iq4_xs: CUDA works - 133.2 t/s
This commit is contained in:
parent
2b21d37a4b
commit
fddbfe839a
3 changed files with 63 additions and 30 deletions
|
@ -36,8 +36,8 @@ static const std::vector<struct quant_option> QUANT_OPTIONS = {
|
|||
{ "Q3_K_S", LLAMA_FTYPE_MOSTLY_Q3_K_S, " 2.75G, +0.5551 ppl @ LLaMA-v1-7B", },
|
||||
{ "Q3_K_M", LLAMA_FTYPE_MOSTLY_Q3_K_M, " 3.07G, +0.2496 ppl @ LLaMA-v1-7B", },
|
||||
{ "Q3_K_L", LLAMA_FTYPE_MOSTLY_Q3_K_L, " 3.35G, +0.1764 ppl @ LLaMA-v1-7B", },
|
||||
{ "IQ4_NL", LLAMA_FTYPE_MOSTLY_IQ4_NL, " 4.5 bpw non-linear quantization", },
|
||||
{ "IQ4_XS", LLAMA_FTYPE_MOSTLY_IQ4_XS, " 4.125 bpw non-linear quantization", },
|
||||
{ "IQ4_NL", LLAMA_FTYPE_MOSTLY_IQ4_NL, " 4.50 bpw non-linear quantization", },
|
||||
{ "IQ4_XS", LLAMA_FTYPE_MOSTLY_IQ4_XS, " 4.25 bpw non-linear quantization", },
|
||||
{ "Q4_K", LLAMA_FTYPE_MOSTLY_Q4_K_M, "alias for Q4_K_M", },
|
||||
{ "Q4_K_S", LLAMA_FTYPE_MOSTLY_Q4_K_S, " 3.59G, +0.0992 ppl @ LLaMA-v1-7B", },
|
||||
{ "Q4_K_M", LLAMA_FTYPE_MOSTLY_Q4_K_M, " 3.80G, +0.0532 ppl @ LLaMA-v1-7B", },
|
||||
|
|
82
ggml-cuda.cu
82
ggml-cuda.cu
|
@ -571,7 +571,7 @@ typedef struct {
|
|||
} block_iq4_nl;
|
||||
static_assert(sizeof(block_iq4_nl) == sizeof(ggml_fp16_t) + QK4_NL/2, "wrong iq4_nl block size/padding");
|
||||
|
||||
#define QR4_XS 2
|
||||
#define QR4_XS 4
|
||||
#define QI4_XS (QK_K / (4*QR4_XS))
|
||||
typedef struct {
|
||||
half d;
|
||||
|
@ -5332,41 +5332,75 @@ static __device__ __forceinline__ float vec_dot_iq4_nl_q8_1(
|
|||
return d * (sumi1 + sumi2);
|
||||
}
|
||||
|
||||
// TODO
|
||||
static __device__ __forceinline__ float vec_dot_iq4_xs_q8_1(
|
||||
const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
|
||||
|
||||
const block_iq4_xs * bq = (const block_iq4_xs *) vbq;
|
||||
|
||||
#if QK_K == 256
|
||||
#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
|
||||
const uint16_t * q4 = (const uint16_t *)bq->qs + 2*iqs;
|
||||
const int32_t * q8 = (const int32_t *)bq8_1->qs + iqs;
|
||||
|
||||
const block_iq4_xs * bq4 = (const block_iq4_xs *) vbq;
|
||||
const uint8_t * values = (const uint8_t *)kvalues_iq4nl;
|
||||
|
||||
// iqs is 0...15
|
||||
const int ib32 = iqs/2;
|
||||
const int il = iqs%2;
|
||||
const int32_t * q8 = (const int *)bq8_1[ib32].qs + 2*il;
|
||||
const uint32_t * q4 = (const uint32_t *)bq4->qs + 4*ib32 + 2*il;
|
||||
const int8_t ls = ((bq4->scales_l[ib32/2] >> 4*(ib32%2)) & 0xf) | (((bq4->scales_h >> 2*ib32) & 3) << 4);
|
||||
const float d = (float)bq4->d * (ls - 32) * __low2float(bq8_1[ib32].ds);
|
||||
int v1, v2;
|
||||
int sumi1 = 0, sumi2 = 0;
|
||||
for (int l = 0; l < VDR_Q4_0_Q8_1_MMVQ; ++l) {
|
||||
const uint32_t aux = q4[2*l] | (q4[2*l+1] << 16);
|
||||
get_int_from_table_16(aux, values, v1, v2);
|
||||
sumi1 = __dp4a(v1, q8[l+0], sumi1);
|
||||
sumi2 = __dp4a(v2, q8[l+4], sumi2);
|
||||
for (int j = 0; j < 2; ++j) {
|
||||
get_int_from_table_16(q4[j], values, v1, v2);
|
||||
sumi1 = __dp4a(v1, q8[j+0], sumi1);
|
||||
sumi2 = __dp4a(v2, q8[j+4], sumi2);
|
||||
}
|
||||
|
||||
#else
|
||||
const uint8_t * q4 = bq->qs + 4*iqs;
|
||||
const int8_t * q8 = bq8_1->qs + 4*iqs;
|
||||
|
||||
int sumi1 = 0, sumi2 = 0;
|
||||
for (int l = 0; l < 4*VDR_Q4_0_Q8_1_MMVQ; ++l) {
|
||||
sumi1 += q8[l+ 0] * kvalues_iq4nl[q4[l] & 0xf];
|
||||
sumi2 += q8[l+16] * kvalues_iq4nl[q4[l] >> 4];
|
||||
}
|
||||
#endif
|
||||
const float d = (float)bq->d * __low2float(bq8_1->ds);
|
||||
return d * (sumi1 + sumi2);
|
||||
#else
|
||||
assert(false);
|
||||
return 0.f;
|
||||
#endif
|
||||
#else
|
||||
assert(false);
|
||||
return 0.f;
|
||||
#endif
|
