From fd9a2fdfe2dd7a54546be2c88b196e193ae7920e Mon Sep 17 00:00:00 2001 From: Concedo <39025047+LostRuins@users.noreply.github.com> Date: Mon, 10 Jul 2023 23:22:45 +0800 Subject: [PATCH] As an alternative, to avoid failing on Metal due to lack of Q8_0 support, instead quantize tok_embeddings.weight to Q4_0 and retain output.weight as F16. This results in a net gain of about 55mb for a 7B model compared to previous approach, but should minimize adverse impact to model quality. --- llama.cpp | 11 +++++++++-- 1 file changed, 9 insertions(+), 2 deletions(-) diff --git a/llama.cpp b/llama.cpp index 4ab291793..d770a7c8f 100644 --- a/llama.cpp +++ b/llama.cpp @@ -2435,7 +2435,6 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s int ny = tensor.ne.at(1); if (nx % QK_K != 0 || ny % QK_K != 0) { fprintf(stderr, "\n\nTensor sizes %d x %d are not divisible by %d, required for k-quants.\n",nx,ny,QK_K); - fprintf(stderr, "Q8_0 will be used for this tensor instead.\n"); convert_incompatible_tensor = true; } } @@ -2465,7 +2464,15 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q5_K; } if (convert_incompatible_tensor) { - new_type = GGML_TYPE_Q8_0; //fall back to Q8_0 instead of just failing. + if (tensor.name == "output.weight") { + new_type = GGML_TYPE_F16; //fall back to F16 instead of just failing. + fprintf(stderr, "F16 will be used for this tensor instead.\n"); + } else if (tensor.name == "tok_embeddings.weight") { + new_type = GGML_TYPE_Q4_0; //fall back to Q4_0 instead of just failing. + fprintf(stderr, "Q4_0 will be used for this tensor instead.\n"); + } else { + throw std::runtime_error("Unsupported tensor size encountered\n"); + } } #endif