 0xF;
|
||||||
uint8_t m1 = scales[0] >> 4;
|
|
||||||
uint8_t d2 = scales[2] & 0xF;
|
uint8_t d2 = scales[2] & 0xF;
|
||||||
|
uint8_t m1 = scales[0] >> 4;
|
||||||
uint8_t m2 = scales[2] >> 4;
|
uint8_t m2 = scales[2] >> 4;
|
||||||
|
|
||||||
device const float * y = yy + i*QK_K + 64*il + n*ir;
|
device const float * y = yy + i*QK_K + y_offset;
|
||||||
|
|
||||||
|
//float4 s = {0.f, 0.f, 0.f, 0.f};
|
||||||
|
float2 s = {0.f, 0.f};
|
||||||
|
float smin = 0;
|
||||||
|
for (int l = 0; l < n; ++l) {
|
||||||
|
s[0] += y[l+ 0] * ((q[l] >> shift1) & 3);
|
||||||
|
s[1] += y[l+32] * ((q[l] >> shift2) & 3);
|
||||||
|
smin += y[l+ 0] * m1 + y[l+32] * m2;
|
||||||
|
}
|
||||||
|
|
||||||
const float dall = (float)x[i].d;
|
const float dall = (float)x[i].d;
|
||||||
const float dmin = (float)x[i].dmin;
|
const float dmin = (float)x[i].dmin;
|
||||||
|
|
||||||
float4 s = {0.f, 0.f, 0.f, 0.f};
|
sumf += dall * (s[0] * d1 + s[1] * d2) - dmin * smin;
|
||||||
for (int l = 0; l < n; ++l) {
|
|
||||||
s[0] += y[l+ 0] * ((q[l] >> shift1) & 3); s[1] += y[l+ 0];
|
|
||||||
s[2] += y[l+32] * ((q[l] >> shift2) & 3); s[3] += y[l+32];
|
|
||||||
}
|
|
||||||
sumf += dall * (s[0] * d1 + s[2] * d2) - dmin * (s[1] * m1 + s[3] * m2);
|
|
||||||
|
|
||||||
|
|
||||||
}
|
}
|
||||||
sum[ith] = sumf;
|
sum[ith] = sumf;
|
||||||
|
|
||||||
|
//int mask1 = (ith%4 == 0);
|
||||||
|
//int mask2 = (ith%16 == 0);
|
||||||
|
|
||||||
|
//threadgroup_barrier(mem_flags::mem_threadgroup);
|
||||||
|
//for (int i = 1; i < 4; ++i) sum[ith] += mask1 * sum[ith + i];
|
||||||
|
//threadgroup_barrier(mem_flags::mem_threadgroup);
|
||||||
|
//for (int i = 4; i < 16; i += 4) sum[ith] += mask2 * sum[ith + i];
|
||||||
|
//threadgroup_barrier(mem_flags::mem_threadgroup);
|
||||||
|
//if (ith == 0) {
|
||||||
|
// for (int i = 16; i < nth; i += 16) sum[0] += sum[i];
|
||||||
|
// dst[r1*ne0 + r0] = sum[0];
|
||||||
|
//}
|
||||||
|
|
||||||
//
|
//
|
||||||
// Accumulate the sum from all threads in the threadgroup
|
// Accumulate the sum from all threads in the threadgroup
|
||||||
// This version is slightly faster than the commented out one below,
|
// This version is slightly faster than the commented out one below,
|
||||||
|
@ -932,19 +1039,109 @@ kernel void kernel_mul_mat_q2_k_f32(
|
||||||
for (int i = 16; i < nth; i += 16) sum[0] += sum[i];
|
for (int i = 16; i < nth; i += 16) sum[0] += sum[i];
|
||||||
dst[r1*ne0 + r0] = sum[0];
|
dst[r1*ne0 + r0] = sum[0];
|
||||||
}
|
}
|
||||||
|
}
|
||||||
|
|
||||||
//// accumulate the sum from all threads in the threadgroup
|
kernel void kernel_mul_mat_q3_k_f32(
|
||||||
//threadgroup_barrier(mem_flags::mem_threadgroup);
|
device const void * src0,
|
||||||
//for (uint i = nth/2; i > 0; i /= 2) {
|
device const float * src1,
|
||||||
// if (ith < i) {
|
device float * dst,
|
||||||
// sum[ith] += sum[ith + i];
|
constant int64_t & ne00,
|
||||||
// }
|
constant int64_t & ne10,
|
||||||
// threadgroup_barrier(mem_flags::mem_threadgroup);
|
constant int64_t & ne0,
|
||||||
//}
|
constant int64_t & ne1,
|
||||||
|
threadgroup float * sum [[threadgroup(0)]],
|
||||||
|
uint2 tgpig[[threadgroup_position_in_grid]],
|
||||||
|
uint2 tpitg[[thread_position_in_threadgroup]],
|
||||||
|
uint2 tptg[[threads_per_threadgroup]]) {
|
||||||
|
|
||||||
|
const uint16_t kmask1 = 0x0303;
|
||||||
|
const uint16_t kmask2 = 0x0f0f;
|
||||||
|
|
||||||
|
const uint8_t m3 = 3;
|
||||||
|
const int8_t m4 = 4;
|
||||||
|
|
||||||
|
const int nb = ne00/QK_K;
|
||||||
|
|
||||||
|
const int64_t r0 = tgpig.x;
|
||||||
|
const int64_t r1 = tgpig.y;
|
||||||
|
|
||||||
|
device const block_q3_k * x = (device const block_q3_k *) src0 + r0*nb;
|
||||||
|
device const float * yy = (device const float *) src1 + r1*ne10;
|
||||||
|
|
||||||
|
const int nth = tptg.x*tptg.y;
|
||||||
|
const int ith = tptg.y*tpitg.x + tpitg.y;
|
||||||
|
|
||||||
|
const int tid = tpitg.y; // expecting 16
|
||||||
|
const int ip = tid/8; // 0 or 1
|
||||||
|
const int il = tid/2 - 4*ip; // 0...3
|
||||||
|
const int ir = tid%2;
|
||||||
|
const int n = 8;