||||
}
|
||||
|
||||
//// TODO
|
||||
//static __device__ __forceinline__ float vec_dot_iq4_xs_q8_1(
|
||||
// const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
|
||||
//
|
||||
// const block_iq4_xs * bq = (const block_iq4_xs *) vbq;
|
||||
//
|
||||
//#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
|
||||
// const uint16_t * q4 = (const uint16_t *)bq->qs + 2*iqs;
|
||||
// const int32_t * q8 = (const int32_t *)bq8_1->qs + iqs;
|
||||
//
|
||||
// const uint8_t * values = (const uint8_t *)kvalues_iq4nl;
|
||||
//
|
||||
// int v1, v2;
|
||||
// int sumi1 = 0, sumi2 = 0;
|
||||
// for (int l = 0; l < VDR_Q4_0_Q8_1_MMVQ; ++l) {
|
||||
// const uint32_t aux = q4[2*l] | (q4[2*l+1] << 16);
|
||||
// get_int_from_table_16(aux, values, v1, v2);
|
||||
// sumi1 = __dp4a(v1, q8[l+0], sumi1);
|
||||
// sumi2 = __dp4a(v2, q8[l+4], sumi2);
|
||||
// }
|
||||
//
|
||||
//#else
|
||||
// const uint8_t * q4 = bq->qs + 4*iqs;
|
||||
// const int8_t * q8 = bq8_1->qs + 4*iqs;
|
||||
//
|
||||
// int sumi1 = 0, sumi2 = 0;
|
||||
// for (int l = 0; l < 4*VDR_Q4_0_Q8_1_MMVQ; ++l) {
|
||||
// sumi1 += q8[l+ 0] * kvalues_iq4nl[q4[l] & 0xf];
|
||||
// sumi2 += q8[l+16] * kvalues_iq4nl[q4[l] >> 4];
|
||||
// }
|
||||
//#endif
|
||||
// const float d = (float)bq->d * __low2float(bq8_1->ds);
|
||||
// return d * (sumi1 + sumi2);
|
||||
//}
|
||||
|
||||
template <int qk, int qr, int qi, bool need_sum, typename block_q_t, int mmq_x, int mmq_y, int nwarps,
|
||||
allocate_tiles_cuda_t allocate_tiles, load_tiles_cuda_t load_tiles, int vdr, vec_dot_q_mul_mat_cuda_t vec_dot>
|
||||
static __device__ __forceinline__ void mul_mat_q(
|
||||
|
@ -9416,7 +9450,7 @@ static void ggml_cuda_op_mul_mat_vec_q(
|
|||
(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
|
||||
break;
|
||||
case GGML_TYPE_IQ4_XS:
|
||||
mul_mat_vec_q_cuda<QK_K, QI4_XS, block_iq4_xs, VDR_Q4_0_Q8_1_MMVQ, vec_dot_iq4_xs_q8_1>
|
||||
mul_mat_vec_q_cuda<QK_K, QI4_XS, block_iq4_xs, 1, vec_dot_iq4_xs_q8_1>
|
||||
(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
|
||||
break;
|
||||
case GGML_TYPE_IQ3_S:
|
||||
|
|
|
@ -2941,7 +2941,7 @@ static std::string llama_model_ftype_name(llama_ftype ftype) {
|
|||
case LLAMA_FTYPE_MOSTLY_IQ3_XXS:return "IQ3_XXS - 3.0625 bpw";
|
||||
case LLAMA_FTYPE_MOSTLY_IQ1_S :return "IQ1_S - 1.5625 bpw";
|
||||
case LLAMA_FTYPE_MOSTLY_IQ4_NL: return "IQ4_NL - 4.5 bpw";
|
||||
case LLAMA_FTYPE_MOSTLY_IQ4_XS: return "IQ4_XS - 4.125 bpw";
|
||||
case LLAMA_FTYPE_MOSTLY_IQ4_XS: return "IQ4_XS - 4.25 bpw";
|
||||
case LLAMA_FTYPE_MOSTLY_IQ3_S: return "IQ3_S - 3.4375 bpw";
|
||||
case LLAMA_FTYPE_MOSTLY_IQ3_M: return "IQ3_S mix - 3.66 bpw";
|
||||
|
||||
|
@ -10903,9 +10903,8 @@ static ggml_type get_k_quant_type(quantize_state_internal & qs, ggml_type new_ty
|
|||
if (use_more_bits(i_layer, n_layer)) new_type = GGML_TYPE_Q6_K;
|
||||
}
|
||||
}
|
||||
else if (i_layer < n_layer/8 && (ftype == LLAMA_FTYPE_MOSTLY_IQ4_NL || ftype == LLAMA_FTYPE_MOSTLY_IQ4_XS)) {
|
||||
if (!qs.has_imatrix) new_type = GGML_TYPE_Q5_K;
|
||||
else if (ftype == LLAMA_FTYPE_MOSTLY_IQ4_XS) new_type = GGML_TYPE_Q4_K;
|
||||
else if (i_layer < n_layer/8 && (ftype == LLAMA_FTYPE_MOSTLY_IQ4_NL || ftype == LLAMA_FTYPE_MOSTLY_IQ4_XS) && !qs.has_imatrix) {
|
||||
new_type = GGML_TYPE_Q5_K;
|
||||
}
|
||||
else if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M && use_more_bits(i_layer, n_layer)) new_type = GGML_TYPE_Q6_K;
|
||||
else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S && arch != LLM_ARCH_FALCON && i_layer < n_layer/8) {
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue