Merge 'origin/master' into hipblas
This commit is contained in:
commit
fcbc262eb9
29 changed files with 1285 additions and 472 deletions
1
.gitignore
vendored
1
.gitignore
vendored
|
@ -32,6 +32,7 @@ models/*
|
|||
/vdot
|
||||
/Pipfile
|
||||
|
||||
build-info.h
|
||||
arm_neon.h
|
||||
compile_commands.json
|
||||
|
||||
|
|
|
@ -73,6 +73,41 @@ option(LLAMA_HIPBLAS "llama: use hipBLAS"
|
|||
option(LLAMA_BUILD_TESTS "llama: build tests" ${LLAMA_STANDALONE})
|
||||
option(LLAMA_BUILD_EXAMPLES "llama: build examples" ${LLAMA_STANDALONE})
|
||||
|
||||
#
|
||||
# Build info header
|
||||
#
|
||||
|
||||
# Write header template to binary dir to keep source directory clean
|
||||
file(WRITE "${CMAKE_BINARY_DIR}/BUILD_INFO.h.in" "\
|
||||
#ifndef BUILD_INFO_H\n\
|
||||
#define BUILD_INFO_H\n\
|
||||
\n\
|
||||
#define BUILD_NUMBER @BUILD_NUMBER@\n\
|
||||
#define BUILD_COMMIT \"@BUILD_COMMIT@\"\n\
|
||||
\n\
|
||||
#endif // BUILD_INFO_H\n\
|
||||
")
|
||||
|
||||
# Generate initial build-info.h
|
||||
include(${CMAKE_CURRENT_SOURCE_DIR}/scripts/build-info.cmake)
|
||||
|
||||
if(EXISTS "${CMAKE_CURRENT_SOURCE_DIR}/.git")
|
||||
# Add a custom target for build-info.h
|
||||
add_custom_target(BUILD_INFO ALL DEPENDS "${CMAKE_CURRENT_SOURCE_DIR}/build-info.h")
|
||||
|
||||
# Add a custom command to rebuild build-info.h when .git/index changes
|
||||
add_custom_command(
|
||||
OUTPUT "${CMAKE_CURRENT_SOURCE_DIR}/build-info.h"
|
||||
COMMENT "Generating build details from Git"
|
||||
COMMAND ${CMAKE_COMMAND} -P "${CMAKE_CURRENT_SOURCE_DIR}/scripts/build-info.cmake"
|
||||
WORKING_DIRECTORY ${CMAKE_CURRENT_SOURCE_DIR}
|
||||
DEPENDS "${CMAKE_CURRENT_SOURCE_DIR}/.git/index"
|
||||
VERBATIM
|
||||
)
|
||||
else()
|
||||
message(WARNING "Git repository not found; to enable automatic generation of build info, make sure Git is installed and the project is a Git repository.")
|
||||
endif()
|
||||
|
||||
#
|
||||
# Compile flags
|
||||
#
|
||||
|
@ -288,9 +323,22 @@ if (${CMAKE_SYSTEM_PROCESSOR} MATCHES "arm" OR ${CMAKE_SYSTEM_PROCESSOR} MATCHES
|
|||
# TODO: arm msvc?
|
||||
else()
|
||||
if (${CMAKE_SYSTEM_PROCESSOR} MATCHES "aarch64")
|
||||
# Apple M1, M2, etc.
|
||||
# Raspberry Pi 3, 4, Zero 2 (64-bit)
|
||||
add_compile_options(-mcpu=native)
|
||||
endif()
|
||||
# TODO: armv6,7,8 version specific flags
|
||||
if (${CMAKE_SYSTEM_PROCESSOR} MATCHES "armv6")
|
||||
# Raspberry Pi 1, Zero
|
||||
add_compile_options(-mfpu=neon-fp-armv8 -mfp16-format=ieee -mno-unaligned-access)
|
||||
endif()
|
||||
if (${CMAKE_SYSTEM_PROCESSOR} MATCHES "armv7")
|
||||
# Raspberry Pi 2
|
||||
add_compile_options(-mfpu=neon-fp-armv8 -mfp16-format=ieee -mno-unaligned-access -funsafe-math-optimizations)
|
||||
endif()
|
||||
if (${CMAKE_SYSTEM_PROCESSOR} MATCHES "armv8")
|
||||
# Raspberry Pi 3, 4, Zero 2 (32-bit)
|
||||
add_compile_options(-mfp16-format=ieee -mno-unaligned-access)
|
||||
endif()
|
||||
endif()
|
||||
elseif (${CMAKE_SYSTEM_PROCESSOR} MATCHES "^(x86_64|i686|AMD64)$")
|
||||
message(STATUS "x86 detected")
|
||||
|
|
59
Makefile
59
Makefile
|
@ -148,19 +148,21 @@ ifdef LLAMA_PERF
|
|||
CXXFLAGS += -DGGML_PERF
|
||||
endif
|
||||
ifneq ($(filter aarch64%,$(UNAME_M)),)
|
||||
# Apple M1, M2, etc.
|
||||
# Raspberry Pi 3, 4, Zero 2 (64-bit)
|
||||
CFLAGS += -mcpu=native
|
||||
CXXFLAGS += -mcpu=native
|
||||
endif
|
||||
ifneq ($(filter armv6%,$(UNAME_M)),)
|
||||
# Raspberry Pi 1, 2, 3
|
||||
# Raspberry Pi 1, Zero
|
||||
CFLAGS += -mfpu=neon-fp-armv8 -mfp16-format=ieee -mno-unaligned-access
|
||||
endif
|
||||
ifneq ($(filter armv7%,$(UNAME_M)),)
|
||||
# Raspberry Pi 4
|
||||
# Raspberry Pi 2
|
||||
CFLAGS += -mfpu=neon-fp-armv8 -mfp16-format=ieee -mno-unaligned-access -funsafe-math-optimizations
|
||||
endif
|
||||
ifneq ($(filter armv8%,$(UNAME_M)),)
|
||||
# Raspberry Pi 4
|
||||
# Raspberry Pi 3, 4, Zero 2 (32-bit)
|
||||
CFLAGS += -mfp16-format=ieee -mno-unaligned-access
|
||||
endif
|
||||
|
||||
|
@ -192,41 +194,56 @@ llama.o: llama.cpp ggml.h ggml-cuda.h llama.h llama-util.h
|
|||
common.o: examples/common.cpp examples/common.h
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $@
|
||||
|
||||
clean:
|
||||
rm -vf *.o main quantize quantize-stats perplexity embedding benchmark-matmult
|
||||
libllama.so: llama.o ggml.o $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) -shared -fPIC -o $@ $^ $(LDFLAGS)
|
||||
|
||||
main: examples/main/main.cpp ggml.o llama.o common.o $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) $^ -o $@ $(LDFLAGS)
|
||||
clean:
|
||||
rm -vf *.o main quantize quantize-stats perplexity embedding benchmark-matmult save-load-state build-info.h
|
||||
|
||||
#
|
||||
# Examples
|
||||
#
|
||||
|
||||
main: examples/main/main.cpp build-info.h ggml.o llama.o common.o $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
||||
@echo
|
||||
@echo '==== Run ./main -h for help. ===='
|
||||
@echo
|
||||
|
||||
quantize: examples/quantize/quantize.cpp ggml.o llama.o $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) $^ -o $@ $(LDFLAGS)
|
||||
quantize: examples/quantize/quantize.cpp build-info.h ggml.o llama.o $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
||||
|
||||
quantize-stats: examples/quantize-stats/quantize-stats.cpp ggml.o llama.o $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) $^ -o $@ $(LDFLAGS)
|
||||
quantize-stats: examples/quantize-stats/quantize-stats.cpp build-info.h ggml.o llama.o $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
||||
|
||||
perplexity: examples/perplexity/perplexity.cpp ggml.o llama.o common.o $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) $^ -o $@ $(LDFLAGS)
|
||||
perplexity: examples/perplexity/perplexity.cpp build-info.h ggml.o llama.o common.o $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
||||
|
||||
embedding: examples/embedding/embedding.cpp ggml.o llama.o common.o $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) $^ -o $@ $(LDFLAGS)
|
||||
embedding: examples/embedding/embedding.cpp build-info.h ggml.o llama.o common.o $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
||||
|
||||
vdot: pocs/vdot/vdot.cpp ggml.o $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) $^ -o $@ $(LDFLAGS)
|
||||
save-load-state: examples/save-load-state/save-load-state.cpp build-info.h ggml.o llama.o common.o $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
||||
|
||||
libllama.so: llama.o ggml.o $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) -shared -fPIC -o $@ $^ $(LDFLAGS)
|
||||
build-info.h: $(wildcard .git/index) scripts/build-info.sh
|
||||
@scripts/build-info.sh > $@.tmp
|
||||
@if ! cmp -s $@.tmp $@; then \
|
||||
mv $@.tmp $@; \
|
||||
else \
|
||||
rm $@.tmp; \
|
||||
fi
|
||||
|
||||
#
|
||||
# Tests
|
||||
#
|
||||
|
||||
benchmark-matmult: examples/benchmark/benchmark-matmult.cpp ggml.o $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) $^ -o $@ $(LDFLAGS)
|
||||
benchmark-matmult: examples/benchmark/benchmark-matmult.cpp build-info.h ggml.o $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
||||
./$@
|
||||
|
||||
vdot: pocs/vdot/vdot.cpp ggml.o $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) $^ -o $@ $(LDFLAGS)
|
||||
|
||||
.PHONY: tests
|
||||
tests:
|
||||
bash ./tests/run-tests.sh
|
||||
|
|
|
@ -2,3 +2,6 @@ set(TARGET benchmark)
|
|||
add_executable(${TARGET} benchmark-matmult.cpp)
|
||||
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
|
||||
target_compile_features(${TARGET} PRIVATE cxx_std_11)
|
||||
if(TARGET BUILD_INFO)
|
||||
add_dependencies(${TARGET} BUILD_INFO)
|
||||
endif()
|
||||
|
|
|
@ -1,5 +1,6 @@
|
|||
#include <locale.h>
|
||||
#include "ggml.h"
|
||||
#include "build-info.h"
|
||||
#include <assert.h>
|
||||
#include <math.h>
|
||||
#include <cstring>
|
||||
|
@ -90,9 +91,10 @@ int main(int argc, char ** argv) {
|
|||
}
|
||||
}
|
||||
|
||||
// create the ggml context
|
||||
fprintf(stderr, "%s: build = %d (%s)\n", __func__, BUILD_NUMBER, BUILD_COMMIT);
|
||||
printf("Starting Test\n");
|
||||
|
||||
// create the ggml context
|
||||
struct ggml_context * ctx;
|
||||
//const int sizex = 4096;
|
||||
//const int sizey = 11008;
|
||||
|
|
|
@ -1,13 +1,18 @@
|
|||
#include "common.h"
|
||||
|
||||
#include <cassert>
|
||||
#include <iostream>
|
||||
#include <cstring>
|
||||
#include <fstream>
|
||||
#include <string>
|
||||
#include <iterator>
|
||||
#include <algorithm>
|
||||
#include <sstream>
|
||||
#include <iostream>
|
||||
|
||||
#if defined(__APPLE__) && defined(__MACH__)
|
||||
#include <sys/types.h>
|
||||
#include <sys/sysctl.h>
|
||||
#endif
|
||||
|
||||
#if defined (_WIN32)
|
||||
#include <fcntl.h>
|
||||
|
@ -25,19 +30,43 @@ extern "C" __declspec(dllimport) int __stdcall WideCharToMultiByte(unsigned int
|
|||
#define CP_UTF8 65001
|
||||
#endif
|
||||
|
||||
bool gpt_params_parse(int argc, char ** argv, gpt_params & params) {
|
||||
// determine sensible default number of threads.
|
||||
// std::thread::hardware_concurrency may not be equal to the number of cores, or may return 0.
|
||||
int32_t get_num_physical_cores() {
|
||||
#ifdef __linux__
|
||||
std::ifstream cpuinfo("/proc/cpuinfo");
|
||||
params.n_threads = std::count(std::istream_iterator<std::string>(cpuinfo),
|
||||
std::istream_iterator<std::string>(),
|
||||
std::string("processor"));
|
||||
#endif
|
||||
if (params.n_threads == 0) {
|
||||
params.n_threads = std::max(1, (int32_t) std::thread::hardware_concurrency());
|
||||
std::string line;
|
||||
while (std::getline(cpuinfo, line)) {
|
||||
std::size_t pos = line.find("cpu cores");
|
||||
if (pos != std::string::npos) {
|
||||
pos = line.find(": ", pos);
|
||||
if (pos != std::string::npos) {
|
||||
try {
|
||||
// Extract the number and return it
|
||||
return static_cast<int32_t>(std::stoul(line.substr(pos + 2)));
|
||||
} catch (const std::invalid_argument &) {
|
||||
// Ignore if we could not parse
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
#elif defined(__APPLE__) && defined(__MACH__)
|
||||
int32_t num_physical_cores;
|
||||
size_t len = sizeof(num_physical_cores);
|
||||
int result = sysctlbyname("hw.perflevel0.physicalcpu", &num_physical_cores, &len, NULL, 0);
|
||||
if (result == 0) {
|
||||
return num_physical_cores;
|
||||
}
|
||||
result = sysctlbyname("hw.physicalcpu", &num_physical_cores, &len, NULL, 0);
|
||||
if (result == 0) {
|
||||
return num_physical_cores;
|
||||
}
|
||||
#elif defined(_WIN32)
|
||||
//TODO: Implement
|
||||
#endif
|
||||
unsigned int n_threads = std::thread::hardware_concurrency();
|
||||
return n_threads > 0 ? (n_threads <= 4 ? n_threads : n_threads / 2) : 4;
|
||||
}
|
||||
|
||||
bool gpt_params_parse(int argc, char ** argv, gpt_params & params) {
|
||||
bool invalid_param = false;
|
||||
std::string arg;
|
||||
gpt_params default_params;
|
||||
|
|
|
@ -13,11 +13,12 @@
|
|||
//
|
||||
// CLI argument parsing
|
||||
//
|
||||
int32_t get_num_physical_cores();
|
||||
|
||||
struct gpt_params {
|
||||
int32_t seed = -1; // RNG seed
|
||||
int32_t n_threads = std::min(4, (int32_t) std::thread::hardware_concurrency());
|
||||
int32_t n_predict = -1; // new tokens to predict
|
||||
int32_t n_threads = get_num_physical_cores();
|
||||
int32_t n_predict = -1; // new tokens to predict
|
||||
int32_t n_parts = -1; // amount of model parts (-1 = determine from model dimensions)
|
||||
int32_t n_ctx = 512; // context size
|
||||
int32_t n_batch = 512; // batch size for prompt processing (must be >=32 to use BLAS)
|
||||
|
|
|
@ -2,3 +2,6 @@ set(TARGET embedding)
|
|||
add_executable(${TARGET} embedding.cpp)
|
||||
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
|
||||
target_compile_features(${TARGET} PRIVATE cxx_std_11)
|
||||
if(TARGET BUILD_INFO)
|
||||
add_dependencies(${TARGET} BUILD_INFO)
|
||||
endif()
|
||||
|
|
|
@ -1,5 +1,6 @@
|
|||
#include "common.h"
|
||||
#include "llama.h"
|
||||
#include "build-info.h"
|
||||
|
||||
#include <ctime>
|
||||
|
||||
|
@ -18,11 +19,13 @@ int main(int argc, char ** argv) {
|
|||
"expect poor results\n", __func__, params.n_ctx);
|
||||
}
|
||||
|
||||
fprintf(stderr, "%s: build = %d (%s)\n", __func__, BUILD_NUMBER, BUILD_COMMIT);
|
||||
|
||||
if (params.seed <= 0) {
|
||||
params.seed = time(NULL);
|
||||
}
|
||||
|
||||
fprintf(stderr, "%s: seed = %d\n", __func__, params.seed);
|
||||
fprintf(stderr, "%s: seed = %d\n", __func__, params.seed);
|
||||
|
||||
std::mt19937 rng(params.seed);
|
||||
if (params.random_prompt) {
|
||||
|
|
|
@ -2,3 +2,6 @@ set(TARGET main)
|
|||
add_executable(${TARGET} main.cpp)
|
||||
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
|
||||
target_compile_features(${TARGET} PRIVATE cxx_std_11)
|
||||
if(TARGET BUILD_INFO)
|
||||
add_dependencies(${TARGET} BUILD_INFO)
|
||||
endif()
|
||||
|
|