|
||||||
|
const int l0 = n*ir;
|
||||||
|
|
||||||
|
const uint8_t m = 1 << (4*ip + il);
|
||||||
|
|
||||||
|
const int shift = 2*il;
|
||||||
|
|
||||||
|
const uint16_t s_shift1 = 4*ip;
|
||||||
|
const uint16_t s_shift2 = s_shift1 + 2*(il/2);
|
||||||
|
const int ik = 4 + (il%2);
|
||||||
|
|
||||||
|
const int q_offset = 32*ip + l0;
|
||||||
|
const int y_offset = 128*ip + 32*il + l0;
|
||||||
|
|
||||||
|
//float sumf = 0;
|
||||||
|
float sumf1 = 0, sumf2 = 0;
|
||||||
|
for (int i = tpitg.x; i < nb; i += tptg.x) {
|
||||||
|
|
||||||
|
const float d_all = (float)(x[i].d);
|
||||||
|
|
||||||
|
device const uint8_t * q = x[i].qs + q_offset;
|
||||||
|
device const uint8_t * h = x[i].hmask + l0;
|
||||||
|
device const float * y = yy + i * QK_K + y_offset;
|
||||||
|
|
||||||
|
device const uint16_t * a = (device const uint16_t *)x[i].scales;
|
||||||
|
const char2 scales = as_type<char2>((uint16_t)(((a[il] >> s_shift1) & kmask2) | (((a[ik] >> s_shift2) & kmask1) << 4)));
|
||||||
|
|
||||||
|
float s = 0;
|
||||||
|
for (int l = 0; l < n; ++l) {
|
||||||
|
s += y[l+ 0] * ((int8_t)((q[l+ 0] >> shift) & m3) - ((h[l+ 0] & m) ? 0 : m4));
|
||||||
|
}
|
||||||
|
float d = d_all * s;
|
||||||
|
sumf1 += d * scales[0];
|
||||||
|
sumf2 += d;
|
||||||
|
//sumf += d_all * s * (scales[0] - 32);
|
||||||
|
|
||||||
|
s = 0;
|
||||||
|
for (int l = 0; l < n; ++l) {
|
||||||
|
s += y[l+16] * ((int8_t)((q[l+16] >> shift) & m3) - ((h[l+16] & m) ? 0 : m4));
|
||||||
|
}
|
||||||
|
d = d_all * s;
|
||||||
|
sumf1 += d * scales[1];
|
||||||
|
sumf2 += d;
|
||||||
|
//sumf += d_all * s * (scales[1] - 32);
|
||||||
|
|
||||||
|
}
|
||||||
|
|
||||||
|
//sum[ith] = sumf;
|
||||||
|
sum[ith] = sumf1 - 32.f*sumf2;
|
||||||
|
|
||||||
|
//
|
||||||
|
// Accumulate the sum from all threads in the threadgroup
|
||||||
|
//
|
||||||
|
threadgroup_barrier(mem_flags::mem_threadgroup);
|
||||||
|
if (ith%4 == 0) {
|
||||||
|
for (int i = 1; i < 4; ++i) sum[ith] += sum[ith + i];
|
||||||
|
}
|
||||||
|
threadgroup_barrier(mem_flags::mem_threadgroup);
|
||||||
|
if (ith%16 == 0) {
|
||||||
|
for (int i = 4; i < 16; i += 4) sum[ith] += sum[ith + i];
|
||||||
|
}
|
||||||
|
threadgroup_barrier(mem_flags::mem_threadgroup);
|
||||||
|
if (ith == 0) {
|
||||||
|
for (int i = 16; i < nth; i += 16) sum[0] += sum[i];
|
||||||
|
dst[r1*ne0 + r0] = sum[0];
|
||||||
|
}
|
||||||
|
|
||||||
//if (ith == 0) {
|
|
||||||
// dst[r1*ne0 + r0] = sum[0];
|
|
||||||
//}
|
|
||||||
}
|
}
|
||||||
|
|
||||||
kernel void kernel_mul_mat_q4_k_f32(
|
kernel void kernel_mul_mat_q4_k_f32(
|
||||||
|
@ -952,23 +1149,17 @@ kernel void kernel_mul_mat_q4_k_f32(
|
||||||
device const float * src1,
|
device const float * src1,
|
||||||
device float * dst,
|
device float * dst,
|
||||||
constant int64_t & ne00,
|
constant int64_t & ne00,
|
||||||
constant int64_t & ne01,
|
|
||||||
constant uint64_t & nb00,
|
|
||||||
constant uint64_t & nb01,
|
|
||||||
constant uint64_t & nb02,
|
|
||||||
constant int64_t & ne10,
|
constant int64_t & ne10,
|
||||||
constant int64_t & ne11,
|
|
||||||
constant uint64_t & nb10,
|
|
||||||
constant uint64_t & nb11,
|
|
||||||
constant uint64_t & nb12,
|
|
||||||
constant int64_t & ne0,
|
constant int64_t & ne0,
|
||||||
constant int64_t & ne1,
|
|
||||||
threadgroup float * sum [[threadgroup(0)]],
|
threadgroup float * sum [[threadgroup(0)]],
|
||||||
uint2 tgpig[[threadgroup_position_in_grid]],
|
uint2 tgpig[[threadgroup_position_in_grid]],
|
||||||
uint2 tpig[[thread_position_in_grid]], // we don't use this for now
|
|
||||||
uint2 tpitg[[thread_position_in_threadgroup]],
|
uint2 tpitg[[thread_position_in_threadgroup]],
|
||||||
uint2 tptg[[threads_per_threadgroup]]) {
|
uint2 tptg[[threads_per_threadgroup]]) {
|
||||||
|
|
||||||
|
const uint16_t kmask1 = 0x3f3f;
|
||||||
|
const uint16_t kmask2 = 0x0f0f;
|
||||||
|
const uint16_t kmask3 = 0xc0c0;
|
||||||
|
|
||||||
const int nb = ne00/QK_K;
|
const int nb = ne00/QK_K;
|
||||||
|
|
||||||
const int64_t r0 = tgpig.x;
|
const int64_t r0 = tgpig.x;
|
||||||
|
@ -977,37 +1168,55 @@ kernel void kernel_mul_mat_q4_k_f32(
|
||||||
device const block_q4_k * x = (device const block_q4_k *) src0 + r0*nb;
|
device const block_q4_k * x = (device const block_q4_k *) src0 + r0*nb;
|
||||||
device const float * yy = (device const float *) src1 + r1*ne10;
|
device const float * yy = (device const float *) src1 + r1*ne10;
|
||||||
|
|
||||||
const uint nth = tptg.x*tptg.y;
|
const int nth = tptg.x*tptg.y;
|
||||||
const uint ith = tptg.y*tpitg.x + tpitg.y;
|
const int ith = tptg.y*tpitg.x + tpitg.y;
|
||||||
|
|
||||||
const int tid = tpitg.y; // 0...16
|
const int tid = tpitg.y; // 0...16
|
||||||
const int il = tid/4; // 0...3
|
const int il = tid/4; // 0...3
|
||||||
const int ir = tid%4; // 0...3
|
const int ir = tid - 4*il;// 0...3
|
||||||
const int n = 8;
|
const int n = 4;
|
||||||
const int is = 2*il;
|
|
||||||
|
const int im = il/2; // 0 or 1. 0 computes 0,32 + 128,160, 1 computes 64,96 + 192,224
|
||||||
|
const int in = il%2;
|
||||||
|
|
||||||
|
const int l0 = n*(2*ir + in);
|
||||||
|
const int q_offset = 32*im + l0;
|
||||||
|
const int y_offset = 64*im + l0;
|
||||||
|
|
||||||
sum[ith] = 0.0f;
|
sum[ith] = 0.0f;
|
||||||
|
|
||||||
|
uchar2 sc1, sc2, sc3, sc4;
|
||||||
|
|
||||||
float sumf = 0;
|
float sumf = 0;
|
||||||
for (int i = tpitg.x; i < nb; i += tptg.x) {
|
for (int i = tpitg.x; i < nb; i += tptg.x) {
|
||||||
|
|
||||||
device const uint8_t * q = (x + i)->qs + 32*il + n*ir;
|
device const uint8_t * q1 = (x + i)->qs + q_offset;
|
||||||
device const float * y = yy + i*QK_K + 64*il + n*ir;
|
device const uint8_t * q2 = q1 + 64;
|
||||||
device const uint8_t * scales = (x + i)->scales;
|
device const float * y1 = yy + i*QK_K + y_offset;
|
||||||
|
device const float * y2 = y1 + 128;
|
||||||
|
|
||||||
const float dall = (float)((x + i)->d);
|
const float dall = (float)((x + i)->d);
|
||||||
const float dmin = (float)((x + i)->dmin);
|
const float dmin = (float)((x + i)->dmin);
|
||||||
|
|
||||||
const uchar4 sc = get_scale_min_k4(is, scales);
|
device const uint16_t * a = (device const uint16_t *)(x + i)->scales;
|
||||||
|
sc1 = as_type<uchar2>((uint16_t)(a[im+0] & kmask1));
|
||||||
|
sc2 = as_type<uchar2>((uint16_t)(a[im+2] & kmask1));
|
||||||
|
sc3 = as_type<uchar2>((uint16_t)(((a[im+4] >> 0) & kmask2) | ((a[im+0] & kmask3) >> 2)));
|
||||||
|
sc4 = as_type<uchar2>((uint16_t)(((a[im+4] >> 4) & kmask2) | ((a[im+2] & kmask3) >> 2)));
|
||||||
|
|
||||||
float4 s = {0.f, 0.f, 0.f, 0.f};
|
float4 s = {0.f, 0.f, 0.f, 0.f};
|
||||||
|
float smin = 0;
|
||||||
for (int l = 0; l < n; ++l) {
|
for (int l = 0; l < n; ++l) {
|
||||||
s[0] += y[l+ 0] * (q[l] & 0xF); s[1] += y[l+ 0];
|
|
||||||
s[2] += y[l+32] * (q[l] >> 4); s[3] += y[l+32];
|
s[0] += y1[l] * (q1[l] & 0xF); s[1] += y1[l+32] * (q1[l] >> 4);
|
||||||
}
|
s[2] += y2[l] * (q2[l] & 0xF); s[3] += y2[l+32] * (q2[l] >> 4);
|
||||||
sumf += dall * (s[0] * sc[0] + s[2] * sc[2]) - dmin * (s[1] * sc[1] + s[3] * sc[3]);
|
smin += y1[l] * sc2[0] + y1[l+32] * sc2[1] + y2[l] * sc4[0] + y2[l+32] * sc4[1];
|
||||||
|
|
||||||
}
|
}
|
||||||
|
sumf += dall * (s[0] * sc1[0] + s[1] * sc1[1] + s[2] * sc3[0] + s[3] * sc3[1]) - dmin * smin;
|
||||||
|
|
||||||
|
}
|
||||||
|
|
||||||
sum[ith] = sumf;
|
sum[ith] = sumf;
|
||||||
|
|
||||||
//
|
//
|
||||||
|
@ -1043,25 +1252,114 @@ kernel void kernel_mul_mat_q4_k_f32(
|
||||||
//}
|
//}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
kernel void kernel_mul_mat_q5_k_f32(
|
||||||
|
device const void * src0,
|
||||||
|
device const float * src1,
|
||||||
|
device float * dst,
|
||||||
|
constant int64_t & ne00,
|
||||||
|
constant int64_t & ne10,
|
||||||
|
constant int64_t & ne0,
|
||||||
|
threadgroup float * sum [[threadgroup(0)]],
|
||||||
|
uint2 tgpig[[threadgroup_position_in_grid]],
|
||||||
|
uint2 tpitg[[thread_position_in_threadgroup]],
|
||||||
|
uint2 tptg[[threads_per_threadgroup]]) {
|
||||||
|
|
||||||
|
const uint16_t kmask1 = 0x3f3f;
|
||||||
|
const uint16_t kmask2 = 0x0f0f;
|
||||||
|
const uint16_t kmask3 = 0xc0c0;
|
||||||
|
|
||||||
|
const int nb = ne00/QK_K;
|
||||||
|
|
||||||
|
const int64_t r0 = tgpig.x;
|
||||||
|
const int64_t r1 = tgpig.y;
|
||||||
|
|
||||||
|
device const block_q5_k * x = (device const block_q5_k *) src0 + r0*nb;
|
||||||
|
device const float * yy = (device const float *) src1 + r1*ne10;
|
||||||
|
|
||||||
|
const int nth = tptg.x*tptg.y;
|
||||||
|
const int ith = tptg.y*tpitg.x + tpitg.y;
|
||||||
|
|
||||||
|
const int tid = tpitg.y; // 0...16
|
||||||
|
const int il = tid/4; // 0...3
|
||||||
|
const int ir = tid - 4*il;// 0...3
|
||||||
|
const int n = 4;
|
||||||
|
|
||||||
|
const int im = il/2; // 0 or 1. 0 computes 0,32 + 128,160, 1 computes 64,96 + 192,224
|
||||||
|
const int in = il%2;
|
||||||
|
|
||||||
|
const int l0 = n*(2*ir + in);
|
||||||
|
const int q_offset = 32*im + l0;
|
||||||
|
const int y_offset = 64*im + l0;
|
||||||
|
|
||||||
|
const uint8_t hm1 = 1u << (2*im);
|
||||||
|
const uint8_t hm2 = hm1 << 1;
|
||||||
|
const uint8_t hm3 = hm1 << 4;
|
||||||
|
const uint8_t hm4 = hm2 << 4;
|
||||||
|
|
||||||
|
uchar2 sc1, sc2, sc3, sc4;
|
||||||
|
|
||||||
|
float sumf = 0;
|
||||||
|
for (int i = tpitg.x; i < nb; i += tptg.x) {
|
||||||
|
|
||||||
|
device const uint8_t * q1 = (x + i)->qs + q_offset;
|
||||||
|
device const uint8_t * q2 = q1 + 64;
|
||||||
|
device const uint8_t * qh = (x + i)->qh + l0;
|
||||||
|
device const float * y1 = yy + i*QK_K + y_offset;
|
||||||
|
device const float * y2 = y1 + 128;
|
||||||
|
|
||||||
|
const float dall = (float)((x + i)->d);
|
||||||
|
const float dmin = (float)((x + i)->dmin);
|
||||||
|
|
||||||
|
device const uint16_t * a = (device const uint16_t *)(x + i)->scales;
|
||||||
|
sc1 = as_type<uchar2>((uint16_t)(a[im+0] & kmask1));
|
||||||
|
sc2 = as_type<uchar2>((uint16_t)(a[im+2] & kmask1));
|
||||||
|
sc3 = as_type<uchar2>((uint16_t)(((a[im+4] >> 0) & kmask2) | ((a[im+0] & kmask3) >> 2)));
|
||||||
|
sc4 = as_type<uchar2>((uint16_t)(((a[im+4] >> 4) & kmask2) | ((a[im+2] & kmask3) >> 2)));
|
||||||
|
|
||||||
|
float4 s = {0.f, 0.f, 0.f, 0.f};
|
||||||
|
float smin = 0;
|
||||||
|
for (int l = 0; l < n; ++l) {
|
||||||
|
|
||||||
|
s[0] += y1[l+ 0] * ((q1[l] & 0xF) + (qh[l] & hm1 ? 16 : 0));
|
||||||
|
s[1] += y1[l+32] * ((q1[l] >> 4) + (qh[l] & hm2 ? 16 : 0));
|
||||||
|
s[2] += y2[l+ 0] * ((q2[l] & 0xF) + (qh[l] & hm3 ? 16 : 0));
|
||||||
|
s[3] += y2[l+32] * ((q2[l] >> 4) + (qh[l] & hm4 ? 16 : 0));
|
||||||
|
smin += y1[l] * sc2[0] + y1[l+32] * sc2[1] + y2[l] * sc4[0] + y2[l+32] * sc4[1];
|
||||||
|
|
||||||
|
}
|
||||||
|
sumf += dall * (s[0] * sc1[0] + s[1] * sc1[1] + s[2] * sc3[0] + s[3] * sc3[1]) - dmin * smin;
|
||||||
|
|
||||||
|
}
|
||||||
|
sum[ith] = sumf;
|
||||||
|
|
||||||
|
//
|
||||||
|
// Accumulate the sum from all threads in the threadgroup
|
||||||
|
//
|
||||||
|
threadgroup_barrier(mem_flags::mem_threadgroup);
|
||||||
|
if (ith%4 == 0) {
|
||||||
|
sum[ith] += sum[ith+1] + sum[ith+2] + sum[ith+3];
|
||||||
|
}
|
||||||
|
threadgroup_barrier(mem_flags::mem_threadgroup);
|
||||||
|
if (ith%16 == 0) {
|
||||||
|
sum[ith] += sum[ith+4] + sum[ith+8] + sum[ith+12];
|
||||||
|
}
|
||||||
|
threadgroup_barrier(mem_flags::mem_threadgroup);
|
||||||
|
if (ith == 0) {
|
||||||
|
for (int i = 16; i < nth; i += 16) sum[0] += sum[i];
|
||||||
|
dst[r1*ne0 + r0] = sum[0];
|
||||||
|
}
|
||||||
|
|
||||||
|
}
|
||||||
|
|
||||||
kernel void kernel_mul_mat_q6_k_f32(
|
kernel void kernel_mul_mat_q6_k_f32(
|
||||||
device const void * src0,
|
device const void * src0,
|
||||||
device const float * src1,
|
device const float * src1,
|
||||||
device float * dst,
|
device float * dst,
|
||||||
constant int64_t & ne00,
|
constant int64_t & ne00,
|
||||||
constant int64_t & ne01,
|
|
||||||
constant uint64_t & nb00,
|
|
||||||
constant uint64_t & nb01,
|
|
||||||
constant uint64_t & nb02,
|
|
||||||
constant int64_t & ne10,
|
constant int64_t & ne10,
|
||||||
constant int64_t & ne11,
|
|
||||||
constant uint64_t & nb10,
|
|
||||||
constant uint64_t & nb11,
|
|
||||||
constant uint64_t & nb12,
|
|
||||||
constant int64_t & ne0,
|
constant int64_t & ne0,
|
||||||
constant int64_t & ne1,
|
|
||||||
threadgroup float * sum [[threadgroup(0)]],
|
threadgroup float * sum [[threadgroup(0)]],
|
||||||
uint2 tgpig[[threadgroup_position_in_grid]],
|
uint2 tgpig[[threadgroup_position_in_grid]],
|
||||||
uint2 tpig[[thread_position_in_grid]], // we don't use this for now
|
|
||||||
uint2 tpitg[[thread_position_in_threadgroup]],
|
uint2 tpitg[[thread_position_in_threadgroup]],
|
||||||
uint2 tptg[[threads_per_threadgroup]]) {
|
uint2 tptg[[threads_per_threadgroup]]) {
|
||||||
|
|
||||||
|
@ -1078,24 +1376,29 @@ kernel void kernel_mul_mat_q6_k_f32(
|
||||||
device const block_q6_k * x = (device const block_q6_k *) src0 + r0*nb;
|
device const block_q6_k * x = (device const block_q6_k *) src0 + r0*nb;
|
||||||
device const float * yy = (device const float *) src1 + r1*ne10;
|
device const float * yy = (device const float *) src1 + r1*ne10;
|
||||||
|
|
||||||
const uint nth = tptg.x*tptg.y;
|
const int nth = tptg.x*tptg.y;
|
||||||
const uint ith = tptg.y*tpitg.x + tpitg.y;
|
const int ith = tptg.y*tpitg.x + tpitg.y;
|
||||||
|
|
||||||
const int step = QK_K / tptg.y; // we expect this to be 16
|
// Note: we absolutely assume that tptg.y = 16 and QK_K = 256!
|
||||||
const int iqs = step * tpitg.y; // 0...240 in steps of 16
|
const int iqs = 16 * tpitg.y;
|
||||||
const int ip = iqs / 128; // 0 or 1
|
const int ip = iqs / 128; // 0 or 1
|
||||||
const int il = (iqs - 128*ip)/16; // 0...7
|
const int il = (iqs - 128*ip)/16; // 0...7
|
||||||
const int n = 4;
|
const int n = 4;
|
||||||
const int is = 8*ip + (n*il)/16;
|
const int l0 = n*il;
|
||||||
|
const int is = 8*ip + l0/16;
|
||||||
|
|
||||||
|
const int y_offset = 128*ip + l0;
|
||||||
|
const int q_offset_l = 64*ip + l0;
|
||||||
|
const int q_offset_h = 32*ip + l0;
|
||||||
|
|
||||||
float sumf = 0;
|
float sumf = 0;
|
||||||
for (int i = tpitg.x; i < nb; i += tptg.x) {
|
for (int i = tpitg.x; i < nb; i += tptg.x) {
|
||||||
|
|
||||||
device const uint8_t * ql = x[i].ql + 64*ip + n*il;
|
device const uint8_t * ql = x[i].ql + q_offset_l;
|
||||||
device const uint8_t * qh = x[i].qh + 32*ip + n*il;
|
device const uint8_t * qh = x[i].qh + q_offset_h;
|
||||||
device const int8_t * sc = x[i].scales + is;
|
device const int8_t * sc = x[i].scales + is;
|
||||||
|
|
||||||
device const float * y = yy + i * QK_K + 128*ip + n*il;
|
device const float * y = yy + i * QK_K + y_offset;
|
||||||
|
|
||||||
const float dall = x[i].d;
|
const float dall = x[i].d;
|
||||||
|
|
||||||
|
|
|
@ -1167,7 +1167,7 @@ size_t ggml_cl_mul_mat_get_wsize(const struct ggml_tensor * src0, const struct g
|
||||||
return 0;
|
return 0;
|
||||||
}
|
}
|
||||||
|
|
||||||
void ggml_cl_transform_tensor(ggml_tensor * tensor) {
|
void ggml_cl_transform_tensor(void * data, ggml_tensor * tensor) {
|
||||||
const int64_t ne0 = tensor->ne[0];
|
const int64_t ne0 = tensor->ne[0];
|
||||||
const int64_t ne1 = tensor->ne[1];
|
const int64_t ne1 = tensor->ne[1];
|
||||||
const int64_t ne2 = tensor->ne[2];
|
const int64_t ne2 = tensor->ne[2];
|
||||||
|
@ -1179,6 +1179,7 @@ void ggml_cl_transform_tensor(ggml_tensor * tensor) {
|
||||||
size_t q_size;
|
size_t q_size;
|
||||||
cl_mem dst = ggml_cl_pool_malloc(q_sz, &q_size);
|
cl_mem dst = ggml_cl_pool_malloc(q_sz, &q_size);
|
||||||
|
|
||||||
|
tensor->data = data;
|
||||||
// copy tensor to device
|
// copy tensor to device
|
||||||
for (int64_t i3 = 0; i3 < ne3; i3++) {
|
for (int64_t i3 = 0; i3 < ne3; i3++) {
|
||||||
for (int64_t i2 = 0; i2 < ne2; i2++) {
|
for (int64_t i2 = 0; i2 < ne2; i2++) {
|
||||||
|
@ -1190,35 +1191,5 @@ void ggml_cl_transform_tensor(ggml_tensor * tensor) {
|
||||||
CL_CHECK(clFinish(queue));
|
CL_CHECK(clFinish(queue));
|
||||||
|
|
||||||
tensor->data = dst;
|
tensor->data = dst;
|
||||||
tensor->backend = GGML_BACKEND_GPU;
|
GGML_ASSERT(tensor->backend == GGML_BACKEND_GPU);
|
||||||
}
|
|
||||||
|
|
||||||
void ggml_cl_load_data(const char * fname, struct ggml_tensor * tensor, const size_t offset) {
|
|
||||||
cl_int err;
|
|
||||||
FILE * fp = fopen(fname, "rb");
|
|
||||||
|
|
||||||
const size_t size = ggml_nbytes(tensor);
|
|
||||||
|
|
||||||
cl_mem dst;
|
|
||||||
CL_CHECK((dst = clCreateBuffer(context, CL_MEM_READ_ONLY, size, nullptr, &err), err));
|
|
||||||
void * buf_host = malloc(size);
|
|
||||||
|
|
||||||
#ifdef _WIN32
|
|
||||||
int ret = _fseeki64(fp, (__int64) offset, SEEK_SET);
|
|
||||||
#else
|
|
||||||
int ret = fseek(fp, (long) offset, SEEK_SET);
|
|
||||||
#endif
|
|
||||||
GGML_ASSERT(ret == 0); // same
|
|
||||||
|
|
||||||
size_t ret2 = fread(buf_host, size, 1, fp);
|
|
||||||
if (ret2 != 1) {
|
|
||||||
fprintf(stderr, "unexpectedly reached end of file");
|
|
||||||
exit(1);
|
|
||||||
}
|
|
||||||
|
|
||||||
clEnqueueWriteBuffer(queue, dst, CL_TRUE, 0, size, buf_host, 0, nullptr, nullptr);
|
|
||||||
|
|
||||||
tensor->data = dst;
|
|
||||||
free(buf_host);
|
|
||||||
fclose(fp);
|
|
||||||
}
|
}
|
||||||
|
|
|
@ -18,8 +18,7 @@ void ggml_cl_host_free(void * ptr);
|
||||||
|
|
||||||
void ggml_cl_free_data(const struct ggml_tensor* tensor);
|
void ggml_cl_free_data(const struct ggml_tensor* tensor);
|
||||||
|
|
||||||
void ggml_cl_transform_tensor(struct ggml_tensor * tensor);
|
void ggml_cl_transform_tensor(void * data, struct ggml_tensor * tensor);
|
||||||
void ggml_cl_load_data(const char * fname, struct ggml_tensor * tensor, size_t offset);
|
|
||||||
|
|
||||||
#ifdef __cplusplus
|
#ifdef __cplusplus
|
||||||
}
|
}
|
||||||
|
|
|
@ -1519,7 +1519,7 @@ void ggml_vec_dot_q4_K_q8_K(const int n, float * restrict s, const void * restri
|
||||||
|
|
||||||
const uint8x16_t m4b = vdupq_n_u8(0xf);
|
const uint8x16_t m4b = vdupq_n_u8(0xf);
|
||||||
#ifdef __ARM_FEATURE_DOTPROD
|
#ifdef __ARM_FEATURE_DOTPROD
|
||||||
const uint32x4_t mzero = vdupq_n_s32(0);
|
const int32x4_t mzero = vdupq_n_s32(0);
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
int8x16x2_t q4bytes;
|
int8x16x2_t q4bytes;
|
||||||
|
@ -1745,7 +1745,7 @@ void ggml_vec_dot_q5_K_q8_K(const int n, float * restrict s, const void * restri
|
||||||
#ifdef __ARM_NEON
|
#ifdef __ARM_NEON
|
||||||
|
|
||||||
const uint8x16_t m4b = vdupq_n_u8(0xf);
|
const uint8x16_t m4b = vdupq_n_u8(0xf);
|
||||||
const uint32x4_t mzero = vdupq_n_u32(0);
|
const int32x4_t mzero = vdupq_n_s32(0);
|
||||||
const uint8x16_t mone = vdupq_n_u8(1);
|
const uint8x16_t mone = vdupq_n_u8(1);
|
||||||
const uint8x16_t mtwo = vdupq_n_u8(2);
|
const uint8x16_t mtwo = vdupq_n_u8(2);
|
||||||
|
|
||||||
|
@ -2242,5 +2242,3 @@ void ggml_vec_dot_q6_K_q8_K(const int n, float * restrict s, const void * restri
|
||||||
*s = sumf;
|
*s = sumf;
|
||||||
#endif
|
#endif
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
|
|
117
llama.cpp
117
llama.cpp
|
@ -707,6 +707,9 @@ struct llama_model_loader {
|
||||||
|
|
||||||
struct ggml_tensor * get_tensor_for(llama_load_tensor & lt, ggml_backend backend) {
|
struct ggml_tensor * get_tensor_for(llama_load_tensor & lt, ggml_backend backend) {
|
||||||
struct ggml_tensor * tensor;
|
struct ggml_tensor * tensor;
|
||||||
|
if (backend != GGML_BACKEND_CPU) {
|
||||||
|
ggml_set_no_alloc(ggml_ctx, true);
|
||||||
|
}
|
||||||
if (lt.ne.size() == 2) {
|
if (lt.ne.size() == 2) {
|
||||||
tensor = ggml_new_tensor_2d(ggml_ctx, lt.type, lt.ne.at(0), lt.ne.at(1));
|
tensor = ggml_new_tensor_2d(ggml_ctx, lt.type, lt.ne.at(0), lt.ne.at(1));
|
||||||
} else {
|
} else {
|
||||||
|
@ -716,6 +719,9 @@ struct llama_model_loader {
|
||||||
ggml_set_name(tensor, lt.name.c_str());
|
ggml_set_name(tensor, lt.name.c_str());
|
||||||
LLAMA_ASSERT(lt.ggml_tensor == NULL); // if this fails, we called get_tensor twice on the same tensor
|
LLAMA_ASSERT(lt.ggml_tensor == NULL); // if this fails, we called get_tensor twice on the same tensor
|
||||||
|
|
||||||
|
if (backend != GGML_BACKEND_CPU) {
|
||||||
|
ggml_set_no_alloc(ggml_ctx, use_mmap);
|
||||||
|
}
|
||||||
tensor->backend = backend;
|
tensor->backend = backend;
|
||||||
lt.ggml_tensor = tensor;
|
lt.ggml_tensor = tensor;
|
||||||
num_ggml_tensors_created++;
|
num_ggml_tensors_created++;
|
||||||
|
@ -731,6 +737,7 @@ struct llama_model_loader {
|
||||||
