model: convert-hf-to-gguf.py remove tiktoken

This commit is contained in:
Pierrick HYMBERT 2024-04-11 14:27:15 +02:00
parent 06527c66c3
commit fc89feeddf
2 changed files with 0 additions and 65 deletions

View file

@ -393,66 +393,6 @@ class Model(ABC):
special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
special_vocab.add_to_gguf(self.gguf_writer)
def _set_vocab_tiktoken(self):
# https://github.com/openai/tiktoken
dir_model = self.dir_model
hparams = self.hparams
tokens: list[str] = []
toktypes: list[int] = []
from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
vocab_size = hparams["vocab_size"]
assert max(tokenizer.get_vocab().values()) < vocab_size
vocab = {}
merges = []
# FIXME REVIEW should we extract this from QwenModel to base Model class ?
mergeable_ranks = tokenizer.encoding._mergeable_ranks
for token, rank in mergeable_ranks.items():
vocab[QwenModel.token_bytes_to_string(token)] = rank
if len(token) == 1:
continue
merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
assert len(merged) == 2
merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
# for this kind of tokenizer, added_vocab is not a subset of vocab, so they need to be combined
added_vocab = tokenizer.get_added_vocab()
reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in ({**vocab, **added_vocab}).items()}
for i in range(vocab_size):
if i not in reverse_vocab:
tokens.append(f"[PAD{i}]")
toktypes.append(gguf.TokenType.USER_DEFINED)
elif reverse_vocab[i] in added_vocab:
tokens.append(reverse_vocab[i])
if tokenizer.added_tokens_decoder[i].special:
toktypes.append(gguf.TokenType.CONTROL)
else:
toktypes.append(gguf.TokenType.USER_DEFINED)
else:
tokens.append(reverse_vocab[i])
toktypes.append(gguf.TokenType.NORMAL)
self.gguf_writer.add_tokenizer_model("gpt2")
self.gguf_writer.add_token_list(tokens)
self.gguf_writer.add_token_types(toktypes)
special_vocab = gguf.SpecialVocab(dir_model, load_merges=False)
special_vocab.chat_template = tokenizer.default_chat_template
special_vocab.merges = merges
tk_endoftext = tokenizer.encoding._special_tokens["<|endoftext|>"]
# only add special tokens when they were not already loaded from config.json
if len(special_vocab.special_token_ids) == 0:
special_vocab._set_special_token("bos", tk_endoftext)
special_vocab._set_special_token("eos", tk_endoftext)
# this one is usually not in config.json anyway
special_vocab._set_special_token("unk", tk_endoftext)
special_vocab.add_to_gguf(self.gguf_writer)
@Model.register("GPTNeoXForCausalLM")
class GPTNeoXModel(Model):
@ -1582,10 +1522,6 @@ class DbrxModel(Model):
self.gguf_writer.add_tensor(new_name, data)
def set_vocab(self):
self._set_vocab_tiktoken()
@Model.register("MiniCPMForCausalLM")
class MiniCPMModel(Model):
model_arch = gguf.MODEL_ARCH.MINICPM

View file

@ -1,4 +1,3 @@
-r ./requirements-convert.txt
torch~=2.1.1
einops~=0.7.0
tiktoken~=0.6.0