|
@ -5,6 +5,7 @@
|
|||
|
||||
#include "common.h"
|
||||
#include "llama.h"
|
||||
#include "build-info.h"
|
||||
|
||||
#include <cassert>
|
||||
#include <cinttypes>
|
||||
|
@ -81,11 +82,13 @@ int main(int argc, char ** argv) {
|
|||
"expect poor results\n", __func__, params.n_ctx);
|
||||
}
|
||||
|
||||
fprintf(stderr, "%s: build = %d (%s)\n", __func__, BUILD_NUMBER, BUILD_COMMIT);
|
||||
|
||||
if (params.seed <= 0) {
|
||||
params.seed = time(NULL);
|
||||
}
|
||||
|
||||
fprintf(stderr, "%s: seed = %d\n", __func__, params.seed);
|
||||
fprintf(stderr, "%s: seed = %d\n", __func__, params.seed);
|
||||
|
||||
std::mt19937 rng(params.seed);
|
||||
if (params.random_prompt) {
|
||||
|
@ -161,23 +164,22 @@ int main(int argc, char ** argv) {
|
|||
std::vector<llama_token> session_tokens;
|
||||
|
||||
if (!path_session.empty()) {
|
||||
fprintf(stderr, "%s: attempting to load saved session from %s..\n", __func__, path_session.c_str());
|
||||
fprintf(stderr, "%s: attempting to load saved session from '%s'\n", __func__, path_session.c_str());
|
||||
|
||||
// REVIEW - fopen to check for existing session
|
||||
// fopen to check for existing session
|
||||
FILE * fp = std::fopen(path_session.c_str(), "rb");
|
||||
if (fp != NULL) {
|
||||
std::fclose(fp);
|
||||
|
||||
session_tokens.resize(params.n_ctx);
|
||||
size_t n_token_count_out = 0;
|
||||
const size_t n_session_bytes = llama_load_session_file(ctx, path_session.c_str(), session_tokens.data(), session_tokens.capacity(), &n_token_count_out);
|
||||
if (!llama_load_session_file(ctx, path_session.c_str(), session_tokens.data(), session_tokens.capacity(), &n_token_count_out)) {
|
||||
fprintf(stderr, "%s: error: failed to load session file '%s'\n", __func__, path_session.c_str());
|
||||
return 1;
|
||||
}
|
||||
session_tokens.resize(n_token_count_out);
|
||||
|
||||
if (n_session_bytes > 0) {
|
||||
fprintf(stderr, "%s: loaded %zu bytes of session data!\n", __func__, n_session_bytes);
|
||||
} else {
|
||||
fprintf(stderr, "%s: could not load session file, will recreate\n", __func__);
|
||||
}
|
||||
fprintf(stderr, "%s: loaded a session with prompt size of %d tokens\n", __func__, (int) session_tokens.size());
|
||||
} else {
|
||||
fprintf(stderr, "%s: session file does not exist, will create\n", __func__);
|
||||
}
|
||||
|
@ -214,7 +216,7 @@ int main(int argc, char ** argv) {
|
|||
}
|
||||
|
||||
// number of tokens to keep when resetting context
|
||||
if (params.n_keep < 0 || params.n_keep > (int)embd_inp.size() || params.instruct) {
|
||||
if (params.n_keep < 0 || params.n_keep > (int) embd_inp.size() || params.instruct) {
|
||||
params.n_keep = (int)embd_inp.size();
|
||||
}
|
||||
|
||||
|
@ -329,7 +331,7 @@ int main(int argc, char ** argv) {
|
|||
// insert n_left/2 tokens at the start of embd from last_n_tokens
|
||||
embd.insert(embd.begin(), last_n_tokens.begin() + n_ctx - n_left/2 - embd.size(), last_n_tokens.end() - embd.size());
|
||||
|
||||
// REVIEW - stop saving session if we run out of context
|
||||
// stop saving session if we run out of context
|
||||
path_session = "";
|
||||
|
||||
//printf("\n---\n");
|
||||
|
@ -355,6 +357,7 @@ int main(int argc, char ** argv) {
|
|||
n_session_consumed++;
|
||||
|
||||
if (n_session_consumed >= (int) session_tokens.size()) {
|
||||
++i;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
|
|
@ -2,3 +2,6 @@ set(TARGET perplexity)
|
|||
add_executable(${TARGET} perplexity.cpp)
|
||||
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
|
||||
target_compile_features(${TARGET} PRIVATE cxx_std_11)
|
||||
if(TARGET BUILD_INFO)
|
||||
add_dependencies(${TARGET} BUILD_INFO)
|
||||
endif()
|
||||
|
|
|
@ -1,5 +1,6 @@
|
|||
#include "common.h"
|
||||
#include "llama.h"
|
||||
#include "build-info.h"
|
||||
|
||||
#include <cmath>
|
||||
#include <ctime>
|
||||
|
@ -106,11 +107,13 @@ int main(int argc, char ** argv) {
|
|||
"expect poor results\n", __func__, params.n_ctx);
|
||||
}
|
||||
|
||||
fprintf(stderr, "%s: build = %d (%s)\n", __func__, BUILD_NUMBER, BUILD_COMMIT);
|
||||
|
||||
if (params.seed <= 0) {
|
||||
params.seed = time(NULL);
|
||||
}
|
||||
|
||||
fprintf(stderr, "%s: seed = %d\n", __func__, params.seed);
|
||||
fprintf(stderr, "%s: seed = %d\n", __func__, params.seed);
|
||||
|
||||
std::mt19937 rng(params.seed);
|
||||
if (params.random_prompt) {
|
||||
|
|
|
@ -1,4 +1,5 @@
|
|||
#include "ggml.h"
|
||||
#include "build-info.h"
|
||||
|
||||
#define LLAMA_API_INTERNAL
|
||||
#include "llama.h"
|
||||
|
@ -308,6 +309,8 @@ int main(int argc, char ** argv) {
|
|||
return 1;
|
||||
}
|
||||
|
||||
fprintf(stderr, "%s: build = %d (%s)\n", __func__, BUILD_NUMBER, BUILD_COMMIT);
|
||||
|
||||
// load the model
|
||||
fprintf(stderr, "Loading model\n");
|
||||
|
||||
|
|
|
@ -2,3 +2,6 @@ set(TARGET quantize)
|
|||
add_executable(${TARGET} quantize.cpp)
|
||||
target_link_libraries(${TARGET} PRIVATE llama ${CMAKE_THREAD_LIBS_INIT})
|
||||
target_compile_features(${TARGET} PRIVATE cxx_std_11)
|
||||
if(TARGET BUILD_INFO)
|
||||
add_dependencies(${TARGET} BUILD_INFO)
|
||||
endif()
|
||||
|
|
|
@ -1,5 +1,6 @@
|
|||
#include "ggml.h"
|
||||
#include "llama.h"
|
||||
#include "build-info.h"
|
||||
|
||||
#include <cstdio>
|
||||
#include <map>
|
||||
|
@ -50,6 +51,8 @@ int main(int argc, char ** argv) {
|
|||
ftype = (enum llama_ftype)atoi(argv[3]);
|
||||
}
|
||||
|
||||
fprintf(stderr, "%s: build = %d (%s)\n", __func__, BUILD_NUMBER, BUILD_COMMIT);
|
||||
|
||||
int nthread = argc > 4 ? atoi(argv[4]) : 0;
|
||||
|
||||
const int64_t t_main_start_us = ggml_time_us();
|
||||
|
|
|
@ -2,3 +2,6 @@ set(TARGET save-load-state)
|
|||
add_executable(${TARGET} save-load-state.cpp)
|
||||
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
|
||||
target_compile_features(${TARGET} PRIVATE cxx_std_11)
|
||||
if(TARGET BUILD_INFO)
|
||||
add_dependencies(${TARGET} BUILD_INFO)
|
||||
endif()
|
||||
|
|
|
@ -1,5 +1,6 @@
|
|||
#include "common.h"
|
||||
#include "llama.h"
|
||||
#include "build-info.h"
|
||||
|
||||
#include <vector>
|
||||
#include <cstdio>
|
||||
|
@ -17,6 +18,8 @@ int main(int argc, char ** argv) {
|
|||
return 1;
|
||||
}
|
||||
|
||||
fprintf(stderr, "%s: build = %d (%s)\n", __func__, BUILD_NUMBER, BUILD_COMMIT);
|
||||
|
||||
if (params.n_predict < 0) {
|
||||
params.n_predict = 16;
|
||||
}
|
||||
|
|
429
ggml-cuda.cu
429
ggml-cuda.cu
|
@ -1,15 +1,44 @@
|
|||
#include <cstddef>
|
||||
#include <cstdint>
|
||||
#include <stdint.h>
|
||||
#include <stdio.h>
|
||||
#include <atomic>
|
||||
|
||||
#if defined(GGML_USE_HIPBLAS)
|
||||
#include "hip/hip_runtime.h"
|
||||
#include "hipblas/hipblas.h"
|
||||
#include "hip/hip_fp16.h"
|
||||
#else
|
||||
#include <cuda_runtime.h>
|
||||
#include <cublas_v2.h>
|
||||
#include <cuda_fp16.h>
|
||||
#endif
|
||||
#include <atomic>
|
||||
#include "ggml-cuda.h"
|
||||
|
||||
typedef uint16_t ggml_fp16_t;
|
||||
static_assert(sizeof(__half) == sizeof(ggml_fp16_t), "wrong fp16 size");
|
||||
#include "ggml-cuda.h"
|
||||
#include "ggml.h"
|
||||
|
||||
static_assert(sizeof(half) == sizeof(ggml_fp16_t), "wrong fp16 size");
|
||||
|
||||
#define CUDA_CHECK(err) \
|
||||
do { \
|
||||
cudaError_t err_ = (err); \
|
||||
if (err_ != cudaSuccess) { \
|
||||
fprintf(stderr, "CUDA error %d at %s:%d: %s\n", err_, __FILE__, __LINE__, \
|
||||
cudaGetErrorString(err_)); \
|
||||
exit(1); \
|
||||
} \
|
||||
} while (0)
|
||||
|
||||
#define CUBLAS_CHECK(err) \
|
||||
do { \
|
||||
cublasStatus_t err_ = (err); \
|
||||
if (err_ != CUBLAS_STATUS_SUCCESS) { \
|
||||
fprintf(stderr, "cuBLAS error %d at %s:%d\n", err_, __FILE__, __LINE__); \
|
||||
exit(1); \
|
||||
} \
|
||||
} while (0)
|
||||
|
||||
typedef void (*to_fp32_cuda_t)(const void * x, float * y, int k, cudaStream_t stream);
|
||||
|
||||
#define QK4_0 32
|
||||
typedef struct {
|
||||
|
@ -28,14 +57,14 @@ static_assert(sizeof(block_q4_1) == sizeof(float) * 2 + QK4_1 / 2, "wrong q4_1 b
|
|||
|
||||
#define QK4_2 16
|
||||
typedef struct {
|
||||
__half d; // delta
|
||||
half d; // delta
|
||||
uint8_t qs[QK4_2 / 2]; // nibbles / quants
|
||||
} block_q4_2;
|
||||
static_assert(sizeof(block_q4_2) == sizeof(ggml_fp16_t) + QK4_2 / 2, "wrong q4_2 block size/padding");
|
||||
|
||||
#define QK5_0 32
|
||||
typedef struct {
|
||||
__half d; // delta
|
||||
half d; // delta
|
||||
uint8_t qh[4]; // 5-th bit of quants
|
||||
uint8_t qs[QK5_0 / 2]; // nibbles / quants
|
||||
} block_q5_0;
|
||||
|
@ -43,9 +72,9 @@ static_assert(sizeof(block_q5_0) == sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5
|
|||
|
||||
#define QK5_1 32
|
||||
typedef struct {
|
||||
__half d; // delta
|
||||
__half m; // min
|
||||
uint32_t qh; // 5-th bit of quants
|
||||
half d; // delta
|
||||
half m; // min
|
||||
uint8_t qh[4]; // 5-th bit of quants
|
||||
uint8_t qs[QK5_1 / 2]; // nibbles / quants
|
||||
} block_q5_1;
|
||||
static_assert(sizeof(block_q5_1) == 2 * sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_1 / 2, "wrong q5_1 block size/padding");
|
||||
|
@ -166,7 +195,8 @@ static __global__ void dequantize_block_q5_1(const void * vx, float * y) {
|
|||
|
||||
const uint8_t * pp = x[i].qs;
|
||||
|
||||
const uint32_t qh = x[i].qh;
|
||||
uint32_t qh;
|
||||
memcpy(&qh, x[i].qh, sizeof(qh));
|
||||
|
||||
for (int l = 0; l < QK5_1; l += 2) {
|
||||
const uint8_t vi = pp[l/2];
|
||||
|
@ -201,37 +231,50 @@ static __global__ void dequantize_block_q8_0(const void * vx, float * y) {
|
|||
}
|
||||
}
|
||||
|
||||
void dequantize_row_q4_0_cuda(const void * vx, float * y, int k, cudaStream_t stream) {
|
||||
static void dequantize_row_q4_0_cuda(const void * vx, float * y, int k, cudaStream_t stream) {
|
||||
const int nb = k / QK4_0;
|
||||
dequantize_block_q4_0<<<nb, 1, 0, stream>>>(vx, y);
|
||||
}
|
||||
|
||||
void dequantize_row_q4_1_cuda(const void * vx, float * y, int k, cudaStream_t stream) {
|
||||
static void dequantize_row_q4_1_cuda(const void * vx, float * y, int k, cudaStream_t stream) {
|
||||
const int nb = k / QK4_1;
|
||||
dequantize_block_q4_1<<<nb, 1, 0, stream>>>(vx, y);
|
||||
}
|
||||
|
||||
void dequantize_row_q4_2_cuda(const void * vx, float * y, int k, cudaStream_t stream) {
|
||||
static void dequantize_row_q4_2_cuda(const void * vx, float * y, int k, cudaStream_t stream) {
|
||||
const int nb = k / QK4_2;
|
||||
dequantize_block_q4_2<<<nb, 1, 0, stream>>>(vx, y);
|
||||
}
|
||||
|
||||
void dequantize_row_q5_0_cuda(const void * vx, float * y, int k, cudaStream_t stream) {
|
||||
static void dequantize_row_q5_0_cuda(const void * vx, float * y, int k, cudaStream_t stream) {
|
||||
const int nb = k / QK5_0;
|
||||
dequantize_block_q5_0<<<nb, 1, 0, stream>>>(vx, y);
|
||||
}
|
||||
|
||||
void dequantize_row_q5_1_cuda(const void * vx, float * y, int k, cudaStream_t stream) {
|
||||
static void dequantize_row_q5_1_cuda(const void * vx, float * y, int k, cudaStream_t stream) {
|
||||
const int nb = k / QK5_1;
|
||||
dequantize_block_q5_1<<<nb, 1, 0, stream>>>(vx, y);
|
||||
}
|
||||
|
||||
void dequantize_row_q8_0_cuda(const void * vx, float * y, int k, cudaStream_t stream) {
|
||||
static void dequantize_row_q8_0_cuda(const void * vx, float * y, int k, cudaStream_t stream) {
|
||||
const int nb = k / QK8_0;
|
||||
dequantize_block_q8_0<<<nb, 1, 0, stream>>>(vx, y);
|
||||
}
|
||||
|
||||
dequantize_row_q_cuda_t ggml_get_dequantize_row_q_cuda(ggml_type type) {
|
||||
// TODO: optimize
|
||||
static __global__ void convert_fp16_to_fp32(const void * vx, float * y) {
|
||||
const half * x = (const half *) vx;
|
||||
|
||||
const int i = blockIdx.x;
|
||||
|
||||
y[i] = __half2float(x[i]);
|
||||
}
|
||||
|
||||
static void convert_fp16_to_fp32_cuda(const void * x, float * y, int k, cudaStream_t stream) {
|
||||
convert_fp16_to_fp32<<<k, 1, 0, stream>>>(x, y);
|
||||
}
|
||||
|
||||
static to_fp32_cuda_t ggml_get_to_fp32_cuda(ggml_type type) {
|
||||
switch (type) {
|
||||
case GGML_TYPE_Q4_0:
|
||||
return dequantize_row_q4_0_cuda;
|
||||
|
@ -245,6 +288,8 @@ dequantize_row_q_cuda_t ggml_get_dequantize_row_q_cuda(ggml_type type) {
|
|||
return dequantize_row_q5_1_cuda;
|
||||
case GGML_TYPE_Q8_0:
|
||||
return dequantize_row_q8_0_cuda;
|
||||
case GGML_TYPE_F16:
|
||||
return convert_fp16_to_fp32_cuda;
|
||||
default:
|
||||
return nullptr;
|
||||
}
|
||||
|
@ -275,7 +320,7 @@ struct cuda_buffer {
|
|||
static cuda_buffer g_cuda_buffer_pool[MAX_CUDA_BUFFERS];
|
||||
static std::atomic_flag g_cuda_pool_lock = ATOMIC_FLAG_INIT;
|
||||
|
||||
void * ggml_cuda_pool_malloc(size_t size, size_t * actual_size) {
|
||||
static void * ggml_cuda_pool_malloc(size_t size, size_t * actual_size) {
|
||||
scoped_spin_lock lock(g_cuda_pool_lock);
|
||||
|
||||
for (int i = 0; i < MAX_CUDA_BUFFERS; ++i) {
|
||||
|
@ -294,7 +339,7 @@ void * ggml_cuda_pool_malloc(size_t size, size_t * actual_size) {
|
|||
return ptr;
|
||||
}
|
||||
|
||||
void ggml_cuda_pool_free(void * ptr, size_t size) {
|
||||
static void ggml_cuda_pool_free(void * ptr, size_t size) {
|
||||
scoped_spin_lock lock(g_cuda_pool_lock);
|
||||
|
||||
for (int i = 0; i < MAX_CUDA_BUFFERS; ++i) {
|
||||
|
@ -309,28 +354,55 @@ void ggml_cuda_pool_free(void * ptr, size_t size) {
|
|||
CUDA_CHECK(cudaFree(ptr));
|
||||
}
|
||||
|
||||
cublasHandle_t g_cublasH = nullptr;
|
||||
cudaStream_t g_cudaStream = nullptr;
|
||||
cudaStream_t g_cudaStream2 = nullptr;
|
||||
cudaEvent_t g_cudaEvent = nullptr;
|
||||
#define GGML_CUDA_MAX_STREAMS 8
|
||||
#define GGML_CUDA_MAX_EVENTS 64
|
||||
static cublasHandle_t g_cublasH = nullptr;
|
||||
static cudaStream_t g_cudaStreams[GGML_CUDA_MAX_STREAMS] = { nullptr };
|
||||
static cudaStream_t g_cudaStreams2[GGML_CUDA_MAX_STREAMS] = { nullptr };
|
||||
static cudaEvent_t g_cudaEvents[GGML_CUDA_MAX_EVENTS] = { nullptr };
|
||||
|
||||
void ggml_init_cublas() {
|
||||
if (g_cublasH == nullptr) {
|
||||
// create cublas handle, bind a stream
|
||||
CUBLAS_CHECK(cublasCreate(&g_cublasH));
|
||||
CUDA_CHECK(cudaStreamCreateWithFlags(&g_cudaStream, cudaStreamNonBlocking));
|
||||
CUBLAS_CHECK(cublasSetStream(g_cublasH, g_cudaStream));
|
||||
// create streams
|
||||
for (int i = 0; i < GGML_CUDA_MAX_STREAMS; ++i) {
|
||||
CUDA_CHECK(cudaStreamCreateWithFlags(&g_cudaStreams[i], cudaStreamNonBlocking));
|
||||
CUDA_CHECK(cudaStreamCreateWithFlags(&g_cudaStreams2[i], cudaStreamNonBlocking));
|
||||
}
|
||||
// create events
|
||||
for (int i = 0; i < GGML_CUDA_MAX_EVENTS; ++i) {
|
||||
CUDA_CHECK(cudaEventCreateWithFlags(&g_cudaEvents[i], cudaEventDisableTiming));
|
||||
}
|
||||
|
||||
// create additional stream and event for synchronization
|
||||
CUDA_CHECK(cudaStreamCreateWithFlags(&g_cudaStream2, cudaStreamNonBlocking));
|
||||
CUDA_CHECK(cudaEventCreateWithFlags(&g_cudaEvent, cudaEventDisableTiming));
|
||||
// create cublas handle
|
||||
CUBLAS_CHECK(cublasCreate(&g_cublasH));
|
||||
CUBLAS_CHECK(cublasSetMathMode(g_cublasH, CUBLAS_TF32_TENSOR_OP_MATH));
|
||||
|
||||
// configure logging to stdout
|
||||
// CUBLAS_CHECK(cublasLoggerConfigure(1, 1, 0, NULL));
|
||||
// CUBLAS_CHECK(cublasLoggerConfigure(1, 1, 0, nullptr));
|
||||
}
|
||||
}
|
||||
|
||||
cudaError_t ggml_cuda_h2d_tensor_2d(void * dst, const struct ggml_tensor * src, uint64_t i3, uint64_t i2, cudaStream_t stream) {
|
||||
void * ggml_cuda_host_malloc(size_t size) {
|
||||
if (getenv("GGML_CUDA_NO_PINNED") != nullptr) {
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
void * ptr = nullptr;
|
||||
cudaError_t err = cudaMallocHost((void **) &ptr, size);
|
||||
if (err != cudaSuccess) {
|
||||
fprintf(stderr, "WARNING: failed to allocate %.2f MB of pinned memory: %s\n",
|
||||
size/1024.0/1024.0, cudaGetErrorString(err));
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
return ptr;
|
||||
}
|
||||
|
||||
void ggml_cuda_host_free(void * ptr) {
|
||||
CUDA_CHECK(cudaFreeHost(ptr));
|
||||
}
|
||||
|
||||
static cudaError_t ggml_cuda_h2d_tensor_2d(void * dst, const struct ggml_tensor * src, uint64_t i3, uint64_t i2, cudaStream_t stream) {
|
||||
const uint64_t ne0 = src->ne[0];
|
||||
const uint64_t ne1 = src->ne[1];
|
||||
const uint64_t nb0 = src->nb[0];
|
||||
|
@ -358,12 +430,293 @@ cudaError_t ggml_cuda_h2d_tensor_2d(void * dst, const struct ggml_tensor * src,
|
|||
}
|
||||
}
|
||||
|
||||
void * ggml_cuda_host_malloc(size_t size) {
|
||||
void * ptr;
|
||||
CUDA_CHECK(cudaMallocHost((void **) &ptr, size));
|
||||
return ptr;
|
||||
static void ggml_cuda_mul_mat_f32(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
||||
const int64_t ne00 = src0->ne[0];
|
||||
const int64_t ne01 = src0->ne[1];
|
||||
const int64_t ne02 = src0->ne[2];
|
||||
const int64_t ne03 = src0->ne[3];
|
||||
|
||||
const int64_t ne10 = src1->ne[0];
|
||||
const int64_t ne11 = src1->ne[1];
|
||||
|
||||
const int nb2 = dst->nb[2];
|
||||
const int nb3 = dst->nb[3];
|
||||
|
||||
const float alpha = 1.0f;
|
||||
const float beta = 0.0f;
|
||||
const int x_ne = ne01 * ne00;
|
||||
const int y_ne = ne11 * ne10;
|
||||
const int d_ne = ne11 * ne01;
|
||||
const int n_mm = ne03 * ne02;
|
||||
|
||||
size_t x_size, y_size, d_size;
|
||||
float * d_X = (float *) ggml_cuda_pool_malloc(n_mm * sizeof(float) * x_ne, &x_size);
|
||||
float * d_Y = (float *) ggml_cuda_pool_malloc(n_mm * sizeof(float) * y_ne, &y_size);
|
||||
float * d_D = (float *) ggml_cuda_pool_malloc(n_mm * sizeof(float) * d_ne, &d_size);
|
||||
|
||||
for (int64_t i03 = 0; i03 < ne03; i03++) {
|
||||
for (int64_t i02 = 0; i02 < ne02; i02++) {
|
||||
int i = i03*ne02 + i02;
|
||||
cudaStream_t cudaStream = g_cudaStreams[i % GGML_CUDA_MAX_STREAMS];
|
||||
|
||||
float * c_X = d_X + i * x_ne;
|
||||
float * c_Y = d_Y + i * y_ne;
|
||||
float * c_D = d_D + i * d_ne;
|
||||
|
||||
// copy data to device
|
||||
CUDA_CHECK(ggml_cuda_h2d_tensor_2d(c_X, src0, i03, i02, cudaStream));
|
||||
CUDA_CHECK(ggml_cuda_h2d_tensor_2d(c_Y, src1, i03, i02, cudaStream));
|
||||
|
||||
// compute
|
||||
CUBLAS_CHECK(cublasSetStream(g_cublasH, cudaStream));
|
||||
CUBLAS_CHECK(
|
||||
cublasSgemm(g_cublasH, CUBLAS_OP_T, CUBLAS_OP_N,
|
||||
ne01, ne11, ne10,
|
||||
&alpha, c_X, ne00,
|
||||
c_Y, ne10,
|
||||
&beta, c_D, ne01));
|
||||
|
||||
// copy dst to host
|
||||
float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
|
||||
CUDA_CHECK(cudaMemcpyAsync(d, c_D, sizeof(float) * d_ne, cudaMemcpyDeviceToHost, cudaStream));
|
||||
}
|
||||
}
|
||||
|
||||
CUDA_CHECK(cudaDeviceSynchronize());
|
||||
ggml_cuda_pool_free(d_X, x_size);
|
||||
ggml_cuda_pool_free(d_Y, y_size);
|
||||
ggml_cuda_pool_free(d_D, d_size);
|
||||
}
|
||||
|
||||
void ggml_cuda_host_free(void * ptr) {
|
||||
CUDA_CHECK(cudaFreeHost(ptr));
|
||||
static void ggml_cuda_mul_mat_f16(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, void * wdata, size_t /* wsize */) {
|
||||
const int64_t ne00 = src0->ne[0];
|
||||
const int64_t ne01 = src0->ne[1];
|
||||
const int64_t ne02 = src0->ne[2];
|
||||
const int64_t ne03 = src0->ne[3];
|
||||
|
||||
const int64_t ne10 = src1->ne[0];
|
||||
const int64_t ne11 = src1->ne[1];
|
||||
|
||||
const int nb10 = src1->nb[0];
|
||||
const int nb11 = src1->nb[1];
|
||||
const int nb12 = src1->nb[2];
|
||||
const int nb13 = src1->nb[3];
|
||||
|
||||
const int nb2 = dst->nb[2];
|
||||
const int nb3 = dst->nb[3];
|
||||
|
||||
const float alpha = 1.0f;
|
||||
const float beta = 0.0f;
|
||||
const int x_ne = ne01 * ne00;
|
||||
const int y_ne = ne11 * ne10;
|
||||
const int d_ne = ne11 * ne01;
|
||||
const int n_mm = ne03 * ne02;
|
||||
|
||||
size_t x_size, y_size, d_size;
|
||||
half * d_X = (half *) ggml_cuda_pool_malloc(n_mm * sizeof(half) * x_ne, &x_size);
|
||||
half * d_Y = (half *) ggml_cuda_pool_malloc(n_mm * sizeof(half) * y_ne, &y_size);
|
||||
float * d_D = (float *) ggml_cuda_pool_malloc(n_mm * sizeof(float) * d_ne, &d_size);
|
||||
|
||||
bool src1_cont_rows = nb10 == sizeof(float);
|
||||
bool src1_cont_cols = (size_t)nb11 == ne11*sizeof(float);
|
||||
|
||||
for (int64_t i03 = 0; i03 < ne03; i03++) {
|
||||
for (int64_t i02 = 0; i02 < ne02; i02++) {
|
||||
int i = i03*ne02 + i02;
|
||||
cudaStream_t cudaStream = g_cudaStreams[i % GGML_CUDA_MAX_STREAMS];
|
||||
|
||||
half * c_X = d_X + i * x_ne;
|
||||
half * c_Y = d_Y + i * y_ne;
|
||||
float * c_D = d_D + i * d_ne;
|
||||
|
||||
// copy src0 to device
|
||||
CUDA_CHECK(ggml_cuda_h2d_tensor_2d(c_X, src0, i03, i02, cudaStream));
|
||||
|
||||
// convert src1 to fp16
|
||||
// TODO: use multiple threads
|
||||
ggml_fp16_t * const tmp = (ggml_fp16_t *) wdata + (ne11 * ne10) * (i03 * ne02 + i02);
|
||||
char * src1i = (char *) src1->data + i03*nb13 + i02*nb12;
|
||||
if (src1_cont_rows) {
|
||||
if (src1_cont_cols) {
|
||||
ggml_fp32_to_fp16_row((float *) src1i, tmp, ne10*ne11);
|
||||
}
|
||||
else {
|
||||
for (int64_t i01 = 0; i01 < ne11; i01++) {
|
||||
ggml_fp32_to_fp16_row((float *) (src1i + i01*nb11), tmp + i01*ne10, ne10);
|
||||
}
|
||||
}
|
||||
}
|
||||
else {
|
||||
for (int64_t i01 = 0; i01 < ne11; i01++) {
|
||||
for (int64_t i00 = 0; i00 < ne10; i00++) {
|
||||
// very slow due to no inlining
|
||||
tmp[i01*ne10 + i00] = ggml_fp32_to_fp16(*(float *) (src1i + i01*nb11 + i00*nb10));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// copy src1 to device
|
||||
CUDA_CHECK(cudaMemcpyAsync(c_Y, tmp, sizeof(half) * y_ne, cudaMemcpyHostToDevice, cudaStream));
|
||||
|
||||
// compute
|
||||
CUBLAS_CHECK(cublasSetStream(g_cublasH, cudaStream));
|
||||
CUBLAS_CHECK(
|
||||
cublasGemmEx(g_cublasH, CUBLAS_OP_T, CUBLAS_OP_N,
|
||||
ne01, ne11, ne10,
|
||||
&alpha, c_X, CUDA_R_16F, ne00,
|
||||
c_Y, CUDA_R_16F, ne10,
|
||||
&beta, c_D, CUDA_R_32F, ne01,
|
||||
CUBLAS_COMPUTE_32F_FAST_16F,
|
||||
CUBLAS_GEMM_DEFAULT));
|
||||
|
||||
// copy dst to host
|
||||
float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
|
||||
CUDA_CHECK(cudaMemcpyAsync(d, c_D, sizeof(float) * d_ne, cudaMemcpyDeviceToHost, cudaStream));
|
||||
}
|
||||
}
|
||||
|
||||
CUDA_CHECK(cudaDeviceSynchronize());
|
||||
ggml_cuda_pool_free(d_X, x_size);
|
||||
ggml_cuda_pool_free(d_Y, y_size);
|
||||
ggml_cuda_pool_free(d_D, d_size);
|
||||
}
|
||||
|
||||
static void ggml_cuda_mul_mat_q_f32(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
||||
const int64_t ne00 = src0->ne[0];
|
||||
const int64_t ne01 = src0->ne[1];
|
||||
const int64_t ne02 = src0->ne[2];
|
||||
const int64_t ne03 = src0->ne[3];
|
||||
|
||||
const int64_t ne10 = src1->ne[0];
|
||||
const int64_t ne11 = src1->ne[1];
|
||||
|
||||
const int nb2 = dst->nb[2];
|
||||
const int nb3 = dst->nb[3];
|
||||
const ggml_type type = src0->type;
|
||||
|
||||
const float alpha = 1.0f;
|
||||
const float beta = 0.0f;
|
||||
const int x_ne = ne01 * ne00;
|
||||
const int y_ne = ne11 * ne10;
|
||||
const int d_ne = ne11 * ne01;
|
||||
const int n_mm = ne03 * ne02;
|
||||
const size_t q_sz = ggml_type_size(type) * x_ne / ggml_blck_size(type);
|
||||
|
||||
size_t x_size, y_size, d_size, q_size;
|
||||
float * d_X = (float *) ggml_cuda_pool_malloc(n_mm * sizeof(float) * x_ne, &x_size);
|
||||
float * d_Y = (float *) ggml_cuda_pool_malloc(n_mm * sizeof(float) * y_ne, &y_size);
|
||||
float * d_D = (float *) ggml_cuda_pool_malloc(n_mm * sizeof(float) * d_ne, &d_size);
|
||||
char * d_Q = (char *) ggml_cuda_pool_malloc(n_mm * q_sz, &q_size);
|
||||
|
||||
const to_fp32_cuda_t to_fp32_cuda = ggml_get_to_fp32_cuda(type);
|
||||
GGML_ASSERT(to_fp32_cuda != nullptr);
|
||||
|
||||
for (int64_t i03 = 0; i03 < ne03; i03++) {
|
||||
for (int64_t i02 = 0; i02 < ne02; i02++) {
|
||||
int i = i03*ne02 + i02;
|
||||
cudaStream_t cudaStream = g_cudaStreams[i % GGML_CUDA_MAX_STREAMS];
|
||||
cudaStream_t cudaStream2 = g_cudaStreams2[i % GGML_CUDA_MAX_STREAMS];
|
||||
cudaEvent_t cudaEvent = g_cudaEvents[i % GGML_CUDA_MAX_EVENTS];
|
||||
|
||||
float * c_X = d_X + i * x_ne;
|
||||
float * c_Y = d_Y + i * y_ne;
|
||||
float * c_D = d_D + i * d_ne;
|
||||
char * c_Q = d_Q + i * q_sz;
|
||||
|
||||
// copy src0 and convert to fp32 on device
|
||||
CUDA_CHECK(ggml_cuda_h2d_tensor_2d(c_Q, src0, i03, i02, cudaStream2));
|
||||
to_fp32_cuda(c_Q, c_X, x_ne, cudaStream2);
|
||||
CUDA_CHECK(cudaGetLastError());
|
||||
CUDA_CHECK(cudaEventRecord(cudaEvent, cudaStream2));
|
||||
|
||||
// copy src1 to device
|
||||
CUDA_CHECK(ggml_cuda_h2d_tensor_2d(c_Y, src1, i03, i02, cudaStream));
|
||||
|
||||
// wait for conversion
|
||||
CUDA_CHECK(cudaStreamWaitEvent(cudaStream, cudaEvent, 0));
|
||||
|
||||
// compute
|
||||
CUBLAS_CHECK(cublasSetStream(g_cublasH, cudaStream));
|
||||
CUBLAS_CHECK(
|
||||
cublasSgemm(g_cublasH, CUBLAS_OP_T, CUBLAS_OP_N,
|
||||
ne01, ne11, ne10,
|
||||
&alpha, c_X, ne00,
|
||||
c_Y, ne10,
|
||||
&beta, c_D, ne01));
|
||||
|
||||
// copy dst to host
|
||||
float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
|
||||
CUDA_CHECK(cudaMemcpyAsync(d, c_D, sizeof(float) * d_ne, cudaMemcpyDeviceToHost, cudaStream));
|
||||
}
|
||||
}
|
||||
|
||||
CUDA_CHECK(cudaDeviceSynchronize());
|
||||
ggml_cuda_pool_free(d_X, x_size);
|
||||
ggml_cuda_pool_free(d_Y, y_size);
|
||||
ggml_cuda_pool_free(d_D, d_size);
|
||||
ggml_cuda_pool_free(d_Q, q_size);
|
||||
}
|
||||
|
||||
bool ggml_cuda_can_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst) {
|
||||
const int64_t ne10 = src1->ne[0];
|
||||
|
||||
const int64_t ne0 = dst->ne[0];
|
||||
const int64_t ne1 = dst->ne[1];
|
||||
|
||||
// TODO: find the optimal values for these
|
||||
if ((src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16 || ggml_is_quantized(src0->type)) &&
|
||||
src1->type == GGML_TYPE_F32 &&
|
||||
dst->type == GGML_TYPE_F32 &&
|
||||
(ne0 >= 32 && ne1 >= 32 && ne10 >= 32)) {
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
bool ggml_cuda_mul_mat_use_f16(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * /* dst */) {
|
||||
size_t src0_sz = ggml_nbytes(src0);
|
||||
size_t src1_sz = ggml_nbytes(src1);
|
||||
|
||||
// mul_mat_q: src0 is converted to fp32 on device
|
||||
size_t mul_mat_q_transfer = src0_sz + src1_sz;
|
||||
|
||||
// mul_mat_f16: src1 is converted to fp16 on cpu
|
||||
size_t mul_mat_f16_transfer = src0_sz + sizeof(half) * ggml_nelements(src1);
|
||||
|
||||
// choose the smaller one to transfer to the device
|
||||
// TODO: this is not always the best choice due to the overhead of converting to fp16
|
||||
return mul_mat_f16_transfer < mul_mat_q_transfer;
|
||||
}
|
||||
|
||||
void ggml_cuda_mul_mat(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, void * wdata, size_t wsize) {
|
||||
GGML_ASSERT(ggml_cuda_can_mul_mat(src0, src1, dst));
|
||||
|
||||
if (src0->type == GGML_TYPE_F32) {
|
||||
ggml_cuda_mul_mat_f32(src0, src1, dst);
|
||||
}
|
||||
else if (src0->type == GGML_TYPE_F16) {
|
||||
if (ggml_cuda_mul_mat_use_f16(src0, src1, dst)) {
|
||||
ggml_cuda_mul_mat_f16(src0, src1, dst, wdata, wsize);
|
||||
}
|
||||
else {
|
||||
ggml_cuda_mul_mat_q_f32(src0, src1, dst);
|
||||
}
|
||||
}
|
||||
else if (ggml_is_quantized(src0->type)) {
|
||||
ggml_cuda_mul_mat_q_f32(src0, src1, dst);
|
||||
}
|
||||
else {
|
||||
GGML_ASSERT(false);
|
||||
}
|
||||
}
|
||||
|
||||
size_t ggml_cuda_mul_mat_get_wsize(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst) {
|
||||
if (ggml_cuda_mul_mat_use_f16(src0, src1, dst)) {
|
||||
return ggml_nelements(src1) * sizeof(ggml_fp16_t);
|
||||
}
|
||||
else {
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
|
|
46
ggml-cuda.h
46
ggml-cuda.h
|
@ -2,6 +2,7 @@
|
|||
#include "hipblas/hipblas.h"
|
||||
#include "hip/hip_runtime.h"
|
||||
#define CUBLAS_COMPUTE_32F HIPBLAS_R_32F
|
||||
#define CUBLAS_COMPUTE_32F_FAST_16F HIPBLAS_R_32F
|
||||
#define CUBLAS_GEMM_DEFAULT HIPBLAS_GEMM_DEFAULT
|
||||
#define CUBLAS_OP_N HIPBLAS_OP_N
|
||||
#define CUBLAS_OP_T HIPBLAS_OP_T
|
||||
|
@ -49,49 +50,16 @@
|
|||
extern "C" {
|
||||
#endif
|
||||
|
||||
#define CUDA_CHECK(err) \
|
||||
do { \
|
||||
cudaError_t err_ = (err); \
|
||||
if (err_ != cudaSuccess) { \
|
||||
fprintf(stderr, "CUDA error %d at %s:%d: %s\n", err_, __FILE__, __LINE__, \
|
||||
cudaGetErrorString(err_)); \
|
||||
exit(1); \
|
||||
} \
|
||||
} while (0)
|
||||
|
||||
#define CUBLAS_CHECK(err) \
|
||||
do { \
|
||||
cublasStatus_t err_ = (err); \
|
||||
if (err_ != CUBLAS_STATUS_SUCCESS) { \
|
||||
fprintf(stderr, "cuBLAS error %d at %s:%d\n", err_, __FILE__, __LINE__); \
|
||||
exit(1); \
|
||||
} \
|
||||
} while (0)
|
||||
|
||||
extern cublasHandle_t g_cublasH;
|
||||
extern cudaStream_t g_cudaStream;
|
||||
extern cudaStream_t g_cudaStream2;
|
||||
extern cudaEvent_t g_cudaEvent;
|
||||
|
||||
void ggml_init_cublas(void);
|
||||
|
||||
bool ggml_cuda_can_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst);
|
||||
size_t ggml_cuda_mul_mat_get_wsize(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst);
|
||||
void ggml_cuda_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst, void * wdata, size_t wsize);
|
||||
|
||||
// TODO: export these with GGML_API
|
||||
void * ggml_cuda_host_malloc(size_t size);
|
||||
void ggml_cuda_host_free(void * ptr);
|
||||
|
||||
void * ggml_cuda_pool_malloc(size_t size, size_t * actual_size);
|
||||
void ggml_cuda_pool_free(void * ptr, size_t size);
|
||||
|
||||
void dequantize_row_q4_0_cuda(const void * vx, float * y, int k, cudaStream_t stream);
|
||||
void dequantize_row_q4_1_cuda(const void * vx, float * y, int k, cudaStream_t stream);
|
||||
void dequantize_row_q4_2_cuda(const void * vx, float * y, int k, cudaStream_t stream);
|
||||
void dequantize_row_q5_0_cuda(const void * vx, float * y, int k, cudaStream_t stream);
|
||||
void dequantize_row_q5_1_cuda(const void * vx, float * y, int k, cudaStream_t stream);
|
||||
void dequantize_row_q8_0_cuda(const void * vx, float * y, int k, cudaStream_t stream);
|
||||
|
||||
cudaError_t ggml_cuda_h2d_tensor_2d(void * dst, const struct ggml_tensor * src, uint64_t i3, uint64_t i2, cudaStream_t stream);
|
||||
|
||||
typedef void (*dequantize_row_q_cuda_t)(const void * x, float * y, int k, cudaStream_t stream);
|
||||
dequantize_row_q_cuda_t ggml_get_dequantize_row_q_cuda(enum ggml_type type);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
|
|
@ -1,63 +0,0 @@
|
|||
#define MULTILINE_QUOTE(...) #__VA_ARGS__
|
||||
const char * clblast_dequant = MULTILINE_QUOTE(
|
||||
|
||||
struct block_q4_0
|
||||
{
|
||||
float d;
|
||||
uchar qs[16];
|
||||
};
|
||||
|
||||
__kernel void dequantize_row_q4_0(__global struct block_q4_0* blocks, __global float* result) {
|
||||
const uint i = get_global_id(0) / 32;
|
||||
const uint l = get_local_id(0);
|
||||
|
||||
const float d = blocks[i].d;
|
||||
|
||||
const uchar vi = blocks[i].qs[l];
|
||||
|
||||
const uint index = i*32 + l*2;
|
||||
result[index + 0] = ((vi & 0xf) - 8)*d;
|
||||
result[index + 1] = ((vi >> 4) - 8)*d;
|
||||
}
|
||||
|
||||
struct block_q4_1
|
||||
{
|
||||
float d;
|
||||
float m;
|
||||
uchar qs[16];
|
||||
};
|
||||
|
||||
__kernel void dequantize_row_q4_1(__global struct block_q4_1* blocks, __global float* result) {
|
||||
const uint i = get_global_id(0) / 32;
|
||||
const uint l = get_local_id(0);
|
||||
|
||||
const float d = blocks[i].d;
|
||||
const float m = blocks[i].m;
|
||||
|
||||
const uchar vi = blocks[i].qs[l];
|
||||
|
||||
const uint index = i*32 + l*2;
|
||||
result[index + 0] = (vi & 0xf) * d + m;
|
||||
result[index + 1] = (vi >> 4) * d + m;
|
||||
}
|
||||
|
||||
struct block_q4_2
|
||||
{
|
||||
ushort d;
|
||||
uchar qs[8];
|
||||
};
|
||||
|
||||
__kernel void dequantize_row_q4_2(__global struct block_q4_2* blocks, __global float* result) {
|
||||
const uint i = get_global_id(0) / 16;
|
||||
const uint l = get_local_id(0);
|
||||
|
||||
const float d = vload_half(0, (__global half*) &blocks[i].d);;
|
||||
|
||||
const uchar vi = blocks[i].qs[l];
|
||||
|
||||
const uint index = i*16 + l*2;
|
||||
result[index + 0] = ((vi & 0xf) - 8)*d;
|
||||
result[index + 1] = ((vi >> 4) - 8)*d;
|
||||
}
|
||||
|
||||
);
|
220
ggml-opencl.c
220
ggml-opencl.c
|
@ -3,12 +3,141 @@
|
|||
#define CL_TARGET_OPENCL_VERSION 110
|
||||
#include <clblast_c.h>
|
||||
|
||||
#include <stdlib.h>
|
||||
#include <stdio.h>
|
||||
#include <string.h>
|
||||
|
||||
#include "ggml.h"
|
||||
|
||||
#include "ggml-opencl-dequant.cl"
|
||||
#define MULTILINE_QUOTE(...) #__VA_ARGS__
|
||||
const char * clblast_dequant = MULTILINE_QUOTE(
|
||||
|
||||
struct block_q4_0
|
||||
{
|
||||
float d;
|
||||
uchar qs[16];
|
||||
};
|
||||
|
||||
__kernel void dequantize_row_q4_0(__global struct block_q4_0* blocks, __global float* result) {
|
||||
const uint i = get_global_id(0) / 32;
|
||||
const uint l = get_local_id(0);
|
||||
|
||||
const float d = blocks[i].d;
|
||||
|
||||
const uchar vi = blocks[i].qs[l];
|
||||
|
||||
const uint index = i*32 + l*2;
|
||||
result[index + 0] = ((vi & 0xf) - 8)*d;
|
||||
result[index + 1] = ((vi >> 4) - 8)*d;
|
||||
}
|
||||
|
||||
struct block_q4_1
|
||||
{
|
||||
float d;
|
||||
float m;
|
||||
uchar qs[16];
|
||||
};
|
||||
|
||||
__kernel void dequantize_row_q4_1(__global struct block_q4_1* blocks, __global float* result) {
|
||||
const uint i = get_global_id(0) / 32;
|
||||
const uint l = get_local_id(0);
|
||||
|
||||
const float d = blocks[i].d;
|
||||
const float m = blocks[i].m;
|
||||
|
||||
const uchar vi = blocks[i].qs[l];
|
||||
|
||||
const uint index = i*32 + l*2;
|
||||
result[index + 0] = (vi & 0xf) * d + m;
|
||||
result[index + 1] = (vi >> 4) * d + m;
|
||||
}
|
||||
|
||||
struct block_q4_2
|
||||
{
|
||||
ushort d;
|
||||
uchar qs[8];
|
||||
};
|
||||
|
||||
__kernel void dequantize_row_q4_2(__global struct block_q4_2* blocks, __global float* result) {
|
||||
const uint i = get_global_id(0) / 16;
|
||||
const uint l = get_local_id(0);
|
||||
|
||||
const float d = vload_half(0, (__global half*) &blocks[i].d);
|
||||
|
||||
const uchar vi = blocks[i].qs[l];
|
||||
|
||||
const uint index = i*16 + l*2;
|
||||
result[index + 0] = ((vi & 0xf) - 8)*d;
|
||||
result[index + 1] = ((vi >> 4) - 8)*d;
|
||||
}
|
||||
|
||||
|
||||
struct block_q5_0
|
||||
{
|
||||
float d;
|
||||
uint qh;
|
||||
uchar qs[16];
|
||||
};
|
||||
|
||||
__kernel void dequantize_row_q5_0(__global struct block_q5_0* blocks, __global float* result) {
|
||||
const uint i = get_global_id(0) / 32;
|
||||
const uint l = get_local_id(0);
|
||||
|
||||
const float d = blocks[i].d;
|
||||
|
||||
const uchar vi = blocks[i].qs[l];
|
||||
|
||||
const uint l2 = l * 2;
|
||||
|
||||
const uchar vh0 = ((blocks[i].qh & (1 << (l2 + 0))) >> (l2 + 0)) << 4;
|
||||
const uchar vh1 = ((blocks[i].qh & (1 << (l2 + 1))) >> (l2 + 1)) << 4;
|
||||
|
||||
const uint index = i*32 + l2;
|
||||
result[index + 0] = (((vi & 0xf) | vh0) - 16)*d;
|
||||
result[index + 1] = (((vi >> 4) | vh1) - 16)*d;
|
||||
}
|
||||
|
||||
struct block_q5_1
|
||||
{
|
||||
ushort d;
|
||||
ushort m;
|
||||
uint qh;
|
||||
uchar qs[16];
|
||||
};
|
||||
|
||||
__kernel void dequantize_row_q5_1(__global struct block_q5_1* blocks, __global float* result) {
|
||||
const uint i = get_global_id(0) / 32;
|
||||
const uint l = get_local_id(0);
|
||||
|
||||
const float d = vload_half(0, (__global half*) &blocks[i].d);
|
||||
const float m = vload_half(0, (__global half*) &blocks[i].m);
|
||||
|
||||
const uchar vi = blocks[i].qs[l];
|
||||
|
||||
const uint l2 = l * 2;
|
||||
|
||||
const uchar vh0 = ((blocks[i].qh & (1 << (l2 + 0))) >> (l2 + 0)) << 4;
|
||||
const uchar vh1 = ((blocks[i].qh & (1 << (l2 + 1))) >> (l2 + 1)) << 4;
|
||||
|
||||
const uint index = i*32 + l2;
|
||||
result[index + 0] = ((vi & 0xf) | vh0)*d + m;
|
||||
result[index + 1] = ((vi >> 4) | vh1)*d + m;
|
||||
}
|
||||
|
||||
struct block_q8_0
|
||||
{
|
||||
float d;
|
||||
char qs[32];
|
||||
};
|
||||
|
||||
__kernel void dequantize_row_q8_0(__global struct block_q8_0* blocks, __global float* result) {
|
||||
const uint i = get_global_id(0) / 32;
|
||||
const uint l = get_local_id(0);
|
||||
|
||||
result[i*32 + l] = blocks[i].qs[l] * blocks[i].d;
|
||||
}
|
||||
|
||||
);
|
||||
|
||||
#define CL_CHECK(err, name) \
|
||||
do { \
|
||||
|
@ -19,12 +148,26 @@
|
|||
} \
|
||||
} while (0)
|
||||
|
||||
#define QK5_0 32
|
||||
typedef struct {
|
||||
ggml_fp16_t d; // delta
|
||||
uint8_t qh[4]; // 5-th bit of quants
|
||||
uint8_t qs[QK5_0 / 2]; // nibbles / quants
|
||||
} block_q5_0;
|
||||
|
||||
|
||||
typedef struct {
|
||||
float d; // delta
|
||||
uint32_t qh; // 5-th bit of quants
|
||||
uint8_t qs[QK5_0 / 2]; // nibbles / quants
|
||||
} cl_block_q5_0;
|
||||
|
||||
static cl_platform_id platform;
|
||||
static cl_device_id device;
|
||||
static cl_context context;
|
||||
static cl_command_queue queue;
|
||||
static cl_program program;
|
||||
static cl_kernel kernel_q4_0, kernel_q4_1, kernel_q4_2;
|
||||
static cl_kernel kernel_q4_0, kernel_q4_1, kernel_q4_2, kernel_q5_0, kernel_q5_1, kernel_q8_0;
|
||||
static cl_mem cl_buffer_a, cl_buffer_qb, cl_buffer_b, cl_buffer_c;
|
||||
static size_t cl_size_a = 0, cl_size_qb = 0, cl_size_b = 0, cl_size_c = 0;
|
||||
|
||||
|
@ -97,6 +240,12 @@ void ggml_cl_init(void) {
|
|||
CL_CHECK(err, "clCreateKernel");
|
||||
kernel_q4_2 = clCreateKernel(program, "dequantize_row_q4_2", &err);
|
||||
CL_CHECK(err, "clCreateKernel");
|
||||
kernel_q5_0 = clCreateKernel(program, "dequantize_row_q5_0", &err);
|
||||
CL_CHECK(err, "clCreateKernel");
|
||||
kernel_q5_1 = clCreateKernel(program, "dequantize_row_q5_1", &err);
|
||||
CL_CHECK(err, "clCreateKernel");
|
||||
kernel_q8_0 = clCreateKernel(program, "dequantize_row_q8_0", &err);
|
||||
CL_CHECK(err, "clCreateKernel");
|
||||
}
|
||||
|
||||
static void ggml_cl_malloc(size_t req_size, size_t* cur_size, cl_mem_flags flags, cl_mem* buf) {
|
||||
|
@ -125,6 +274,7 @@ void ggml_cl_sgemm_wrapper(
|
|||
cl_kernel kernel;
|
||||
size_t global = n * k, local, size_qb;
|
||||
bool dequant;
|
||||
cl_block_q5_0* cl_host_b;
|
||||
|
||||
switch (btype) {
|
||||
case GGML_TYPE_F32:
|
||||
|
@ -146,7 +296,36 @@ void ggml_cl_sgemm_wrapper(
|
|||
dequant = true;
|
||||
kernel = kernel_q4_2;
|
||||
local = 8;
|
||||
size_qb = global * (sizeof(short) + local) / 16;
|
||||
size_qb = global * (sizeof(ggml_fp16_t) + local) / 16;
|
||||
break;
|
||||
case GGML_TYPE_Q5_0:
|
||||
dequant = true;
|
||||
kernel = kernel_q5_0;
|
||||
local = 16;
|
||||
// For some reason OpenCL seems to be incapable of working with structs of size 22.
|
||||
// 20 and 24 bytes are fine. Workaround to do the fp16 to fp32 step on CPU...
|
||||
// TODO Find the reason, fix and remove workaround.
|
||||
const block_q5_0* b = (const block_q5_0*) host_b;
|
||||
cl_host_b = (cl_block_q5_0*) malloc(sizeof(cl_block_q5_0) * global / 32);
|
||||
for (size_t i = 0; i < global / 32; i++) {
|
||||
cl_host_b[i].d = ggml_fp16_to_fp32(b[i].d);
|
||||
memcpy(&cl_host_b[i].qh, b[i].qh, sizeof(uint32_t));
|
||||
memcpy(&cl_host_b[i].qs, b[i].qs, QK5_0 / 2);
|
||||
}
|
||||
host_b = (const float*) cl_host_b;
|
||||
size_qb = global * (sizeof(float) + sizeof(uint32_t) + local) / 32;
|
||||
break;
|
||||
case GGML_TYPE_Q5_1:
|
||||
dequant = true;
|
||||
kernel = kernel_q5_1;
|
||||
local = 16;
|
||||
size_qb = global * (sizeof(ggml_fp16_t) * 2 + sizeof(uint32_t) + local) / 32;
|
||||
break;
|
||||
case GGML_TYPE_Q8_0:
|
||||
dequant = true;
|
||||
kernel = kernel_q8_0;
|
||||
local = 32;
|
||||
size_qb = global * (sizeof(float) + local) / 32;
|
||||
break;
|
||||
default:
|
||||
fprintf(stderr, "Error: Unsupported OpenCL btype %d\n", btype);
|
||||
|
@ -171,12 +350,15 @@ void ggml_cl_sgemm_wrapper(
|
|||
err = clSetKernelArg(kernel, 0, sizeof(cl_mem), &cl_buffer_qb);
|
||||
err |= clSetKernelArg(kernel, 1, sizeof(cl_mem), &cl_buffer_b);
|
||||
CL_CHECK(err, "clSetKernelArg");
|
||||
clEnqueueWriteBuffer(queue, cl_buffer_qb, CL_FALSE, 0, size_qb, host_b, 0, NULL, &ev_qb);
|
||||
err = clEnqueueWriteBuffer(queue, cl_buffer_qb, CL_FALSE, 0, size_qb, host_b, 0, NULL, &ev_qb);
|
||||
CL_CHECK(err, "clEnqueueWriteBuffer qb");
|
||||
} else {
|
||||
clEnqueueWriteBuffer(queue, cl_buffer_b, CL_FALSE, 0, size_b, host_b, 0, NULL, &ev_b);
|
||||
err = clEnqueueWriteBuffer(queue, cl_buffer_b, CL_FALSE, 0, size_b, host_b, 0, NULL, &ev_b);
|
||||
CL_CHECK(err, "clEnqueueWriteBuffer b");
|
||||
}
|
||||
|
||||
clEnqueueWriteBuffer(queue, cl_buffer_a, CL_FALSE, 0, size_a, host_a, 0, NULL, &ev_a);
|
||||
err = clEnqueueWriteBuffer(queue, cl_buffer_a, CL_FALSE, 0, size_a, host_a, 0, NULL, &ev_a);
|
||||
CL_CHECK(err, "clEnqueueWriteBuffer a");
|
||||
if (dequant) {
|
||||
err = clEnqueueNDRangeKernel(queue, kernel, 1, NULL, &global, &local, 1, &ev_qb, &ev_b);
|
||||
CL_CHECK(err, "clEnqueueNDRangeKernel");
|
||||
|
@ -188,15 +370,20 @@ void ggml_cl_sgemm_wrapper(
|
|||
clReleaseEvent(ev_b);
|
||||
|
||||
cl_event ev_sgemm;
|
||||
CLBlastSgemm((CLBlastLayout)order,
|
||||
(CLBlastTranspose)trans_a, (CLBlastTranspose)trans_b,
|
||||
m, n, k,
|
||||
alpha,
|
||||
cl_buffer_a, 0, lda,
|
||||
cl_buffer_b, 0, ldb,
|
||||
beta,
|
||||
cl_buffer_c, 0, ldc,
|
||||
&queue, &ev_sgemm);
|
||||
CLBlastStatusCode status = CLBlastSgemm((CLBlastLayout)order,
|
||||
(CLBlastTranspose)trans_a, (CLBlastTranspose)trans_b,
|
||||
m, n, k,
|
||||
alpha,
|
||||
cl_buffer_a, 0, lda,
|
||||
cl_buffer_b, 0, ldb,
|
||||
beta,
|
||||
cl_buffer_c, 0, ldc,
|
||||
&queue, &ev_sgemm);
|
||||
|
||||
if (status != CLBlastSuccess) {
|
||||
fprintf(stderr, "Error: CLBlast SGEMM %d\n", status);
|
||||
abort();
|
||||
}
|
||||
|
||||
cl_event ev_c;
|
||||
clEnqueueReadBuffer(queue, cl_buffer_c, CL_TRUE, 0, size_c, host_c, 1, &ev_sgemm, &ev_c);
|
||||
|
@ -205,4 +392,7 @@ void ggml_cl_sgemm_wrapper(
|
|||
clWaitForEvents(1, &ev_c);
|
||||
clReleaseEvent(ev_sgemm);
|
||||
clReleaseEvent(ev_c);
|
||||
if (btype == GGML_TYPE_Q5_0) {
|
||||
free((void*) cl_host_b);
|
||||
}
|
||||
}
|
||||
|
|
440
ggml.c
440
ggml.c
|
@ -135,14 +135,6 @@ inline static void* ggml_aligned_malloc(size_t size) {
|
|||
#define UNUSED(x) (void)(x)
|
||||
#define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
|
||||
|
||||
#define GGML_ASSERT(x) \
|
||||
do { \
|
||||
if (!(x)) { \
|
||||
fprintf(stderr, "GGML_ASSERT: %s:%d: %s\n", __FILE__, __LINE__, #x); \
|
||||
abort(); \
|
||||
} \
|
||||
} while (0)
|
||||
|
||||
#if defined(GGML_USE_ACCELERATE)
|
||||
#include <Accelerate/Accelerate.h>
|
||||
#elif defined(GGML_USE_OPENBLAS)
|
||||
|
@ -330,7 +322,7 @@ static ggml_fp16_t table_exp_f16[1 << 16];
|
|||
// precomputed f32 table for f16 (256 KB)
|
||||
static float table_f32_f16[1 << 16];
|
||||
|
||||
#if defined(__ARM_NEON)
|
||||
#if defined(__ARM_NEON) || defined(__wasm_simd128__)
|
||||
#define B1(c,s,n) 0x ## n ## c , 0x ## n ## s
|
||||
#define B2(c,s,n) B1(c,s,n ## c), B1(c,s,n ## s)
|
||||
#define B3(c,s,n) B2(c,s,n ## c), B2(c,s,n ## s)
|
||||
|
@ -370,6 +362,32 @@ ggml_fp16_t ggml_fp32_to_fp16(float x) {
|
|||
return GGML_FP32_TO_FP16(x);
|
||||
}
|
||||
|
||||
void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, size_t n) {
|
||||
for (size_t i = 0; i < n; i++) {
|
||||
y[i] = GGML_FP16_TO_FP32(x[i]);
|
||||
}
|
||||
}
|
||||
|
||||
void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, size_t n) {
|
||||
size_t i = 0;
|
||||
#if defined(__F16C__)
|
||||
for (; i + 7 < n; i += 8) {
|
||||
__m256 x_vec = _mm256_loadu_ps(x + i);
|
||||
__m128i y_vec = _mm256_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
|
||||
_mm_storeu_si128((__m128i *)(y + i), y_vec);
|
||||
}
|
||||
for(; i + 3 < n; i += 4) {
|
||||
__m128 x_vec = _mm_loadu_ps(x + i);
|
||||
__m128i y_vec = _mm_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
|
||||
_mm_storel_epi64((__m128i *)(y + i), y_vec);
|
||||
}
|
||||
#endif
|
||||
for (; i < n; i++) {
|
||||
y[i] = GGML_FP32_TO_FP16(x[i]);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
//
|
||||
// timing
|
||||
//
|
||||
|
@ -1087,7 +1105,7 @@ static void quantize_row_q4_0(const float * restrict x, void * restrict vy, int
|
|||
const v128_t v = wasm_f32x4_mul(srcv[l], wasm_f32x4_splat(id));
|
||||
const v128_t vf = wasm_f32x4_add(v, wasm_f32x4_splat(8.5f));
|
||||
const v128_t vi = wasm_i32x4_trunc_sat_f32x4(vf);
|
||||
const v128_t vc = wasm_i32x4_min_u(vi, wasm_i32x4_splat(15));
|
||||
const v128_t vc = wasm_i32x4_min(vi, wasm_i32x4_splat(15));
|
||||
|
||||
y[i].qs[2*l + 0] = wasm_i32x4_extract_lane(vc, 0) | (wasm_i32x4_extract_lane(vc, 1) << 4);
|
||||
y[i].qs[2*l + 1] = wasm_i32x4_extract_lane(vc, 2) | (wasm_i32x4_extract_lane(vc, 3) << 4);
|
||||
|
@ -1911,8 +1929,8 @@ static void dequantize_row_q5_0(const void * restrict vx, float * restrict y, in
|
|||
const uint8_t vi = pp[l/2];
|
||||
|
||||
// extract the 5-th bit from qh
|
||||
const uint8_t vh0 = ((qh & (1 << (l + 0))) >> (l + 0)) << 4;
|
||||
const uint8_t vh1 = ((qh & (1 << (l + 1))) >> (l + 1)) << 4;
|
||||
const uint8_t vh0 = ((qh & (1u << (l + 0))) >> (l + 0)) << 4;
|
||||
const uint8_t vh1 = ((qh & (1u << (l + 1))) >> (l + 1)) << 4;
|
||||
|
||||
const int8_t vi0 = (vi & 0x0F) | vh0;
|
||||
const int8_t vi1 = (vi >> 4) | vh1;
|
||||
|
@ -1948,8 +1966,8 @@ static void dequantize_row_q5_1(const void * restrict vx, float * restrict y, in
|
|||
const uint8_t vi = pp[l/2];
|
||||
|
||||
// extract the 5-th bit from qh
|
||||
const uint8_t vh0 = ((qh & (1 << (l + 0))) >> (l + 0)) << 4;
|
||||
const uint8_t vh1 = ((qh & (1 << (l + 1))) >> (l + 1)) << 4;
|
||||
const uint8_t vh0 = ((qh & (1u << (l + 0))) >> (l + 0)) << 4;
|
||||
const uint8_t vh1 = ((qh & (1u << (l + 1))) >> (l + 1)) << 4;
|
||||
|
||||
const uint8_t vi0 = (vi & 0x0F) | vh0;
|
||||
const uint8_t vi1 = (vi >> 4) | vh1;
|
||||
|
@ -3180,6 +3198,72 @@ static void ggml_vec_dot_q5_0_q8_0(const int n, float * restrict s, const void *
|
|||
}
|
||||
|
||||
*s = vaddvq_f32(sumv);
|
||||
#elif defined(__wasm_simd128__)
|
||||
v128_t sumv = wasm_f32x4_splat(0.0f);
|
||||
|
||||
uint64_t tmp[4];
|
||||
|
||||
for (int i = 0; i < nb; ++i) {
|
||||
const block_q5_0 * restrict x0 = &x[i];
|
||||
const block_q8_0 * restrict y0 = &y[i];
|
||||
|
||||
const v128_t m4b = wasm_i8x16_splat(0x0F);
|
||||
const v128_t s16b = wasm_i8x16_splat(0x10);
|
||||
|
||||
// extract the 5th bit
|
||||
uint32_t qh;
|
||||
memcpy(&qh, x0->qh, sizeof(qh));
|
||||
|
||||
tmp[0] = table_b2b_u[(qh >> 0) & 0xFF];
|
||||
tmp[1] = table_b2b_u[(qh >> 8) & 0xFF];
|
||||
tmp[2] = table_b2b_u[(qh >> 16) & 0xFF];
|
||||
tmp[3] = table_b2b_u[(qh >> 24) ];
|
||||
|
||||
const v128_t qhl = wasm_v128_load(tmp + 0);
|
||||
const v128_t qhh = wasm_v128_load(tmp + 2);
|
||||
|
||||
const v128_t v0 = wasm_v128_load(x0->qs);
|
||||
|
||||
// 4-bit -> 8-bit
|
||||
const v128_t v0l = wasm_v128_and (v0, m4b);
|
||||
const v128_t v0h = wasm_u8x16_shr(v0, 4);
|
||||
|
||||
// interleave
|
||||
const v128_t v0lz = wasm_v8x16_shuffle(v0l, v0h, 0, 16, 1, 17, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23);
|
||||
const v128_t v0hz = wasm_v8x16_shuffle(v0l, v0h, 8, 24, 9, 25, 10, 26, 11, 27, 12, 28, 13, 29, 14, 30, 15, 31);
|
||||
|
||||
// add high bit and sub 16
|
||||
const v128_t v0lf = wasm_i8x16_sub(wasm_v128_or(v0lz, qhl), s16b);
|
||||
const v128_t v0hf = wasm_i8x16_sub(wasm_v128_or(v0hz, qhh), s16b);
|
||||
|
||||
// load y
|
||||
const v128_t v1l = wasm_v128_load(y0->qs);
|
||||
const v128_t v1h = wasm_v128_load(y0->qs + 16);
|
||||
|
||||
// int8x16 -> int16x8
|
||||
const v128_t v0lfl = wasm_i16x8_extend_low_i8x16 (v0lf);
|
||||
const v128_t v0lfh = wasm_i16x8_extend_high_i8x16(v0lf);
|
||||
const v128_t v0hfl = wasm_i16x8_extend_low_i8x16 (v0hf);
|
||||
const v128_t v0hfh = wasm_i16x8_extend_high_i8x16(v0hf);
|
||||
|
||||
const v128_t v1ll = wasm_i16x8_extend_low_i8x16 (v1l);
|
||||
const v128_t v1lh = wasm_i16x8_extend_high_i8x16(v1l);
|
||||
const v128_t v1hl = wasm_i16x8_extend_low_i8x16 (v1h);
|
||||
const v128_t v1hh = wasm_i16x8_extend_high_i8x16(v1h);
|
||||
|
||||
const float x0d = GGML_FP16_TO_FP32(x0->d);
|
||||
|
||||
// dot product
|
||||
sumv = wasm_f32x4_add(sumv, wasm_f32x4_mul(wasm_f32x4_convert_i32x4(
|
||||
wasm_i32x4_add(
|
||||
wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0lfl, v1ll),
|
||||
wasm_i32x4_dot_i16x8(v0lfh, v1lh)),
|
||||
wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0hfl, v1hl),
|
||||
wasm_i32x4_dot_i16x8(v0hfh, v1hh)))), wasm_f32x4_splat(x0d*y0->d)));
|
||||
}
|
||||
|
||||
*s = wasm_f32x4_extract_lane(sumv, 0) + wasm_f32x4_extract_lane(sumv, 1) +
|
||||
wasm_f32x4_extract_lane(sumv, 2) + wasm_f32x4_extract_lane(sumv, 3);
|
||||
#elif defined(__AVX2__)
|
||||
// Initialize accumulator with zeros
|
||||
__m256 acc = _mm256_setzero_ps();
|
||||
|
@ -3220,8 +3304,8 @@ static void ggml_vec_dot_q5_0_q8_0(const int n, float * restrict s, const void *
|
|||
for (int j = 0; j < QK8_0/2; j++) {
|
||||
const uint8_t v0 = x0[j];
|
||||
|
||||
const int x0_0h = ((qh & (1 << (2*j + 0))) >> (2*j + 0)) << 4;
|
||||
const int x1_0h = ((qh & (1 << (2*j + 1))) >> (2*j + 1)) << 4;
|
||||
const int x0_0h = ((qh & (1u << (2*j + 0))) >> (2*j + 0)) << 4;
|
||||
const int x1_0h = ((qh & (1u << (2*j + 1))) >> (2*j + 1)) << 4;
|
||||
|
||||
const int x0_0 = ((v0 & 0x0F) | x0_0h) - 16;
|
||||
const int x1_0 = ((v0 >> 4) | x1_0h) - 16;
|
||||
|
@ -3311,6 +3395,77 @@ static void ggml_vec_dot_q5_1_q8_1(const int n, float * restrict s, const void *
|
|||
}
|
||||
|
||||
*s = vaddvq_f32(sumv) + summs;
|
||||
#elif defined(__wasm_simd128__)
|
||||
v128_t sumv = wasm_f32x4_splat(0.0f);
|
||||
|
||||
float summs = 0.0f;
|
||||
|
||||
uint64_t tmp[4];
|
||||
|
||||
for (int i = 0; i < nb; ++i) {
|
||||
const block_q5_1 * restrict x0 = &x[i];
|
||||
const block_q8_1 * restrict y0 = &y[i];
|
||||
|
||||
summs += GGML_FP16_TO_FP32(x0->m) * (y0->s0 + y0->s1);
|
||||
|
||||
const v128_t m4b = wasm_i8x16_splat(0x0F);
|
||||
|
||||
// extract the 5th bit
|
||||
uint32_t qh;
|
||||
memcpy(&qh, x0->qh, sizeof(qh));
|
||||
|
||||
tmp[0] = table_b2b_u[(qh >> 0) & 0xFF];
|
||||
tmp[1] = table_b2b_u[(qh >> 8) & 0xFF];
|
||||
tmp[2] = table_b2b_u[(qh >> 16) & 0xFF];
|
||||
tmp[3] = table_b2b_u[(qh >> 24) ];
|
||||
|
||||
const v128_t qhl = wasm_v128_load(tmp + 0);
|
||||
const v128_t qhh = wasm_v128_load(tmp + 2);
|
||||
|
||||
const v128_t v0 = wasm_v128_load(x0->qs);
|
||||
|
||||
// 4-bit -> 8-bit
|
||||
const v128_t v0l = wasm_v128_and (v0, m4b);
|
||||
const v128_t v0h = wasm_u8x16_shr(v0, 4);
|
||||
|
||||
static bool x = true;
|
||||
|
||||
// interleave
|
||||
const v128_t v0lz = wasm_v8x16_shuffle(v0l, v0h, 0, 16, 1, 17, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23);
|
||||
const v128_t v0hz = wasm_v8x16_shuffle(v0l, v0h, 8, 24, 9, 25, 10, 26, 11, 27, 12, 28, 13, 29, 14, 30, 15, 31);
|
||||
|
||||
// add high bit
|
||||
const v128_t v0lf = wasm_v128_or(v0lz, qhl);
|
||||
const v128_t v0hf = wasm_v128_or(v0hz, qhh);
|
||||
|
||||
// load y
|
||||
const v128_t v1l = wasm_v128_load(y0->qs);
|
||||
const v128_t v1h = wasm_v128_load(y0->qs + 16);
|
||||
|
||||
// int8x16 -> int16x8
|
||||
const v128_t v0lfl = wasm_i16x8_extend_low_i8x16 (v0lf);
|
||||
const v128_t v0lfh = wasm_i16x8_extend_high_i8x16(v0lf);
|
||||
const v128_t v0hfl = wasm_i16x8_extend_low_i8x16 (v0hf);
|
||||
const v128_t v0hfh = wasm_i16x8_extend_high_i8x16(v0hf);
|
||||
|
||||
const v128_t v1ll = wasm_i16x8_extend_low_i8x16 (v1l);
|
||||
const v128_t v1lh = wasm_i16x8_extend_high_i8x16(v1l);
|
||||
const v128_t v1hl = wasm_i16x8_extend_low_i8x16 (v1h);
|
||||
const v128_t v1hh = wasm_i16x8_extend_high_i8x16(v1h);
|
||||
|
||||
const float x0d = GGML_FP16_TO_FP32(x0->d);
|
||||
|
||||
// dot product
|
||||
sumv = wasm_f32x4_add(sumv, wasm_f32x4_mul(wasm_f32x4_convert_i32x4(
|
||||
wasm_i32x4_add(
|
||||
wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0lfl, v1ll),
|
||||
wasm_i32x4_dot_i16x8(v0lfh, v1lh)),
|
||||
wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0hfl, v1hl),
|
||||
wasm_i32x4_dot_i16x8(v0hfh, v1hh)))), wasm_f32x4_splat(x0d*y0->d)));
|
||||
}
|
||||
|
||||
*s = wasm_f32x4_extract_lane(sumv, 0) + wasm_f32x4_extract_lane(sumv, 1) +
|
||||
wasm_f32x4_extract_lane(sumv, 2) + wasm_f32x4_extract_lane(sumv, 3) + summs;
|
||||
#elif defined(__AVX2__)
|
||||
// Initialize accumulator with zeros
|
||||
__m256 acc = _mm256_setzero_ps();
|
||||
|
@ -3354,8 +3509,8 @@ static void ggml_vec_dot_q5_1_q8_1(const int n, float * restrict s, const void *
|
|||
for (int j = 0; j < QK8_1/2; j++) {
|
||||
const uint8_t v0 = x0[j];
|
||||
|
||||
const int x0_0h = ((qh & (1 << (2*j + 0))) >> (2*j + 0)) << 4;
|
||||
const int x1_0h = ((qh & (1 << (2*j + 1))) >> (2*j + 1)) << 4;
|
||||
const int x0_0h = ((qh & (1u << (2*j + 0))) >> (2*j + 0)) << 4;
|
||||
const int x1_0h = ((qh & (1u << (2*j + 1))) >> (2*j + 1)) << 4;
|
||||
|
||||
const int x0_0 = (v0 & 0x0F) | x0_0h;
|
||||
const int x1_0 = (v0 >> 4) | x1_0h;
|
||||
|
@ -4057,6 +4212,27 @@ bool ggml_is_quantized(enum ggml_type type) {
|
|||
return GGML_IS_QUANTIZED[type];
|
||||
}
|
||||
|
||||
enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype) {
|
||||
enum ggml_type wtype = GGML_TYPE_COUNT;
|
||||
|
||||
switch (ftype) {
|
||||
case GGML_FTYPE_ALL_F32: wtype = GGML_TYPE_F32; break;
|
||||
case GGML_FTYPE_MOSTLY_F16: wtype = GGML_TYPE_F16; break;
|
||||
case GGML_FTYPE_MOSTLY_Q4_0: wtype = GGML_TYPE_Q4_0; break;
|
||||
case GGML_FTYPE_MOSTLY_Q4_1: wtype = GGML_TYPE_Q4_1; break;
|
||||
case GGML_FTYPE_MOSTLY_Q4_2: wtype = GGML_TYPE_Q4_2; break;
|
||||
case GGML_FTYPE_MOSTLY_Q5_0: wtype = GGML_TYPE_Q5_0; break;
|
||||
case GGML_FTYPE_MOSTLY_Q5_1: wtype = GGML_TYPE_Q5_1; break;
|
||||
case GGML_FTYPE_MOSTLY_Q8_0: wtype = GGML_TYPE_Q8_0; break;
|
||||
case GGML_FTYPE_UNKNOWN: wtype = GGML_TYPE_COUNT; break;
|
||||
case GGML_FTYPE_MOSTLY_Q4_1_SOME_F16: wtype = GGML_TYPE_COUNT; break;
|
||||
}
|
||||
|
||||
GGML_ASSERT(wtype != GGML_TYPE_COUNT);
|
||||
|
||||
return wtype;
|
||||
}
|
||||
|
||||
static inline bool ggml_is_transposed(const struct ggml_tensor * tensor) {
|
||||
return tensor->nb[0] > tensor->nb[1];
|
||||
}
|
||||
|
@ -4167,12 +4343,11 @@ struct ggml_context * ggml_init(struct ggml_init_params params) {
|
|||
GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
|
||||
}
|
||||
|
||||
// initialize cuBLAS
|
||||
#if defined(GGML_USE_CUBLAS)
|
||||
#if defined(GGML_USE_CUBLAS)
|
||||
ggml_init_cublas();
|
||||
#elif defined(GGML_USE_CLBLAST)
|
||||
#elif defined(GGML_USE_CLBLAST)
|
||||
ggml_cl_init();
|
||||
#endif
|
||||
#endif
|
||||
|
||||
is_first_call = false;
|
||||
}
|
||||
|
@ -4253,7 +4428,7 @@ void ggml_free(struct ggml_context * ctx) {
|
|||
}
|
||||
|
||||
size_t ggml_used_mem(const struct ggml_context * ctx) {
|
||||
return ctx->objects_end->offs + ctx->objects_end->size;
|
||||
return ctx->objects_end == NULL ? 0 : ctx->objects_end->offs + ctx->objects_end->size;
|
||||
}
|
||||
|
||||
size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) {
|
||||
|
@ -7943,7 +8118,7 @@ static void ggml_compute_forward_rms_norm(
|
|||
|
||||
// ggml_compute_forward_mul_mat
|
||||
|
||||
#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST)
|
||||
#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
|
||||
// helper function to determine if it is better to use BLAS or not
|
||||
// for large matrices, BLAS is faster
|
||||
static bool ggml_compute_forward_mul_mat_use_blas(
|
||||
|
@ -7959,12 +8134,9 @@ static bool ggml_compute_forward_mul_mat_use_blas(
|
|||
const int64_t ne1 = dst->ne[1];
|
||||
|
||||
// TODO: find the optimal values for these
|
||||
if (
|
||||
#if !defined(GGML_USE_CUBLAS)
|
||||
ggml_is_contiguous(src0) &&
|
||||
if (ggml_is_contiguous(src0) &&
|
||||
ggml_is_contiguous(src1) &&
|
||||
#endif
|
||||
((ne0 >= 32 && ne1 >= 32 && ne10 >= 32))) {
|
||||
(ne0 >= 32 && ne1 >= 32 && ne10 >= 32)) {
|
||||
|
||||
/*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/
|
||||
return true;
|
||||
|
@ -7972,7 +8144,6 @@ static bool ggml_compute_forward_mul_mat_use_blas(
|
|||
|
||||
return false;
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
static void ggml_compute_forward_mul_mat_f32(
|
||||
|
@ -7988,7 +8159,7 @@ static void ggml_compute_forward_mul_mat_f32(
|
|||
const int64_t ne02 = src0->ne[2];
|
||||
const int64_t ne03 = src0->ne[3];
|
||||
|
||||
#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST)
|
||||
#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
|
||||
const int64_t ne10 = src1->ne[0];
|
||||
#endif
|
||||
const int64_t ne11 = src1->ne[1];
|
||||
|
@ -8045,7 +8216,16 @@ static void ggml_compute_forward_mul_mat_f32(
|
|||
// nb01 >= nb00 - src0 is not transposed
|
||||
// compute by src0 rows
|
||||
|
||||
#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST)
|
||||
#if defined(GGML_USE_CUBLAS)
|
||||
if (ggml_cuda_can_mul_mat(src0, src1, dst)) {
|
||||
if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) {
|
||||
ggml_cuda_mul_mat(src0, src1, dst, params->wdata, params->wsize);
|
||||
}
|
||||
return;
|
||||
}
|
||||
#endif
|
||||
|
||||
#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
|
||||
if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
|
||||
if (params->ith != 0) {
|
||||
return;
|
||||
|
@ -8059,43 +8239,13 @@ static void ggml_compute_forward_mul_mat_f32(
|
|||
return;
|
||||
}
|
||||
|
||||
#if defined(GGML_USE_CUBLAS)
|
||||
const float alpha = 1.0f;
|
||||
const float beta = 0.0f;
|
||||
const int x_ne = ne01 * ne00;
|
||||
const int y_ne = ne11 * ne10;
|
||||
const int d_ne = ne11 * ne01;
|
||||
|
||||
size_t x_size, y_size, d_size;
|
||||
float *d_X = ggml_cuda_pool_malloc(sizeof(float) * x_ne, &x_size);
|
||||
float *d_Y = ggml_cuda_pool_malloc(sizeof(float) * y_ne, &y_size);
|
||||
float *d_D = ggml_cuda_pool_malloc(sizeof(float) * d_ne, &d_size);
|
||||
#endif
|
||||
|
||||
for (int64_t i03 = 0; i03 < ne03; i03++) {
|
||||
for (int64_t i02 = 0; i02 < ne02; i02++) {
|
||||
#if !defined(GGML_USE_CUBLAS)
|
||||
const float * x = (float *) ((char *) src0->data + i02*nb02 + i03*nb03);
|
||||
const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
|
||||
#endif
|
||||
float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
|
||||
|
||||
#if defined(GGML_USE_CUBLAS)
|
||||
// copy data to device
|
||||
CUDA_CHECK(ggml_cuda_h2d_tensor_2d(d_X, src0, i03, i02, g_cudaStream));
|
||||
CUDA_CHECK(ggml_cuda_h2d_tensor_2d(d_Y, src1, i03, i02, g_cudaStream));
|
||||
|
||||
// compute
|
||||
CUBLAS_CHECK(
|
||||
cublasSgemm(g_cublasH, CUBLAS_OP_T, CUBLAS_OP_N,
|
||||
ne01, ne11, ne10,
|
||||
&alpha, d_X, ne00,
|
||||
d_Y, ne10,
|
||||
&beta, d_D, ne01));
|
||||
|
||||
// copy data to host
|
||||
CUDA_CHECK(cudaMemcpyAsync(d, d_D, sizeof(float) * d_ne, cudaMemcpyDeviceToHost, g_cudaStream));
|
||||
#elif defined(GGML_USE_CLBLAST)
|
||||
#if defined(GGML_USE_CLBLAST)
|
||||
// zT = y * xT
|
||||
ggml_cl_sgemm_wrapper(GGML_BLAS_ORDER_ROW_MAJOR, GGML_BLAS_OP_N, GGML_BLAS_OP_T,
|
||||
ne11, ne01, ne10,
|
||||
|
@ -8112,12 +8262,6 @@ static void ggml_compute_forward_mul_mat_f32(
|
|||
#endif
|
||||
}
|
||||
}
|
||||
#if defined(GGML_USE_CUBLAS)
|
||||
CUDA_CHECK(cudaStreamSynchronize(g_cudaStream));
|
||||
ggml_cuda_pool_free(d_X, x_size);
|
||||
ggml_cuda_pool_free(d_Y, y_size);
|
||||
ggml_cuda_pool_free(d_D, d_size);
|
||||
#endif
|
||||
//printf("CBLAS F32 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
|
||||
|
||||
return;
|
||||
|
@ -8247,7 +8391,16 @@ static void ggml_compute_forward_mul_mat_f16_f32(
|
|||
// nb01 >= nb00 - src0 is not transposed
|
||||
// compute by src0 rows
|
||||
|
||||
#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST)
|
||||
#if defined(GGML_USE_CUBLAS)
|
||||
if (ggml_cuda_can_mul_mat(src0, src1, dst)) {
|
||||
if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) {
|
||||
ggml_cuda_mul_mat(src0, src1, dst, params->wdata, params->wsize);
|
||||
}
|
||||
return;
|
||||
}
|
||||
#endif
|
||||
|
||||
#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
|
||||
if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
|
||||
GGML_ASSERT(nb10 == sizeof(float));
|
||||
|
||||
|
@ -8263,37 +8416,8 @@ static void ggml_compute_forward_mul_mat_f16_f32(
|
|||
return;
|
||||
}
|
||||
|
||||
#if defined(GGML_USE_CUBLAS)
|
||||
const float alpha = 1.0f;
|
||||
const float beta = 0.0f;
|
||||
const int x_ne = ne01 * ne00;
|
||||
const int y_ne = ne11 * ne10;
|
||||
const int d_ne = ne11 * ne01;
|
||||
|
||||
size_t x_size, y_size, d_size;
|
||||
ggml_fp16_t * d_X = ggml_cuda_pool_malloc(sizeof(float) * x_ne, &x_size);
|
||||
ggml_fp16_t * d_Y = ggml_cuda_pool_malloc(sizeof(float) * y_ne, &y_size);
|
||||
float * d_D = ggml_cuda_pool_malloc(sizeof(float) * d_ne, &d_size);
|
||||
#endif
|
||||
for (int64_t i03 = 0; i03 < ne03; i03++) {
|
||||
for (int64_t i02 = 0; i02 < ne02; i02++) {
|
||||
#if defined(GGML_USE_CUBLAS)
|
||||
// copy src0 while converting src1
|
||||
CUDA_CHECK(ggml_cuda_h2d_tensor_2d(d_X, src0, i03, i02, g_cudaStream));
|
||||
|
||||
// with cuBlAS, instead of converting src0 to fp32, we convert src1 to fp16
|
||||
ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + (ne11 * ne10) * (i03 * ne02 + i02);
|
||||
{
|
||||
size_t id = 0;
|
||||
for (int64_t i01 = 0; i01 < ne11; ++i01) {
|
||||
for (int64_t i00 = 0; i00 < ne10; ++i00) {
|
||||
wdata[id++] = GGML_FP32_TO_FP16(*(float *) ((char *) src1->data + i03*nb13 + i02*nb12 + i01*nb11 + i00*nb10));
|
||||
}
|
||||
}
|
||||
|
||||
assert(id*sizeof(ggml_fp16_t) <= params->wsize);
|
||||
}
|
||||
#else
|
||||
float * const wdata = params->wdata;
|
||||
{
|
||||
size_t id = 0;
|
||||
|
@ -8305,28 +8429,8 @@ static void ggml_compute_forward_mul_mat_f16_f32(
|
|||
|
||||
assert(id*sizeof(float) <= params->wsize);
|
||||
}
|
||||
#endif
|
||||
|
||||
#if defined(GGML_USE_CUBLAS)
|
||||
const ggml_fp16_t * y = (ggml_fp16_t *) wdata;
|
||||
float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
|
||||
|
||||
// copy data to device
|
||||
CUDA_CHECK(cudaMemcpyAsync(d_Y, y, sizeof(ggml_fp16_t) * y_ne, cudaMemcpyHostToDevice, g_cudaStream));
|
||||
|
||||
// compute
|
||||
CUBLAS_CHECK(
|
||||
cublasGemmEx(g_cublasH, CUBLAS_OP_T, CUBLAS_OP_N,
|
||||
ne01, ne11, ne10,
|
||||
&alpha, d_X, CUDA_R_16F, ne00,
|
||||
d_Y, CUDA_R_16F, ne10,
|
||||
&beta, d_D, CUDA_R_32F, ne01,
|
||||
CUBLAS_COMPUTE_32F,
|
||||
CUBLAS_GEMM_DEFAULT));
|
||||
|
||||
// copy data to host
|
||||
CUDA_CHECK(cudaMemcpyAsync(d, d_D, sizeof(float) * d_ne, cudaMemcpyDeviceToHost, g_cudaStream));
|
||||
#elif defined(GGML_USE_CLBLAST)
|
||||
#if defined(GGML_USE_CLBLAST)
|
||||
const float * x = wdata;
|
||||
const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
|
||||
|
||||
|
@ -8355,12 +8459,6 @@ static void ggml_compute_forward_mul_mat_f16_f32(
|
|||
}
|
||||
}
|
||||
|
||||
#if defined(GGML_USE_CUBLAS)
|
||||
CUDA_CHECK(cudaStreamSynchronize(g_cudaStream));
|
||||
ggml_cuda_pool_free(d_X, x_size);
|
||||
ggml_cuda_pool_free(d_Y, y_size);
|
||||
ggml_cuda_pool_free(d_D, d_size);
|
||||
#endif
|
||||
/*printf("CBLAS F16 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);*/
|
||||
|
||||
return;
|
||||
|
@ -8513,7 +8611,16 @@ static void ggml_compute_forward_mul_mat_q_f32(
|
|||
// nb01 >= nb00 - src0 is not transposed
|
||||
// compute by src0 rows
|
||||
|
||||
#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST)
|
||||
#if defined(GGML_USE_CUBLAS)
|
||||
if (ggml_cuda_can_mul_mat(src0, src1, dst)) {
|
||||
if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) {
|
||||
ggml_cuda_mul_mat(src0, src1, dst, params->wdata, params->wsize);
|
||||
}
|
||||
return;
|
||||
}
|
||||
#endif
|
||||
|
||||
#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
|
||||
if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
|
||||
if (params->ith != 0) {
|
||||
return;
|
||||
|
@ -8527,25 +8634,8 @@ static void ggml_compute_forward_mul_mat_q_f32(
|
|||
return;
|
||||
}
|
||||
|
||||
#if defined(GGML_USE_CUBLAS)
|
||||
const float alpha = 1.0f;
|
||||
const float beta = 0.0f;
|
||||
const int x_ne = ne01 * ne00;
|
||||
const int y_ne = ne11 * ne10;
|
||||
const int d_ne = ne11 * ne01;
|
||||
|
||||
size_t x_size, y_size, d_size, q_size;
|
||||
float * d_X = ggml_cuda_pool_malloc(sizeof(float) * x_ne, &x_size);
|
||||
float * d_Y = ggml_cuda_pool_malloc(sizeof(float) * y_ne, &y_size);
|
||||
float * d_D = ggml_cuda_pool_malloc(sizeof(float) * d_ne, &d_size);
|
||||
void * d_Q = ggml_cuda_pool_malloc(GGML_TYPE_SIZE[type] * x_ne / GGML_BLCK_SIZE[type], &q_size);
|
||||
|
||||
const dequantize_row_q_cuda_t dequantize_row_q_cuda = ggml_get_dequantize_row_q_cuda(type);
|
||||
GGML_ASSERT(dequantize_row_q_cuda != NULL);
|
||||
#else
|
||||
float * const wdata = params->wdata;
|
||||
dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
|
||||
#endif
|
||||
|
||||
for (int64_t i03 = 0; i03 < ne03; i03++) {
|
||||
for (int64_t i02 = 0; i02 < ne02; i02++) {
|
||||
|
@ -8553,14 +8643,7 @@ static void ggml_compute_forward_mul_mat_q_f32(
|
|||
|
||||
float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
|
||||
|
||||
#if defined(GGML_USE_CUBLAS)
|
||||
// copy and dequantize on device
|
||||
CUDA_CHECK(ggml_cuda_h2d_tensor_2d(d_Q, src0, i03, i02, g_cudaStream2));
|
||||
|
||||
dequantize_row_q_cuda(d_Q, d_X, x_ne, g_cudaStream2);
|
||||
CUDA_CHECK(cudaGetLastError());
|
||||
CUDA_CHECK(cudaEventRecord(g_cudaEvent, g_cudaStream2));
|
||||
#elif defined(GGML_USE_CLBLAST)
|
||||
#if defined(GGML_USE_CLBLAST)
|
||||
const void* x = (char *) src0->data + i03*nb03 + i02*nb02;
|
||||
#else
|
||||
{
|
||||
|
@ -8576,24 +8659,7 @@ static void ggml_compute_forward_mul_mat_q_f32(
|
|||
const float * x = wdata;
|
||||
#endif
|
||||
|
||||
#if defined(GGML_USE_CUBLAS)
|
||||
// copy data to device
|
||||
CUDA_CHECK(ggml_cuda_h2d_tensor_2d(d_Y, src1, i03, i02, g_cudaStream));
|
||||
|
||||
// wait for dequantization
|
||||
CUDA_CHECK(cudaStreamWaitEvent(g_cudaStream, g_cudaEvent, 0));
|
||||
|
||||
// compute
|
||||
CUBLAS_CHECK(
|
||||
cublasSgemm(g_cublasH, CUBLAS_OP_T, CUBLAS_OP_N,
|
||||
ne01, ne11, ne10,
|
||||
&alpha, d_X, ne00,
|
||||
d_Y, ne10,
|
||||
&beta, d_D, ne01));
|
||||
|
||||
// copy data to host
|
||||
CUDA_CHECK(cudaMemcpyAsync(d, d_D, sizeof(float) * d_ne, cudaMemcpyDeviceToHost, g_cudaStream));
|
||||
#elif defined(GGML_USE_CLBLAST)
|
||||
#if defined(GGML_USE_CLBLAST)
|
||||
// zT = y * xT
|
||||
ggml_cl_sgemm_wrapper(GGML_BLAS_ORDER_ROW_MAJOR, GGML_BLAS_OP_N, GGML_BLAS_OP_T,
|
||||
ne11, ne01, ne10,
|
||||
|
@ -8611,13 +8677,6 @@ static void ggml_compute_forward_mul_mat_q_f32(
|
|||
}
|
||||
}
|
||||
|
||||
#if defined(GGML_USE_CUBLAS)
|
||||
CUDA_CHECK(cudaStreamSynchronize(g_cudaStream));
|
||||
ggml_cuda_pool_free(d_X, x_size);
|
||||
ggml_cuda_pool_free(d_Y, y_size);
|
||||
ggml_cuda_pool_free(d_D, d_size);
|
||||
ggml_cuda_pool_free(d_Q, q_size);
|
||||
#endif
|
||||
//printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
|
||||
|
||||
return;
|
||||
|
@ -11601,18 +11660,21 @@ void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph)
|
|||
|
||||
size_t cur = 0;
|
||||
|
||||
#if defined(GGML_USE_CUBLAS)
|
||||
if (ggml_cuda_can_mul_mat(node->src0, node->src1, node)) {
|
||||
node->n_tasks = 1; // TODO: this actually is doing nothing
|
||||
// the threads are still spinning
|
||||
cur = ggml_cuda_mul_mat_get_wsize(node->src0, node->src1, node);
|
||||
}
|
||||
else
|
||||
#endif
|
||||
if (node->src0->type == GGML_TYPE_F16 && node->src1->type == GGML_TYPE_F32) {
|
||||
#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST)
|
||||
#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
|
||||
if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
|
||||
node->n_tasks = 1; // TODO: this actually is doing nothing
|
||||
// the threads are still spinning
|
||||
#if defined(GGML_USE_CUBLAS)
|
||||
// with cuBLAS, we need memory for the full 3D / 4D data of src1
|
||||
cur = GGML_TYPE_SIZE[GGML_TYPE_F16]*ggml_nelements(node->src1);
|
||||
#else
|
||||
// here we need memory just for single 2D matrix from src0
|
||||
cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
|
||||
#endif
|
||||
} else {
|
||||
cur = GGML_TYPE_SIZE[GGML_TYPE_F16]*ggml_nelements(node->src1);
|
||||
}
|
||||
|
@ -11621,13 +11683,13 @@ void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph)
|
|||
#endif
|
||||
} else if (node->src0->type == GGML_TYPE_F32 && node->src1->type == GGML_TYPE_F32) {
|
||||
cur = 0;
|
||||
#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST)
|
||||
#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
|
||||
if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
|
||||
node->n_tasks = 1;
|
||||
}
|
||||
#endif
|
||||
} else if (ggml_is_quantized(node->src0->type) && node->src1->type == GGML_TYPE_F32) {
|
||||
#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST)
|
||||
#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
|
||||
if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
|
||||
node->n_tasks = 1;
|
||||
cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
|
||||
|
@ -12899,8 +12961,8 @@ size_t ggml_quantize_q5_0(const float * src, void * dst, int n, int k, int64_t *
|
|||
memcpy(&qh, &y[i].qh, sizeof(qh));
|
||||
|
||||
for (int l = 0; l < QK5_0; l += 2) {
|
||||
const uint8_t vh0 = ((qh & (1 << (l + 0))) >> (l + 0)) << 4;
|
||||
const uint8_t vh1 = ((qh & (1 << (l + 1))) >> (l + 1)) << 4;
|
||||
const uint8_t vh0 = ((qh & (1u << (l + 0))) >> (l + 0)) << 4;
|
||||
const uint8_t vh1 = ((qh & (1u << (l + 1))) >> (l + 1)) << 4;
|
||||
|
||||
// cast to 16 bins
|
||||
const uint8_t vi0 = ((y[i].qs[l/2] & 0x0F) | vh0) / 2;
|
||||
|
@ -12929,8 +12991,8 @@ size_t ggml_quantize_q5_1(const float * src, void * dst, int n, int k, int64_t *
|
|||
memcpy(&qh, &y[i].qh, sizeof(qh));
|
||||
|
||||
for (int l = 0; l < QK5_1; l += 2) {
|
||||
const uint8_t vh0 = ((qh & (1 << (l + 0))) >> (l + 0)) << 4;
|
||||
const uint8_t vh1 = ((qh & (1 << (l + 1))) >> (l + 1)) << 4;
|
||||
const uint8_t vh0 = ((qh & (1u << (l + 0))) >> (l + 0)) << 4;
|
||||
const uint8_t vh1 = ((qh & (1u << (l + 1))) >> (l + 1)) << 4;
|
||||
|
||||
// cast to 16 bins
|
||||
const uint8_t vi0 = ((y[i].qs[l/2] & 0x0F) | vh0) / 2;
|
||||
|
|
28
ggml.h
28
ggml.h
|
@ -197,6 +197,14 @@
|
|||
#define GGML_MAX_OPT 4
|
||||
#define GGML_DEFAULT_N_THREADS 4
|
||||
|
||||
#define GGML_ASSERT(x) \
|
||||
do { \
|
||||
if (!(x)) { \
|
||||
fprintf(stderr, "GGML_ASSERT: %s:%d: %s\n", __FILE__, __LINE__, #x); \
|
||||
abort(); \
|
||||
} \
|
||||
} while (0)
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
@ -212,6 +220,9 @@ extern "C" {
|
|||
GGML_API float ggml_fp16_to_fp32(ggml_fp16_t x);
|
||||
GGML_API ggml_fp16_t ggml_fp32_to_fp16(float x);
|
||||
|
||||
GGML_API void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, size_t n);
|
||||
GGML_API void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, size_t n);
|
||||
|
||||
struct ggml_object;
|
||||
struct ggml_context;
|
||||
|
||||
|
@ -232,6 +243,20 @@ extern "C" {
|
|||
GGML_TYPE_COUNT,
|
||||
};
|
||||
|
||||
// model file types
|
||||
enum ggml_ftype {
|
||||
GGML_FTYPE_UNKNOWN = -1,
|
||||
GGML_FTYPE_ALL_F32 = 0,
|
||||
GGML_FTYPE_MOSTLY_F16 = 1, // except 1d tensors
|
||||
GGML_FTYPE_MOSTLY_Q4_0 = 2, // except 1d tensors
|
||||
GGML_FTYPE_MOSTLY_Q4_1 = 3, // except 1d tensors
|
||||
GGML_FTYPE_MOSTLY_Q4_1_SOME_F16 = 4, // tok_embeddings.weight and output.weight are F16
|
||||
GGML_FTYPE_MOSTLY_Q4_2 = 5, // except 1d tensors
|
||||
GGML_FTYPE_MOSTLY_Q8_0 = 7, // except 1d tensors
|
||||
GGML_FTYPE_MOSTLY_Q5_0 = 8, // except 1d tensors
|
||||
GGML_FTYPE_MOSTLY_Q5_1 = 9, // except 1d tensors
|
||||
};
|
||||
|
||||
// available tensor operations:
|
||||
enum ggml_op {
|
||||
GGML_OP_NONE = 0,
|
||||
|
@ -385,6 +410,9 @@ extern "C" {
|
|||
|
||||
GGML_API bool ggml_is_quantized(enum ggml_type type);
|
||||
|
||||
// TODO: temporary until model loading of ggml examples is refactored
|
||||
GGML_API enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype);
|
||||
|
||||
// main
|
||||
|
||||
GGML_API struct ggml_context * ggml_init(struct ggml_init_params params);
|
||||
|
|
54
llama-util.h
54
llama-util.h
|
@ -243,7 +243,8 @@ struct llama_mmap {
|
|||
#else
|
||||
static constexpr bool SUPPORTED = false;
|
||||
|
||||
llama_mmap(struct llama_file *) {
|
||||
llama_mmap(struct llama_file *, bool prefetch = true) {
|
||||
(void)prefetch;
|
||||
throw std::string("mmap not supported");
|
||||
}
|
||||
#endif
|
||||
|
@ -382,8 +383,13 @@ struct llama_mlock {
|
|||
#else
|
||||
static constexpr bool SUPPORTED = false;
|
||||
|
||||
void raw_lock(const void * addr, size_t size) {
|
||||
size_t lock_granularity() {
|
||||
return (size_t) 65536;
|
||||
}
|
||||
|
||||
bool raw_lock(const void * addr, size_t size) {
|
||||
fprintf(stderr, "warning: mlock not supported on this system\n");
|
||||
return false;
|
||||
}
|
||||
|
||||
void raw_unlock(const void * addr, size_t size) {}
|
||||
|
@ -395,6 +401,8 @@ struct llama_buffer {
|
|||
uint8_t * addr = NULL;
|
||||
size_t size = 0;
|
||||
|
||||
llama_buffer() = default;
|
||||
|
||||
void resize(size_t size) {
|
||||
delete[] addr;
|
||||
addr = new uint8_t[size];
|
||||
|
@ -404,27 +412,59 @@ struct llama_buffer {
|
|||
~llama_buffer() {
|
||||
delete[] addr;
|
||||
}
|
||||
|
||||
// disable copy and move
|
||||
llama_buffer(const llama_buffer&) = delete;
|
||||
llama_buffer(llama_buffer&&) = delete;
|
||||
llama_buffer& operator=(const llama_buffer&) = delete;
|
||||
llama_buffer& operator=(llama_buffer&&) = delete;
|
||||
};
|
||||
|
||||
#ifdef GGML_USE_CUBLAS
|
||||
#include "ggml-cuda.h"
|
||||
struct llama_ctx_buffer {
|
||||
uint8_t * addr = NULL;
|
||||
bool is_cuda;
|
||||
size_t size = 0;
|
||||
|
||||
llama_ctx_buffer() = default;
|
||||
|
||||
void resize(size_t size) {
|
||||
if (addr) {
|
||||
ggml_cuda_host_free(addr);
|
||||
}
|
||||
free();
|
||||
|
||||
addr = (uint8_t *) ggml_cuda_host_malloc(size);
|
||||
if (addr) {
|
||||
is_cuda = true;
|
||||
}
|
||||
else {
|
||||
// fall back to pageable memory
|
||||
addr = new uint8_t[size];
|
||||
is_cuda = false;
|
||||
}
|
||||
this->size = size;
|
||||
}
|
||||
|
||||
~llama_ctx_buffer() {
|
||||
void free() {
|
||||
if (addr) {
|
||||
ggml_cuda_host_free(addr);
|
||||
if (is_cuda) {
|
||||
ggml_cuda_host_free(addr);
|
||||
}
|
||||
else {
|
||||
delete[] addr;
|
||||
}
|
||||
}
|
||||
addr = NULL;
|
||||
}
|
||||
|
||||
~llama_ctx_buffer() {
|
||||
free();
|
||||
}
|
||||
|
||||
// disable copy and move
|
||||
llama_ctx_buffer(const llama_ctx_buffer&) = delete;
|
||||
llama_ctx_buffer(llama_ctx_buffer&&) = delete;
|
||||
llama_ctx_buffer& operator=(const llama_ctx_buffer&) = delete;
|
||||
llama_ctx_buffer& operator=(llama_ctx_buffer&&) = delete;
|
||||
};
|
||||
#else
|
||||
typedef llama_buffer llama_ctx_buffer;
|
||||
|
|
148
llama.cpp
148
llama.cpp
|
@ -727,8 +727,7 @@ struct llama_model_loader {
|
|||
LLAMA_ASSERT(offset == lt.size);
|
||||
} else if (lt.split_type == SPLIT_BY_COLUMNS) {
|
||||
// Let's load the data into temporary buffers to ensure the OS performs large loads.
|
||||
std::vector<llama_buffer> tmp_bufs;
|
||||
tmp_bufs.resize(lt.shards.size());
|
||||
std::vector<llama_buffer> tmp_bufs(lt.shards.size());
|
||||
for (size_t i = 0; i < lt.shards.size(); i++) {
|
||||
llama_load_tensor_shard & shard = lt.shards.at(i);
|
||||
llama_file & file = file_loaders.at(shard.file_idx)->file;
|
||||
|
@ -2373,7 +2372,7 @@ int llama_apply_lora_from_file(struct llama_context * ctx, const char * path_lor
|
|||
}
|
||||
}
|
||||
|
||||
int llama_get_kv_cache_token_count(struct llama_context * ctx) {
|
||||
int llama_get_kv_cache_token_count(const struct llama_context * ctx) {
|
||||
return ctx->model.kv_self.n;
|
||||
}
|
||||
|
||||
|
@ -2387,7 +2386,7 @@ void llama_set_rng_seed(struct llama_context * ctx, int seed) {
|
|||
}
|
||||
|
||||
// Returns the size of the state
|
||||
size_t llama_get_state_size(struct llama_context * ctx) {
|
||||
size_t llama_get_state_size(const struct llama_context * ctx) {
|
||||
// we don't know size of rng until we actually serialize it. so reserve more than enough memory for its serialized state.
|
||||
// for reference, std::mt19937(1337) serializes to 6701 bytes.
|
||||
const size_t s_rng_size = sizeof(size_t);
|
||||
|
@ -2567,6 +2566,85 @@ size_t llama_set_state_data(struct llama_context * ctx, const uint8_t * src) {
|
|||
return nread;
|
||||
}
|
||||
|
||||
bool llama_load_session_file(struct llama_context * ctx, const char * path_session, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
|
||||
llama_file file(path_session, "rb");
|
||||
|
||||
// sanity checks
|
||||
{
|
||||
const uint32_t magic = file.read_u32();
|
||||
const uint32_t version = file.read_u32();
|
||||
|
||||
if (!(magic == LLAMA_SESSION_MAGIC && version == LLAMA_SESSION_VERSION)) {
|
||||
fprintf(stderr, "%s : unknown (magic, version) for session file: %08x, %08x\n", __func__, magic, version);
|
||||
return false;
|
||||
}
|
||||
|
||||
llama_hparams session_hparams;
|
||||
file.read_raw(&session_hparams, sizeof(llama_hparams));
|
||||
|
||||
if (session_hparams != ctx->model.hparams) {
|
||||
fprintf(stderr, "%s : model hparams didn't match from session file!\n", __func__);
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
// load the prompt
|
||||
{
|
||||
const uint32_t n_token_count = file.read_u32();
|
||||
|
||||
if (n_token_count > n_token_capacity) {
|
||||
fprintf(stderr, "%s : token count in session file exceeded capacity! %u > %zu\n", __func__, n_token_count, n_token_capacity);
|
||||
return false;
|
||||
}
|
||||
|
||||
file.read_raw(tokens_out, sizeof(llama_token) * n_token_count);
|
||||
*n_token_count_out = n_token_count;
|
||||
}
|
||||
|
||||
// restore the context state
|
||||
{
|
||||
const size_t n_state_size_cur = file.size - file.tell();
|
||||
const size_t n_state_size_exp = llama_get_state_size(ctx);
|
||||
|
||||
if (n_state_size_cur != n_state_size_exp) {
|
||||
fprintf(stderr, "%s : the state size in session file didn't match! expected %zu, got %zu\n", __func__, n_state_size_exp, n_state_size_cur);
|
||||
return false;
|
||||
}
|
||||
|
||||
std::vector<uint8_t> state_data(n_state_size_cur);
|
||||
file.read_raw(state_data.data(), n_state_size_cur);
|
||||
|
||||
llama_set_state_data(ctx, state_data.data());
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
bool llama_save_session_file(struct llama_context * ctx, const char * path_session, const llama_token * tokens, size_t n_token_count) {
|
||||
llama_file file(path_session, "wb");
|
||||
|
||||
file.write_u32(LLAMA_SESSION_MAGIC);
|
||||
file.write_u32(LLAMA_SESSION_VERSION);
|
||||
|
||||
file.write_raw(&ctx->model.hparams, sizeof(llama_hparams));
|
||||
|
||||
// save the prompt
|
||||
file.write_u32((uint32_t) n_token_count);
|
||||
file.write_raw(tokens, sizeof(llama_token) * n_token_count);
|
||||
|
||||
// save the context state
|
||||
{
|
||||
const size_t n_state_size = llama_get_state_size(ctx);
|
||||
|
||||
std::vector<uint8_t> state_data(n_state_size);
|
||||
llama_copy_state_data(ctx, state_data.data());
|
||||
|
||||
file.write_raw(state_data.data(), n_state_size);
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
int llama_eval(
|
||||
struct llama_context * ctx,
|
||||
const llama_token * tokens,
|
||||
|
@ -2605,15 +2683,15 @@ int llama_tokenize(
|
|||
return res.size();
|
||||
}
|
||||
|
||||
int llama_n_vocab(struct llama_context * ctx) {
|
||||
int llama_n_vocab(const struct llama_context * ctx) {
|
||||
return ctx->vocab.id_to_token.size();
|
||||
}
|
||||
|
||||
int llama_n_ctx(struct llama_context * ctx) {
|
||||
int llama_n_ctx(const struct llama_context * ctx) {
|
||||
return ctx->model.hparams.n_ctx;
|
||||
}
|
||||
|
||||
int llama_n_embd(struct llama_context * ctx) {
|
||||
int llama_n_embd(const struct llama_context * ctx) {
|
||||
return ctx->model.hparams.n_embd;
|
||||
}
|
||||
|
||||
|
@ -2625,7 +2703,7 @@ float * llama_get_embeddings(struct llama_context * ctx) {
|
|||
return ctx->embedding.data();
|
||||
}
|
||||
|
||||
const char * llama_token_to_str(struct llama_context * ctx, llama_token token) {
|
||||
const char * llama_token_to_str(const struct llama_context * ctx, llama_token token) {
|
||||
if (token >= llama_n_vocab(ctx)) {
|
||||
return nullptr;
|
||||
}
|
||||
|
@ -2694,57 +2772,3 @@ const char * llama_print_system_info(void) {
|
|||
std::vector<std::pair<std::string, struct ggml_tensor *>>& llama_internal_get_tensor_map(struct llama_context * ctx) {
|
||||
return ctx->model.tensors_by_name;
|
||||
}
|
||||
|
||||
size_t llama_load_session_file(struct llama_context * ctx, const char * path_session, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
|
||||
// TODO leverage mmap
|
||||
llama_file file(path_session, "rb");
|
||||
const uint32_t magic = file.read_u32();
|
||||
const uint32_t version = file.read_u32();
|
||||
|
||||
if (!(magic == 'ggsn' && version == 0)) {
|
||||
fprintf(stderr, "%s : unknown (magic, version) for session file: %08x, %08x\n", __func__, magic, version);
|
||||
return 0;
|
||||
}
|
||||
|
||||
llama_hparams session_hparams;
|
||||
file.read_raw(&session_hparams, sizeof(llama_hparams));
|
||||
|
||||
// REVIEW
|
||||
if (session_hparams != ctx->model.hparams) {
|
||||
fprintf(stderr, "%s : model hparams didn't match from session file!\n", __func__);
|
||||
return 0;
|
||||
}
|
||||
|
||||
const uint32_t n_token_count = file.read_u32();
|
||||
LLAMA_ASSERT(n_token_capacity >= n_token_count);
|
||||
file.read_raw(tokens_out, sizeof(llama_token) * n_token_count);
|
||||
*n_token_count_out = n_token_count;
|
||||
|
||||
const size_t n_state_size = file.size - file.tell();
|
||||
const size_t n_orig_state_size = llama_get_state_size(ctx);
|
||||
if (n_state_size != n_orig_state_size) {
|
||||
fprintf(stderr, "%s : failed to validate state size\n", __func__);
|
||||
}
|
||||
std::unique_ptr<uint8_t[]> state_data(new uint8_t[n_state_size]);
|
||||
file.read_raw(state_data.get(), n_state_size);
|
||||
return llama_set_state_data(ctx, state_data.get());
|
||||
}
|
||||
|
||||
size_t llama_save_session_file(struct llama_context * ctx, const char * path_session, const llama_token * tokens, size_t n_token_count) {
|
||||
// TODO save temp & swap
|
||||
llama_file file(path_session, "wb");
|
||||
|
||||
const size_t n_state_size = llama_get_state_size(ctx);
|
||||
std::unique_ptr<uint8_t[]> state_data(new uint8_t[n_state_size]);
|
||||
llama_copy_state_data(ctx, state_data.get());
|
||||
|
||||
file.write_u32('ggsn'); // magic
|
||||
file.write_u32(0); // version
|
||||
file.write_raw(&ctx->model.hparams, sizeof(llama_hparams));
|
||||
|
||||
file.write_u32((uint32_t) n_token_count); // REVIEW
|
||||
file.write_raw(tokens, sizeof(llama_token) * n_token_count);
|
||||
|
||||
file.write_raw(state_data.get(), n_state_size);
|
||||
return n_state_size; // REVIEW
|
||||
}
|
||||
|
|
24
llama.h
24
llama.h
|
@ -19,9 +19,11 @@
|
|||
# define LLAMA_API
|
||||
#endif
|
||||
|
||||
#define LLAMA_FILE_VERSION 1
|
||||
#define LLAMA_FILE_MAGIC 0x67676a74 // 'ggjt' in hex
|
||||
#define LLAMA_FILE_MAGIC_UNVERSIONED 0x67676d6c // pre-versioned files
|
||||
#define LLAMA_FILE_VERSION 1
|
||||
#define LLAMA_FILE_MAGIC 'ggjt'
|
||||
#define LLAMA_FILE_MAGIC_UNVERSIONED 'ggml'
|
||||
#define LLAMA_SESSION_MAGIC 'ggsn'
|
||||
#define LLAMA_SESSION_VERSION 0
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
|
@ -120,13 +122,13 @@ extern "C" {
|
|||
int n_threads);
|
||||
|
||||
// Returns the number of tokens in the KV cache
|
||||
LLAMA_API int llama_get_kv_cache_token_count(struct llama_context * ctx);
|
||||
LLAMA_API int llama_get_kv_cache_token_count(const struct llama_context * ctx);
|
||||
|
||||
// Sets the current rng seed.
|
||||
LLAMA_API void llama_set_rng_seed(struct llama_context * ctx, int seed);
|
||||
|
||||
// Returns the size in bytes of the state (rng, logits, embedding and kv_cache)
|
||||
LLAMA_API size_t llama_get_state_size(struct llama_context * ctx);
|
||||
LLAMA_API size_t llama_get_state_size(const struct llama_context * ctx);
|
||||
|
||||
// Copies the state to the specified destination address.
|
||||
// Destination needs to have allocated enough memory.
|
||||
|
@ -138,8 +140,8 @@ extern "C" {
|
|||
LLAMA_API size_t llama_set_state_data(struct llama_context * ctx, const uint8_t * src);
|
||||
|
||||
// Save/load session file
|
||||
LLAMA_API size_t llama_load_session_file(struct llama_context * ctx, const char * path_session, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out);
|
||||
LLAMA_API size_t llama_save_session_file(struct llama_context * ctx, const char * path_session, const llama_token * tokens, size_t n_token_count);
|
||||
LLAMA_API bool llama_load_session_file(struct llama_context * ctx, const char * path_session, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out);
|
||||
LLAMA_API bool llama_save_session_file(struct llama_context * ctx, const char * path_session, const llama_token * tokens, size_t n_token_count);
|
||||
|
||||
// Run the llama inference to obtain the logits and probabilities for the next token.
|
||||
// tokens + n_tokens is the provided batch of new tokens to process
|
||||
|
@ -164,9 +166,9 @@ extern "C" {
|
|||
int n_max_tokens,
|
||||
bool add_bos);
|
||||
|
||||
LLAMA_API int llama_n_vocab(struct llama_context * ctx);
|
||||
LLAMA_API int llama_n_ctx (struct llama_context * ctx);
|
||||
LLAMA_API int llama_n_embd (struct llama_context * ctx);
|
||||
LLAMA_API int llama_n_vocab(const struct llama_context * ctx);
|
||||
LLAMA_API int llama_n_ctx (const struct llama_context * ctx);
|
||||
LLAMA_API int llama_n_embd (const struct llama_context * ctx);
|
||||
|
||||
// Token logits obtained from the last call to llama_eval()
|
||||
// The logits for the last token are stored in the last row
|
||||
|
@ -180,7 +182,7 @@ extern "C" {
|
|||
LLAMA_API float * llama_get_embeddings(struct llama_context * ctx);
|
||||
|
||||
// Token Id -> String. Uses the vocabulary in the provided context
|
||||
LLAMA_API const char * llama_token_to_str(struct llama_context * ctx, llama_token token);
|
||||
LLAMA_API const char * llama_token_to_str(const struct llama_context * ctx, llama_token token);
|
||||
|
||||
// Special tokens
|
||||
LLAMA_API llama_token llama_token_bos();
|
||||
|
|
53
scripts/build-info.cmake
Normal file
53
scripts/build-info.cmake
Normal file
|
@ -0,0 +1,53 @@
|
|||
set(TEMPLATE_FILE "${CMAKE_BINARY_DIR}/BUILD_INFO.h.in")
|
||||
set(HEADER_FILE "${CMAKE_CURRENT_SOURCE_DIR}/build-info.h")
|
||||
set(BUILD_NUMBER 0)
|
||||
set(BUILD_COMMIT "unknown")
|
||||
|
||||
# Look for git
|
||||
find_package(Git)
|
||||
if(NOT Git_FOUND)
|
||||
execute_process(
|
||||
COMMAND which git
|
||||
OUTPUT_VARIABLE GIT_EXECUTABLE
|
||||
OUTPUT_STRIP_TRAILING_WHITESPACE
|
||||
)
|
||||
if(NOT GIT_EXECUTABLE STREQUAL "")
|
||||
set(Git_FOUND TRUE)
|
||||
message(STATUS "Found Git using 'which': ${GIT_EXECUTABLE}")
|
||||
else()
|
||||
message(WARNING "Git not found using 'find_package' or 'which'. Build info will not be accurate. Consider installing Git or ensuring it is in the PATH.")
|
||||
endif()
|
||||
endif()
|
||||
|
||||
# Get the commit count and hash
|
||||
if(Git_FOUND)
|
||||
execute_process(
|
||||
COMMAND ${GIT_EXECUTABLE} rev-parse --short HEAD
|
||||
WORKING_DIRECTORY ${CMAKE_CURRENT_SOURCE_DIR}
|
||||
OUTPUT_VARIABLE HEAD
|
||||
OUTPUT_STRIP_TRAILING_WHITESPACE
|
||||
RESULT_VARIABLE GIT_HEAD_RESULT
|
||||
)
|
||||
execute_process(
|
||||
COMMAND ${GIT_EXECUTABLE} rev-list --count HEAD
|
||||
WORKING_DIRECTORY ${CMAKE_CURRENT_SOURCE_DIR}
|
||||
OUTPUT_VARIABLE COUNT
|
||||
OUTPUT_STRIP_TRAILING_WHITESPACE
|
||||
RESULT_VARIABLE GIT_COUNT_RESULT
|
||||
)
|
||||
if(GIT_HEAD_RESULT EQUAL 0 AND GIT_COUNT_RESULT EQUAL 0)
|
||||
set(BUILD_COMMIT ${HEAD})
|
||||
set(BUILD_NUMBER ${COUNT})
|
||||
endif()
|
||||
endif()
|
||||
|
||||
# Only write the header if it's changed to prevent unnecessary recompilation
|
||||
if(EXISTS ${HEADER_FILE})
|
||||
file(STRINGS ${HEADER_FILE} CONTENTS REGEX "BUILD_COMMIT \"([^\"]*)\"")
|
||||
list(GET CONTENTS 0 EXISTING)
|
||||
if(NOT EXISTING STREQUAL "#define BUILD_COMMIT \"${BUILD_COMMIT}\"")
|
||||
configure_file(${TEMPLATE_FILE} ${HEADER_FILE})
|
||||
endif()
|
||||
else()
|
||||
configure_file(${TEMPLATE_FILE} ${HEADER_FILE})
|
||||
endif()
|
22
scripts/build-info.sh
Executable file
22
scripts/build-info.sh
Executable file
|
@ -0,0 +1,22 @@
|
|||
#!/bin/sh
|
||||
|
||||
BUILD_NUMBER="0"
|
||||
BUILD_COMMIT="unknown"
|
||||
|
||||
REV_LIST=$(git rev-list --count HEAD)
|
||||
if [ $? -eq 0 ]; then
|
||||
BUILD_NUMBER=$REV_LIST
|
||||
fi
|
||||
|
||||
REV_PARSE=$(git rev-parse --short HEAD)
|
||||
if [ $? -eq 0 ]; then
|
||||
BUILD_COMMIT=$REV_PARSE
|
||||
fi
|
||||
|
||||
echo "#ifndef BUILD_INFO_H"
|
||||
echo "#define BUILD_INFO_H"
|
||||
echo ""
|
||||
echo "#define BUILD_NUMBER $BUILD_NUMBER"
|
||||
echo "#define BUILD_COMMIT \"$BUILD_COMMIT\""
|
||||
echo ""
|
||||
echo "#endif // BUILD_INFO_H"
|
Loading…
Add table
Add a link
Reference in a new issue