void load_all_data(llama_progress_callback progress_callback, void * progress_callback_user_data, llama_mlock * lmlock) {
|
void load_all_data(llama_progress_callback progress_callback, void * progress_callback_user_data, llama_mlock * lmlock) {
|
||||||
size_t data_size = 0;
|
size_t data_size = 0;
|
||||||
size_t prefetch_size = 0;
|
size_t prefetch_size = 0;
|
||||||
|
size_t lock_size = 0;
|
||||||
for (const llama_load_tensor & lt : tensors_map.tensors) {
|
for (const llama_load_tensor & lt : tensors_map.tensors) {
|
||||||
data_size += lt.size;
|
data_size += lt.size;
|
||||||
if (lt.ggml_tensor->backend == GGML_BACKEND_CPU) {
|
if (lt.ggml_tensor->backend == GGML_BACKEND_CPU) {
|
||||||
|
@ -740,11 +747,6 @@ struct llama_model_loader {
|
||||||
|
|
||||||
if (use_mmap) {
|
if (use_mmap) {
|
||||||
mapping.reset(new llama_mmap(&file_loaders.at(0)->file, prefetch_size));
|
mapping.reset(new llama_mmap(&file_loaders.at(0)->file, prefetch_size));
|
||||||
if (!lmlock) {
|
|
||||||
// Don't call the callback since the actual loading will be lazy
|
|
||||||
// and we can't measure it.
|
|
||||||
progress_callback = NULL;
|
|
||||||
}
|
|
||||||
if (lmlock) {
|
if (lmlock) {
|
||||||
lmlock->init(mapping->addr);
|
lmlock->init(mapping->addr);
|
||||||
}
|
}
|
||||||
|
@ -752,20 +754,49 @@ struct llama_model_loader {
|
||||||
|
|
||||||
size_t done_size = 0;
|
size_t done_size = 0;
|
||||||
for (llama_load_tensor & lt : tensors_map.tensors) {
|
for (llama_load_tensor & lt : tensors_map.tensors) {
|
||||||
if (lt.ggml_tensor->backend != GGML_BACKEND_CPU) {
|
|
||||||
continue;
|
|
||||||
}
|
|
||||||
if (progress_callback) {
|
if (progress_callback) {
|
||||||
progress_callback((float) done_size / data_size, progress_callback_user_data);
|
progress_callback((float) done_size / data_size, progress_callback_user_data);
|
||||||
}
|
}
|
||||||
LLAMA_ASSERT(lt.ggml_tensor); // unused tensors should have been caught by load_data already
|
LLAMA_ASSERT(lt.ggml_tensor); // unused tensors should have been caught by load_data already
|
||||||
lt.data = (uint8_t *) lt.ggml_tensor->data;
|
lt.data = (uint8_t *) lt.ggml_tensor->data;
|
||||||
load_data_for(lt);
|
|
||||||
lt.ggml_tensor->data = lt.data;
|
// allocate temp buffer if not using mmap
|
||||||
done_size += lt.size;
|
if (!use_mmap && lt.data == NULL) {
|
||||||
if (use_mmap && lmlock) {
|
GGML_ASSERT(lt.ggml_tensor->backend != GGML_BACKEND_CPU);
|
||||||
lmlock->grow_to(done_size);
|
lt.data = (uint8_t*)malloc(ggml_nbytes(lt.ggml_tensor));
|
||||||
}
|
}
|
||||||
|
|
||||||
|
load_data_for(lt);
|
||||||
|
|
||||||
|
switch(lt.ggml_tensor->backend) {
|
||||||
|
case GGML_BACKEND_CPU:
|
||||||
|
lt.ggml_tensor->data = lt.data;
|
||||||
|
if (use_mmap && lmlock) {
|
||||||
|
lock_size += lt.size;
|
||||||
|
lmlock->grow_to(lock_size);
|
||||||
|
}
|
||||||
|
break;
|
||||||
|
#if defined(GGML_USE_CUBLAS)
|
||||||
|
case GGML_BACKEND_GPU:
|
||||||
|
case GGML_BACKEND_GPU_SPLIT:
|
||||||
|
ggml_cuda_transform_tensor(lt.data, lt.ggml_tensor);
|
||||||
|
if (!use_mmap) {
|
||||||
|
free(lt.data);
|
||||||
|
}
|
||||||
|
break;
|
||||||
|
#elif defined(GGML_USE_CLBLAST)
|
||||||
|
case GGML_BACKEND_GPU:
|
||||||
|
ggml_cl_transform_tensor(lt.data, lt.ggml_tensor);
|
||||||
|
if (!use_mmap) {
|
||||||
|
free(lt.data);
|
||||||
|
}
|
||||||
|
break;
|
||||||
|
#endif
|
||||||
|
default:
|
||||||
|
continue;
|
||||||
|
}
|
||||||
|
|
||||||
|
done_size += lt.size;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -1141,7 +1172,7 @@ static void llama_model_load_internal(
|
||||||
if (backend == GGML_BACKEND_GPU) {
|
if (backend == GGML_BACKEND_GPU) {
|
||||||
vram_weights +=
|
vram_weights +=
|
||||||
ggml_nbytes(layer.attention_norm) + ggml_nbytes(layer.wq) + ggml_nbytes(layer.wk) +
|
ggml_nbytes(layer.attention_norm) + ggml_nbytes(layer.wq) + ggml_nbytes(layer.wk) +
|
||||||
ggml_nbytes(layer.wv) + ggml_nbytes(layer.wo) + ggml_nbytes(layer.attention_norm) +
|
ggml_nbytes(layer.wv) + ggml_nbytes(layer.wo) + ggml_nbytes(layer.ffn_norm) +
|
||||||
ggml_nbytes(layer.w1) + ggml_nbytes(layer.w2) + ggml_nbytes(layer.w3);
|
ggml_nbytes(layer.w1) + ggml_nbytes(layer.w2) + ggml_nbytes(layer.w3);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
@ -1196,58 +1227,14 @@ static void llama_model_load_internal(
|
||||||
model.tensors_by_name.emplace_back(lt.name, lt.ggml_tensor);
|
model.tensors_by_name.emplace_back(lt.name, lt.ggml_tensor);
|
||||||
}
|
}
|
||||||
|
|
||||||
ml->load_all_data(progress_callback, progress_callback_user_data, use_mlock ? &lctx.model.mlock_mmap : NULL);
|
|
||||||
|
|
||||||
#if defined(GGML_USE_CUBLAS)
|
#if defined(GGML_USE_CUBLAS)
|
||||||
{
|
{
|
||||||
ggml_cuda_set_tensor_split(tensor_split);
|
ggml_cuda_set_tensor_split(tensor_split);
|
||||||
|
|
||||||
size_t done_size = 0;
|
|
||||||
size_t data_size = 0;
|
|
||||||
for (llama_load_tensor & lt : ml->tensors_map.tensors) {
|
|
||||||
data_size += lt.size;
|
|
||||||
if (lt.ggml_tensor->backend == GGML_BACKEND_CPU) {
|
|
||||||
done_size += lt.size;
|
|
||||||
}
|
}
|
||||||
}
|
|
||||||
for (llama_load_tensor & lt : ml->tensors_map.tensors) {
|
|
||||||
ggml_backend backend = lt.ggml_tensor->backend;
|
|
||||||
if (backend != GGML_BACKEND_GPU && backend != GGML_BACKEND_GPU_SPLIT) {
|
|
||||||
continue;
|
|
||||||
}
|
|
||||||
if (progress_callback) {
|
|
||||||
progress_callback((float) done_size / data_size, progress_callback_user_data);
|
|
||||||
}
|
|
||||||
ggml_cuda_load_data(fname.c_str(), lt.ggml_tensor, lt.shards.at(0).file_off);
|
|
||||||
done_size += lt.size;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
#elif defined(GGML_USE_CLBLAST)
|
|
||||||
{
|
|
||||||
size_t done_size = 0;
|
|
||||||
size_t data_size = 0;
|
|
||||||
for (llama_load_tensor & lt : ml->tensors_map.tensors) {
|
|
||||||
data_size += lt.size;
|
|
||||||
if (lt.ggml_tensor->backend == GGML_BACKEND_CPU) {
|
|
||||||
done_size += lt.size;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
for (llama_load_tensor & lt : ml->tensors_map.tensors) {
|
|
||||||
if (lt.ggml_tensor->backend != GGML_BACKEND_GPU) {
|
|
||||||
continue;
|
|
||||||
}
|
|
||||||
if (progress_callback) {
|
|
||||||
progress_callback((float) done_size / data_size, progress_callback_user_data);
|
|
||||||
}
|
|
||||||
ggml_cl_load_data(fname.c_str(), lt.ggml_tensor, lt.shards.at(0).file_off);
|
|
||||||
done_size += lt.size;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
#else
|
|
||||||
(void) n_batch;
|
|
||||||
(void) tensor_split;
|
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
|
ml->load_all_data(progress_callback, progress_callback_user_data, use_mlock ? &lctx.model.mlock_mmap : NULL);
|
||||||
|
|
||||||
if (progress_callback) {
|
if (progress_callback) {
|
||||||
progress_callback(1.0f, progress_callback_user_data);
|
progress_callback(1.0f, progress_callback_user_data);
|
||||||
}
|
}
|
||||||
|
@ -2390,12 +2377,10 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
|
||||||
printf("size = %8.3f MB\n", tensor.size/1024.0/1024.0);
|
printf("size = %8.3f MB\n", tensor.size/1024.0/1024.0);
|
||||||
} else {
|
} else {
|
||||||
new_type = quantized_type;
|
new_type = quantized_type;
|
||||||
// TODO: temporary disabled until Metal / OpenCL support is available
|
if (tensor.name == "output.weight") {
|
||||||
// ref: https://github.com/ggerganov/llama.cpp/issues/1711
|
new_type = GGML_TYPE_Q6_K;
|
||||||
//if (tensor.name == "output.weight") {
|
}
|
||||||
// new_type = GGML_TYPE_Q6_K;
|
else if (tensor.name.find("attention.wv.weight") != std::string::npos) {
|
||||||
//}
|
|
||||||
if (tensor.name.find("attention.wv.weight") != std::string::npos) {
|
|
||||||
if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q4_K;
|
if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q4_K;
|
||||||
else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q5_K;
|
else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q5_K;
|
||||||
else if ((ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M) &&
|
else if ((ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M) &&
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue